

Преобразователь частоты INNOVERT серия IDD mini PLUS

Инструкция по эксплуатации

Перед использованием прочтите, пожалуйста, эту инструкцию полностью

Благодарим Вас за выбор универсального многофункционального высокоэффективного преобразователя частоты INNOVERT.

Перед установкой, эксплуатацией, техническим обслуживанием или проверкой преобразователя частоты (ПЧ) внимательно ознакомьтесь с данной инструкцией. Это обеспечит максимально эффективное использование ПЧ и безопасность обслуживающего персонала.

В данной инструкции указания по безопасности подразделяются на «Опасность» и «Предупреждение», поэтому следует уделять особое внимание символам «Д» (Опасность) и « 1 » (Предупреждение) и соответствующему содержанию текста.

Символ «Д» означает, что неправильная эксплуатация прибора может стать причиной смерти или серьезных травм.

Символ « • » означает, что неправильная эксплуатация прибора может привести к травмам или неисправности ПЧ и механической системы, а также к другим серьезным последствиям.

Рисунки в данной инструкции приведены для удобства описания; они могут отличаться от модернизированных версий преобразователя.

Данная инструкция должна храниться у конечного пользователя для проведения постгарантийного ремонта и технического обслуживания.

При возникновении любых вопросов обращайтесь в нашу компанию или к нашим представителям, мы всегда рады помочь Вам.

Предисловие

Особенность преобразователей частоты с однофазным выходом состоит в том, что все параметры, связанные с реверсом движения не действенны. Кроме того, в этих преобразователях невозможно реализовать режимы работы с низкими выходными частотами. Диапазон регулирования 1:3, то есть при максимальной рабочей частоте 50 Гц (параметр Pb05), диапазон составит от 20 до 50 Гц. Поэтому параметры, определяющие работу приводов на низких частотах, не эффективны. На частотах ниже 20 Гц электродвигатель не будет развивать номинальный момент.

В связи с этим, ниже приведен список параметров, которые не рекомендуется изменять при настройке преобразователя частоты, работающего в комплекте с однофазным асинхронным электролвигателем.

Pb14, PC08, Pd11, Pd13, Pd14, PE13, PF33.

При настройке параметров Pd15 – Pd20 значения этих параметров 3, 4 и 7 не эффективны.

Обращаем Ваше внимание на то, что преобразователи частоты, предназначенные для работы с однофазными конденсаторными двигателями, подключаются по схеме, несколько отличающейся от схемы подключения трёхфазных преобразователей. Это обусловлено тем, что количество проводов питания двигателя равно двум (а не трём как в трёхфазных двигателях). Кроме того активация клеммы REV не приводит к изменению направления вращения.

Оглавление

Глава 1 Инструкция по безопасному применению	6
1-1 Проверка при получении	6
1-2 Перемещение и установка	6
1-3 Прокладка и подключение кабеля	7
1-4 Подключение питания и ввод в эксплуатацию	8
1-5 Проверка и техническое обслуживание	9
1-6 Особые ситуации	9
1-7 Утилизация	9
Глава 2 Описание преобразователя частоты	10
2-1 Осмотр при снятии упаковки	10
2-2 Обозначение модели преобразователя частоты	10
2-3 Характеристики оборудования	10
2-4 Внешний вид	13
2-5 Доступ к силовым клеммам преобразователя	13
2-6 Характеристики различных моделей преобразователей	14
2-7 Хранение оборудования	14
Глава 3 Установка преобразователя частоты	15
3-1 Требования, предъявляемые к месту установки	15
3-2 Габаритные, установочные размеры и масса преобразователя	17
Глава 4 Электромонтаж	18
4-1 Схема электромонтажа основного силового контура	18
4-1-1 Описание дополнительных компонентов необходимых для подключения преобразо	вателя 19
4-1-2 Замечания по подключению проводов основного силового контура	20
4-1-3 Рекомендуемые характеристики проводов и защитного оборудования	21
4-1-4 Клеммы основного силового контура и их описание	21
4-2 Управляющие клеммы	22
4-2-1 Основная схема соединений	22
4-2-2 Описание управляющих клемм	23
4-2-3 Замечания по монтажу управляющих цепей	24
Глава 5 Эксплуатация	25
5-1 Цифровая панель управления (внешний вид панели может быть модифицирован)	25
5-1-1 Описание функций кнопок	25
5-2 Инструкция по использованию панели управления	27
5-3 Простое функционирование преобразователя и его элементов	29
5-3-1 Настройка, установка и электромонтаж	29
5-3-2 Проверка электромонтажа	30
5-3-3 Настройка параметров преобразователя	30
5-3-4 Работа преобразователя	
Глава 6. Таблица параметров	
Глава 7 Описание функциональных параметров	47
7-1 Параметры для текущего контроля	
7-2 Основные функции	51
7-3 Параметры для основных применений	61
7-4 Параметры вхолов и выхолов	66

Инструкция по эксплуатации преобразователя частоты серии IDD mini PLUS

7-5 Группа вспомогательных параметров	79
7-6 Группа параметров для прикладного использования	87
7-7 Параметры встроенного ПИД-регулятора	93
7-8 Группа параметров последовательного канала связи	103
7-9 Параметры для усложненного применения	104
Глава 8 Техническое обслуживание, диагностика ошибок и меры по их предотвращению	106
8-1 Необходимая ежедневная проверка	106
8-2 Замечания по техническому обслуживанию и проверке	106
8-3 Плановая периодическая проверка	99
8-4 Плановая замена деталей преобразователя	99
8-5 Информация по защите, диагностике и устранению ошибок в преобразователе	108
8-6 Устранение стандартных ошибок	110
8-7 Борьба с электромагнитными помехами	111
Глава 9 Выбор дополнительных опций	113
9-1 Назначение опций	113
9-2 Внешняе опции	113
9-2-2 Тормозной резистор	107
Приложение 1. Пример простого применения	114
Приложение 2. Использование протокола связи Modbus для управления преобразователем.	115

Глава 1 Инструкция по безопасному применению

1-1 Проверка при получении

Предупреждение

Перед отправкой вся продукция прошла тщательную проверку и испытания, но в связи с транспортировкой необходимо проверить следующее:

- Наличие деформаций или повреждений преобразователя, которые могли возникнуть при транспортировке, не устанавливайте поврежденный преобразователь, поскольку это может привести к травмам персонала, своевременно сообщите об этом представителю транспортной компании.
- Целостность упаковки, наличие в ней всех деталей и краткого описания. Особенно внимательно проверьте наличие гарантийного талона и краткого описания по эксплуатации, сохраните их для проведения дальнейшего технического обслуживания оборудования.
- Убедитесь, что поставленное оборудование соответствует заказанному, также проверьте наличие внутренних и внешних неисправностей.

1-2 Перемещение и установка

Предупреждение

- При перемещении преобразователя используйте специальное оборудование для предотвращения повреждений.
- При перемещении преобразователя закрепите его. Крышка ПЧ может упасть и нанести травмы персоналу, или же повредить сам преобразователь.
- Не устанавливайте преобразователь вблизи воспламеняющихся объектов во избежание пожара.
- Убедитесь в том, что преобразователь установлен ровно.
- Выберите безопасное место для размещения преобразователя. Условия окружающей среды для обеспечения корректной работы преобразователя указаны ниже.

Окружающая температура: -10°C ...+ 40°C (без обледенения).

Относительная влажность: < 90% (без конденсата);

Условия установки ПЧ: оборудование должно быть установлено в помещении (вдали от источника коррозионных газов, воспламеняющихся газов, масляного тумана, пыли и прямых солнечных лучей).

Абсолютная высота: 1000 м над уровнем моря (если ПЧ используется на высоте 1000 м над уровнем моря, необходимо понизить мощность подключаемых электродвигателей).

- Вибрация: <20 Γ ц: максимальные ускорения 1,0 g; 20-50 Γ ц: 0.6 g
- Убедитесь, что монтажная поверхность может выдержать вес преобразователя, и что он не упадет с нее, также убедитесь в безопасности и надежности места установки. Ограничьте доступ детей и постороннего персонала к месту установки ПЧ.

Убедитесь в том, что винты зафиксированы и надежно затянуты, это позволит предотвратить падение и механическое повреждение ПЧ.

- В процессе установки не допускайте попадания внутрь преобразователя винтов, обрывков проводов, насекомых и других объектов, способных проводить электрический ток, так как это может привести к повреждению ПЧ и к серьезной аварии.
- При установке в одном шкафу управления двух или более преобразователей, их следует размещать согласно предписаниям, указанным в инструкции по эксплуатации. Также необходимо располагать их на достаточном расстоянии друг от друга и установить дополнительные охлаждающие вентиляторы, обеспечивающие свободную циркуляцию воздуха в шкафу, для поддержания температуры в шкафу не выше +50°C. Перегрев может привести к повреждению преобразователя, возникновению пожара или другой аварийной ситуации.
- Установка преобразователя должна осуществляться квалифицированным персоналом.

1-3 Прокладка и подключение кабеля

Предупреждение

- Аккуратно обращайтесь с электропроводами, не используйте их для подвешивания посторонних предметов и не прикладывайте к ним чрезмерных усилий, чтобы не допустить повреждения проводов и поражения электрическим током.
- Не подсоединяйте к выходным клеммам преобразователя фазосдвигающий конденсатор, так как это может привести к повреждению преобразователя.
- Не подключайте к выходным клеммам преобразователя переключающих устройств, таких как рубильник, контактор или магнитный пускатель. Это может привести к повреждению преобразователя. Такой случай будет считаться негарантийным.
- Прокладывайте питающий и управляющий кабели отдельно друг от друга во избежание возникновения помех.

М Опасность

- Перед электромонтажом убедитесь, что питание преобразователя отключено.
- Подключение проводов должно выполняться только квалифицированными электриками.
- Подключение должно производиться в соответствии с указаниями, представленными в инструкции по эксплуатации.
- Заземление должно быть выполнено согласно соответствующим предписаниям из инструкции по эксплуатации, так как в противном случае это может привести к поражению электрическим током или возникновению пожара.
- Для преобразователя используйте независимый источник питания; никогда не используйте тот же источник питания для другого силового оборудования, такого как, например, аппарат для электросварки.

- Не прикасайтесь к преобразователю мокрыми руками во избежание поражения электрическим током.
- Не прикасайтесь непосредственно к клеммам, не касайтесь входными и выходными проводами корпуса преобразователя, так как это может привести к поражению электрическим током.
- Убедитесь, что напряжение источника питания соответствует номинальному напряжению ПЧ, в противном случае это может привести к поломке устройства или травмам персонала.
- Проверьте, что источник питания подключен к клеммам L1, L2, а не к клеммам U,W. Подключение питания к выходным клеммам U,W преобразователя неминуемо приведет к его выходу из строя.
- Не проводите проверку прочности изоляции преобразователя с помощью высоковольтного мегомметра, так как при этом преобразователь выйдет из строя.
- Установите дополнительные блоки, такие как тормозной модуль и тормозные резисторы в соответствии с предписаниями инструкции по эксплуатации, иначе может произойти авария или пожар.
- Убедитесь, что все винты клемм прочно затянуты, в противном случае это может стать причиной короткого замыкания.

1-4 Подключение питания и ввод в эксплуатацию

Предупреждение

- Перед включением питания убедитесь, что передняя крышка установлена, во время работы преобразователя не снимайте крышку.
- Убедитесь, что силовые и сигнальные кабели подключены правильно, в противном случае это может привести к поломке преобразователя.
- Перед вводом в эксплуатацию убедитесь, что все параметры заданы корректно.
- Перед вводом в эксплуатацию убедитесь, что пробный пуск ПЧ не приведет к его поломке, для этого рекомендуется провести пробный пуск на холостом ходу.
- В случае, если настроек функций останова недостаточно, обеспечьте наличие выключателя питания для аварийного останова.
- Не рекомендуется осуществлять пуск и останов электродвигателя, подключенного к ПЧ, с помощью электромагнитного пускателя, установленного на силовом входе преобразователя, это приводит к существенному сокращению срока службы ПЧ.

Опасность

- Если задана функция автоматического перезапуска после ошибки, нельзя приближаться к оборудованию, так как после останова может произойти его автоматический перезапуск.
- Убедитесь, что двигатель и механизмы работают в допустимых пределах их технических характеристик. Работа за рамками допустимых пределов может привести к отказу двигателя и механизмов.
- Во время работы, недопустимо произвольно изменять параметры ПЧ.

- Не прикасайтесь к радиатору или тормозному резистору во время работы, это может стать причиной ожогов.
- Не прикасайтесь влажными руками к монтажной панели при переключении кнопок и выключателей, в противном случае это может стать причиной поражения электрическим током или возникновение травм.
- Не подключайте и не отсоединяйте двигатель в процессе работы преобразователя, так как это может привести к срабатыванию защиты и к поломке преобразователя.

1-5 Проверка и техническое обслуживание

Предупреждение

- Перед выполнением проверки и технического обслуживания убедитесь в том, что питание преобразователя отключено, и индикаторы питания не горят, в противном случае, это приведет к поражению электрическим током.
- Во избежание повреждения преобразователя разрядом статического электричества, перед выполнением проверки или технического обслуживания дотроньтесь рукой до металлического предмета, чтобы произошел разряд статического электричества.
- Не используйте мегомметр (предназначенный для измерения сопротивления изоляции) для проверки силовых шин и цепей управления преобразователя.

Опасность

- Только уполномоченный квалифицированный персонал может проводить монтаж, проверку, техническое обслуживание и демонтаж преобразователя.
- Проверка, техническое обслуживание должны выполняться в соответствии с процедурой, описанной в инструкции по эксплуатации; запрещается самостоятельное изменение конструкции ПЧ, в противном случае это может привести к поражению электрическим током, травмам персонала или поломке устройства.

1-6 Особые ситуации

Опасность

- При срабатывании системы защиты преобразователя на дисплее высвечивается код ошибки. В Главе 8 (раздел 8-5) по коду ошибки можно узнать ее описание, возможную причину её возникновения и методы устранения. Не пытайтесь перезапустить преобразователь, если причина ошибки не была устранена. Такой перезапуск преобразователя может привести к его выходу из строя, механическому повреждению оборудования. Такой случай будет считаться негарантийным..
- При поломке преобразователя не пытайтесь отремонтировать его самостоятельно, обратитесь в нашу компанию или ее представительство для проведения диагностики преобразователя.

1-7 Утилизация

Предупреждение

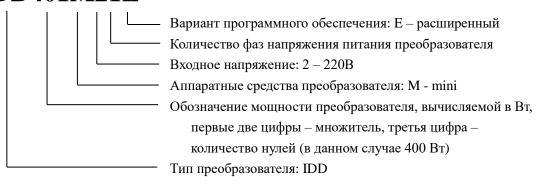
После разборки преобразователя утилизируйте его как промышленные отходы, не сжигайте.

Глава 2 Описание преобразователя частоты

2-1 Осмотр при снятии упаковки

После распаковки проверьте:

- совпадает ли модель частотного преобразователя с Вашим заказом.
- не поврежден ли преобразователь, и все ли входящие в комплект компоненты имеются в наличии.


В случае отсутствия или несоответствия каких-либо компонентов немедленно свяжитесь с Вашим поставщиком.

2-2 Обозначение модели преобразователя частоты

Модель:

IDD401M21E

2-3 Характеристики оборудования

Модель		IDD mini PLUS
Вход	Номинальное напряжение и частота	Однофазное, 220В, 50/60 Гц
	Допустимый диапазон напряжения	Однофазное, 220В: 170В~240В
Выход	Напряжение	Однофазное, 220В, 0~220В
	Частота	0,1 ~ 999,9 Гц
Режим управления		Преобразование напряжение-частота
Дисплей		Четырехразрядный дисплей, светодиодная индикация; отображение заданной и выходной частоты, направления вращения, выходного тока, напряжения шины постоянного тока, кодов ошибок и др.
Характеристики управления	Диапазон выходной частоты	0,1 Гц~999,9 Гц

Инструкция по эксплуатации преобразователя частоты серии IDD mini PLUS

Г	T #	T 1
	Точность установки задания частоты	Цифровая настройка: 0,1 Гц, аналоговая настройка: 0,1% максимальной выходной частоты
	Точность индикации выходной частоты	0,1 Гц
	Преобразование напряжение - частота	Задание точки изгиба кривой напряжение-частота для соответствия различным нагрузочным режимам.
	Регулировка момента	Увеличение тока двигателя используется: для увеличения момента в зависимости от условий нагрузки.
	Многофункциональные входы	Четыре многофункциональных входа, реализация таких функций, как: задание 15 предустановленных скоростей, работа по программе, 4 значения рампы увеличения / уменьшения скорости, функция электронного потенциометра (МОР), аварийный останов и другие функции.
	Многофункциональные вы- ходы	Один релейный многофункциональный выход, реализация таких функций, как индикация работы, счетчик, таймер, достижение нулевой скорости, работа по программе и авария.
	Настройка времени ускорения / замедления	4 варианта времен ускорения / замедления может быть задано в диапазоне 0~999.9 сек.
Другие функции	ПИД-регулятор	Встроенный ПИД-регулятор
	RS485	Протокол связи МОDBUS (порт RS485)
	Настройка частоты	Аналоговое задание 0~10В, 4~20мА, настройка с помощью потенциометра панели управления, с помощью протокола связи RS485 и настройка с помощью электронного потенциометра МОР (UP/DOWN)
	ПЛК-режим	Управление скоростью вращения по управляющей программе, записанной в памяти преобразователя

Функции	Защита от	150% в течение 1 мин.
защиты	перегрузок	
	Защита от	Для защиты от импульсных перенапряжений сети необходимо
	перенапряжений	установить сетевой дроссель
		Уровень срабатывания защиты от перенапряжения в звене посто-
		янного тока может быть скорректирован пользователем
	Защита от	Уровень срабатывания защиты может быть скорректирован
	пониженного	Пользователем
	напряжения	
	Другие типы	Блокировка параметров от несанкционированной настройки
	защиты	
кпд	~96%	
Окружающая	Окружающая тем-	-10°С + 40°С (без обледенения)
среда	пература	
	Влажность	Макс. 90% (без конденсата)
	воздуха	
	Абсолютная	Ниже 1000 м
	высота	
	Вибрация	<20 Гц: Макс. 1.0 g; 20 – 50 Гц: Макс. 0.6 g
Конструкция	Охлаждение	Принудительное воздушное охлаждение
	Класс защиты	IP 20
Установка	Место монтажа	Корпус преобразователя не обеспечивает его защиту от пыли и
		влаги. При эксплуатации преобразователя в пыльных и влажных
		помещениях пользователь должен поместить преобразователь в
		электрошкаф с требуемой степенью защиты

2-4 Внешний вид

В качестве примера представлен внешний вид однофазного преобразователя частоты, 220 В, мощностью 2,2 кВт.

- 1. Клеммы для подключения электродвигателя U и W
- 2. Управляющие клеммы
- 3. Потенциометр, для задания скорости вращения
- 4. Встроенная панель управления
- 5. Разъём для подключения внешней клавиатуры
- Силовые клеммы питающего напряжения L1 и L2
- 7. Клемма защитного заземления 🖶

- 8. Крепежные отверстия для монтажа преобразователя
- 9. Крепление на стандартную дин-рейку 35 мм
- 10. Переключатель типа аналогового сигнала I/U
- 11. Паспортная табличка преобразователя

2-5 Доступ к силовым клеммам преобразователя

Входные силовые клеммы питания расположены в верхней части преобразователя.

Выходные клеммы преобразователя для подключения двигателя расположены в нижней части ПЧ.

1 (Vanaraman er american			
2-6 Характеристики	различных	моделеи	преооразователеи

Модель	Вход питания	Выходная мощность, кВт	Выходной ток (A)	Перегрузочная способность (60 с) (A)	Мощности подключаемых двигателей, кВт
IDD401M21E	_	0,4	5,0	7,5	0,18-0,37
IDD751M21E	1-фазный	0,75	7,0	10,5	0,37-0,75
IDD152M21E	220В, 50/60 Гц	1,5	11,0	16,5	0,37-1,5
IDD222M21E	20,001ц	2,2	16,0	24	0,55-2,2

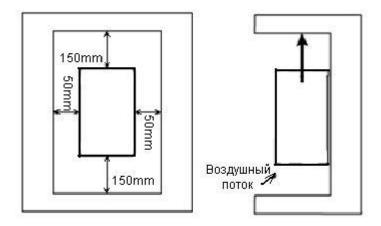
2-7 Хранение оборудования

Перед установкой преобразователь частоты необходимо хранить в коробке. Если в настоящее время преобразователь не используется и находится на хранении, следует обратить внимание на следующее:

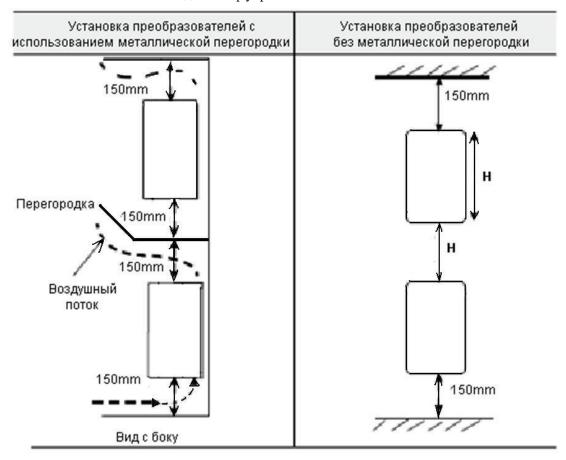
- 1) Прибор необходимо хранить в сухом, чистом помещении, в котором нет пыли.
 - Относительная влажность в месте хранения должна быть 0~90%, без конденсата.
 - Температура хранения должна быть в диапазоне от -20°C до +60°C.
 - В помещении не должно быть коррозийных газов и жидкостей, на оборудование не должны попадать прямые солнечные лучи.
- 2) Длительное хранение преобразователя может привести к ухудшению свойств электролитических конденсаторов, имеющихся в составе преобразователя. Во время длительного хранения нужно подводить к преобразователю питание не реже одного раза в год на 5 часов для сохранения его работоспособности. При этом необходимо использовать регулируемое напряжение питания для постепенного увеличения уровня (за 2 часа) до номинального значения.

Глава 3 Установка преобразователя частоты

3-1 Требования, предъявляемые к месту установки

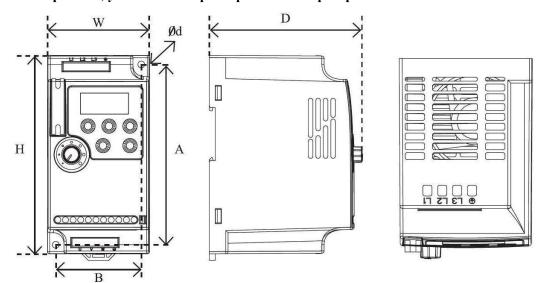

Срок службы ПЧ и его нормальное функционирование напрямую зависят от условий эксплуатации. В случае несоответствия этих условий требованиям, указанным в настоящей инструкции, может произойти срабатывание защиты или сбой в работе преобразователя.

ПЧ серии IDD mini PLUS предназначены для вертикального монтажа, при этом должны быть обеспечены вентиляция и отвод тепла.


Убедитесь, что условия эксплуатации отвечают следующим требованиям:

- (1) Температура окружающей среды: -10°C ...+40°C
- (2) Относительная влажность: 0...90% (без образования конденсата)
- (3) Отсутствие попадания прямых солнечных лучей
- (4) Отсутствие агрессивных газов или жидкостей
- (5) Отсутствие пыли, волокон, пуха, насекомых и металлической пыли.
- (6) Расположение вдали от радиоактивных и воспламеняющихся веществ
- (7) Расположение вдали от источников электромагнитных помех (например, от сварочного аппарата, силового оборудования).
- (8) Твердая и устойчивая поверхность, на которую устанавливается преобразователь. В случае вибрации используйте антивибрационные прокладки.
- (9) Место для установки ПЧ должно находиться в помещении с хорошей вентиляций, возможностью для осмотра и технического обслуживания. Установка ПЧ должна производиться на твердую огнеупорную поверхность вдали от источников тепла (например, от тормозного резистора).
- (10) Вокруг ПЧ должно быть достаточно свободного пространства (см. ниже). В случае установки нескольких ПЧ в одном помещении необходимо их правильное размещение (см. рис. ниже). При необходимости установите дополнительный охлаждающий вентилятор температура окружающей среды не должна превышать 50°С.

Установка одного ПЧ



Установка нескольких ПЧ в один шкаф управления.

Перед монтажом нескольких ПЧ в один шкаф управления убедитесь, что в нем достаточно свободного пространства, имеется хороший теплообмен. Если преобразователи установлены рядом друг с другом, то расстояние между преобразователями должно быть больше 50 мм.

3-2 Габаритные, установочные размеры и масса преобразователя

Размеры: мм

Модель	Тип корпуса	W	Н	D	A	В	Ød
IDD401M21E~IDD751M21E	1	68	132	102	120	57	4,5
IDD152M21E	2	72	142	112	130	61	4,5
IDD222M21E	3	85	180	116	167	72	4,5

Глава 4 Электромонтаж

Схема подключения преобразователя частоты (ПЧ) включает в себя два контура: основной силовой и управляющий.

4-1 Схема электромонтажа основного силового контура

- ▲ Подключение проводов питания следует производить только к входным клеммам преобразователя L1, L2 для однофазного напряжения. В противном случае преобразователь может выйти из строя
- Моторный кабель следует подключать только к клеммам U,W.
- **▲** Выход из строя преобразователя частоты по причине неправильного подключения не является гарантийным.

4-1-1 Описание дополнительных компонентов необходимых для подключения преобразователя

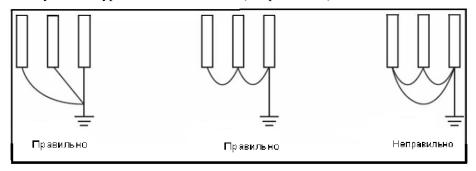
(1) Источник переменного тока

Напряжение источника питания должно соответствовать требованиям данной инструкции по эксплуатации.

(2) Автоматический выключатель

Автоматический выключатель обеспечивает защиту линии электропитания ПЧ при авариях внутри преобразователя и на его выходе. Обесточьте ПЧ с помощью автоматического выключателя перед осмотром, ТО или во время нерабочего режима.

(3) Электромагнитный пускатель

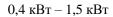

Для увеличения безопасности при обслуживании и эксплуатации в некоторых случаях допускается использовать пускатель для отключения ПЧ от источника питания.

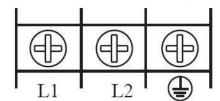
- (4) Дроссель переменного тока
 - а) служит для подавления высших гармоник и защиты ПЧ.
 - б) служит для улучшения коэффициента мощности.
- (5) Фильтр электромагнитной совместимости.

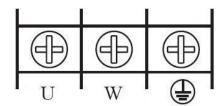
Уменьшает уровень помех от работы ПЧ.

4-1-2 Замечания по подключению проводов основного силового контура

- (1) Технические характеристики цепей подключения должны отвечать Правилам устройства электрических установок (ПУЭ);
- (2) Запрещается подключать источник переменного напряжения к выходным клеммам (U, V, W). При таком подключении преобразователь выйдет из строя.
- (3) Используйте изолированный экранированный кабель, подсоедините оба крайних конца экранирующей оплетки к заземлению.
- (4) ПЧ необходимо заземлить отдельным проводом: запрещается использовать общее заземление со сварочным аппаратом, двигателем большой мощности.
- (5) Используйте отдельный провод для подсоединения вывода заземления преобразователя теля к заземлению (его полное сопротивление не должно превышать 10 Ом).
- (6) Используйте заземляющий провод желто-зеленого цвета, его длина должна быть, как можно короче.
- (7) В случае заземления нескольких ПЧ вместе обратите внимание на то, чтобы отсутствовали замкнутые контуры в цепи заземления (см. рис. ниже):

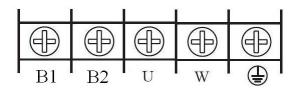



- (8) Силовой кабель и управляющие провода должны быть размещены отдельно; параллельные провода должны быть разнесены не менее, чем на 100 мм, пересечение проводов должно происходить под прямым углом. Запрещается размещать управляющие провода и силовой кабель в одном кожухе во избежание помех.
- (9) В общем случае, расстояние между двигателем и ПЧ не должно превышать 30 м, в противном случае будут возникать импульсные токи, обусловленные паразитной емкостью кабеля, которые могут вызвать срабатывание защиты от перегрузки по току, сбой в работе ПЧ, неправильную работу оборудования, выход преобразователя из строя. При расстояниях больше 30м необходимо между ПЧ и двигателем включить дроссель, уменьшить несущую частоту. Максимальное расстояние между двигателем и ПЧ не должно превышать 100 м.
- (10) Нельзя подсоединять сглаживающие конденсаторы или иной блок с емкостным сопротивлением (например, фильтр радиопомех) к выходным клеммам (U, W).
- (11) Убедитесь, что клеммы основного контура надежно затянуты и провода прижаты к ним, в противном случае крепление может ослабнуть из-за вибрации и произойти короткое замыкание.
- (12) При использовании дискретного релейного выхода, необходимо подключать RC-цепочку или варистор к обмотке реле или электромагнитного пускателя. При использовании транзисторного дискретного выхода параллельно обмотке реле подключается диод.
- (13) Запрещается подключение и отключение электродвигателя при работающем преобразователе.

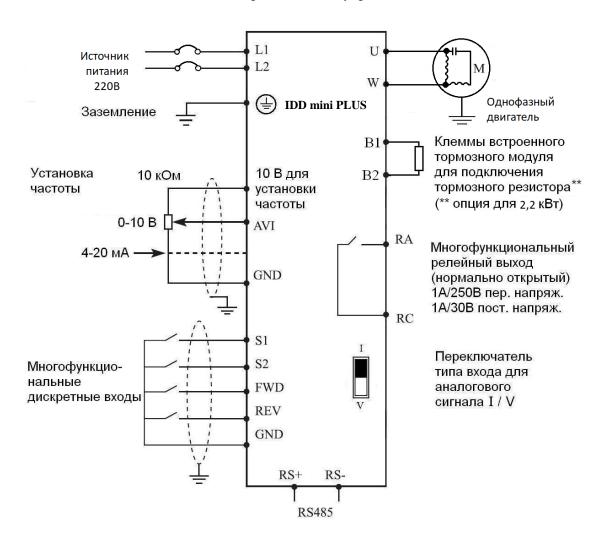

4-1-3 Рекомендуемые характеристики проводов и защитного оборудования

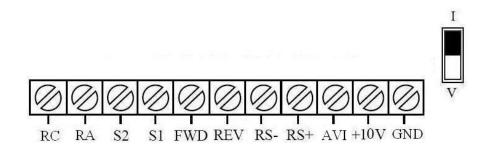
Модель ПЧ	Входное напря- жение, В	Мощность двигателя, кВт	Ток преобра- зователя (входной / выходной), А	Сечение силового кабеля, мм ²	Автомати- ческий выключа- тель, А	Электро- магнитный пускатель, А
IDD401M21E		0,25-0,4	6,3/5	1,5	10	12
IDD751M21E	220	0,55-0,75	11,5/7	2,5	16	12
IDD152M21E	220	1,1-1,5	15,7/11	2,5	20	16
IDD222M21E		1,5-2,2	20/16	4,0	25	25


4-1-4 Клеммы основного силового контура и их описание



2,2 кВт


Момент затяжки винтов на силовых клеммах преобразователя 1,4 $H \cdot M$.


Описание клемм основного контура

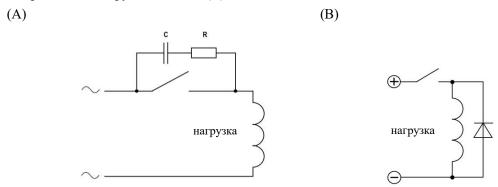
Клеммы	Описание
Ť	Вывод заземления
	Входные клеммы для подсоединения источника питания (при однофазном напряжении
L1, L2	для подачи питания используются две клеммы, третья не используемая клемма покрыта краской).
B1, B2	К клеммам может быть подсоединен внешний тормозной резистор. Тормозной резистор является дополнительным элементом и не входит в комплект поставки ПЧ.
U, W	Подсоединение однофазного асинхронного двигателя переменного тока
+, _	Шины звена постоянного тока, предназначены для подключения внешнего (опционного) тормозного блока

4-2 Управляющие клеммы

4-2-1 Основная схема соединений и расположение управляющих клемм

Момент затяжки винтов на клеммах $\,$ - $\,$ 0.2 Hm. Сечение управляющих проводов $\,$ от 0.22 мм 2 до 0.75 мм 2

4-2-2 Описание управляющих клемм

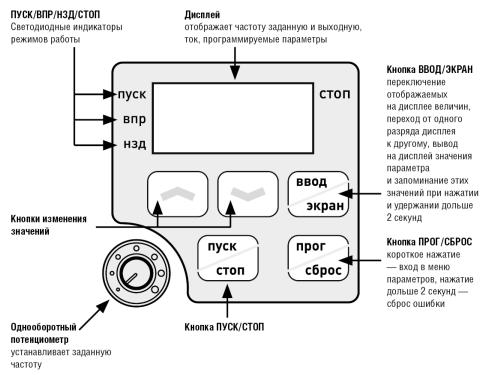

Клемма	Описание	Примечание
FWD	Вперед-стоп (Многофункциональный вход)	Функции многофункциональных вхо-
REV	Назад-стоп (Многофункциональный вход)	дов S1-S2, FWD и REV могут быть
S1	Многофункциональный вход 1	заданы с помощью параметров Pd15 -
S2	Многофункциональный вход 2	Pd20, активация входа происходит при
		замыкании на клемму GND
10V	Внутренний источник питания для установки	
	частоты	
AVI	Аналоговый вход (0-10B / 4-20мA)	Выбирается переключателем V/I. В
		положении «I» необходимо настроить
		параметры Pd00=1, Pd01=5
GND	Общий вывод	Общий для 10V,
		FWD, REV, S1-S2
RA	Многофункциональный релейный выход (нор-	Переменное напряжение
	мально разомкнутый контакт)	250B/max.1A, постоянное напряжение
RC	Многофункциональный релейный выход (нор-	30B/max.1A, <i>резистивная</i> нагруз-
	мально разомкнутый контакт)	ка.
		Конфигурирование выхода с помощью
		параметра Pd25,Pd31
RS+, RS-	Последовательный порт RS485	Протокол Modbus

4-2-3 Замечания по монтажу управляющих цепей

- (1) Управляющий кабель при монтаже должен быть размещен отдельно от кабелей основного силового контура, а также проводов, соединенных с выходными клеммами RA, RC
- (2) Для предотвращения помех используйте витые экранированные провода с сечением 0.5- $0.75 \, \mathrm{mm}^2$.
- (3) Убедитесь, что выполнены установленные требования к использованию различных клемм: напряжение питания, максимально допустимый ток.
- (4) Используйте выходы реле RA, RC для последовательного соединения с нагрузкой: лампочкой, обмоткой реле, *зашунтированной диодом или варистором* и т.п.

При подключении к реле индуктивной нагрузки с напряжением питания переменного тока для защиты реле необходимо использовать RC-цепочку, подключенную параллельно реле по схеме (A). При питании индуктивной нагрузки напряжением 230B, сопротивление резистора 220 Ом и емкость конденсатора до 0.47 мкФ.

Если питание нагрузки осуществляется напряжением постоянного тока, необходим быстродействующий шунтирующий диод (прямой ток не менее 1A), который включается в цепь параллельно нагрузке по схеме (B).

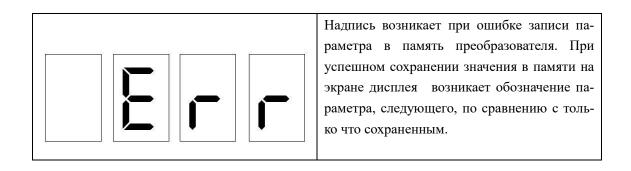

- (5) Провода, подходящие к управляющим клеммам преобразователя должны иметь с этими клеммами надежный контакт.
 - (6) После монтажа ещё раз удостоверьтесь в правильности всех соединений.
 - (7) Максимальная длина управляющих цепей 20 м.
- (8) При сильных помехах возможно использование следующей схемы для подключения аналоговых входов:

Глава 5 Эксплуатация

5-1 Цифровая панель управления (внешний вид панели может быть модифицирован)

5-1-1 Описание функций кнопок

Кнопка	Описание		
A	Кнопка модификации, для выбора параметра и его значения		
ввод экран	Кнопка переключения или ввода Быстрое нажатие — переключение разряда, удержание — вход в параметр или подтверждение изменения (ввод). Переключение отображения на дисплее		
	Потенциометр, изменение частоты с помощью вращения ручки потенциометра.		
ПРОГ	Кнопка остановки (в случае управления с панели управления) Кнопка сброса после возникновения ошибки		
<u>пуск</u> стоп	Запуск и останов привода Кнопка аварийного останова (при управлении от управляющих клемм)*		


^{*} Кнопка ПУСК в этом режиме не активна. Повторный пуск возможен только при:

- 1) перевключении напряжения питания (между выключением и последующим включением перерыв не менее 3 мин.);
- 2) прерывании сигнала пуска ПЧ на клемме, запрограммированной на ПУСК.

Надпись на экране	Описание
F000	Индикация заданной частоты
H 0 0 0	Выходная частота на выходе преобразователя
8000	Ток двигателя
Frd	Направление вращения двигателя вперед
FEU	Направление вращения двигателя назад

* Вышеуказанные надписи на экране могут переключаться с помощью кнопки

ввод экран

5-2 Инструкция по использованию панели управления

(1) Установка параметров на примере изменения параметра Рb04 (возможность запуска вращения назад).

Пункт	ния назад). Кнопка	Дисплей	Описание
Пункт	Кнопка	Дисплеи	Описание
1	Включите питание	F 0 0 0	(1) Первый уровень меню (установка частоты).(2) ПЧ в режиме ожидания.
2	Нажмите кнопку ПРОГ СБРОС	P R 0 0	Введите значение пара- метра, правая цифра будет мигать (может быть из- менена).
3	Нажмите кнопку	PROY	Изменение значения цифры с «0» на «4»
4	Два коротких нажатия кнопки ВВОД ЭКРАН	PROY	Переход влево на два раз- ряда, мигает третья циф- ра.
5	Нажмите один раз кнопку	P B	Изменение значения цифры с «А» на «b»
6	Долгое нажатие кнопки ВВОД ЭКРАН	0001	Отображение значения параметра.
7	Нажмите кнопку	0000	Изменение значения цифры с «1» на «0».

Пункт	Кнопка	Дисплей	Описание
8	Долгое нажатие кнопки ВВОД экран	P B B	Запоминание установ- ленного параметра Рb04
9	Нажмите	FOOO	Конец программирования и возвращение к первому уровню меню.

Примечание: нажатие кнопки ПРОГ может прервать режим программирования и вернуть отображение к первому уровню меню.

(2) Изменение направления вращения.

Нажимайте на кнопку «ВВОД/Экран» до тех пор, пока не появится надпись «Frd» или «гЕи». После этого изменение направления вращения осуществляется кнопками ▲ или ▼.

Примечание: Данная функция не активна в однофазных моделях ПЧ.

(3) Пробный пуск.

В соответствии с заводскими настройками способ пуска ПЧ – пуск с панели управления (Pb02=0). Вы можете выполнить пробный пуск, используя панель управления следующим образом:

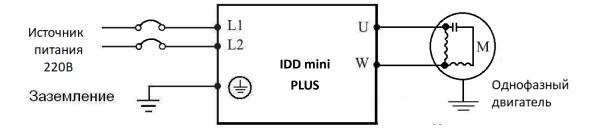
- 1) После подачи питающего напряжения на входные клеммы ПЧ (L1, L2) установите на экране дисплея частоту 50 Гц с помощью потенциометра.
- 2) Поворачивая потенциометр на панели управления, установите частоту 5 Гц.
- 3) Нажмите кнопку «ПУСК». Если необходимо изменить направление вращения, нажмите кнопку «ВВОД» три раза, на экране появится надпись « Frd». Затем нажмите кнопку ▲ или ▼, на экране появится надпись « rEu». Нажмите кнопку «ВВОД» несколько раз, до появления на экране надписи «F05.0». Если необходимо остановить двигатель, нажмите кнопку «СТОП». Примечание: Данная функция не активна в однофазных моделях ПЧ.
- 4) Необходимо проверить следующее:
 - * правильное ли направление вращения выбрано;
 - * работает ли двигатель без посторонних шумов и вибраций;
 - * плавно ли ускоряется и замедляется двигатель.

Если результаты пробного пуска удовлетворительные, можете начинать основной пуск.

- 1. При возникновении какой-либо ошибки или неисправности ПЧ, необходимо остановить работу ПЧ.
- 2. Не прикасайтесь к выходным клеммам U, W когда питающее напряжение подключено к клеммам L1, L2 даже когда двигатель остановлен. Электролитические конденсаторы могут быть заряжены до опасного уровня напряжения, даже если питающее напряжение отключено.
- 3. Чтобы избежать повреждения элементов поверхностного монтажа, не касайтесь руками плат.
- 4. После возникновения аварии и отключения преобразователя последующий пуск возможен только после устранения причины неисправности.

(4) Отображение различных режимов работы на дисплее.

Примечание: с помощью кнопки ВВОД можно выводить на дисплей установленную частоту, выходную частоту, выходной ток, направление вращения, скорость вращения, напряжение в звене постоянного тока во время работы преобразователя. Начальная индикация дисплея может быть изменена с помощью параметра РА00. Одновременно можно просматривать информацию с помощью параметров РА01-РА18.


5-3 Простое функционирование преобразователя и его элементов

5-3-1 Настройка, установка и электромонтаж

При установке, и электромонтаже необходимо придерживаться требований ПУЭ.

На рисунке ниже показана элементарная схема соединений силовых проводов для запуска ПЧ.

Здесь и далее: в преобразователях, предназначенных для работы от трехфазной сети, источник питания должен быть трехфазный, в преобразователях, предназначенных для работы от однофазной сети, источник питания – однофазный.

Номинальный ток выключателя указан в таблице п.4-1-3

5-3-2 Проверка электромонтажа

Необходимо убедиться, что все провода подсоединены правильно, напряжение сети соответствует напряжению питания преобразователя и только потом подать питание для установки параметров.

5-3-3 Настройка параметров преобразователя

Начальная настройка параметров рабочего режима ПЧ должна включать в себя выбор источника задания частоты и задание источника сигнала пуска. Задания данных параметров достаточно для запуска ПЧ и отображения рабочей скорости.

Настройте значения параметров Pb01 и Pb02 согласно Вашим требованиям, способ установки параметров см. раздел 5-2.

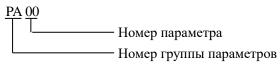
5-3-4 Работа преобразователя

Убедитесь, что электромонтаж и настройка параметров соответствуют требованиям.

Установите Pb01=3 (частота настраивается с помощью потенциометра на панели управления)

Установите Pb02=0 (сигнал пуска приходит с панели управления)

Нажмите кнопку ПУСК для запуска преобразователя, затем поверните ручку потенциометра, преобразователь постепенно разгонит двигатель до требуемой скорости.


Нажмите кнопку СТОП для выключения вращения двигателя.

Примечания:

- 1) Во время работы двигателя необходимо следить за состоянием ПЧ в рабочем режиме. В случае возникновения сбоев немедленно прервите рабочий режим, нажав кнопку «СТОП», отключите питание и устраните причину сбоя.
- 2) Запрещается подключение сетевого электропитания чаще, чем один раз в три минуты. Это приведет к повреждению ПЧ. Для пуска и останова используйте панель управления или многофункциональные входные клеммы (см. п.4-2-1).

Глава 6. Таблица параметров

Название параметров

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
Дисплей	PA00	Выбор и установка нужного параметра для его индикации при включении преобразователя	0: Заданная частота 1: Выходная частота 2: Выходной ток 3: Скорость в об/мин 4: Напряжение в звене постоянного тока 5: Выходное напряжение 7: Сигнал обратной связи в ПИД-режиме 8: Уставка ПИД-режима	1	0	<u>46</u>
	PA01	Заданная частота	Только чтение			<u>46</u>
	PA02	Выходная частота	Только чтение			<u>46</u>
	PA03	Выходной ток	Только чтение			<u>46</u>
	PA04	Скорость вращения	Только чтение			<u>46</u>
	PA05	Напряжение на шине постоянного тока	Только чтение			<u>46</u>
	PA07	Величина обратной связи при использовании ПИД-режима	Только чтение			<u>47</u>
	PA08	Счетчик часов эксплуатации	Только чтение			<u>47</u>
	PA09	Выходное напряжение	Только чтение			<u>47</u>
	PA10	Запись об ошибке 1	Только чтение			<u>47</u>
	PA11	Запись об ошибке 2	Только чтение			<u>47</u>
	PA12	Запись об ошибке 3	Только чтение			<u>47</u>
	PA13	Запись об ошибке 4	Только чтение			<u>47</u>
	PA14	Заданная частота в момент последней ошибки	Только чтение			<u>47</u>
	PA15	Выходная частота в момент последней ошибки	Только чтение			<u>47</u>
	PA16	Выходной ток в мо- мент последней ошибки	Только чтение			<u>47</u>
	PA17	Выходное напряжение в момент последней ошибки	Только чтение			<u>47</u>

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	PA18	Напряжение в звене постоянного тока в момент последней ошибки	Только чтение			<u>47</u>
	PA21	Состояние програм- мируемых входов	Bit0 - FWD, Bit1 - REV, Bit2 - S1, Bit3 - S2			<u>48</u>
	PA22	Состояние выхода RA-RC	Bit1=0 – не активирован Bit1=1 – активирован			<u>48</u>
	PA23	Аналоговый сигнал на входе AVI	0~10,00B			<u>48</u>
	PA27	Текущий код ошибки	Только чтение			<u>48</u>
	PA28	Текущее состояние	Только чтение 0: Остановлен 1: Вращение вперед 2: Вращение назад			48
	PA50	Версия программного обеспечения	Только чтение			<u>48</u>
кции	Pb00	Установка рабочей частоты	0,0-верхняя граница частоты	0,1	0,0	<u>50</u>
Основные функции	Pb01	Способы установки заданной частоты (канал X)	0: Цифровая установка частоты (задание в Рb00) 1: С помощью аналогового сигнала на входе AVI 2: С помощью потенциометра на внешней клавиатуре 3: С помощью потенциометра на панели управления 4: С помощью внешних контактов UP/DOWN 5: Через порт RS485 6: Предустановленные скорости 7: Режим простого ПЛК 8: ПИД-режим	1	3	<u>50</u>
	Pb02	Настройка способа пуска	0: С помощью кнопок на панели 1: С помощью управляющих клемм 2: Через порт RS485	1	0	<u>53</u>
	Pb03	Режим доступа к кнопке СТОП	0: Кнопка СТОП заблокирована 1: Кнопка СТОП доступна	1	1	<u>53</u>
	Pb04	Зарезервировано	-	-	-	-
	Pb05	Максимальная рабо- чая частота	Минимальная рабочая частота \sim 999 Γ ц	0,1	50,0	<u>54</u>
	Pb06	Минимальная рабочая частота	$0\sim$ максимальная рабочая частота	0,1	0,0	<u>54</u>
	Pb07	Время ускорения 1	0∼6000 c	0,1	Изменяе- мая ве- личина	<u>55</u>

Инструкция по эксплуатации преобразователя частоты серии IDD mini PLUS

Параметры	Код	Значение	Диапазон	Шаг	Заводское значение	Номер стр.
	Pb08	Время замедления 1	0∼6000 c	0,1	Изменяе- мая ве- личина	<u>55</u>
	Pb09	V/F-кривая (напряжение- частота): максимальное напряжение	Промежуточное напряжение ~500,0 В	0,1	220	<u>55</u>
	Pb10	V/F -кривая: опорная частота	Промежуточная частота ~ макс. рабочая частота	0,1	50,0	<u>55</u>
	Pb11	V/F -кривая: проме- жуточное напряжение	Минимальное напряжение ~ максимальное напряжение	0,1	Изменяе- мая ве- личина	<u>56</u>
	Pb12	V/F -кривая: проме- жуточная частота	Минимальная частота ~ Максимальная рабочая частота	0,1	2,5	<u>56</u>
	Pb13	V/F -кривая: мини- мальное напряжение	0~ промежуточное напря- жение	0,1	Изменяе- мая ве- личина	<u>56</u>
	Pb14	V/F-кривая: мини- мальная частота	0~промежуточная частота	0,1	1,2	<u>56</u>
	Pb15	Несущая частота	1∼15 кГц	0,1	Изменяе- мая ве- личина	<u>57</u>
	Pb17	Инициализация параметров	8: Инициализация заводских параметров (кроме параметра РС10 и группы параметров Рі)	1	0	<u>57</u>
	Pb18	Блокировка доступа к параметрам	0: Разблокировано 1: Параметры заблокированы	1	0	<u>58</u>
	Pb19	Зарезервировано	-	-	-	-
	Pb20	Способы установки заданной частоты (канал Y)	0: Цифровая установка частоты (задание в Рь00) 1: С помощью аналогового сигнала на входе AVI 2: С помощью потенциометра на внешней клавиатуре 3: С помощью потенциометра на панели управления 4: С помощью внешних контактов UP/DOWN 5: Через порт RS485 6: Предустановленные скорости 7: Режим простого ПЛК 8: ПИД-режим	1	0	58

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	Pb21	Выбор между каналами задания частоты	00: X 01: X+Y (сумма значений) 02: переключение между X и Y внешним сигналом 03: переключение между X и X+Y внешним сигналом 04: переключение между Y и X+Y внешним сигналом 11: X-Y (разница значений) 13: переключение между X и X-Y внешним сигналом 14: переключение между Y и X-Y внешним сигналом 21: максимальное из X, Y 23: переключение между X и тах X, Y внешним сигналом 21: максимальное из X, Y 23: переключение между X и тах X, Y внешним сигналом 24: переключение между Y и тах X, Y внешним сигналом 31: минимальное из X, Y 33: переключение между X и тах X, Y внешним сигналом 31: минимальное из X, Y 33: переключение между X и тах X, Y внешним сигналом 34: переключение между Y и тах X, Y внешним сигналом 34: переключение между Y и тах X, Y внешним сигналом		0	59
	Pb22	Выбор канала Y как вспомогательный источник задания частоты	0: относительно максимальной частоты 1: относительно частоты по каналу Х	0	0	<u>59</u>
	Pb23	Диапазон частоты по вспомогательному каналу Y	0~150%	1	100%	<u>59</u>
	Pb24	Корректировка ча- стоты, когда она за- дается соотношением X и Y (+, -, max, min)	0.0 Гц – Макс. частота (Pb05)	0	0	<u>59</u>
	Pb25	Базовая частота для UP/DOWN регули- ровки	0: Выходная частота 1: Заданная частота	1	1	<u>59</u>
	Pb26	Базовая частота для времени ускорения/замедления	Нижний предел Рb06-максимальная частота Pb05	0.1	50.0	<u>60</u>

Инструкция по эксплуатации преобразователя частоты серии IDD mini PLUS

Параметры	Код	Значение	Диапазон	Шаг	Заводское значение	Номер стр.
	Pb27	Базовая частота для времени ускоре- ния/замедления	0: максимальная частота Pb05 1: заданная частота 2: 100 Гц	0	0	<u>60</u>
тий	PC00	Режим пуска	0/1 обычный пуск/поиск	1	0	<u>60</u>
Параметры для основных применений	PC01	Режим выключения	частоты перед пуском 0/1 ~ Остановка с замедлением / выключение со свободным выбегом двигателя	1	0	<u>61</u>
новны	PC02	Установка пусковой частоты	0,1~100,0 Гц	0,1	0,5	<u>61</u>
для ос	PC03	Установка частоты остановки	0,1~100,0 Гц	0,1	0,5	<u>62</u>
араметры	PC04	Напряжение DC при старте торможения постоянным током	0~7% номинального напряжения двигателя	0,1	0,0	<u>62</u>
	PC05	Время замедления постоянным током перед запуском	0~100,0 c	0,1	0,0	<u>62</u>
	PC06	Напряжение DC при торможении постоянным током	0~7% номинального напряжения двигателя			<u>63</u>
	PC07	Время торможения постоянным током перед остановом	0~100,0 c	0,1	0,0	<u>63</u>
	PC08	Буст	0~20,0%	1	3	63
	PC09	Номинальное напряжение двигателя	0∼500,0B	1	380	-
	PC10	Номинальный ток двигателя	0~999,9A	0,1	Изменяе- мая ве- личина	<u>64</u>
	PC11	Номинальный ток холостого хода дви-гателя	0-100%	0,1	50	<u>64</u>
	PC12	Номинальная скорость вращения	0-6000 об/мин	1	1460	<u>6</u> 4
	PC13	Количество полюсов	1~20	1	4	<u>6</u> 4
	PC14	Зарезервировано	-	-	-	-
	PC15	Номинальная частота двигателя	0~999,0	0,1	50,0	<u>65</u>
	PC16	Сопротивление статора двигателя	0~100,0 Ом		Измен. величина	<u>6</u> 5
	PC17	Сопротивление ротора двигателя	0~100,0 Ом		Измен. величина	<u>6</u> 5
	PC18	Самоиндукция ротора двигателя	0~100,0 Гн		Измен. величина	<u>6</u> 5
	PC19	Общая индуктив- ность ротора	0∼100,0Гн		Измен. величина	<u>6</u> 5

	T	1	Ī	1	I	
Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
выходов	Pd00	Минимальное напряжение на входе AVI	0~ максимальное напряжение на входе	0,1	0	<u>6</u> 5
Параметры входов и выходов	Pd01	Максимальное напряжение на входе AVI	Минимальное напряжение на входе ~10 В	0,1	10,0	<u>6</u> 6
заметры	Pd02	Постоянная времени фильтра AVI	0~10,0 с	0,1	0,1	<u>6</u> 6
Пар	Pd03	Минимальный вход- ной ток на входе AVI	0~ максимальный входной ток на входе	0,1	4	<u>6</u> 6
	Pd04	Максимальный вход- ной ток на входе AVI	Минимальный входной ток на входе ~20 мА	0,1	20,0	<u>6</u> 6
	Pd05	Постоянная времени фильтра AVI	0~25,0 c	0,1	1,0	<u>6</u> 6
	Pd10	Частота, соответ- ствующая наимень- шему аналоговому сигналу	0~999,9 Гц	0.1	0,0	<u>67</u>
	Pd12	Частота, соответ- ствующая наиболь- шему аналоговому сигналу	0~999,9 Гц	0,1Гц	50,0	<u>67</u>
	Pd15	Входная клемма FWD	0: Не используется 1: Медленное вращение 2: Медленное вращение вперед	1	6	<u>68</u>
	Pd16	Входная клемма REV	3: Зарезервировано 4: Зарезервировано 5: Вращение 6: Вращение вперед 7: Зарезервировано 8: Остановка 9: Вход №1 для предустановленной скорости	1	7	<u>68</u>
	Pd17	Входная клемма S1	10: Вход №2 для предустановленной скорости11: Вход №3 для предустановленной скорости	1	18	<u>68</u>
	Pd18	Входная клемма S2	12: Вход №4 для предустановленной скорости 13: Ускорение/замедление «2» 14: Ускорение/замедление «3» 15: Постепенное увеличение частоты, сигнал « UP» 16: Постепенное уменьшение частоты, сигнал «DOWN» 17: Свободный выбег 18: Сигнал сброса ошибки	1	9	68

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
			19: ПИД-регулирование 20: ПЛК-регулирование 21: Таймер 1 запуск 22: Таймер 2 запуск 23: Импульсный входной сигнал счетчика 24: Сигнал сброса счетчика 25: Пауза вращения 26: Выбор канала задания частоты между X и Y			
	Pd25	Выход RA, RC	0: Не задействован 1: В работе 2: Частота достигнута 3: Сбой в работе 4: Нулевая скорость 5: Частота 1 достигнута 6: Частота 2 достигнута 7: Ускорение 8: Замедление 9: Индикация низкого напряжения 10: Значение таймера 1 до-стигнуто 11: Значение таймера 2 до-стигнуто 12: Цикл ПЛК завершен 13: Процесс ПЛК завершен 14: Достигнуто верхнее аварийное значение ПИД 15: Достигнуто нижнее аварийное значение ПИД 16: Обрыв цепи 4-20 мА 27: Значение счетчика достигнуто 28: Значение промежуточного счетчика достигнуто 29: Водоснабжение 30: Готовность	1		73
	Pd28	Зарезервировано	_	-	_	_
	Pd29	Схема подключения сигналов к входным клеммам управления	0: Двух проводная, режим 1 1: Двух проводная, режим 2 2: Трёхпроводная схема режим 1 3: Трёхпроводная схема режим 2			<u>75</u>
	Pd30	Шаг регулировки скорости сигналами UP/DOWN	0,01~99,99 Гц/с	0,01	1,00	<u>76</u>
	Pd31	Логика работы выхода DO	Н000: Позитивная Н010: Негативная	1	0	<u>77</u>
	Pd32	Отклик на сигнал на клемме FWD	0,0~999,9 с	0,1	0	<u>77</u>

			T	1	T	1
Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	Pd33 Отклик на сигнал на клемме REV		0,0~999,9 с	0,1	0	<u>77</u>
	Pd34	Отклик на сигнал на клемме S1	0,0~999,9 с	0,1	0	<u>77</u>
	Pd35	Состояние входов управления	0: есть сигнал 1: нет сигнала Вit0-FWD; Bit1-REV; Вit2-S1; Bit3-S2 Например, 0000 – нет сигналов нигде 1111 – есть сигналы везде 0010 – есть сигнал на REV	1	0000	77
аметров	PE00	Установка частоты режима медленного вращения	0,0~максимальная рабочая частота	0,1	5,0	<u>78</u>
Iaps	PE01	Время ускорения 2	0~999,9 с	0,1 c	10,0	<u>78</u>
XI	PE02	Время замедления 2		0,1 c	10,0	<u>78</u>
IPHI IPHI	PE03	Время ускорения 3		0,1 c	10,0	<u>78</u>
тел	PE04	Время замедления 3		0,1 c	10,0	<u>78</u>
Группа вспомогательных параметров	PE05	Время ускорения 4. Время ускорения в режиме медленного вращения		0,1 c	10,0	<u>78</u>
Груп	PE06	Время замедления 4. Время замедления в режиме медленного вращения		0,1 c	10,0	<u>78</u>
	PE07	Установка уровня срабатывания счет- чика	0~9999	1	100	<u>78</u>
	PE08	Промежуточное зна- чение счетчика	0~9999	1	50	<u>78</u>
	PE09	Ограничение тока при ускорении	50~200%	1	150	<u>79</u>
	PE10	Коэффициент подавления тока при перегрузке	0~100%	1	20	<u>79</u>
	PE11	Защита от перена- пряжения при тор- можении	0: выключена 1: включена	1	1	<u>79</u>
	PE12	Превышение напряжения относительно V/F кривой	0~100%	1	10	<u>8</u> 0
	PE13	Ограничение напря- жения	0~200%	1	50	<u>8</u> 0
	PE14	Напряжение включения тормозного модуля	220B: 370B	0,1	Измен. величина	<u>8</u> 0
	PE15	Коэффициент ис- пользования тормоз- ного модуля	40~100%	1	100	<u>8</u> 1
	PE16	Перезапуск после отключения питания	0: Запрещено 1: Разрешено	1	0	<u>8</u> 1

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	РЕ17 питания		0: без действий 1: замедление 2: замедление до останова	1	0	<u>82</u>
	PE18	Предел тока при пус- ке с поиском частоты	0~200%	1	150	<u>82</u>
	PE19	Время пуска с поиском частоты	0~10 c	1	5,0	<u>83</u>
	PE20	Количество перезапусков после сбоя	0~5	1	0	<u>83</u>
	PE21	Время задержки по- сле сбоя	0~10,0 с	0,1	1,0	<u>83</u>
	PE22	Зарезервировано	_	_	_	_
	PE23	Уровень определения превышения тока	0~200%	1	150	<u>83</u>
	PE24	Время превышения допустимого тока	0~999,9 с	0,1	60,0	<u>84</u>
	PE25	Пороговая частота 1	0,0- максимальная рабочая частота	0,1	0	<u>84</u>
	PE26	Пороговая частота 2	0,0- максимальная рабочая частота	0,1	0	<u>84</u>
	PE27	Установка значения таймера 1	0~999,0 с	0,1	10	<u>85</u>
	PE28	Установка значения таймера 2	0~999 с	0,1	20	<u>85</u>
	PE29	Время до ограниче- ния тока при посто- янной скорости	0~999,9 c	0,1	Измен. величина	<u>85</u>
	PE30	Гистерезис срабатывания реле достижения частоты	0,0-100,0%	0,1	5,0	<u>85</u>
	PE31	Пропуск частоты 1	0,0- верхняя граница частоты	0,01	0	<u>85</u>
	PE32	Пропуск частоты 2	0,0- верхняя граница частоты	0,01	0	<u>85</u>
	PE33	Зона пропуска частоты (гистерезис)	0,0-50,0 Гц	0,01	0	<u>86</u>
исполь- зования	PF00	Запоминание цикла программы ПЛК	00: без запоминания 11: с запоминанием	1	0	<u>86</u>
трикладного	PF01	Включение ПЛК	0: ПЛК автоматически включается при Pb01=7 1: ПЛК включается внешним сигналом	1	0	<u>87</u>
Группа параметров для прикладного исполь-	PF02	Режим работы ПЛК	0: Стоп после одного цикла 1: Продолжение работы на последней частоте в цикле после его завершения 2: Повторение циклов	1	0	<u>87</u>
уша п	PF03	Предустановленная скорость 1	0,0~максимальная рабочая частота	0,1	5,0	<u>88</u>
Γŗ	PF04	Предустановленная скорость 2		0,1	10,0	

тры				Шаг	Заводское	стр.
Параметры	Код	Значение	Диапазон	установки	значение	Номер стр.
	PF05	Предустановленная скорость 3		0,1	20,0	
	PF06	Предустановленная скорость 4		0,1	25,0	
	PF07	Предустановленная скорость 5		0,1	30,0	
	PF08	Предустановленная		0,1	35,0	-
	PF09	скорость 6 Предустановленная		0,1	40,0	-
	PF10	скорость 7 Предустановленная		0,1	45,0	-
	PF11	скорость 8 Предустановленная		0,1	50,0	
	PF12	скорость 9 Предустановленная		0,1	10,0	
	PF13	скорость 10 Предустановленная		0,1	10,0	-
	PF14	скорость 11 Предустановленная		0,1	10,0	-
	PF15	скорость 12 Предустановленная		0,1	10,0	-
	PF16	скорость 13 Предустановленная		0,1	10,0	
	р F17 скорость 14 Предустановленная			0,1	10,0	-
	PF18	скорость 15 Время работы ПЛК 1	0~9999 с (ч)	1	3	88
	PF19	Время работы ПЛК 2		1	4	
	PF20	Время работы ПЛК 3		1	5]
	PF21	Время работы ПЛК 4		1	0	
	PF22	Время работы ПЛК 5	-	1	0	
	PF23	Время работы ПЛК 6	-	1	0	-
	PF24 PF25	Время работы ПЛК 7	-	1	0	1
	PF25 PF26	Время работы ПЛК 8 Время работы ПЛК 9	-	1	0	
	PF27	Время работы ПЛК 9		1	0	
	PF28	Время работы ПЛК 11		1	0	
	PF29	Время работы ПЛК 12		1	0	
	PF30	Время работы ПЛК 13		1	0	
	PF31	Время работы ПЛК 14		1	0	
	PF32	Время работы ПЛК 15		1	0	
	PF37	Единица времени в кадрах ПЛК	0: секунды 1: часы	1	0	91
	PF39	Время ускорения / торможения в ПЛК 1	0~3	1	0	91

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	PF40	Время ускорения / торможения в ПЛК 2		1	0	
		Время ускорения /		1	0	
	PF41	торможения в ПЛК 3		1		
	DE42	Время ускорения /		1	0	
	PF42	торможения в ПЛК 4				
	PF43	Время ускорения /		1	0	
	1145	торможения в ПЛК 5			_	
	PF44	Время ускорения /		1	0	
		торможения в ПЛК 6		1	0	
	PF45	Время ускорения / торможения в ПЛК 7		1	0	
		Время ускорения /		1	0	
	PF46	торможения в ПЛК 8		1		
	DE45	Время ускорения /		1	0	
	PF47	торможения в ПЛК 9				
	PF48	Время ускорения /		1	0	
	1170	торможения в ПЛК 10				
	PF49	Время ускорения /		1	0	
	-	торможения в ПЛК 11				
	PF50	Время ускорения /		1	0	
		торможения в ПЛК 12 Время ускорения /		1	0	
	PF51	торможения в ПЛК 13		1	U	
		Время ускорения /		1	0	
	PF52	торможения в ПЛК 14				
	DE52	Время ускорения /		1	0	
	PF53	торможения в ПЛК 15				
ры ма		Режим включения	0: Включен если Рb01=8,	1	0	<u>92</u>
метј		ПИД-регулятора	выключен Pb01≠8			
apar (- pe	PG00		1: ПИД-регулятор включен			
Параметры ПИД- режима			2: Запуск ПИД-регулятора			
		Рабочий режим	Внешним сигналом	1	0	02
	PG01	Раоочии режим ПИД-регулятора	0: Режим отрицательной обратной связи	1	U	<u>92</u>
		тттд-регулятора	1: Режим положительной			
			обратной связи			
		Выбор источника	0: Цифровое задание значе-	1	0	<u>92</u>
	DC02	заданного значение	ния (PG04)			
	PG02	для ПИД-регулятора	1: Зарезервировано			
			2: Зарезервировано			

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	PG03	Сигнал обратной связи ПИД-регулятора	0: Выбор входа AVI в качестве входа для обратной связи (0-10В) переключатель в положении «V». Для сигнала 4-20мА переключатель в положении «I», настроить Pd00=1, Pd01=5.	1	0	93
	PG04	Численное значение задания ПИД-регулятора	0,0бар~PG14	0,1	2,5	93
	PG05	Верхнее значение ПИД-регулятора	PG06~PG14	0,1	10,0	<u>94</u>
	PG06	Нижнее значение ПИД-регулятора	0~PG05	0,1	0	<u>94</u>
	PG07	ПИД-регулятор, ко- эффициент Р	0,0~600,0%	0,1%	100,0	<u>94</u>
	PG08	ПИД-регулятор, ко- эффициент I (посто- янная времени)	0,0~10,0 с 0 - не задействована	0,1 с	2,0	<u>95</u>
	PG09	ПИД-регулятор, ко- эффициент D	0,0~9,990 с, 0 - не задействована	0,1 с	0	<u>95</u>
	PG10	Допустимая ошибка вычислений ПИД-регулятора	0,0~100,0%	0,1	2,0	<u>95</u>
	PG11	Частота перехода ПИД-регулятора в режим ожидания	0,0~ Рb05 Гц. Если 0, то функция перехода отключена	0,1	25,0	<u>95</u>
	PG12	Пауза при переходе в режим ожидания ПИД-регулятора	0~200 с	1 c	10	<u>95</u>
	PG13	Величина обратной связи для выхода из режима ожидания ПИД-регулятора	0~100%	0,1	90,0	<u>96</u>
	PG14	Отображение вели- чины обратной связи ПИД-регулятора	0~50,00 бар	0,01	10,0	<u>96</u>
	PG15	Количество разрядов	1~4	1	4	<u>96</u>
	PG16	Количество разрядов после десятичной точки	0~4	1	2	97
	PG17	Верхний предел частоты ПИД-регулятора	0,0~максимальная рабочая частота	0,1	48,0	97

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
			0,0~максимальная рабочая частота	0,1	20,0	<u>97</u>
	PG20	Зона нечувствитель- ности регулятора	0,0~100,0%	0,1	0,1	<u>97</u>
	PG21	Выбор действия при пропадании сигнала с датчика	0: нет действий 1: на экране ошибка «20» без аварийного останова 2: на экране ошибка «20» с аварийным остановом	1	0	<u>98</u>
	PG22	Величина обратной связи для индикации обрыва	V: 0~10,00 B (Для сигнала I обрыв определяется при токе ниже 2мА PG22=0,5B)	0,01	0,5	<u>98</u>
	PG23	Время потери обрат- ной связи для инди- кации обрыва	0~20,0 с	0,1	1,0	<u>98</u>
	PG24	Частота отсечки ПИД-регулятора при реверсе	0,00~максимальная частота	0,01	0	<u>98</u>
	PG25	Ограничение ПИД-D составляющей	0,0~99,99%	0,01	0,1%	<u>98</u>
	РG26 Время перехода ПИД-регулятора на новое заданное значение		0,0~99,99 c	0,01	0	<u>98</u>
	PG27	Временной фильтр ПИД-регулятора по обратной связи	0,0~60,00 c	0,01	0	<u>98</u>
	PG28	Временной фильтр ПИД-регулятора по выходной частоте	0,0~60,00 c	0,01	0	<u>99</u>
	PG30	ПИД-регулятор, коэффициент Р2	0,0~600,0%	0,1%	100,0	<u>99</u>
	PG31	ПИД-регулятор, коэффициент I2	0,0~10,0 с 0 - не задействована	0,1 c	2,0	<u>99</u>
	PG32	ПИД-регулятор, коэффициент D2	0,0~9,990 с, 0 - не задействована	0,1 c	0	<u>99</u>
	PG33	Переключение между ПИД и ПИД2	0: без переключения 1: переключение по каналуХ 2: автоматически			<u>99</u>
	PG34	Разница между заданием и обратной связью ПИД 1	0,0~PG35 %	0,1	5,0	<u>99</u>
	PG35	Разница между заданием и обратной связью ПИД 2	PG34~100 %	0,1	10,0	<u>99</u>
	PG36	Начальное значение ПИД-регулятора	0,0~100,0 %	0,1	0	<u>99</u>
	PG37	Время удержания начального значения ПИД-регулятора	0,0~99,99 с	0,01	0	<u>99</u>

	1	T			I	
Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	PG39	Работа интегральной составляющей ПИД после достижения уставки	00: без изменений 10: выключение I состав- ляющей	1	0	<u>99</u>
	PG40	Режим работы ПИД регулятора при останове преобразователя	0: после останова выключается 1: после останова продолжает работать	1	0	<u>10</u> 0
	PG41	Величина обратной связи для определения режима «сухой ход»	0,00бар ~ PG04 Если 0, то без определения «сухого хода»	0,1	0,5	<u>10</u> 0
	PG42	Пауза для сброса ошибки высокого/ низкого давления	0~9999 с Если 0, то автоматический сброс заблокирован.	1	10	<u>10</u> 0
	PG43	Время определения низкого давления	0~9999 с	1	10	<u>10</u> 0
	PG44	Время определения «сухого хода»	0~9999 с	1	100	<u>10</u> 0
	PG45	Перезапуск после подачи питания	0: Запрещено 1: Разрешено	1	0	<u>10</u> 0
	PG46	Интервал между первыми 10-ю сбросами ошибки по «сухому ходу»	0~9999 с	1	600	<u>10</u> 0
	PG47	Интервал между первыми 10-ю сбросами ошибки по низкому давлению	0~9999 мин	1	60	<u>10</u> 1
	PG48	Режим антизамораживания	0: Запрещено 1: Разрешено	1	0	<u>10</u> 1
	PG49	Пауза для включения антизамораживания в спящем режиме	0~9999 с	1	900	<u>10</u> 1
	PG50	Длительность включения антизамораживания	0~9999 с	1	30	<u>10</u> 1
	PG51	Рабочая частота в режиме антизамора- живания	0~50,0 Гц	0,1	15,0	<u>10</u> 1
	PG52	Уровень изменения частоты в секунду для начала перехода в режим ожидания	0~10,0 Гц	0,1	0,5	<u>10</u> 1
	Уровень падения величины обратной связи для перехода в режим ожидания		0~10,0 %	0,1	0,6	<u>10</u> 1
	PG54	Уменьшение частоты каждую секунду	0~10,0 Гц	0,1	0,3	<u>10</u> 1

Параметры	Код	Значение	Диапазон	Шаг	Заводское значение	Номер стр.
	PG55	Количество умень- шений частоты для перехода в режим ожидания	0~1000	1	10	<u>10</u> 1
	PG56	Частота перехода в режим ожидания	0~Рь05 Гц	0,1	42	<u>10</u> 1
	PG57	Дискретность ПИД-регулятора	0~1000мс	1	4	<u>10</u> 1
іа связи	PH00	Скорость передачи данных, бит/сек	0: 4800 1: 9600		1	<u>10</u> 2
Группа параметров последовательного канала связи	PH01	Формат данных	0: 8N1 для ASCII 1:8E1 для ASC II 2:8O1 для ASCII 3:8N1 для RTU 4:8E1 для RTU 5:8O1 для RTU		3	<u>10</u> 2
ров после	PH02	Адрес преобразова- теля при последова- тельной связи	0~249	1	1	<u>10</u> 2
руппа парамет	PH03	Действие при ошибке обмена данными	0: Нет действий 1: Отображение на экране ошибки «Со» 2: Отображение на экране ошибки «Со» и останов	1	0	<u>10</u> 2
	PH04	Время сторожевого таймер	0.0~100.0 c	0.1	5.0	<u>10</u> 3
рименения	Pi00	Блокировка параметров усложненного применения	0: блокирован 1: доступ разрешен	1	1	<u>10</u> 3
потоп	Pi01	Установка частоты 50Гц или 60 Гц	0: «50 Гц» 1: «60 Гц»	1	0	<u>10</u> 3
усложнее	Pi03	Установка уровня срабатывания защиты от перенапряжения	Изменяемая величина	0,1	Изменяе- мая ве- личина	<u>10</u> 3
Параметры для усложненного применени	Pi04	Установка уровня защиты от низкого напряжения	Изменяемая величина	0,1	Изменяе- мая ве- личина	<u>10</u> 3
Парам	Pi06	Настройка времени изменения показаний дисплея	0~60,0	0,1	0	<u>10</u> 4
	Pi07	Коэффициент коррекции минимального значения аналогового выхода 0-10 В	0-8190	1	Изменяе- мая ве- личина	<u>10</u> 4

Глава 5. Эксплуатация

Параметры	Код	Значение	Диапазон	Шаг установки	Заводское значение	Номер стр.
	Pi08	Коэффициент коррекции максимального значения аналогового выхода 0-10 В	0-8190	1	Изменяе- мая ве- личина	<u>107</u>
	Pi12	Запоминание частоты, достигнутой в режиме UP / DOWN	0: Без запоминания 1: С запоминанием	1	1	107
	Pi16	Защита двигателя от перегрузки по току	0: Отключена 1: Включена	1	1	<u>107</u>

Глава 7 Описание функциональных параметров

7-1 Параметры для текущего контроля

	Выбор пара	аметра для	его отображения при включении	Заводское	значе-	
	преобразова	преобразователя				
		0	Заданная частота			
		1	Выходная частота			
PA00		2	Выходной ток			
IAUU	Диапазон	3	Направление вращения			
	00-08	4	Скорость вращения в об/мин			
		5	Напряжение в звене постоянного тока			
		7	Сигнал обратной связи в ПИД режиме			
		8	Уставка ПИД режима			

Можно установить первоначальную индикацию на дисплее с помощью параметра РА00, чтобы сделать отслеживание значений параметров более удобным.

Если нужно установить в качестве первоначальной индикации значение скорости вращения, необходимо присвоить параметру PA00 значение «04». Заводское значение данного параметра «00», поэтому при включении ПЧ отображается заданная частота.

PA01	Заданная частота
	Отображение значения заданной частоты ПЧ в герцах.

Параметр PA01 предназначен для контроля значения заданной частоты «F».

PA02	Выходная частота			
	Отображение значения выходной частоты в герцах.			

Параметр РА02 предназначен для контроля значения выходной частоты ПЧ «Н».

PA03	Выходной ток			
	Отображение значения выходного тока в амперах.			

Параметр РАОЗ предназначен для контроля значения выходного тока ПЧ

PA04	Скорость вращения			
	Отображение значения скорости вращения в оборотах в минуту.			

Параметр РА04 предназначен для контроля значения скорости вращения.

PA05	Напряжение на шине постоянного тока				
	Отображение значения напряжения на шине постоянного тока в основ-				
	ном контуре ПЧ в вольтах.				

Параметр РА05 предназначен для контроля значения напряжения на шине постоянного тока в основном контуре ПЧ.

PA07	Величина обратной связи в ПИД режиме			
	Отображение сигнала обратной связи ПИД-регулятора			

На дисплее отображается сигнал о давлении, температуре или о другом параметре, который измеряется датчиком обратной связи.

PA08	Счетчик часов эксплуатации
	Счетчик времени эксплуатации в часах

PA09	Выходное напряжение			
	Отображение выходного напряжения в основном контуре ПЧ			

PA10	РА10 Запись об ошибке 1		
PA11	Запись об ошибке 2		
PA12	Запись об ошибке 3		
PA13	РА13 Зарезервировано		
Записи о трех последних неисправностях ПЧ.			

С помощью параметров PA10-PA13 можно узнать коды трех последних ошибок. Исходя из значений данных параметров, можно судить о рабочем состоянии ПЧ, найти и устранить скрытую неисправность. Пояснения к кодам ошибок приведены в разделе 8-5.

- 0: Без ошибок
- 2: Перегрузка по току при ускорении
- 3: Перегрузка по току при торможении
- 4: Перегрузка по току на установившейся скорости
- 5: Перенапряжение при ускорении
- 6: Перенапряжение при торможении
- 7: Перенапряжение на установившейся скорости
- 8: Перегрузка зарядного резистора
- 9: Низкое напряжение
- 10: Перегрузка преобразователя
- 11: Перегрузка электродвигателя
- 14: Перегрев преобразователя
- 15: Внешняя ошибка управления
- 16: Ошибка соединения через RS-485
- 24: Обратная связь ПИД ниже нижнего предела
- 27: Обратная связь ПИД выше верхнего предела
- 28: Ошибка «сухой ход»
- 29: Время включения достигнуто
- 31: Обрыв обратной связи ПИД при работе

PA14	Заданная частота в момент последней ошибки			
PA15	Выходная частота в момент последней ошибки			
PA16	Выходной ток в момент последней ошибки			
PA17	Выходное напряжение в момент последней ошибки			
PA18	Напряжение на шине постоянного тока в момент последней ошибки			

С помощью параметров PA14-PA18 можно получить информацию о состоянии ПЧ в момент последней ошибки: значения заданной частоты, выходной частоты, выходного тока, выходного напряжения и напряжения на шине постоянного тока.

Полученная информация поможет обслуживающему персоналу выявить причину неисправности и быстро найти способ ее устранения при проведении ремонтных работ.

PA21	Состоя	Состояние программируемых входов					
	Bit3	Btt2	Bit1	Bit0			
	S2	S 1	REV	FWD	0-не активирован, 1 - активирован		
	,				0-ne aktribripoban, 1 - aktribripoban		

PA22	Состояние релейного выхода RA-RC				
	Bit1: 0-не активирован, 1 – активирован				

PA23	Аналоговый сигнал на входе AVI			
	Изменяемая величина 0~10В			

Отображается код текущей ошибки, подробно об ошибке в разделе 8-5.

PA27	Текущий код ошибки
------	--------------------

PA28	Текущее состояние
	0: Остановлен
	1: Вращение вперед
	2: Вращение назад

PA50	Версия программного обеспечения
------	---------------------------------

В параметре РА50 записана версия программного обеспечения, установленная производителем в данном преобразователе.

Для преобразователей INNOVERT можно использовать параметры PA00, чтобы установить отображение нужного параметра при включении. Также можно контролировать данные непосредственно через параметры PA01 - PA18

С помощью нажатия на кнопку ВВОД на панели управления можно проверить значения частоты, тока и направления вращения. В примере ниже первоначально отображается установленная частота:

	Действие	Дисплей	Пояснение
1	Включить питание	F 5 0 0	- ПЧ в режиме ожидания Отображается заданная частота, например, 50Гц
2	Нажать кнопку	F500	Пуск ПЧ - ПЧ работает, светится индикатор ВПР Отображается заданная частота. Загорается индикатор ВПР, ПЧ работает в режиме вращения вперед.
3	ВВОД ЭКРАН один раз	H500	Нажмите кнопку ВВОД/ЭКРАН до тех пор, пока не появится значение выходной частоты. ПЧ нахо- дится в режиме вращения вперед Выходная частота 50 Гц.
4	Нажмите кнопку ВВОД ЭКРАН один раз	8000	Нажмите кнопку ВВОД/ЭКРАН до тех пор, пока не появится значение выходного тока. 1.Выходной ток 0А, например.
5	ВВОД ЭКРАН один раз	Frd	Нажмите кнопку ВВОД/ЭКРАН до тех пор, пока не появится надпись «Frd» или «rEu» для выбора направления вращения. Примечание: данная функция не активна для однофазных моделей ПЧ.

7-2 Основные функции

	Установка рабочей частоты		
Pb00	Диапазон	Шаг	Заводское значение
PDUU	0,0 – максимальная рабочая ча-	0,1	0,00 Гц
	стота	0,1	0,001 ц

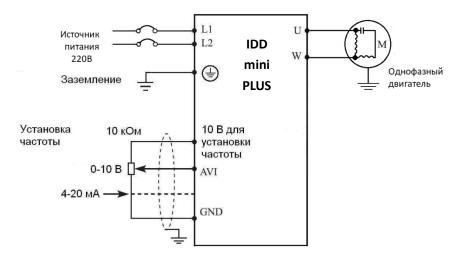
Источник заданной частоты устанавливается в параметре Pb01. Когда значение параметра Pb01 «0», задан режим установки частоты с помощью цифрового значения, значение которого задается с помощью параметра Pb00.

В процессе работы ПЧ можно менять частоту с помощью изменения значения параметра Pb00. Изменение частоты можно производить кнопками ▲ и ▼. Однако это не приведет к изменению параметра Pb00.

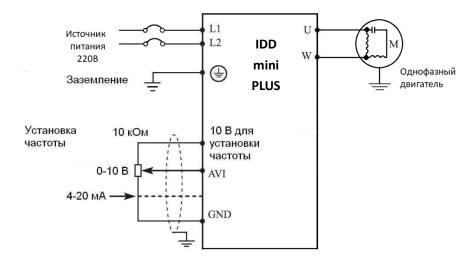
Изменение частоты с помощью кнопок **▲** и **▼**после отключения ПЧ не будет сохранено, значение частоты при пуске ПЧ будет задано с помощью значения параметра Рb00.

		Способ установки частоты (канал Х)	
	Диапазон	Шаг	Заводское значение
	0 - 8	1	3
Pb01		 0: Цифровая установка частоты (задание в Рь00) 1: С помощью аналогового сигнала на входе AVI 2: С помощью потенциометра на внешней клавиатуре 3: С помощью потенциометра на панели управления 	
	Значение	4: С помощью внешних контакт 5: Через порт RS485 6: Предустановленные скорости 7: Режим простого ПЛК 8: ПИД-режим	

Способ задания рабочей частоты ПЧ.


0: Настройка через задание цифрового значения

Рабочая частота ПЧ настраивается установкой значения параметра Pb00 и/или с помощью кнопок ▲ ▼ на панели управления. При отключении ПЧ от сети задание скорости сбрасывается и становится равным значению, записанному в параметре Pb00. Если требуется сохранить набранное с помощью кнопок ▲ ▼ значение после отключения питания, параметр Pi12 должен быть установлен равным 0.


1: С помощью аналогового сигнала на входе AVI

Рабочая частота ПЧ настраивается аналоговым сигналом, который подается на вход AVI,

0-10В при положении V переключателя I/V, 4-20мА при положении I переключателя I/V.

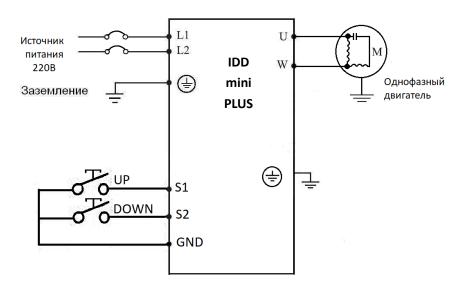
Аналоговое напряжение 0-10В можно сформировать внешним потенциометром 10кОм. Изменение частоты происходит при изменении напряжения от 0 до 10 В между клеммами AVI и GND:

Пояснение: изменение частоты происходит при изменении напряжения, поданного с внешнего потенциометра (10 кОм) на вход AVI.

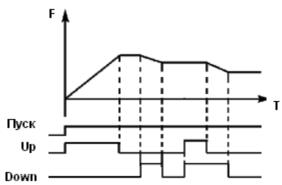
Рабочая частота ПЧ может настраиваться токовым аналоговым сигналом (4-20 мA), поступающим на вход AVI. В этом режиме необходимо установить Pd00=1, Pd01=5.

2: С помощью потенциометра на внешней клавиатуре

При подключении внешней клавиатуры (опция) к разъёму на передней панели преобразователя.


3: С помощью потенциометра на панели управления

Установка рабочей частоты для ПЧ INNOVERT осуществляется вращением встроенной ручки потенциометра.


4: Настройка с помощью внешних контактов UP/DOWN

Настройка рабочей частоты для ПЧ может быть выполнена с помощью внешних контактов UP/DOWN, так называемый MOP-режим. Вход, к которому подсоединен внешний контакт, должен быть соответствующим образом запрограммирован. Выберите два программируемых входа (см. Pd15-Pd18) и запрограммируйте для них функции UP и DOWN. Частота увеличивается, когда действует функция UP, частота уменьшается, когда действует функция DOWN.

В случае одновременного действия функций UP и DOWN значение частоты не изменяется.

Параметр: Pd17=15, (программируемому входу S1 присвоена функция UP). Pd18=16, (программируемому входу S2 присвоена функция DOWN).

Пояснение: когда действует функция UP (соответствующий контакт замкнут), происходит увеличение частоты. Когда действует функция DOWN, (соответствующий контакт замкнут), происходит уменьшение частоты

5: Задание частоты происходит через цифровую последовательную сеть. Используются порт RS485 преобразователя и управляющие клеммы RS+ и RS-. Протокол связи Modbus ASCII или Modbus RTU (см. приложение 2).

6: Предустановленные скорости

Частота задается предустановленными значениями в параметрах PF03-PF17. Для выбора предустановленной скорости используются комбинации сигналов на соответствующих программируемых входах. Подробнее см. описание параметров Pd15-Pd18 в значении 9, 10,11,12.

7: Режим ПЛК

Выходная частота устанавливается автоматически в ПЛК режиме. Подробнее в описании группы параметров PF.

8: ПИД-режим

Выходная частота устанавливается автоматически в ПИД-режиме, в зависимости от настройки и величины обратной связи, подключенной к аналоговому входу. Подробнее в описании группы параметров PG.

	Настройка способа пуска		
	Диапазон	Шаг	Заводское значение
Pb02	0-2	1	0
F 002		0: С помощью пульта	
	Значение	1: С помощью управляющих клемм	
		2: RS485	

С помощью данного параметра устанавливается источник сигналов управления.

0: С помощью пульта

Управляющий сигнал подается с помощью кнопок панели управления. ПУСК задается

нажатием кнопки

. Повторное нажатие этой кнопки останавливает работу ПЧ.

1: С помощью управляющих клемм

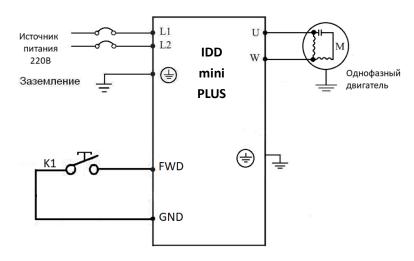
Управляющий сигнал подается на управляющие клеммы, функции которых можно запрограммировать в соответствии с задачей. Заводская установка для входа FWD – вращение вперед, REW - вращение назад.

Можно использовать двух- или трехпроводную схему подключения внешних сигналов (см параметр Pd29).

2: RS485

Подача управляющих сигналов происходит с помощью последовательного интерфейса. ПЧ может принимать команды от управляющего устройства в цифровой сети через последовательный порт RS485 (см. приложение 2)

	Режим доступа к кнопке «ПУСК/СТОП»		
Pb03	Диапазон	Шаг	Заводское значение
	0-1	1	1
	Значение	0: Кнопка СТОП заблокирована	
		1: Кнопка	СТОП доступна


Для предотвращения неправильной работы $\Pi \Psi$ в случае задания значения параметра Pb03 «0» или «1» (соответственно с помощью управляющих входов или RS485), можно заблокировать кнопку СТОП.

Когда значение параметра Pb03 «0», кнопка «ПУСК/СТОП» заблокирована, и с ее помощью

нельзя остановить работу ПЧ.

Когда значение параметра Pb03 «1», кнопка «ПУСК/СТОП» доступна, и с ее помощью можно остановить работу ПЧ

Внимание: при необходимости перезапуска ПЧ разомкните контакт, через который подается управляющий сигнал, нажмите кнопку «ПУСК/СТОП» и замкните контакт.

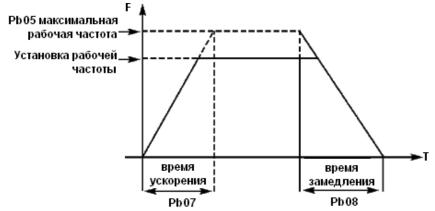
Пункт	Состояние внешнего контакта	Пояснение
1	К1 замкнут	Запуск ПЧ в режиме вращения назад
2	Нажмите кнопку «ПУСК/СТОП»	Останов ПЧ
3	К1 разомкнут	Сигнал пуска отсутствует
4	К1 замкнут	Запуск ПЧ в режиме вращения назад

	Максимальная рабочая частота		
DL05	Диапазон	Шаг	Заводское значение
Pb05	Минимальная рабочая частота~	0.1	50 Ev
	999,9 Гц	0,1	50 Гц

Рабочая частота находится в диапазоне 0,1~999,9 Гц. Большинство двигателей имеют частоту 50 Гц. Во избежание механических повреждений или несчастных случаев ограничьте рабочую частоту в соответствии с техническими данными оборудования.

Для исключения повышенного механического износа двигателя и несчастных случаев вследствие превышения номинальной скорости вращения двигателя, ограничьте максимальную рабочую частоту. При задании частоты аналоговым сигналом см. параметр Pd12.

	Минимальная рабочая частота		
Db04	Диапазон	Шаг	Заводское значение
Pb06	0,0~максимальная рабочая ча-	0.1	0.0
	стота, Гц	0,1	0,0


Некоторое оборудование не предназначено для работы на низкой скорости, и при регулировке скорости такого оборудования легко ошибиться, особенно при регулировке частоты потенциометром на панели управления. Установка нижней границы рабочей частоты осуществляется с помощью изменения значения параметра Рb06. Если заданная частота ниже

установленного значения, ПЧ будет выдавать минимальную рабочую частоту. Работа ПЧ в диапазоне от минимальной до максимальной рабочей частоты предотвратит неправильную работу или перегрев двигателя из-за подачи слишком низкого значения задания частоты. При задании частоты аналоговым сигналом см. параметр Pd10.

	Время ускорения			
Pb07	b07 Диапазон Шаг Заводское значен			
0~999,9 сек 0,1		Изменяемая величина		

	Время замедления			
Рь08 Диапазон Шаг З		Заводское значение		
	0~999,9 сек	0,1	Изменяемая величина	

Время ускорения представляет собой время увеличения частоты от 0 до максимальной рабочей частоты (Pb05). Время замедления представляет собой время уменьшения частоты от максимальной рабочей частоты до минимальной.

Часто используется время ускорения и замедления, установленное по умолчанию. В случае необходимости можно установить другие времена ускорения и замедления.

	V/F-кривая: максимальное напряжение		
Pb09	Диапазон	Шаг	Заводское значение
	Промежуточное напряжение~500,0 В	0,1	220,0 B

Pb09: V/F-кривая: максимальное напряжение. Максимальное напряжение должно быть установлено в соответствии с моделью двигателя. В большинстве случаев это номинальное напряжение двигателя, но когда длина моторного кабеля превышает 30 м, значение параметра можно увеличить.

	V/F -кривая: опорная частота			
Db.10	Диапазон	Шаг	Заводское значение	
Pb10	Промежуточная частота ~ мак-	0,1	Изменяемая величина	
	симальная рабочая частота	0,1		

Pb10: V/F -кривая: опорная частота

Опорная частота должна быть задана в соответствии с номинальной рабочей частотой двигателя. Во избежание повреждений двигателя не следует изменять опорную частоту.

		V/F -кривая: промежуточное напряжение			
Pb	11	Диапазон	Шаг	Заводское значение	
PD.	11	Промежуточное напряжение	0,1	50 Гц	
		~ максимальное напряжение	0,1		

Pb11: V/F -кривая: промежуточное напряжение

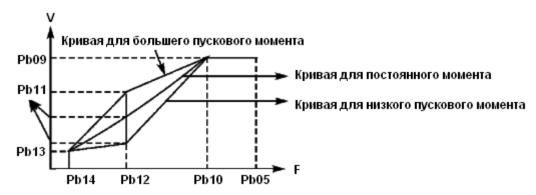
Установите промежуточное напряжение в соответствии с нагрузкой. Неправильная установка может быть причиной сверхтока в двигателе, недостаточной величины выходного момента или срабатывания защиты ПЧ. Увеличение значения параметра Pb11 приводит к увеличению выходного момента и, в то же время, к увеличению выходного тока преобразователя, поэтому при изменении значения параметра Pb11 следите за величиной выходного тока. Требования к настройке: ПЧ запускается, величина тока во время запуска должна находиться в допустимом диапазоне как для ПЧ, так и для двигателя. Запрещается резко увеличивать значение данного параметра, в противном случае сработает защита или произойдет сбой в работе ПЧ.

	V/F -кривая: промежуточная частота				
Pb12	Диапазон	Шаг	Заводское значение		
F012	Промежуточная частота ~	0.1	2,5 Гц		
	Опорная частота	0,1			

Pb12: V/F -кривая: промежуточная частота

Промежуточной частоте соответствует промежуточная точка V/F-кривой, неправильно установленная частота может быть причиной недостаточного момента или срабатывания защиты $\Pi\Psi$ от перегрузки по току. Запрещается изменять величину данного параметра во время работы.

	V/F -кривая: минимальное напряжение			
Db.12	Диапазон	Шаг	Заводское значение	
Pb13	0,0 ~ промежуточное напря-	0.1	Изменяемая величина	
	жение	0,1	изменяемая величина	


Pb13: V/F -кривая: минимальное напряжение

От минимального напряжения V/F-кривой зависит пусковой момент. Увеличение значения данного параметра вызовет увеличение пускового момента, но также может привести к возникновению сверхтока; обычно изменять значение этого параметра не рекомендуется.

	V/F-кривая: минимальная частота			
Db1/	Диапазон	Шаг	Заводское значение	
Pb14	0,0 ~ промежуточная	0,1	1,2 Гц	
	частота			

Рb14: V/F-кривая: минимальная частота

Минимальная частота V/F-кривой определяет точку на данной кривой, которой соответствует частота пуска ПЧ.

Форма V/F-кривой ПЧ задается с помощью группы параметров Pb09- Pb14. Различной нагрузке соответствуют различные V/F-кривые.

Кривая для постоянного момента: устанавливается в случае нагрузки с постоянным моментом. Выходное напряжение и выходная частота связаны линейной зависимостью.

Кривая для малого пускового момента: устанавливается для «легкой» нагрузки (вентилятор, насос). Нагрузка мала при пуске и при увеличении скорости вращения растет.

Кривая для большого пускового момента: применяется для механизмов с большим пусковым моментом. После пуска и разгона нагрузка быстро уменьшается до постоянной величины.

Несущая частота			Несущая частота	
Pb15	Диапазон	Диапазон Шаг Заводское значение		
	1-15 кГц 0,1 Изменяемая величина		Изменяемая величина	

В зависимости от значения параметра Pb15 задается частота включения и выключения транзисторов ПЧ (частота ШИМ). Заводские настройки ПЧ с разной мощностью различаются. От несущей частоты зависят уровень шума, нагрев и уровень помех.

Несущая частота	Уровень шума	Нагрев	Уровень помех
Pb15			
Низкая→ высокая	Высокий-слабый	Слабый → сильный	Низкий → высокий

Согласно данным из таблицы видно, что при высокой несущей частоте будет низкий уровень шума, но сильный нагрев преобразователя и высокий уровень излучаемых помех.

Снизить уровень звукового шума, излучаемого двигателем можно путем увеличения значения параметра Pb15, но при этом уровень максимальной нагрузочной способности ПЧ уменьшится.

Не рекомендуется увеличивать значение этого параметра.

Чтобы снизить утечку тока из-за емкости моторного кабеля и большого расстояния между двигателем и ПЧ, уменьшите значение параметра Pb15.

В случае высокой температуры окружающей среды или большой нагрузки на двигатель, необходимо уменьшить значение параметра Pb15, чтобы снизить тепловую нагрузку на ПЧ.

	Инициализация параметров			
DL 17	Диапазон	Шаг	Заводское значение	
Pb17	0-8	1 0		
	Значение	8: Инициализация заводской установки параметров		

В случае неправильной настройки значений параметров или сбоя их значений из-за неисправности, можно установить значение параметра Pb17 «08», чтобы выставить заводские настройки, а затем вновь настроить ПЧ согласно практическим требованиям. Возврат в заводские настройки не действует на параметр PC10 и группу параметров Pi.

Внимание: когда действует блокировка доступа к параметрам (Pb18=1), нельзя выполнить установку заводских параметров, сначала нужно снять эту блокировку.

	Блокировка доступа к параметрам			
	Заводское значение			
Pb18	0 -1	1	0	
	Значение	0: Разблокировано		
		1: Параметры заблокированы		

Для предотвращения изменения параметров неквалифицированным персоналом можно установить соответствующее значение параметра Pb18.

Если Pb18 = 1, то все параметры заблокированы, параметры не могут быть изменены за исключением Pb18 и задания частоты.

	Способ установки частоты (канал Y)				
	Диапазон	Шаг	Заводское значение		
	0 - 8	1	0		
		0: Цифровая установка частоті	ы (задание в Pb00)		
		1: С помощью аналогового сигнала на входе AVI			
Pb20	Значение	2: С помощью потенциометра на внешней клавиатуре			
1 020		3: С помощью потенциометра на панели управления			
		4: С помощью внешних контактов UP/DOWN			
		5: Через порт RS485			
		6: Предустановленные скорости			
		7: Режим простого ПЛК			
		8: ПИД-режим			

Второй способ задания частоты в преобразователе. Описание значений аналогично параметру Pb01. Выбор способа задания частоты между каналами X и Y с помощью параметра Pb21.

		Выбор между каналами задания частоты		
	Диапазон	Шаг	Заводское значение	
	0 - 34	1	0	
Pb21	Значение	 00: X 01: X+Y (сумма значений) 02: переключение между X и Y вне 03: переключение между X и X+Y и 04: переключение между Y и X+Y и 	внешним сигналом	

	11: Х-Ү (разница значений)
	13: переключение между Х и Х-У внешним сигналом
	14: переключение между Y и X-Y внешним сигналом
Pb21	21: максимальное из X, Y
FD21	23: переключение между X и тах X, Y внешним сигналом
	24: переключение между Y и тах X,Y внешним сигналом
	31: минимальное из X, Y
	33: переключение между X и min X,Y внешним сигналом
	34: переключение между Y и min X,Y внешним сигналом

С помощью параметра Pb21 можно выбрать рабочий канал задания частоты или режим, когда выбор между каналами осуществляется по условию или внешним сигналом, поданным на соответствующий запрограммированный вход.

	Выбор канала Ү как вспомогательный источник задания частоты		
	Диапазон	Шаг	Заводское значение
Pb22	0-1	1	0
		0: Относительн	о максимальной частоты
	Значение	1: Относительн	о частоты по каналу X

	Диапазон задания частоты по каналу Ү		
DL32	Диапазон	Шаг	Заводское значение
Pb23	0-150	1	100%
	Значение	0~150%	

Максимальное значение частоты по каналу Y выраженное в % от Pb05 или от значения частоты, заданного по каналу X.

	Корректировка частот	гы, когда она задается с	соотношением Х и Ү
	(+, -, min, max)		
Pb24	Диапазон Шаг Заводское зна		Заводское значение
	0-999	0,1	0
	Значение	0~Pb05	

	Базовая частота для UP/DOWN регулировки			
	Диапазон	Шаг	Заводское значение	
Pb25	0-1	1	1	
	Значение	0: Выходная частота		
		1: Заданная ча	стота	

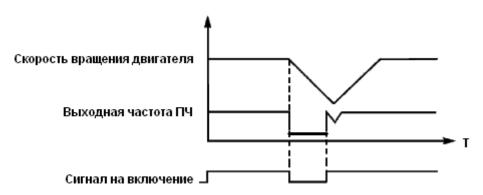
	Базовая частот	а для времени ускорені	ия/замедления
Db.26	Диапазон	Шаг	Заводское значение
Pb26	0-999	1	50,0
	Значение	Pb06~Pb05	

	Базовая частота для времени ускорения/замедления		
,	Диапазон	Шаг	Заводское значение
Pb27	0-999	1	0
F027		0: максимальная частота Рb05	
	Значение	1: заданная частота	
		2: 100 Гц	

Частота, до которой разгоняется преобразователь за установленное время Pb07, и с которой преобразователь тормозится за время Pb08.

7-3 Параметры для основных применений

		Режим пуск	a
	Диапазон	Шаг	Заводское значение
PC00	0 -1	1	0
	2,,,,,,,,,,	0: Пуск на пусково	й частоте (обычный пуск)
	Значение	1: Пуск с поиском ч	астоты


ПЧ серии IDD mini PLUS могут обеспечить два режима пуска, выбор нужного режима осуществляется с помощью установки значения параметра PC00.

0: Пуск на пусковой частоте (обычный пуск).

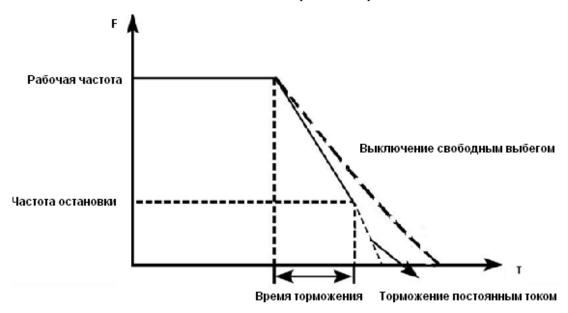
Для большинства нагрузок не требуется специальных условий пуска, запуск оборудования происходит на пусковой частоте (см.РС02).

1: Пуск с поиском частоты

Пуск с поиском частоты применим для пуска после сбоя или внезапного выключения. В данном режиме ПЧ автоматически определяет скорость и направление вращения двигателя, после чего в соответствии с определенными значениями производит прямой пуск работающего двигателя.

Внимание: во время запуска с поиском частоты ПЧ начинает поиск частоты с верхней границы до нижней границы частоты. Это может привести к возникновению перегрузки по

току, поэтому необходимо правильно выбрать уровень перегрузки по току (параметр РЕ09) в зависимости от нагрузки.


Малое значение параметра PE09 может быть причиной замедления при пуске. Если во время поиска частоты сверхток превышает допустимый уровень, ПЧ прекратит поиск и возобновит его тогда, когда величина тока будет ниже этого уровня.

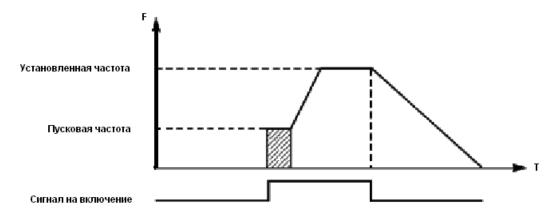
	Режим выключения		
	Диапазон	Шаг	Заводское значение
PC01	0 -1	1	0
	Значение	0: Остановка с заме	едлением
	Эначение	1: Выключение со с	свободным выбегом

Выберите режим выключения в соответствии с Вашими требованиями.

0: Остановка с замедлением

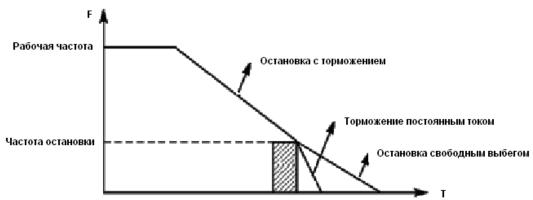
При получении сигнала на выключение ПЧ постепенно снижает выходную частоту до частоты выключения в соответствии с заданным временем торможения.

Вместе с выбором режима остановки необходимо определить целесообразность торможения постоянным током на завершающем этапе движения. При этом следует установить величину постоянного тока при торможении, время замедления постоянным током (отличное от нуля) и другие параметры, в противном случае в конце торможения остановка будет про-исходить в режиме свободного выбега.


1: Выключение со свободным выбегом

При получении сигнала на выключение ПЧ снимает выходное напряжение, и следует свободный выбег двигателя.

	Установка пусковой частоты		
PC02	Диапазон	Шаг	Заводское значение
	0,1~100 Гц	0,1	0,1


Преобразователь частоты запускается с заданной в этом параметре частотой. Высокая пусковая частота облегчает запуск оборудования с большим моментом инерции и нагрузкой,

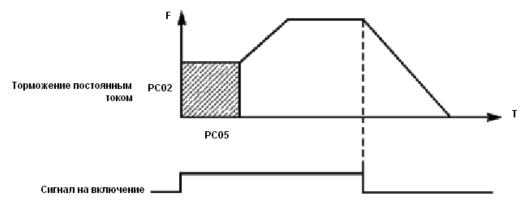
при запуске которой необходим высокий момент. Однако слишком высокая пусковая частота может вызвать срабатывание защиты от сверхтоков.

	Установка частоты остановки		
PC03	Диапазон	Шаг	Заводское значение
	0,1~100,0 Гц	0,1	0,5

При получении сигнала на выключение ПЧ начинает торможение. Выходная частота постепенно снижается до частоты остановки. После этого двигатель останавливается свободным выбегом или тормозится постоянным током.

Когда торможение постоянным током неактивно, ПЧ уменьшает частоту вращения до тех пор, пока не будет достигнута частота остановки; ПЧ прекращает вывод частоты и двигатель свободно вращается до полной остановки.

Напряжение DC при старте торможения постоянным током					
PC04	04 Диапазон Шаг Заводское значение				
	0~7,0% от РС09	0,1	0,0		


Время замедления постоянным током перед пуском				
РС05 Диапазон Шаг Заводское значе				
	0~100,0 c	0,1	0,0	

Замедление (торможение) постоянным током перед запуском применяется для остановки, например, вращающегося вентилятора или подвижной инерционной нагрузки (двигателя). Если двигатель находится в состоянии свободного выбега и направление вращения неизвестно, то при пуске ПЧ может сработать защита от перегрузки по току. Чтобы

уменьшить сверхтоки при пуске, необходимо остановить вращение двигателя с помощью торможения постоянным током.

Величина напряжения при торможении постоянным током перед пуском выражается в процентах от значения номинального напряжения двигателя и настраивается с помощью изменения значения параметра PC04.

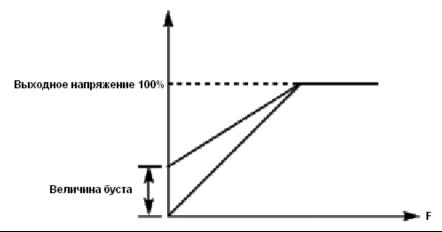
Время замедления постоянным током при пуске представляет время, в течение которого осуществляется замедление. Когда значение параметра «0», замедление постоянным током не выполняется.

Напряжение DC при торможении постоянным током перед выкл					
PC06	6 Диапазон Шаг Заводское значени				
	0~7,0% от РС09	0,1	0,0		

Время торможения постоянным током перед выключением					
PC07	07 Диапазон Шаг Заводское значени				
	0~100,0 с	0,1	0,0		

Торможение постоянным током перед выключением применяется в случае повышенных требований к замедлению. Такое торможение осуществляется только при использовании дискретных сигналов (в том числе с панели управления) на включение и остановку. При торможении с помощью подачи аналогового задания, соответствующего нулевой скорости, торможение постоянным током не осуществляется.

Величина напряжения при торможении постоянным током перед выключением выражается в процентах от значения номинального напряжения двигателя. Изменение значения параметра PC06 вызывает изменение величины тормозного момента.


Время торможения постоянным током перед выключением представляет собой интервал времени, в течение которого осуществляется замедление. Когда значение параметра «0», торможение постоянным током не выполняется (см. PC03, PC04 и PC05).

		Буст	
PC08	Диапазон	Шаг	Заводское значение
	0,0-20%	0,1	0,0 %

Увеличение значения параметра PC08 приводит к увеличению выходного напряжения, вследствие чего увеличивается момент. Величина буста выражается в процентах от значения параметра Pb09.

Внимание: увеличенный буст служит причиной сильного нагрева двигателя, поэтому уве-

личение значения параметра РС08 должно производить постепенно, с контролем тока двигателя.

	Номинальный ток двигателя				
PC10	РС10 Диапазон Шаг Заводское знач				
	0,0~999,9A	0,1	зависит от модели		

РС10 Номинальный ток двигателя

Номинальный ток двигателя настраивается в соответствии с паспортной табличкой. Если выходной ток превысит номинальный ток двигателя, сработает защита ПЧ.

	Номинальный ток холостого хода двигателя				
PC11	Диапазон Шаг Заводское значени				
	0~100%	1	50%		

PC11 Ток холостого хода двигателя — значение в % от производителя двигателя или значение, измеренное на работающем без нагрузки двигателе.

	Номинальная скорость вращения			
PC12	РС12 Диапазон Шаг Заводское знач			
	0-6000 об/мин	1	1460	

РС12 Номинальная скорость вращения двигателя

Величина значения параметра PC12 определяет скорость вращения двигателя, которая соответствует частоте 50 Гц. Настраивается согласно паспортной табличке. На дисплее отображается скорость (PC12*PA02)/PC15.

PC13	Диапазон	Шаг	Заводское значение
	0-20	1	4

PC13 Количество полюсов двигателя. Установите количество полюсов двигателя в соответствии с паспортной табличкой двигателя. Установка параметров PC13, не влияет на функционирование преобразователя.

Зарезервировано				
PC14	-	-	-	-

Установите значение параметров в таблице выше (PC10-PC13) в соответствии с паспортной табличкой двигателя.

	Номинальная частота двигателя		
РС15 Диапазон Шаг Зав		Заводское значение	
	0,0-999,9 Гц	0,1	50,0 Гц

РС15 Номинальная частота двигателя

Номинальная частота двигателя настраивается в соответствии с паспортной табличкой. Установите параметры выше в соответствии с фактическими параметрами двигателя.

Сопротивление статора двигателя			
РС16 Диапазон Шаг Заводское зн			Заводское значение
	0~100,0 Ом	0,1	зависит от модели

	Сопротивление ротора двигателя				
PC17	РС17 Диапазон Шаг Заводское зн				
	0~100,0 Ом	0,1	зависит от модели		

Самоиндукция ротора двигателя РС18 Диапазон Шаг Заводское значанием				

	Общая индуктивность ротора		
РС19 Диапазон Шаг		Заводское значение	
	0~100,0 Гн	0,1	зависит от модели

PC16-PC19 характеристики от производителя двигателя. Для работы в большинстве применений указание этих характеристик не требуются.

7-4 Параметры входов и выходов

	Минимальное входное напряжение на входе AVI (U)		
Pd00	Диапазон	Шаг	Заводское значение
Pavv	0~ максимальное входное	0.1	0,0
	напряжение на входе	0,1	

Pd00 Минимальное входное напряжение на входе AVI (U).

Минимальное напряжение на входе AVI (U) соответствует частоте, устанавливаемой в параметре Pd10; сигнал с напряжением ниже заданного значения считается равным нулю.

	Максимальное входное напряжение на входе AVI (U)		
DJ01	Диапазон	Шаг	Заводское значение
Pd01	Минимальное входное	0.1	10,0
	напряжение на входе ~10 В	0,1	

Pd01 Максимальное входное напряжение на входе AVI (U).

Максимальное напряжение на входе AVI (U) соответствует частоте, устанавливаемой в параметре Pd12; сигнал с напряжением выше значения, заданного в параметре Pd01, принимается равным значению параметра Pd01.

Значения, заданные в параметрах Pd00 и Pd01, определяют диапазон входного напряжения от управляющего устройства. Кроме того, так как сигнал ниже 1В может стать причиной неправильной работы вследствие помех, его можно исключить в параметре Pd00, чтобы увеличить помехоустойчивость.

Постоянная времени фильтра AVI (U)				
Рd02 Диапазон Шаг Заво		Заводское значение		
	0-10,0 с	0,1	0,1	

Pd02 Постоянная времени фильтра

Постоянная времени фильтра задает время отклика ПЧ на изменения аналогового сигнала. При увеличении значения параметра Pd02 будет увеличиваться время отклика ПЧ на изменение аналогового сигнала.

	Минимальный входной ток на входе AVI (I)		
D402	Диапазон	Шаг	Заводское значение
Pd03	0~ максимальный входной	0.1	4
	ток на входе	0,1	

Pd03: Минимальный входной ток на входе AVI.

Минимальный входной ток на входе AVI (I) соответствует частоте, устанавливаемой в параметре Pd10. Величина входного тока ниже значения параметра Pd03 будет считаться равной нулю.

	Максимальный входной ток на входе AVI (I)		
D404	Диапазон	Шаг	Заводское значение
Pd04	Минимальный входной ток	0.1	20,0
	на входе ~20 мА	0,1	

Pd04: Максимальный входной ток на входе AVI (I).

Максимальный входной ток на входе AVI (I) соответствует частоте, устанавливаемой в параметре Pd12. Величина входного тока выше значения параметра Pd04 будет считаться равной значению данного параметра.

Постоянная времени фильтра AVI (I)				
Рd05 Диапазон Шаг		Шаг	Заводское значение	
	0-25,0мс	0,1	1,0	

Pd05: Постоянная времени фильтра AVI (I).

Постоянная времени фильтра задает время отклика на изменение аналогового сигнала.

При увеличении значения параметра Pd05 будет увеличиваться время отклика ПЧ на изменение аналогового сигнала. Параметры выхода ПЧ будут относительно стабильны. Выставьте правильные значения параметров для напряжения входного сигнала (Pd00-Pd02) или тока входного сигнала (Pd03-Pd05).

Например, если величина тока сигнала от управляющего устройства равна 4-20 мA, а соответствующая частота должна находиться в пределах от 0 до 50 Гц, то:

Выходная частота

Параметры: Pd03=4; Pd04=20; Pd10= 0; Pd12= 50.

	Частота, соответствующая наименьшему аналоговому сигналу				
Pd10	Диапазон Шаг Заводское значен				
	0,0-999,9 Гц	0,1	0		

Pd10 Частота, соответствующая наименьшему аналоговому сигналу

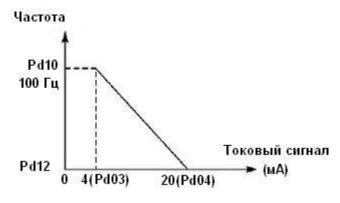
Данная частота соответствует минимальному напряжению (току) на аналоговом входе.

	Частота, соответствующая наибольшему аналоговому сигналу			
Pd12	Диапазон Шаг Заводское значени			
	0,00-максимальная рабочая частота (Pb05)	0,1	50,0	

Pd12 Частота, соответствующая наибольшему аналоговому сигналу.

Данная частота соответствует максимальному напряжению (току) на аналоговом входе.

Группа параметров **Pd10 и Pd12** определяет параметры рабочего состояния с помощью аналогового сигнала, включая рабочую частоту. В соответствии с практическими требованиями можно формировать различные управляющие кривые.


Пример: управляющее устройство подает сигнал 4-20 мА, и управляет работой ПЧ. Рабочая частота 100-0 Гц.

Параметр: Pd03= 4 Минимальный входной ток на входе AVI (I)

Pd04=20 Максимальный входной ток на входе AVI (I)

Pd10=100,00 Частота, соответствующая наименьшему аналоговому сигналу

Pd11=0 Направление вращения, соответствующее наименьшему аналоговому

сигналу (вращение вперед)

Pd12=0 Частота, соответствующая наибольшему аналоговому сигналу

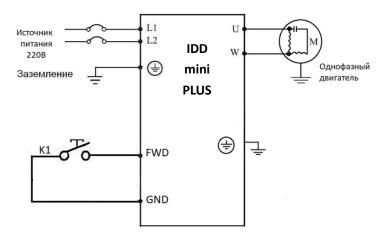
Pd13=0 Направление вращения, соответствующее наибольшему аналоговому сигналу (вращение вперед)

Примечание: величина входного тока ниже 4 мА будет считаться равной нулю.

Pd15	Многофункцио	ональный вход	клемма FWD	Заводское значение: 6
Pd16	Многофункцио	нальный вход	Заводское значение: 7	
Pd17	Многофункцио	нальный вход	Заводское значение: 18	
Pd18	Многофункцио	нальный вход	клемма S2	Заводское значение: 9
	Диапазон			Шаг
	0-26			1
		0: Не используе	ется	
		1: Медленное в	ращение	
		2: Медленное в	ращение вперед	
		3: Зарезервиров	зано	
		4: Зарезервиров	вано	
		5: Зарезервиров	зано	
		6: Вращение вп	перед	
		7: Зарезервировано		
		8: Остановка		
		9: Вход №1 для предустановленной скорости		
		10: Вход №2 для предустановленной скорости		
		11: Вход №3 для предустановленной скорости		
		12: Вход №4 для предустановленной скорости		
	Значение	13: Ускорение/замедление «2»		
		14: Ускорение/замедление «3»		
		15: Постепенное увеличение частоты, сигнал « UP»		
		16: Постепенное уменьшение частоты, сигнал «DOWN»		
		17: Свободный выбег		
		18: Сигнал сброса ошибки		
		19: ПИД-регулирование		
		20: ПЛК-регули	ирование	
		21: Таймер 1 за	пуск	
		22. Таймер 2 за	пуск	
		23: Импульсны	й входной сигнал	т счетчика
		24: Сигнал сбро		
		25: Пауза вращения		
		26: Выбор канала задания частоты между X и Y		

0: Не используется

Функция не запрограммирована


1: Медленное вращение

Режим медленного вращения, используется во время пробного запуска, частота 5 Гц (см. параметр PE00). Все режимы медленного вращения не активируются при способе пуска от пульта управления, т.е. при Pb02=0.

2: Медленное вращение вперед

Режим медленного вращения вперед

- 3: Зарезервировано
- 4: Зарезервировано

Параметр: Pb02=1,Pd15=6

Состояние внешних контактов	Dayway no Form	
K1	Режим работы	
ВКЛ	Вращение вперед	
ВЫКЛ	Остановка	

5: Зарезервировано

6: Вращение вперед

Сигнал на входе приводит к началу вращения вперед. ПЧ включается в режиме вращения вперед при замыкании контакта.

7: Зарезервировано

8: Остановка

Вход для сигнала выключения; ПЧ замедляется и выключается при размыкании соответствующего контакта.

9: Вход №1 для предустановленной скорости

10: Вход №2 для предустановленной скорости

11: Вход №3 для предустановленной скорости

12: Вход №4 для предустановленной скорости

С помощью комбинирования четырех сигналов можно задать 15 предустановленных скоростей, фактическая скорость будет задаваться состоянием соответствующих входов.

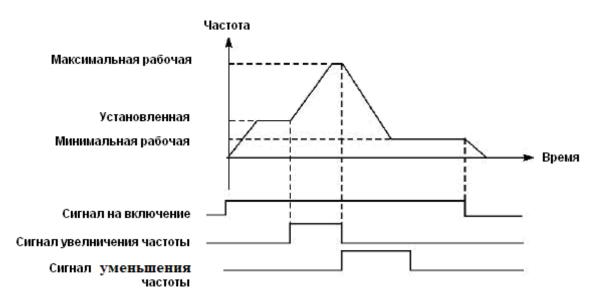
Функция многофункционального входа				
Значение 9	Значение 10	Значение 11	Значение 12	Состояние и описание
0	0	0	0	Определяется частотой, заданной пара- метром Pb00 или потенциометрами
1	0	0	0	Предустановленная скорость 1 (РF03)
0	1	0	0	Предустановленная скорость 2 (РF04)
1	1	0	0	Предустановленная скорость 3 (РF05)
0	0	1	0	Предустановленная скорость 4 (РГ06)
1	0	1	0	Предустановленная скорость 5 (РF07)
0	1	1	0	Предустановленная скорость 6 (РF08)
1	1	1	0	Предустановленная скорость 7 (РГ09)
0	0	0	1	Предустановленная скорость 8 (PF10)
1	0	0	1	Предустановленная скорость 9 (РF11)
0	1	0	1	Предустановленная скорость 10 (PF12)
1	1	0	1	Предустановленная скорость 11(PF13)
0	0	1	1	Предустановленная скорость 12(PF14)
1	0	1	1	Предустановленная скорость 13(PF15)
0	1	1	1	Предустановленная скорость 14(PF16)
1	1	1	1	Предустановленная скорость 15(PF17)

Примечание: 0: сигнал не подан, 1: сигнал подан

13: Ускорение / замедление 2

14: Ускорение / замедление 3

С помощью комбинирования сигналов на двух входах можно запрограммировать до 4-х вариантов времен ускорения / замедления.


Многофункциональный вход		Результат	
Значение 13	Значение 14		
0	0	Время ускорения/замедления 1 (Рь07 / Рь08)	
1	0	Время ускорения/замедления 2 (РЕ01 / РЕ02)	
0	1	Время ускорения/замедления 3 (РЕ03 / РЕ04)	
1	1	Время ускорения/замедления 4 (РЕ05 / РЕ06)	

15. Постепенное увеличение частоты, сигнал «UP». Так называемый режим моторного потенциометра (МОР).

Контакт замкнут: частота постепенно увеличивается до максимальной рабочей частоты. Pb01=4

16. Постепенное уменьшение частоты, сигнал «DOWN», параметр Pb01=4

Контакт замкнут: частота постепенно уменьшается до минимальной рабочей частоты.

Внимание: по умолчанию заданная частота, установленная с помощью команд «UP» и «DOWN» не будет сохранена в памяти после выключения ПЧ, и при последующем запуске частота будет установлена в соответствии со значением параметра Pb00. (См. также Pi12)

17: Свободный выбег

При замыкании контакта ПЧ прекращает работу и тормозится свободным выбегом двигателя, то есть по инерции. На дисплее возникает код состояния ES.

18. Сигнал сброса неисправности

В случае возникновения сбоя во время работы ПЧ можно подать сигнал сброса путем замыкания соответствующего контакта. Действие функции равносильно нажатию кнопки «СТОП» на пульте.

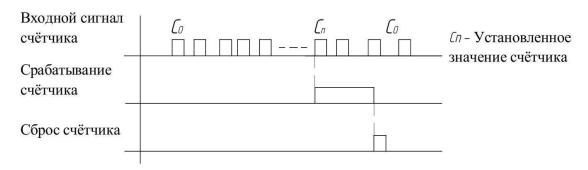
19. ПИД-регулирование

При замыкании контакта включается ПИД-регулирование, если PG00=2; ПИД-регулирование выключено, когда контакт разомкнут. Активация предустановленных скоростей имеет приоритет над режимом ПИД-регулирования.

20. ПЛК-регулирование

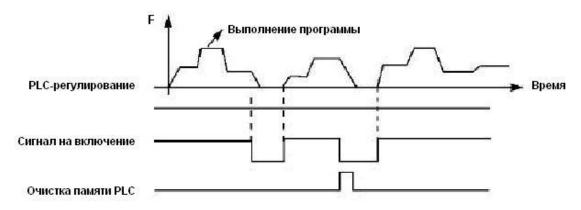
Функция ПЛК-регулирование активируется, когда этот контакт замкнут.

- **21**: Таймер 1 запуск
- 22: Таймер 2 запуск

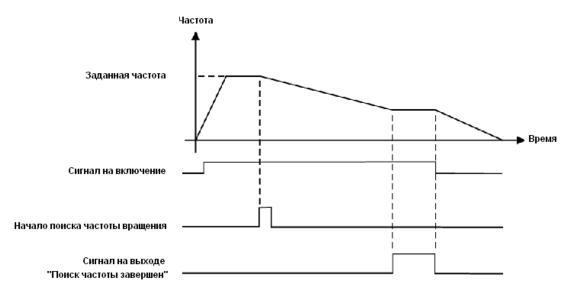

При замыкании контакта таймер включается, по достижении заданного значения активируется соответствующе запрограммированный многофункциональный релейный выход.

23: Импульсный входной сигнал счетчика

На этот вход может подаваться импульсный входной сигнал счетчика с частотой не выше 250 Гц.


24: Сигнал сброса счетчика

При замыкании контакта происходит сброс показаний счетчика.


25. Пауза вращения

В ходе выполнения программы ПЛК может произойти сбой или выключение ПЧ. ПЧ в данном случае сохранит информацию об этапе выполнения программы и после запуска продолжит выполнять ее с прерванного этапа. Если активирована очистка памяти, программа начнет выполняться сначала.

26. Выбор канала задания частоты между Х и У

При замыкании этого контакта выполняется переключение между каналами задания частоты или их комбинациями при установке Pb21= 2, 3, 4, 13, 14, 23, 24, 33, 34.

Примечание:

- Поиск частоты начинается при замыкании контакта;
- Поиск частоты завершается, ПЧ начинает работу с определенной во время поиска

частотой; срабатывает соответствующий многофункциональный выход;

- ПЧ выключается, многофункциональный выход автоматически сбрасывается.

	Выход RA-RC				
	Диапазон		Шаг	Заводское значение	
	0-28		1	3	
Pd25	, ,	1: В раб 2: Часто 3: Сбой 4: Нуле 5: Часто 6: Часто 7: Ускор 8: Заме; 9: Инди 10: Знач 12: Инд 13: Инд 14: Дос 15: Дос 16: Обр 27: Знач 28: Знач	ота достигнута в работе вая скорость ота 1 достигнутота 2 достигнутоение дление таймера 2 докация заверш дикация заверш тигнуто верхнетигнуто нижне оыв цепи 4-20 мнение счетчика нение промежу оснабжение	та напряжения 1 достигнуто 2 достигнуто ения цикла ения процесса ее аварийное значение ПИД н аварийное значение ПИД	

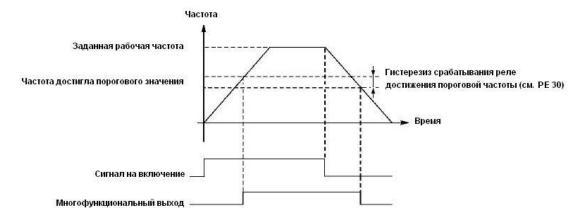
- 0. Не задействована. Функция выхода не запрограммирована.
- 1. В работе

Сигнал формируется при наличии напряжения на выходе ПЧ и подаче сигнала на Пуск.

2. Частота достигнута

Выход срабатывает, когда частота достигает заданного значения

3. Сбой в работе

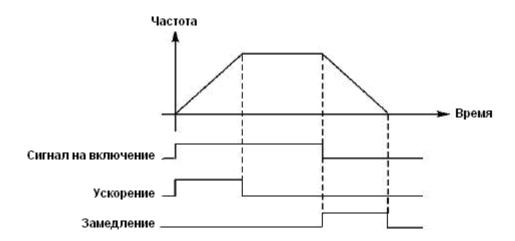

Выход срабатывает, когда происходит сбой в работе ПЧ.

4. Нулевая скорость

Выход срабатывает, когда выходная частота становится ниже пусковой частоты.

- 5. Частота 1 достигнута (см. параметр РЕ25)
- 6. Частота 2 достигнута (см. параметр РЕ26)

Выход срабатывает, когда частота достигает заданного значения.



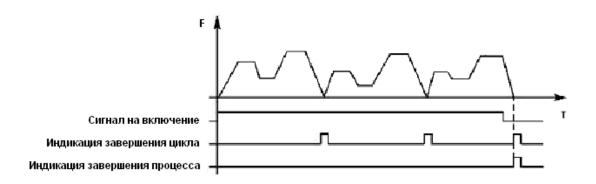
7: Ускорение

Выход срабатывает, когда ПЧ работает в режиме ускорения.

8: Замедление

Выход срабатывает, когда ПЧ работает в режиме замедления.

9: Индикация низкого напряжения


Данный выход срабатывает, когда ПЧ обнаруживает, что напряжение на шине постоянного тока ниже заданного значения; заданное значение сигнализации о низком напряжении настраивается в группе дополнительных параметров.

- 10: Значение установки таймера 1 достигнуто
- 11: Значение установки таймера 2 достигнуто

Выход срабатывает, когда достигается заданное значение времени таймера. При пропадании входного сигнала запуска таймера выходной контакт размыкается.

12: Индикация завершения цикла

При завершении выполнения цикла управляющей программы на многофункциональном выходе появляется импульсный сигнал с длительностью около 1 сек.

13. Индикация завершения процесса

Когда все циклы программы выполнены, посылается сигнал о завершении процесса. Данный сигнал может служить сигналом тревоги для обслуживающего персонала, или сигналом для запуска следующей программы.

- 14: Достигнуто верхнее аварийное значение сигнала с датчика обратной связи Выход срабатывает, когда величина обратной связи ПИД-регулятора становится больше верхнего аварийного предела PG17. Может использоваться для подачи сигнала о неисправности или аварийной остановки.
- **15**: Достигнуто нижнее аварийное значение сигнала с датчика обратной связи Выход срабатывает, когда величина обратной связи ПИД-регулятора становится меньше нижнего аварийного предела PG18.

16: Обрыв цепи 4-20 мА

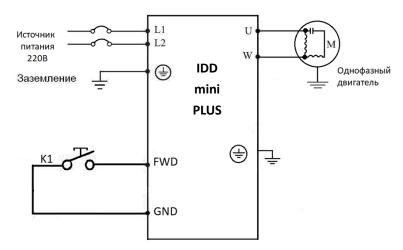
Когда пропадает сигнал, подаваемый на вход AVI (I), соответствующий дискретный выход срабатывает.

27: Значение счетчика достигнуто.

Выход срабатывает, когда используется внешний счетчик, и его показания достигают установленного значения (см. РЕ07).

28: Значение промежуточного счетчика достигнуто

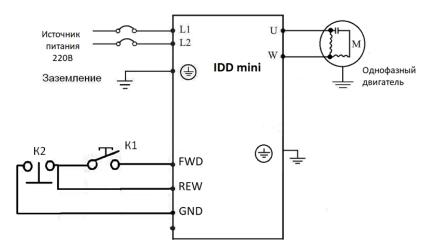
Выход срабатывает, когда показания счетчика достигают установленного значения (РЕО8).


30: Готовность

Выходной сигнал формируется при подключении напряжения питания в отсутствии ошибок.

	Схема подключения сигналов к входным клеммам управления			
	Диапазон	Диапазон Шаг		Заводское значение
Pd29	0-3	1		0
	Значение		0: Двухпроводная схема, режим 1	
			1: Двухпроводная схема, режим 2	
2: Трёхпроводная схема, реж			одная схема, режим 1	

3: Трёхпроводная схема, режим 2


0: Двухпроводная схема, режим 1 и 2:

Пример работы преобразователя: Pb02=1, Pd15=6, Pd29=0

К1 (постоянный сигнал)	Статус
0	Останов
1	Пуск вперед

2: Трёхпроводная схема, режим 1 и 2:

Пример работы преобразователя: Pb02=1, Pd15=6, Pd29=2

Кнопки К1 (пуск вперед) без фиксации положения. Кнопка К2 (останов) нормально замкнутая.

К1 (импульс)	К2(постоянный сигнал)	Статус
0	1	Останов
1	1	Пуск вперед
0	0	Останов

	Шаг регулировки скорости сигналами UP/DOWN					
Pd30	Диапазон Шаг Заводское значение					
	0,01-99,99 Гц/с	0,01	1,0			

С помощью этого параметра можно настроить скорость изменения частоты в зависимости от длительности включения сигнала на соответствующем программируемом входе преобразователя.

	Логика работы выхода RA-RC				
	Диапазон	Диапазон Шаг		Заводское значение	
Pd31	0-10	1		H.000	
	2		Н000: Позитивная		
	Значение		Н010: Негативная		

Логика работы выходного реле после включения напряжения питания преобразователя частоты.

Н000: Позитивная.

Выходное реле замкнуто, когда происходит событие, на которое оно запрограммировано (Pd25). Если событие не наступило, то выходное реле разомкнуто.

Н010: Негативная.

Выходное реле разомкнуто, когда происходит событие, на которое оно запрограммировано. Если событие не наступило, то выходное реле замкнуто.

	Отклик на сигнал на клемме FWD			
Рd32 Диапазон Шаг 3		Заводское значение		
	0,0-999,9 с	0,1	0	

	Отклик на сигнал на клемме REV			
Pd33	Диапазон	Заводское значение		
	0,0-999,9 с	0,1	0	

	Отклик на сигнал на клемме S1			
Pd34	Заводское значение			
	0-10	0,1	0	

Время между поступлением сигнала на входную клемму и началом выполнения запрограммированной функции на соответствующем входе.

	Состояние входов управления				
	Диапазон	Шаг		Заводское значение	
Pd35	0-1111	1		изменяемая величина	
	2		0: Есть сигнал		
	Значение		1: Нет сигнала		

Bit3	Bit2	Bit1	Bit0
S2	S 1	REV	FWD

В каждом бите указывается 0, если на соответствующей клемме нет сигнала, 1 - если сигнал есть. Например, 0000 — значит отсутствие сигналов на всех клеммах, 1111 — сигналы есть на всех клеммах.

7-5 Группа вспомогательных параметров

	Установка частоты медленного вращения				
PE00	Заводское значение				
	0,0-максимальная рабочая частота	0,1	5,0		

С помощью параметра PE00 осуществляется установка частоты в режиме медленного вращения, который применяется, например, для пробного прогона. Пуск двигателя в данном режиме должен быть осуществлен только с помощью дискретных входов, предварительно запрограммированных.

Во время работы в режиме медленного вращения не выполняются другие команды, кроме тех, которые связаны с режимом медленного вращения. После завершения работы в данном режиме ПЧ останавливает двигатель и выключается, время замедления определяется параметром (РЕ06, время торможения 4).

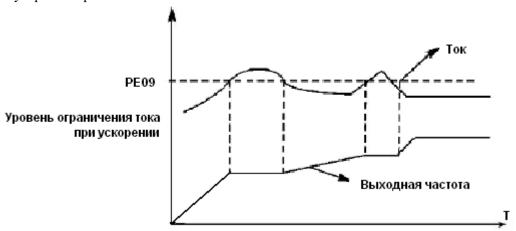
Уровень приоритета режимов: медленное вращение \to предустановленная скорость \to ПЛК-регулирование \to ПИД-регулирование \to режим треугольной волны \to пуск с поиском частоты \to заданное значение частоты.

Эти режимы управления могут включаться одновременно, но работают в порядке приоритета.

PE01	Время ускорения 2	Заводское значение: 10,0		
PE02	Время замедления 2	Заводское значение: 10,0		
PE03	Время ускорения 3	Заводское значение: 10,0		
PE04	Время замедления 3	Заводское значение: 10,0		
PE05	Время ускорения 4	Заводское значение: 10,0		
PE06	Время замедления 4	Заводское значение: 10,0		
	Диапазон: 0-999,9 с	IIIar: 0,1		

ПЧ из серии IDD mini PLUS имеют четыре времени ускорения/замедления, по умолчанию в ПЧ используется время ускорения/замедления 1 (для режима медленного вращения используется только время ускорения/замедления 4). Пользователь может выбрать любое время ускорения/замедления. При внешнем задании режима предустановленной скорости время ускорения/замедления задается состоянием дискретных входов, при использовании режима ПЛК скорости и времена ускорения/замедления задаются с помощью управляющей программы.

	Установка уровня срабатывания счетчика					
PE07	Диапазон Шаг Заводское значение					
	0-9999	1	100			


	Промежуточное значение счетчика				
PE08	РЕ08 Диапазон Шаг Заводское зн				
	0-9999	1	50		

В ПЧ серии IDD mini PLUS предусмотрен счетчик с двумя уровнями установки; импульсный сигнал с частотой менее 250 Гц может быть подан через многофункциональный вход; когда показания счетчика достигают установленной величины, соответствующий многофункциональный выход срабатывает. Если на счетчик через входной контакт подается

сигнал сброса, счет начинается заново. Импульсный входной сигнал для счетчика может формироваться с помощью бесконтактных и фотоэлектрических выключателей.

	Ограничение тока при ускорении				
PE09	Диапазон Шаг Заводское значение				
	50-200%	1	150		

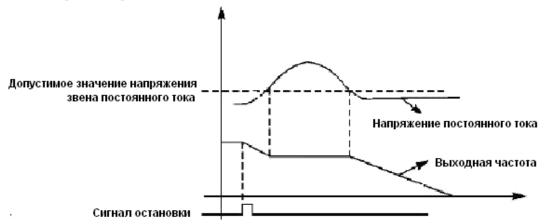
При работе ПЧ в режиме ускорения могут возникнуть относительно большие токи, которые вызовут срабатывание защиты от перегрузки по току. Величина максимального тока перегрузки задается с помощью параметра РЕ09. При достижении током установленной величины ПЧ прекратит работу в режиме ускорения, когда ток уменьшится, ПЧ продолжит работу в режиме разгона.

Величина тока перегрузки 100% соответствует номинальному току ПЧ (т.е. предельно возможной величине параметра PC10 в диапазоне допустимых значений). Защита отключена при PE09=0.

	Коэффициент подавления тока при перегрузке					
PE10	Диапазон Шаг Заводское значение					
0-100% 1 20						

Коэффициент PE10 определяет степень подавления выходного тока при перегрузке электродвигателя относительно параметра PE09, который задает допустимую перегрузку. От значения PE10 зависит интенсивность подавления выходного тока — чем выше его значение, тем сильнее подавление тока перегрузки. Если перегрузка случилась на этапе ускорения, параметр PE10 будет влиять на время ускорения (оно может быть увеличено). При PE10 = 0 подавление тока перегрузки отключено.

	Защита от перенапряжения при торможении				
	Диапазон Шаг Заводское значен				
PE11	0-1	1	1		
	2.vov.ov.vo	0:Выключена			
	Значение	1:Включена			

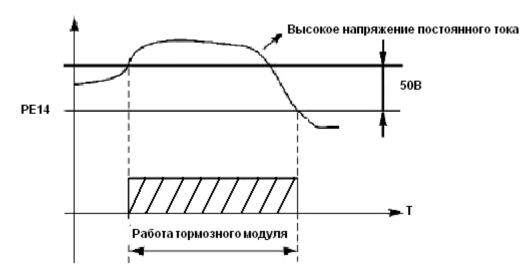

0: Выключена

Во время работы ПЧ в режиме торможения на шине постоянного тока может увеличиться напряжение из-за быстрого торможения. Когда защита от перенапряжения при тор-

можении отключена, ПЧ не измеряет величину напряжения на шине и не реагирует на его изменение. В результате этого может сработать защита от перенапряжения.

1: Включена

Защита от перенапряжения при торможении включена во время процесса торможения. Если величина напряжения постоянного тока превышает допустимый уровень, ПЧ прекращает торможение. Когда значение напряжения постоянного тока приходит в норму, вновь включается режим торможения.


	Превышение напряжения относительно V/F кривой					
PE12	Диапазон Шаг Заводское значение					
0-100% 1 10						

Ограничение перенапряжения						
PE13	Диапазон Шаг Заводское значение					
	0-200%	1	50%			

	Напряжение включения тормозного модуля				
PE14	Диапазон Шаг Заводское значение				
	При питании 220В: 370-375В	0,1	370		

РЕ14 Напряжение включения тормозного модуля

С помощью данного параметра устанавливается напряжение включения тормозного транзистора. Когда напряжение звена постоянного тока в ПЧ превышает установленное значение (PE14), включается тормозной транзистор и энергия рассеивается на тормозном резисторе. В результате происходит уменьшение напряжения звена постоянного тока и тормозной модуль выключается.

Следует уделить особое внимание настройке этого параметра. Слишком высокое напряжение может вызвать срабатывание защиты ПЧ от перенапряжения; при слишком низком заданном значении тормозной резистор будет перегреваться.

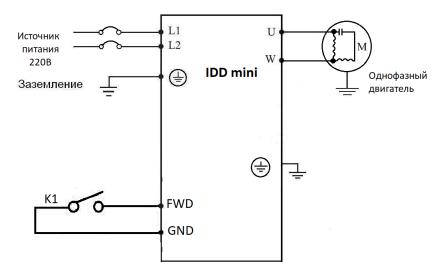
	Коэффициент использования тормозного модуля					
PE15	Диапазон Шаг Заводское значение					
	100					

РЕ15 Коэффициент использования тормозного модуля

Напряжение на тормозном резисторе представляет собой ШИМ-сигнал. Данный коэффициент PE15 численно равен коэффициенту заполнения ШИМ-сигнала, включающего транзистор тормозного модуля. При большем значении данного коэффициента энергия будет быстрее рассеиваться на тормозном резисторе, то есть резистор будет поглощать большую мощность, но в тоже время быстрее нагреваться.

	Перезапуск после отключения питания				
	Диапазон	Шаг		Заводское значение	
PE16	0-1	1		1	
	Значение			0: Запрещено	
	Sha lemie		1:	Разрешено	

0: Запрещено


Перезапуск после отключения питания и его повторного включения не осуществляется, ПЧ удаляет рабочие команды. После восстановления подачи питания производится обычный пуск ПЧ.

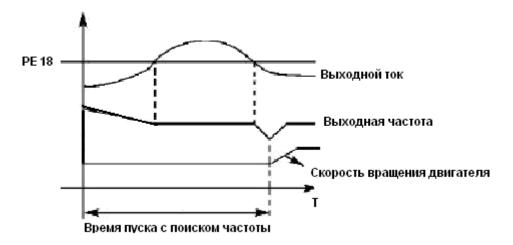
1: Разрешено

ПЧ сохраняет рабочие команды (в течение установленного времени, параметр PE21) и после восстановления подачи питания производит запуск с поиском частоты. Если время простоя превышает установленное время, ПЧ удаляет команды. В данном случае следует запустить ПЧ в обычном порядке после восстановления подачи питания.

Внимание: если режим перезапуска включен, то ПЧ может внезапно начать работу. Проявите особую осторожность, если для включения и выключения ПЧ используется дискретный вход. Если контакт замкнут, то ПЧ всегда автоматически включится при подаче

питания.

Например:


К1 замкнут, ПЧ включен. К1 разомкнут, ПЧ выключен. Если после отключения питания К1 остался замкнут, то при подаче питания ПЧ включится. Так как использование данного режима сопряжено с повышенной опасностью, используйте другие способы управления, например, подключение по трех проводной схеме (см. описание параметра Pd29).

	Действие при обрыве питания				
	Диапазон		Шаг	Заводское значение	
DE17	0-2				
PE17		0: без действий	1	0	
	Значение	1: замедление			
		2: замедление до останова			

	Предел тока при пуске с поиском частоты			
PE18	Диапазон Шаг Заводское значение			
	0-200 сек	1	150	

Во время пуска с поиском частоты ПЧ начинает поиск частоты с ее верхней границы.

За счет этого происходит увеличение выходного тока ПЧ, которое может превысить значение, установленное в параметре PE18. Если реализуется данный вариант пуска, то ПЧ прекращает поиск и возобновляет его после того, как значение силы тока примет допустимое значение. Значение 100% соответствует величине номинального тока ПЧ. При настройке этого параметра необходимо согласовать значение параметра PE18 и значение параметра, который задает уровень срабатывания защиты от перегрузки по току (относительно PC10) На графике величина «t» представляет время запуска с поиском частоты.

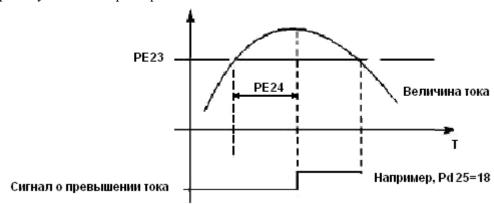
	Время пуска с поиском частоты		
PE19	Диапазон	Шаг	Заводское значение
	0-999,9 сек	0,1	5,0

Во время пуска с поиском частоты ПЧ начинает поиск частоты с ее верхней границы и заканчивает поиск в течение установленного времени (PE19). Если запуск не выполнен по истечении данного времени, срабатывает защита ПЧ.

	Количество перезапусков после сбоя		
PE20	Диапазон	Шаг	Заводское значение
	0-20	1	0

	Время задержки после сбоя		
PE21	Диапазон	Шаг	Заводское значение
	0,1-100,0 с	0,1	1,0

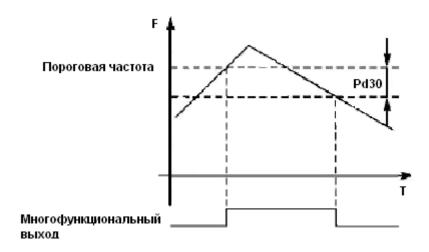
После нарушения нормальной работы (сверхток, перенапряжение и т.д.) преобразователь может автоматически перезапускаться (если значение параметра PE20 не равно «0»). По истечении времени, заданного в параметре PE21, ПЧ перезапуститься в соответствии с заданным режимом запуска (PC00).


Если после запуска в течение 60 секунд нормальная работа ПЧ не нарушена, значение счетчика перезапусков будет автоматически сброшено. Если нормальная работа ПЧ будет нарушена в течение 60 секунд после запуска, то ПЧ перезапуститься опять, записав порядковый номер перезапуска. Если количество перезапусков превысит значение параметра РЕ20, то ПЧ прекратит использовать автоматический сброс или перезапуск. В данном случае необходимо запустить ПЧ согласно стандартной процедуре запуска.

Внимание: если значение параметра PE20=0, то после возникновения сбоя перезапуск не осуществляется. Если же значение отлично от нуля, может произойти внезапный пуск ПЧ. Соблюдайте повышенную осторожность при использовании данной функции.

	Уровень определения превышения тока		
РЕ23 Диапазон Шаг Заводс		Заводское значение	
	0-200 %	0,1	150,0

	Время определения превышения допустимого момента		
РЕ24 Диапазон Шаг Заводское зн			
	0-999,9 с	0,1	60,0


Когда величина выходного тока ПЧ превышает значение параметра РЕ23 — уровень допустимого тока (в % от номинального тока двигателя, установленного в параметре РС10), ПЧ начинает отсчитывать время, в течение которого значение тока превышает допустимое значение. По истечении времени, заданного параметром РЕ24, на дисплей подается сигнал о превышении тока «оL» и срабатывает соответствующий многофункциональный контакт (дискретный выход должен быть запрограммирован на функцию «18»). При истечении времени, заданного параметром РЕ24, ПЧ действует в режиме, установленном параметром Рі16. Если РЕ23=00, то отслеживание превышения допустимого тока не выполняется. См. рис. ниже. Защита от перегрузки «оL» (превышение током значения РС10) работает независимо от уровня установки параметра РЕ23.

Пороговая частота 1			
PE25	Диапазон	Шаг	Заводское значение
	0 – максимальная рабочая частота	0,1	0,0

	Пороговая час	Пороговая частота 2	
PE26	Диапазон	Шаг	Заводское значение
	0 – максимальная рабочая частота	0,1	0,0

Преобразователь IDD mini PLUS задает две пороговые частоты; когда рабочая частота достигает значения, заданного в параметрах PE25 и PE26, срабатывает соответствующий многофункциональный выход. Гистерезис для обеих частот задается в параметре PE30.

Установка значения таймера № 1			<u> 1</u>
РЕ27 Диапазон Шаг		Шаг	Заводское значение
	0,0-999,9 c	0,1	10,0

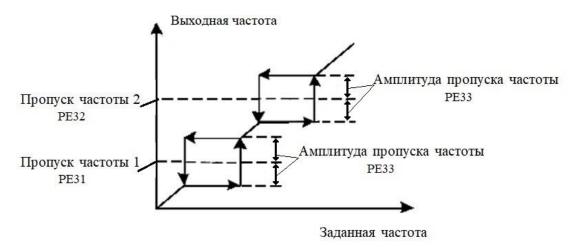
	Установка значения таймера № 2		
PE28	Диапазон	Шаг	Заводское значение
	0,0-999,9 с	0,1	20,0

В ПЧ серии IDD mini PLUS имеются два таймера. Когда величина времени отсчета достигает установленной величины (РЕ27 и РЕ28), срабатывает выходное реле (Pd25=10 или 11). Запуск и работа таймеров осуществляется с помощью подачи сигнала с соответствующего многофункционального входа.

	Время до ограничения тока при постоянной скорости			
PE29	Диапазон	Шаг Заводское значение		
	0,0-999,9%	0,1	изменяемая величина	

Гистерезис срабатывания реле при достижении пороговой часто				
PE30	Диапазон Шаг Заводское значение			
0,0-100,0% 0,1 5,0				

Данный параметр устанавливает гистерезис достижения частоты, в % от РЕ25 и РЕ26.


		Пропуск часто	гы 1
PE31	Диапазон	Шаг	Заводское значение
	0,00 – макс. частота, Гц	0,01	0,00

	Пропуск частоты 2		
PE32	Диапазон	Шаг	Заводское значение
	0,00 – макс. частота, Гц	0,01	0,00

	Амплитуда пропуска частоты		
PE33	Диапазон	Шаг	Заводское значение
	0,00 – макс. частота, Гц	0,01	0,00

Чтобы предотвратить возникновение механического резонанса нагрузки, преобразователь может пропустить несколько рабочих точек, что называется пропуском частоты. См. схему ниже.

Можно задать две точки пропуска частоты (PE31, PE32), и амплитуды пропусков частоты (PE33), которые могут частично перекрывать друг друга, при этом диапазон пропуска расширяется. Если значения обеих точек пропуска частоты равны 0,00 Гц, функция пропуска неактивна.

7-6 Группа параметров для прикладного использования

В режиме ПЛК ПЧ работает по заранее установленной программе. Программа представляет собой последовательность кадров, в которых пользователь указывает скорость, время её поддержания и направление вращения. Кадр включает в себя этап выхода на заданную скорость и этап работы на установленной скорости.

	Запоминание цикла программы ПЛК				
DEOO	Значение	Диапазон	Шаг	Заводское значение	
PF00	00: Режим без запоминания	00.11	1	0	
	11: Режим с запоминанием	00-11	1	U	

Настройка параметра PF00 определяет возможность продолжения выполнения программы после остановки ПЧ.

00: Режим без запоминания

Нет запоминания, на каком кадре программы ПЧ был остановлен. После перезапуска программа начинает выполняться с начального цикла.

11: Режим с запоминанием

Этап выполнения программы ПЛК запоминается при остановке из-за неисправности или другой причины. После активации программа начинает выполняться с того цикла, на котором ПЧ остановился.

Внимание: питание ПЧ не должно выключаться. При выключении, перебое подачи питания программа начинает выполняться с начального этапа.

		Включение режима ПЛК		
	Диапазон	Шаг	Заводское значение	
PF01	0 - 1	1	0	
	211011011110	0: Режим ПЛК автоматически включается при Pb01=7		
Значение 1: Режим ПЛК вкл		1: Режим ПЛК включает	ся внешним сигналом	

Параметр PF01 определяет рабочий режим ПЧ:

PF01=1, режим ПЛК включается при подаче сигнала на дискретный вход, который соответствующим образом запрограммирован.

РF01=0, ПЛК включается автоматически при пуске ПЧ.

Когда ПЛК включен, ПЧ начинает работать согласно заданным рабочим командам и программе. Программа и команды выполняются в соответствии с уровнем приоритета: от самого высокого до самого низкого.

Уровень приоритета	Режим
1 Высокий	Медленное вращение
2	Предустановленные скорости
3	Режим ПЛК
4	ПЛК -регулирование
5 Низкий	Заданное значение частоты

		Режим работы 1	ПЛК
	Диапазон	Шаг	Заводское значение
	0 - 4	1	0
PF02		0: Стоп после одного цикла	1
	2	1: Продолжение работы на последней частоте в цикл после его завершения 2: Повторение циклов	
	Значение		

При **PF02=0** после завершения одного цикла ПЧ останавливается и остаётся в режиме ожидания следующей команды.

При **PF02=1** после завершения одного цикла ПЧ продолжает работать на последней установленной в цикле частоте.

При PF02=2 программа выполняется многократно, пока не будет выключен ПЛК

Время ускорения и торможения устанавливается в параметрах Pb07 и Pb08. Время поддержания предустановленной скорости включает в себя времена ускорения и торможения.

При PF02=0 или 1 повторное выполнение программы запускается последовательностью сигналов: сначала подаётся сигнал на дискретный вход, запрограммированный на остановку ПЧ, затем подаётся сигнал на дискретный вход, запрограммированный на пуск ПЧ.

Режим работы ПЛК выбирается в соответствии с практическими требованиями.

Инструкция по эксплуатации преобразователя частоты серии IDD mini PLUS

PF03	Предустановленная скорость 1	Заводское значение: 5,0	
PF04	Предустановленная скорость 2	Заводское значение: 10,0	
PF05	Предустановленная скорость 3	Заводское значение: 20,0	
PF06	Предустановленная скорость 4	Заводское значение: 25,0	
PF07	Предустановленная скорость 5	Заводское значение: 30,0	
PF08	Предустановленная скорость 6	Заводское значение: 35,0	
PF09	Предустановленная скорость 7	Заводское значение: 40,0	
PF10	Предустановленная скорость 8	Заводское значение: 45,0	
PF11	Предустановленная скорость 9	Заводское значение: 50,0	
PF12	Предустановленная скорость 10	Заводское значение: 10,0	
PF13	Предустановленная скорость 11	Заводское значение: 10,0	
PF14	Предустановленная скорость 12	Заводское значение: 10,0	
PF15	Предустановленная скорость 13	Заводское значение: 10,0	
PF16	Предустановленная скорость 14	Заводское значение: 10,0	_
PF17	Предустановленная скорость 15	Заводское значение: 10,0	
	Диапазон: 0,0 максимальная ра	бочая частота Шаг: (),1

Параметры **PF03 - PF17** задают, в том числе, значение **15**-ти предустановленных скоростей. Выбор определенной скорости зависит от состояния дискретных входов, см. описание для многофункциональных входов.

Номер кадра в программе соответствует номеру предустановленной скорости.

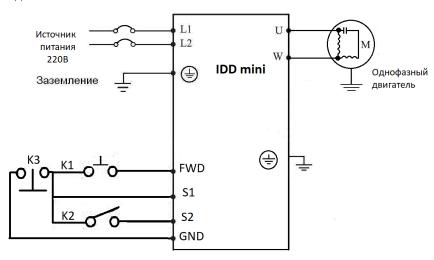
PF18	Время работы ПЛК 1	Заводское значение: 100
PF19	Время работы ПЛК 2	Заводское значение: 100
PF20	Время работы ПЛК 3	Заводское значение: 100
PF21	Время работы ПЛК 4	Заводское значение: 100
PF22	Время работы ПЛК 5	Заводское значение: 0
PF23	Время работы ПЛК 6	Заводское значение: 0
PF24	Время работы ПЛК 7	Заводское значение: 0
PF25	Время работы ПЛК 8	Заводское значение: 0
PF26	Время работы ПЛК 9	Заводское значение: 0
PF27	Время работы ПЛК 10	Заводское значение: 0
PF28	Время работы ПЛК 11	Заводское значение: 0
PF29	Время работы ПЛК 12	Заводское значение: 0
PF30	Время работы ПЛК 13	Заводское значение: 0
PF31	Время работы ПЛК 14	Заводское значение: 0
PF32	Время работы ПЛК 15	Заводское значение: 0
	Диапазон: 0 - 999,9 с (ч)	Шаг: 1

Время работы ПЛК определяет время работы на каждой из скоростей и задается в соответствующем параметре. Если время работы какого-либо кадра равно нулю, то этот и последующие кадры, время работы которых может быть отличным от нуля, будут игнорироваться

в процессе выполнения программы. Время работы первого кадра должно быть отличным от нуля, в противном случае выполнение программы будет невозможно, и на экране ПЧ появится ошибка «Р».

	Задание направления вращения в ПЛК		
PF33	Диапазон Шаг Заводское знач		Заводское значение
	0 - 8191	1	0

Параметр **PF33** задает направление вращения для каждого цикла со своей скоростью. Способ задания направления вращения: задание числа с 13 разрядами в двоичной системе, а затем перевод значения в десятичную систему; каждый двоичный разряд задает направление вращения: 0 — вращение вперед, 1- вращение назад. Настройки параметра PF33 вступают в силу только при включении режима ПЛК.


Если расчетное значение будет пятизначным смотри параметр PF36.

Пример: непрерывная работа в режиме ПЛК на пяти сменяющихся скоростях:

1 1 1 1	1 1		•
	Рабочая частота	Направление вра-	Длительность,
		щения	сек
Основная частота	Регулируется потенцио-	Вперед	
	метром на пульте		
Скорость 1	20,0	Вперед	20
Скорость 2	60,0	Вперед	25
Скорость 3	40,0	Вперед	30
Скорость 4	15,0	Вперед	20

Две кнопки, одна предназначена для пуска, другая для остановки, частота регулируется потенциометром на пульте управления.

(1) Схема соединений.

Задание параметров:

Pb01=3 (Управление частотой с помощью потенциометра пульта)

Pb02=1 (Настройка способа пуска: многофункциональный вход)

Рь05=60 (Максимальная рабочая частота 60 Гц)

Pb07=10 / Pb08=10 (длительность ускорения/замедления 10 с)

Pd17=6 (Клемме FWD присвоена функция «Вращение вперед)

Pd18=8 (Клемме S2 присвоена функция «Остановка»)

Pd19=20 (Клемме S3 присвоена функция «запуск ПЛК»)

PF00=1 (Запоминание цикла программы ПЛК)

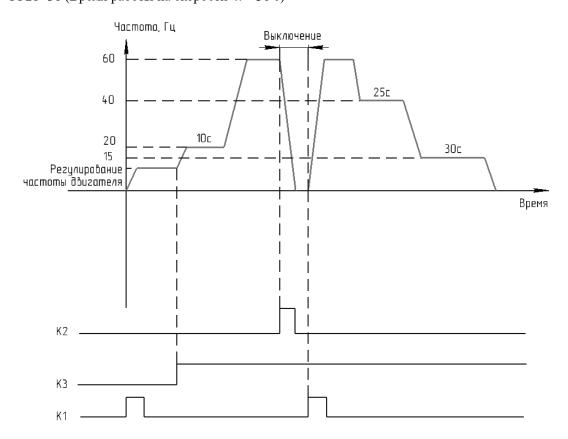
PF01=0 (ПЛК автоматически не включается)

РF02=0 (ПЛК работает в течение одного цикла и останавливается)

PF03=20 (Скорость 1: 20 Гц)

PF04=60 (Скорость 2: 60 Гц)

PF05=40 (Скорость 3: 40 Гц)


PF06=15 (Скорость 4: 15 Гц)

PF18=10 (Время работы на скорости 1: 10 с)

PF19=20 (Время работы на скорости 2: 20 c)

PF20=25 (Время работы на скорости 3: 25 c)

PF21=30 (Время работы на скорости 4: 30 c)

Пояснение:

- 1. Кратковременно нажмите К1 для пуска преобразователя, потенциометром отрегулируйте рабочую частоту.
- 2. Замкните К3 для включения ПЛК режима. Программа ПЛК будет выполняться в течение одного цикла, а затем ее выполнение прекратится.
- 3. Если программа выполняется и произошел сбой, нажмите К2, ПЧ прекратит работу. После устранения неисправности запустите его снова, замкнув К1.
- 4. Если PF00=0, то выполнение программы начнется сначала.

Программа ПЛК будет выполняться в течение одного цикла, а затем ее выполнение прекратится.

	Направление Вращения при пуске ПЛК		
PF36	Диапазон Шаг Заводское значение		
	0-6	1	0

Пятый разряд пятизначного значения PF33. Если значение параметра при расчетах становится пятизначным, то с помощью PF36 можно задать пятый значащий разряд. Например, в расчетах получено PF33=32678. Представляем это число, как PF36*10000+PF33 \rightarrow PF36=3, PF33=2678.

	Единица времени в кадрах ПЛК		
	Диапазон	Шаг	Заводское значение
PF37	0-1	1	0
	2	0: секунды	
	Значение	1: часы	

			1	
PF39	Время ускорения/замед	ления в ПЛК 1	Заводское зна	чение: 0
PF40	Время ускорения/замед	Заводское зна	чение: 0	
PF41	Время ускорения/замед	ления в ПЛК 3	Заводское зна	чение: 0
PF42	Время ускорения/замед	ления в ПЛК 4	Заводское зна	чение: 0
PF43	Время ускорения/замед	ления в ПЛК 5	Заводское зна	чение: 0
PF44	Время ускорения/замед	ления в ПЛК 6	Заводское зна	чение: 0
PF45	Время ускорения/замед	ления в ПЛК 7	Заводское зна	чение: 0
PF46	Время ускорения/замед	ления в ПЛК 8	Заводское зна	чение: 0
PF47	Время ускорения/замед	ления в ПЛК 9	Заводское зна	чение: 0
PF48	Время ускорения/замед	ления в ПЛК 10	Заводское зна	чение: 0
PF49	Время ускорения/замедления в ПЛК 11		Заводское зна	чение: 0
PF50	Время ускорения/замедления в ПЛК 12		Заводское зна	чение: 0
PF51	Время ускорения/замед	ления в ПЛК 13	Заводское зна	чение: 0
PF52	Время ускорения/замед	ления в ПЛК 14	Заводское зна	чение: 0
PF53	Время ускорения/замедления в ПЛК 15		Заводское зна	чение: 0
	Диапазон: 0 - 2			Шаг: 1
		0: времена Рb07, Рb08		
	Значение	1: времена РЕ01, РЕ02		
		2: времена РЕ03, РЕ04		

В каждом кадре ПЛК можно задать индивидуальное время ускорения и замедления

7-7 Параметры встроенного ПИД-регулятора

	Режим включения ПИД-регулятора			
	Диапазон	Шаг	Заводское значение	
PG00	0-2	0-2 1 0		
rGuu		Pb01=8, выключен Pb01≠8		
	Значение:	1: ПИД-регулятор включен		
2: Запуск ПИД-регулятора внешни		егулятора внешним сигналом		

0: ПИД-регулятор включен если Pb01=8, выключен при Pb01 \neq 8

1: Включен

ПИД-регулятор включается при включении преобразователя. Активация предустановленных скоростей имеет приоритет над режимом ПИД-регулирования.

2: Запуск ПИД-регулятора внешним сигналом

ПИД-регулирование начинает выполняться при условии подачи дискретного сигнала на соответствующий вход, запрограммированный на пуск ПИД-регулятора.

	Рабочий режим ПИД-регулятора		
	Диапазон Шаг Заводское знач		Заводское значение
PG01	0 - 1	1	0
	0: Режим отрицательной обра		трицательной обратной связи
	Значение:	1: Режим положительной обратной связи	

0: Режим отрицательной обратной связи

Если величина обратной связи превышает установленное заданное значение (например, в параметре PG04), ПЧ уменьшает выходную частоту. Если величина обратной связи меньше установленного значения, ПЧ увеличивает выходную частоту.

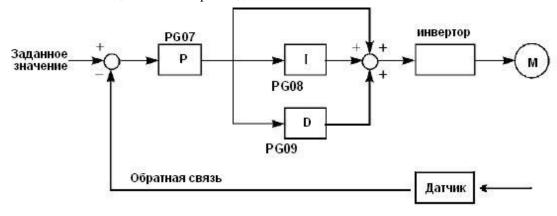
1: Режим положительной обратной связи

Если величина обратной связи превышает установленное заданное значение (например, в параметре PG04), ПЧ увеличивает выходную частоту. Если величина обратной связи меньше установленного значения, ПЧ уменьшает выходную частоту.

	Выбор источника заданного значения для ПИД-регулятора		
	Диапазон	Шаг	Заводское значение
DC02	PG02 0 - 2 1 0 0: Выбор численного значения задания		0
PG02			ного значения задания
Значение: 1: Зарезервировано		но	
		2: Зарезервировано	

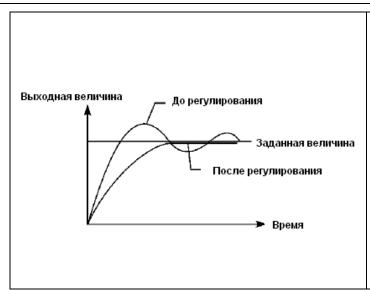
С помощью параметра PG02 выбирается источник сигнала задания, на основе которого будет действовать ПИД-регулятор. Данное значение может быть сформировано с помощью установки значения соответствующего параметра ПЧ, аналогового задания напряжения или тока на входе.

0: Выбор численного значения.


Заданное значение для ПИД-регулятора формируется с помощью параметра PG04.

	Сигнал обратной связи ПИД-регулятора				
	Диапазон	Шаг	Заводское значение		
	0 - 2	1	0		
PG03	Значение:	связи: • (0-10В) пере			

Параметр PG03 задает канал обратной связи ПИД-регулятора. ПИД-регулирование применяется для поддержания давления, сигнал обратной связи подается с датчика давления. Сигналы обратной связи, как правило, представляют из себя ток 4-20 мА или напряжение 0-10 В.


	Численное значение задания для ПИД-регулятора			
PG04	РG04 Диапазон Шаг Заводское значение			
	0-PG14 бар	0,1	2,5	

Численное значение (уставка) задания ПИД-регулятора в барах. Не должно превышать максимальный диапазон измерения датчиком.

Замечания по использованию преобразователя в режиме ПИД-регулирования:

- (1) Правильно выберите датчик, у которого выходным сигналом является ток 4-20 MA или напряжение 0-10 B.
- (2) Правильно установите заданное значение для ПИД-регулятора;
- (3) Для устранения колебаний уменьшите пропорциональную компоненту (значение П);
- (4) Для устранения колебаний увеличьте постоянную времени интегральной компоненты (значение И);
- (5) Для устранения колебаний уменьшите дифференциальную компоненту (значение Д). Как правило, значение Д = 0.

- 1. Ограничение значения перерегулирования на выходе
- а: Уменьшение дифференциальной компоненты (величина Д)
- b: Увеличение интегральной компоненты (величина И)
- 2. Предотвращение колебаний на выходе
- а: Уменьшение дифференциальной компоненты (величина Д) или установка ее значения, равного «0»
- b: Уменьшение пропорциональной компоненты (величина Π)

При использовании только Π — закона регулирования возможна установившаяся ошибка регулирования с величиной до $\pm 10\%$ от значения максимального сигнала обратной связи. Допустимая ошибка определяется величиной параметра PG20.

	Верхнее значение ПИД-регулятора			
PG05	Диапазон Шаг Заводское значение			
	PG06 – PG14	0,01	10	

Когда величина обратной связи превышает допустимую величину, (PG05) ПИД-регулятор посылает сигнал о сбое, и релейный выход активируется (Pd25=14), информируя пользователя о возникшей неисправности, на дисплее отображается ошибка «hP» и ПЧ переходит в режим останова. Через время, заданное в параметре PG42, происходит автоматический сброс ошибки и перезапуск ПЧ (переходит в режим пуска). При PG42=0 автоматический сброс ошибки и перезапуск отключен, для сброса ошибки в этом случае необходимо, чтобы давление стало меньше заданного в параметре PG05 и на панели нажать кнопку «ПУСК/СТОП».

	Нижнее значение аварийного сигнала ПИД-регулятора			
PG06	РG06 Диапазон Шаг Заводское значен			
	0 – PG05	0,01	0	

Когда величина обратной связи становится ниже допустимой величины, (PG05) ПИД-регулятор посылает сигнал о сбое, и релейный выход активируется (Pd25=15), информируя пользователя о возникшей неисправности, отображается ошибка «LP» и ПЧ переходит в режим останова. Через время, заданное в параметре PG42, происходит автоматический сброс ошибки и перезапуск ПЧ (переходит в режим пуска). При PG42=0 автоматический сброс ошибки и перезапуск отключен, для сброса ошибки в этом случае необходимо на панели нажать кнопку «ПУСК/СТОП».

	ПИД-регулятор, коэффициент П		
PG07	РС07 Диапазон Шаг Заводс		Заводское значение
	0,0-600,0%	0,1	100%

Значение П (пропорциональная составляющая) задает величину максимального отклоне-

ния регулируемого параметра от заданного значения.

	ПИД-регулятор, коэффициент И (постоянная времени)			
PG08	РСОВ Диапазон Шаг Заводское значение			
	0 - 10,0 c	0,1	2,0	

Значение И (постоянная времени интегральной составляющей) задает скорость отклика на изменения регулируемой величины. Чем больше значение И, тем медленнее ПИД-регулятор реагирует на изменения (увеличивается постоянная времени). Если значение И мало, может появиться осцилляция выходного сигнала. Значение И=0 соответствует отключению интегральной составляющей.

	ПИД-регулятор, коэффициент Д			
PG09	Диапазон Шаг Заводское значение			
	0 – 9,999 с	0,1	0	

Значение Д (дифференциальная составляющая) задает величину сигнала управления в зависимости от скорости изменения регулируемой величины. Чем больше скорость изменения регулируемой величины, тем больше сигнал управления. Значение Д=0 соответствует выключению дифференциальной составляющей. Для насосов и вентиляторов рекомендуется выключать дифференциальную составляющую.

	-регулятора			
PG10	Диапазон Шаг Заводское значение			
	0 - 100,0%	0,1	2,0	

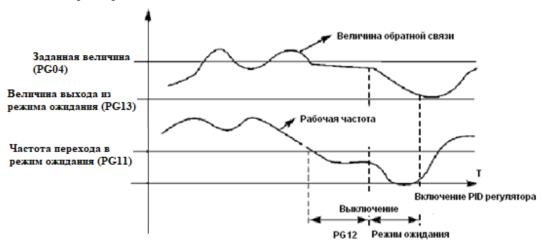
ПИД-регулятор производит вычисления каждые 10 мс, и способен постоянно вычислять величину изменения частоты (Δ F Γ ц). Параметр PG10 устанавливает максимальную величину изменения частоты за интервал времени 10 мс. Если расчетное изменение частоты превысило значение параметра PG10, то реальная скорость изменение частоты на выходе преобразователя не превышает величины, соответствующей этому параметру.

	Частота перехода ПИД-регулятора в режим ожидания		
PG11	Диапазон	Заводское значение	
	0 – Рь05 Гц	0,1	25,0

PG11: Частота перехода ПИД-регулятора в режим ожидания.

Значение параметра PG11 устанавливает минимальную частоту, по достижении которой ПИД-регулятор переходит в режим ожидания (спящий режим). Если рабочая частота меньше значения, заданного параметром PG11, начинает отсчитываться время перехода в режим ожидания.

	Пауза при переходе в режим ожидания ПИД-регулятора			
PG12	PG12 Диапазон Шаг Заводское значе			
	0 - 200,0 c	0,1	10,0	


PG12: Пауза при переходе в режим ожидания ПИД-регулятора

Параметром PG12 задается время, в течение которого ПИД-регулятор находится в режиме

ожидания, в то время как ПЧ работает на частоте ниже частоты перехода в режим ожидания. Если время работы ПЧ в данном случае превышает значение, заданное параметром PG12, то ПЧ переходит в режим ожидания, обесточивается выход преобразователя, отключается ПИД-регулятор, но продолжает отслеживаться величина обратной связи.

	Величина обратной связи для выхода из режима ожидания			
DC12	ПИД-регулятора			
PG13	Диапазон	Шаг	Заводское значение	
	0 - 100%	0,1	90,0%	

PG13: Величина заданного параметра для выхода из режима ожидания ПИД-регулятора. ПЧ во время режима ожидания (спящего режима) отслеживает величину обратной связи, если ее значение становится меньше определенного значения (PG13), ПЧ включается, и запускается режим ПИД-регулирования. Параметр PG13 задается в % от величины заданного параметра PG04.

Пример: Если численное значение задания 6 бар (0-10бар соответствует 0-10 B), а величина заданного параметра для выхода из режима ожидания ПИД-регулятора 80%, то фактическая величина выхода из режима ожидания $6 \times 80/100 = 4,8$ бар (0-10бар соответствует 0-10 B).

	Отображение величины сигнала обратной связи ПИД-регулятора			
PG14 Диапазон Шаг Заводское значен				
	0 – 50,00 бар	0,01	10,00	

PG14: Отображение величины обратной связи ПИД-регулятора.

Значение параметра PG14 соответствует максимальному аналоговому сигналу, например, напряжению +10 В. Если установить значение параметра PG14 «20», то +10 В будет соответствовать индицируемому числу 20.

	Количество разрядов			
Диапазон Шаг		Заводское значение		
PG15	1 - 4	1	4	
	Значение:	1: Отображается 1 цифра 2: Отображаются 2 цифры		

	3: Отображаются 3 цифры
	4: Отображаются 4 цифры

PG15: Количество разрядов.

Количество индицируемых разрядов. Значение «0» соответствует отключению индикации. Настраивается согласно практическим требованиям пользователя.

	Количество разрядов после точки в десятичном режиме индикации		
Диапазон Шаг		Шаг	Заводское значение
	0 - 4	1	2
PG16	Значение:	1: Отображается 2: Отображаются 3: Отображаются	гочки не отображаются 1 цифра после точки 2 цифра после точки 3 цифра после точки 4 цифра после точки

PG16: Количество разрядов после точки в десятичном режиме индикации Параметром PG16 задается количество разрядов, отображаемых после точки.

Пример: необходимо настроить индикацию так, чтобы отображалось 4 цифры и одна цифра после точки. Значение сигнала обратной связи 50%, а значение соответствующего параметра ПИД-регулятора «20». Тогда величина отображаемой величины равна $20 \times 50\%/100 = 10$. Данная группа настроек позволит получить отображение величины соответствующей подключенному к преобразователю датчику.

Настройка параметра для этого примера: PG14 = 20, PG15 = 4; PG16 = 1.

	Верхний предел частоты ПИД-режима		
PG17	Диапазон	Шаг	Заводское значение
	0 – максимальная рабочая частота	0,1	48,0

PG17: При активировании ПИД-режима, если выходная частота больше, чем параметр PG17, и это длится дольше минуты, то контакты реле RA и RC замыкаются (при Pd25=29).

	Нижний предел частоты ПИД-режима		
PG18	Диапазон	Шаг	Заводское значение
	0 – максимальная рабочая частота	0,1	20,0

PG18: При активировании ПИД-режима, если выходная частота меньше, чем параметр PG18 и это длится дольше минуты, то контакты реле RA и RC размыкаются (при Pd25=29).

	Зона нечувствительности регулятора		
PG20 Диапазон Шаг			Заводское значение
	0,0 –10,0 %	0,1	0

PG20: Преобразователь не изменяет своей выходной частоты, если величина ошибки регулирования меньше этого значения. Зона нечувствительности определяется в единицах параметра PG04.

	Выбор действия при пропадании сигнала с датчика на токовом входе AVI (
	Диапазон	Шаг	Заводское значение
PG21	0: нет действия 1: на экране ошибка «20» без аварийного останова 2: на экране ошибка «20» с аварийным остановом	1	0

PG21: При обрыве цепи датчика обратной связи и отсутствии токового сигнала от датчика обратной связи на входе AVI (I) преобразователь начинает работать в выбранном режиме.

- 0: При обрыве, ПЧ продолжает работу, ошибка не отображается;
- 1: При обрыве, ПЧ продолжает работу, отображается ошибка «20»;
- 2: При обрыве, ПЧ переходит в режим останова, отображается ошибка «20».

	Величина обратной связи для индикации обрыва				
	Мощность	Диа	пазон	Шаг	Заводское значение
		V 0~	10,00 B		
PG22	Пна мононой	(Для сигнала	а I обрыв опре-		
	Для моделей до 37 кВт	деляется при	токе ниже чем	0,01	0,5
		2 мА PG22	=0.002A*250		
		Ом=	= 0,5B		
	Время потери обратной связи для индикации обрыва				ции обрыва
PG23	Мощн	ость	Диапазон	Шаг	Заводское значение
	Для моделей д	о 37 кВт	0~20,00 c	0,1	1,0

Для начала работы преобразователя в режиме, выбранном в параметре PG21 (PG21 \neq 0), значение обратной связи должно быть ниже чем величина, установленная в параметре PG22 в течение времени PG23.

	Частота отсечки ПИД-регулятора при реверсе			
PG24	Диапазон	Шаг	Заводское значение	
	0,00~максимальная частота	0,1	0	
	Ограничение ПИД-Д с	оставлян	ощей	
PG25	Диапазон	Шаг	Заводское значение	
	0,0 ~ 99,99 %	0,01	0,1 %	
	Время перехода ПИД-регулятора на новое заданное значение			
PG26	Диапазон	Шаг	Заводское значение	
	0,0~99,99 c	0,01	0	
	Временной фильтр ПИД-регулятора по обратной связи			
PG27	Диапазон	Шаг	Заводское значение	
	0,00 ~ 60,00 c	0,01	0	

	Временной фильтр ПИД-регулят	ора по вы	аходной частоте	
PG28	Диапазон	Шаг	Заводское значение	
	0,00 ~ 60,00 c	0,01	0	
	ПИД-регулятор, коэф	ффициент	: П2	
PG30	Диапазон	Шаг	Заводское значение	
	0,0~600,0%	0,1	200,0	
	ПИД-регулятор, коэф	ффициент	: И2	
DC 21	Диапазон	Шаг	Заводское значение	
PG31	0,01~10,0c	0.01	0.50	
	0 - не задействована	0,01	0,50	
	ПИД-регулятор, кож	ффициент	Д2	
DC22	Диапазон	Шаг	Заводское значение	
PG32	0,000 ~ 9,999 c	0.001	0.000	
	0 - не задействована	0,001	0,000	
	Переключение между	ПИД и Г	ІИД2	
	Диапазон	Шаг	Заводское значение	
PG33	0: без переключения			
	1: переключение по каналу Х	1	0	
	2: автоматически			
	Разница между заданием и обратной связью ПИД 1			
PG34	Диапазон	Шаг	Заводское значение	
	0,0~PG35 %	0,1	5,0%	
	Разница между заданием и обратной связью ПИД 2			
PG35	Диапазон	Шаг	Заводское значение	
	PG34~100,0 %	0,1	10,0	
	Начальное значение П	ИД регул	ятора	
PG36	Диапазон	Шаг	Заводское значение	
	0,0~100,0%	0,1	0,0	
	Время удержания начального значения ПИД-регулятора			
PG37	Диапазон	Шаг	Заводское значение	
	0,00~99,99 c	0,01	0,00	
	Работа интегральной составляющей П	ИД после	е достижения уставки	
PG39	Диапазон	Шаг	Заводское значение	
1 (3)	00: без изменений	1	00	
	10: выключение И составляющей	1	00	

После достижения заданного значения ПИД регулятора, I составляющая может быть отключена (PG39=10) для уменьшения перерегулирования.

	Режим работы ПИД регулятора при останове преобразовател					
DC40	Диапазон	Шаг	Заводское значение			
PG40	0: после останова выключается ПИД	1	0			
	1: после останова ПИД продолжает работать	1	U			

При PG40=1 ПИД регулятор продолжает работать и следить за обратной связью в любом состоянии преобразователя: ПУСК или СТОП. При PG40=0 ПИД регулятор выключается при остановке преобразователя, после запуска преобразователя снова начинает работать, отслеживая обратную связь.

	Величина обратной связи для определения режима «сухой ход»				
PG41	Диапазон	Шаг	Заводское значение		
1041	0,0 бар ~ PG04	0.1	0.5		
	Если 0, то без определения «сухого хода»	0,1	0,5		

Если величина обратной связи будет меньше или равна PG41, преобразователь перейдёт в режим «сухого хода». По истечении времени, заданного в параметре PG44, на дисплее появится ошибка «LL», и ПЧ остановится.

	Пауза для сброса ошибки высокого/ н	изкого	давления
PG42	Диапазон	Шаг	Заводское значение
1 042	0~9999 c	1	10
	Если 0, то автоматический сброс заблокирован.	1	10

Ошибка верхнего или нижнего пределов давления будет автоматически сброшена через PG42 секунд после возвращения величины давления в диапазон допустимых значений. При PG42=0 автоматический сброс ошибки отключен

Время определения низкого давления				
PG43	Диапазон	Шаг	Заводское значение	
	0∼9999 c	1	10	

Если величина обратной связи меньше, чем уровень, установленный в PG18 в течение времени PG43, преобразователь индицирует ошибку «низкого давления» и остановится.

	Время определения «сухого хода»		
PG44	Диапазон	Шаг	Заводское значение
	0~9999 c	1	100

Если величина обратной связи меньше, чем уровень, установленный в PG41 в течение времени PG44, преобразователь индицирует ошибку «низкого давления» и остановится.

	Перезапуск после подачи питания			
PG45	Диапазон	Шаг	Заводское значение	
1 643	0: Запрещено	1	0	
	1: Разрешено	1	U	
	Время автосброса первых 10 ошибок по «сухому ходу»			
PG46	Диапазон	Шаг	Заводское значение	
	0~9999 c	1	600	

	Интервал между первыми 10-ю сбросами ошибки по «сухому ходу»		
PG47	Диапазон	Шаг	Заводское значение
	$0 \sim 1000$ мин	1	60

	Режим антизамораживания		
PG48	Диапазон	Шаг	Заводское значение
FG40	0: Запрещено	1	0
	1: Разрешено	1	U

Режим антизамораживания – режим, когда преобразователь запускает и останавливает работу насоса по заданному алгоритму, будучи в «спящем» состоянии.

PG49 Диапазон Шаг Заводское значение 0 ~9999 с 1 900 Дилтельность включения антизамораживания Диапазон Шаг Заводское значение 0 ~9999 с 1 30 РБ51 Диапазон Шаг Заводское значение 0 ~500,0 Гц 0,1 15,0 Уровень изменения частоты в секунду для начала перехода в режим ожидания Диапазон Шаг Заводское значение 0 ~100,0 Гц 0,1 0,5 Уровень падения величины обратной связи для перехода в режим ожидания РБ53 Диапазон Шаг Заводское значение 0 ~10,0 % 0,1 0,6 Уменьшение частоты каждую секунду Диапазон Шаг Заводское значение 0 ~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания РС55 Диапазон Шаг Заводское значение 0 ~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение 0 ~1000 1 <		Пауза для включения антизамораживания в спящем режиме			
РG50 Длительность включения антизамораживания Диапазон Шаг Заводское значение О~9999 с 1 30 Рабочая частота в режиме антизамораживания Диапазон Шаг Заводское значение О~500,0 Гц 0,1 15,0 Уровень изменения частоты в секунду для начала перехода в режим ожидания Диапазон Шаг Заводское значение О~100,0 Гц 0,1 0,5 Уровень падения величины обратной связи для перехода в режим ожидания Диапазон Шаг Заводское значение О~100,0 Гц 0,1 0,5 Уровень падения величины обратной связи для перехода в режим ожидания Диапазон Шаг Заводское значение О~10,0 % 0,1 0,6 Уменьшение частоты каждую секунду РG54 Диапазон Шаг Заводское значение О~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания РG55 Диапазон Шаг Заводское значение О~1000 1 10 Частота перехода в режим ожидания РG56 Диапазон Шаг Заводское значение О~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение О~1000 1 3аводское значение О~1000 1 10 Частота перехода в режим ожидания Паг Заводское значение О~1000 1 3аводское значение О~1000 1 10 Частота перехода в режим ожидания Паг Заводское значение О~1000 1 10 Частота перехода в режим ожидания Паг Заводское значение О~1000 1 10 Паг Заводское значение О~1000 1 10 Паг Заводское значение	PG49				
PG50 Диапазон Шаг Заводское значение 0~9999 с 1 30 PG51 Рабочая частота в режиме антизаморживания Диапазон Шаг Заводское значение 0~500,0 Гц 0,1 15,0 Уровень изменения частоты в секунду для начала перехода в режим ожидания Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,5 Уровень падения величины обратной связи для перехода в режим ожидания Диапазон Шаг Заводское значение 0~10,0 % 0,1 0,6 Уменьшение частоты каждую сскунду Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,3 РС55 Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение 0~1005 Паг 3 дводское		0~9999 c		900	
РG51		Длительность включения ант	изамор	аживания	
PG51 Рабочая частота в режиме антизамораживания Диапазон Шаг Заводское значение 0~500,0 Гц 0,1 15,0 PG52 Уровень изменения частоты в секунду для начала перехода в режим ожидания Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,5 Уровень падения величины обратной связи для перехода в режим ожидания Заводское значение 0~10,0 % 0,1 0,6 Уменьшение частоты каждую секунду РС54 Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания Диапазон Шаг Заводское значение 0~1000 1 10 РС55 Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Заводское значение 0~Роб5 Гц 0,1 42,0 Период выборки ПИД	PG50	Диапазон	Шаг	Заводское значение	
PG51 Диапазон Шаг Заводское значение 0~500,0 Γц 0,1 15,0 Уровень изменения частоты в секунду для начала перехода в режим ожидания Ожидания начала перехода в режим ожидания РG53 Диапазон Шаг Заводское значение ожидания Диапазон Шаг Заводское значение ожидания РG54 Диапазон Шаг Заводское значение ожидания Диапазон Шаг Заводское значение ожидания О~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания Диапазон Шаг Заводское значение ожидания О~1000 1 10 10 PG56 Диапазон Шаг Заводское значение ожидания Диапазон Шаг Заводское значение ожидания О~1000 1 10 Частота перехода в режим ожидания Заводское значение ожидания 0~100 1 10 РС56 Диапазон Шаг Заводское значение ожидания 0~100 1 10		0~9999 с	1	30	
PG52 PG52 PG54 PG55 PG56 PG56 О~500,0 Γц		Рабочая частота в режиме ант	изамор	раживания	
PG52	PG51	Диапазон	Шаг	Заводское значение	
PG52 Диапазон Шаг Заводское значение		0~500,0 Гц	0,1	15,0	
PG52 Диапазон Шаг оль Заводское значение 0~100,0 Гц 0,1 0,5 PG53 Уровень падения величины обратной связи для перехода в режим ожидания Диапазон Шаг заводское значение 0~10,0 % 0,1 0,6 Уменьшение частоты каждую секунду Диапазон Шаг заводское значение 0~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания Диапазон Шаг заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг заводское значение О~Рьо5 Гц 0,1 42,0 Период выборки ПИД Период выборки ПИД		Уровень изменения частоты в секунду дл	я начал	па перехода в режим	
Наг Заводское значение 0~100,0 Γц 0,1 0,5 PG53 Уровень падения величины обратной связи для перехода в режим ожидания Диапазон Шаг Заводское значение 0~10,0 % 0,1 0,6 Уменьшение частоты каждую секунду Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания В режим ожидания РС55 Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение Диапазон Шаг Заводское значение 0~Рьо5 Гц 0,1 42,0 Период выборки ПИД Пид	DC 52	ожидания			
PG53	PG52	Диапазон	Шаг	Заводское значение	
РG53		0~100,0 Гц	0,1	0,5	
PG53 Диапазон Шаг Заводское значение 0~10,0 % 0,1 0,6 PG54 Уменьшение частоты каждую секунду Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение 0~Рь05 Гц 0,1 42,0 Период выборки ПИД Период выборки ПИД		Уровень падения величины обратной связи для перехода в режим			
Диапазон Шаг Заводское значение	DC 53	ожидания			
PG54 Уменьшение частоты каждую секунду Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение 0~Рь05 Гц 0,1 42,0 Период выборки ПИД Период выборки ПИД	r G55	Диапазон	Шаг	Заводское значение	
PG54 Диапазон Шаг Заводское значение 0~100,0 Гц 0,1 0,3 PG55 Количество уменьшений частоты для перехода в режим ожидания Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение Диапазон Шаг Заводское значение 0~Рьо5 Гц 0,1 42,0 Период выборки ПИД		0~10,0 %	0,1	0,6	
О~100,0 Гц 0,1 0,3 Количество уменьшений частоты для перехода в режим ожидания Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение 0~Рь05 Гц 0,1 42,0 Период выборки ПИД		Уменьшение частоты каждую секунду			
PG55 Количество уменьшений частоты для перехода в режим ожидания Диапазон Шаг Заводское значение 0~1000 1 10 Частота перехода в режим ожидания Диапазон Шаг Заводское значение 0~Рьо5 Гц 0,1 42,0 Период выборки ПИД	PG54	Диапазон	Шаг	Заводское значение	
PG55 Диапазон Шаг Заводское значение 0~1000 1 10 PG56 Диапазон Шаг Заводское значение 0~Рь05 Гц 0,1 42,0 Период выборки ПИД		0~100,0 Гц	0,1	0,3	
0~1000 1 10 PG56 Диапазон Шаг Заводское значение 0~Рb05 Гц 0,1 42,0 Период выборки ПИД		Количество уменьшений частоты для перехода в режим ожидания			
Частота перехода в режим ожидания РС56 Диапазон Шаг Заводское значение 0~Рь05 Гц 0,1 42,0 Период выборки ПИД	PG55	Диапазон	Шаг	Заводское значение	
РG56 Диапазон Шаг Заводское значение 0~Pb05 Гц 0,1 42,0 Период выборки ПИД		0~1000	1	10	
0~Pb05 Гц 0,1 42,0 Период выборки ПИД		Частота перехода в режим ожидания			
Период выборки ПИД	PG56	Диапазон	Шаг	Заводское значение	
		0~Рь05 Гц	0,1	42,0	
		Период выборки	ПИД		
РG57 Диапазон Шаг Заводское значение	PG57	Диапазон	Шаг	Заводское значение	
0~1000 мс 1 4		0~1000 мс	1	4	

Если частота изменяется медленнее, чем PG52 Γ ц/с, преобразователь начинает идентифицировать состояние ожидания, и частота уменьшается каждую секунду на PG54 Γ ц. При этом оценивается падение величины обратной связи. Если оно меньше PG53, то частота продолжает снижаться на PG54 Γ ц каждую секунду, иначе преобразователь останавливает мониторинг режима ожидания. Если количество падений частоты на PG54 Γ ц больше,

чем PG55, то преобразователь переходит в спящий режим. Если выходная частота больше, чем PG56, то режим ожидания не включится.

7-8 Группа параметров последовательного канала связи

	Скорость передачи данных		
Диапазон Шаг Заводское		Заводское значение	
PH00	0 - 3	1	1
	Значение:	0: 4800 бит/с	
		1: 9600 бит/с	

С помощью параметра РН00 задается скорость обмена данными;

Примечание: при использовании последовательной передачи данных должна быть установлена одинаковая скорость передачи данных для обеих сторон соединения.

		Формат данных		
	Диапазон	Шаг	Заводское значение	
	0 - 5	1	3	
		0: 8N1 для ASCII		
PH01	Значение	1: 8E1 для ASCII		
		2: 8O1 для ASCII		
		3: 8N1 для RTU		
		4: 8E1 для RTU		
		5: 8O1 для RTU		

С помощью параметра РН01 устанавливается формат передачи данных, см. приложение 2.

	Адрес преобразователя при последовательной связи		
PH02	Диапазон	Шаг	Заводское значение
	0 - 249	1	1

Если через последовательный интерфейс подключены несколько ПЧ, каждый из них должен иметь свой адрес, который задается с помощью параметра PH02; в одну сеть можно объединить до 247 ПЧ серии IDD mini PLUS.

Если РН02=0, то широковещательный режим.

	Действие при ошибке обмена данными		
	Диапазон	Шаг	Заводское значение
	00 - 02	1	0
РН03	Значение	дикации ошибки	ан ель останавливается, сигнал ин- не появляется. нал индикации Со, и преобразова-

Если PH03=1 или 2, а PH04=0, то ПЧ не остановится и не отобразит ошибку «Со». Для корректной работы PH03=1 или 2 в параметре PH04 должно быть значение больше 0,1.

	Время сторожевого	a		
PH04	Диапазон Шаг Заводское значени			
	0,0 – 100,0 сек	0,1	5,0	

Если значение в параметре PH04 ≥0.1, а устройство, которое подключено к ПЧ через управляющие клеммы RS+ и RS- используя порт RS485 не запрашивает состояние ПЧ (например используя параметр PA28), то по истечении времени заданного в параметре PH04 на дисплее будет отображаться ошибка «Co», а двигатель будет остановлен.

7-9 Параметры для усложненного применения

	Доступ к параметрам для усложненного применения			
	Заводское значение			
Pi00	0 - 1	1	1	
	2	окированы		
	Значение	1: параметры доступны		

С помощью параметра Рі00 можно блокировать изменение параметров в данной группе.

	Установка частоты 50 Гц или 60 Гц		
	Диапазон	Шаг	Заводское значение
Pi01	0 - 1	1	0
	2	0: 50 Гц	
	Значение	1: 60 Гц	

Выберите частоту, соответствующую частоте сети. Параметр Pi01 не изменяется при инициализации заводской установки параметров (см. Pb17).

	Установка уровня срабатывания защиты от перенапряжения				
Pi03	Диапазон	Диапазон Шаг Заводское значение			
	200,0 –999,9 B	1	400		

С помощью параметра Pi03 устанавливается уровень защиты от перенапряжения в звене постоянного тока. Защита преобразователя срабатывает в случае слишком высокого напряжения в сети; правильно настройте уровень защиты, чтобы обеспечить нормальную работу преобразователя.

	Установка уровня защиты от низкого напряжения				
Pi04	Диапазон	Диапазон Шаг Заводское значение			
	100,0 – 500,0 B 1 170,0				

С помощью параметра Pi04 устанавливается уровень защиты от низкого напряжения. Защита преобразователя срабатывает в случае слишком низкого напряжения в сети; правильно настройте уровень защиты, чтобы обеспечить нормальную работу преобразователя.

Инструкция по эксплуатации преобразователя частоты серии IDD mini PLUS

Настройка времени изменения показаний дисплея			нения показаний дисплея
Pi06	Диапазон Шаг Заводское значение		
	0 - 60,0	0,1	0,0

Значение данного параметра относится к интервалу изменения изображения на дисплее. Обычно данный параметр изменять не следует. При малой величине параметра, отображение силы тока на дисплее будет нестабильным.

	Коэффициент коррекции минимального значения аналогового выхода 0-10 В			
Pi07	Диапазон Шаг Заводское значение			
	0 – 8190	1	*	
	Коэффициент коррекции максимального значения аналогового выхода 0-10 В			
Pi08				
Диапазон Шаг		Шаг	Заводское значение	
	0 – 8190	1	*	

^{*}Данные параметры настроены по умолчанию, и изменять их запрещается. В противном случае это приведет к неправильной работе ПЧ.

	Сброс задания частоты, достигнутой в режиме UP/DOWN			
	Диапазон	Шаг	Заводское значение	
Pi12	0 - 1	1	1	
F112		0: Запоминание достигн	утой частоты при выключении	
	Значения	Значения или остановке ПЧ		
		1: Сброс задания		

	Защита двигателя от перегрузки по току				
	Диапазон			Шаг	Заводское значение
Pi16	0 – 1		1	1	
	Значения	0: Отключена			
		1: Включена			

Если Pi16=1, защита двигателя включена. Когда выходной ток превысит значение 150% от PC10 (номинальный ток двигателя) в течение 60 сек, преобразователь остановится, на экране возникнет код ошибки «oL»

Если Pi16=0, защита двигателя отключена. Преобразователь продолжит работу вне зависимости от значения выходного тока, даже если будет превышение значения 150% PC10.

Глава 8 Техническое обслуживание, диагностика ошибок и меры по их предотвращению

Следите за тем, чтобы ПЧ находился в допустимых условиях окружающей среды.

8-1 Необходимая ежедневная проверка

Ежедневную проверку следует проводить для выявления:

- (1) Повышенной вибрации или необычного шума двигателя.
- (2) Повышенного нагрева двигателя.
- (3) Отсутствия механических повреждений кабелей питания и двигателя.
- (4) Отсутствия разрывов проводов и плохого контакта.
- (5) Отсутствия загрязнений внутри ПЧ.
- (6) Работоспособности вентилятора.
- (7) Соответствия условий эксплуатации техническим требованиям (влажность, температура, вентиляция и т.д.).
- (8) Наличия пыли или посторонних предметов внутри радиатора.
- (9) Текущей производительности и рабочих характеристик ПЧ.
- (10) Повышенного нагрева или необычного шум во время работы ПЧ.

8-2 Замечания по техническому обслуживанию и проверке.

- (1) Перед техническим обслуживанием (ТО) и проверкой обесточьте прибор.
- (2) Начинайте ТО только после отключения питания ПЧ. Убедитесь, что индикатор высокого напряжения погас (мигающий светодиод красного цвета).
- (3) Во избежание короткого замыкания не оставляйте внутри ПЧ после ТО и проверки посторонние детали (болты, гайки и пр.).
- (4) Очищайте ПЧ от пыли, предохраняйте от влаги.
- (5) Во время проверки и ремонта ПЧ следите за правильным соединением проводов, в противном случае преобразователь выйдет из строя.

8-3 Плановая периодическая проверка

Объект проверки	Возможная неисправность	Решение	
Блоки, винты и разъемы	Отсутствие деталей	Установка недостающей де-	
		тали	
Ребра радиатора	Наличие пыли	Продувка сухим сжатым	
		воздухом (4-6 кг/см ²)	
Охлаждающий вентилятор	Шум или вибрация, срок	Замена	
	службы превышает 20000		
	часов		
Клеммы силовой платы и	Пыль или ржавчина	Продувка сухим сжатым	
платы управления		воздухом (4-6 кг/см2) или	
		вызов специалиста	
Электролитический конден-	Изменение цвета, необыч-	Замена	
сатор	ный запах, изменение фор-		
	мы, течь электролита		
Электродвигатель	Вибрация, нагрев, ненор-	Ремонт или замена	
	мальный запах, шум		

8-4 Плановая замена деталей преобразователя

ПЧ состоит из множества деталей, которые могут ломаться и выходить из строя. Для стабильной работы прибора необходимо систематическое ТО. Заранее заказывайте комплектующие для замены. В таблице ниже указаны сроки службы некоторых комплектующих:

Деталь	Срок службы	Замена	
Охлаждающий вен-	3-5 лет	По результатам проверки	
тилятор			
Электролитический	5 лет	По результатам проверки	
конденсатор			
Реле		По результатам проверки	

Срок службы указан для следующих условий эксплуатации:

- (1) Среднегодовая температура 30°С, отсутствие коррозионных газов, пыли, конденсата и т.д.;
- (2) Коэффициент нагрузки не более 80%;
- (3) Средняя продолжительность работы в сутки 12 часов.

8-5 Информация по защите, диагностике и устранению ошибок в преобразователе.

ПЧ серии IDD mini PLUS оснащены эффективной защитой от пониженного и повышенного напряжения, перегрузки по току и напряжению, перегреву. Если произошел сбой ПЧ, сначала устраните причину неисправности, а затем перезапустите его.

Код ошиб ки	Описание Возможная причина		Устранение
oc1 («2»)	Возникновение сверхтока при ускорении	1: Недостаточное время ускорения 2: Неправильно задана зависимость для V/F- кривой 3: Короткое замыкание в обмотках двигателя или его обмоток «на землю» 4: Установлен слишком большой буст 5: Низкое напряжение в электрической сети 6:Пуск при вращающемся двигателе. 7: Неправильная настройка ПЧ 8: Выход ПЧ из строя	1: Увеличьте время ускорения 2:Задайте соответствующую зависимость для V/F- кривой 3: Проверьте сопротивление изоляции с помощью высоковольтного мегомметра (отсоединив при этом ПЧ) 4: Уменьшите буст 5: Проверьте напряжение электросети 6: Запуск с поиском частоты 7: Установите правильные параметры запуска 8: Замените ПЧ более мощным 9: Отправьте в ремонт
oc3 («4»)	Возникновение сверхтока во время работы на постоянной скорости	1: Повреждена изоляция двигателя и его выводов 2: Большие изменения нагрузки, заклинивание ротора двигателя 3: Перепады напряжения в сети, низкое напряжение электросети 4: Недостаточная мощность ПЧ 5: Подключение к ПЧ мощных двигателей 6: Наличие источника электромагнитных помех	1: Проверьте изоляцию 2: Проверьте нагрузку, устраните заклинивание, нанесите смазку при необходимости 3: Проверьте напряжение сети 4: Увеличьте мощность ПЧ или уменьшите нагрузку 5: Увеличьте мощность преобразователя 6: Устраните источник помех
oc2 («3»)	Возникновение сверхтока при торможении	1: Малое время торможения 2: Недостаточная мощность ПЧ 3: Наличие источника электромагнитных помех	1: Увеличьте время торможения 2: Увеличьте мощность ПЧ 3: Устраните источник помех
oU1 («5»)	Перенапряжение при ускорении	1: Напряжение питания слишком велико 2: Неправильная конфигурация внешней цепи (например, использование запуска двигателя подачей напряжения сети). 3: Выход ПЧ из строя.	1: Проверьте напряжение питания 2:Не используйте автоматический выключатель или пускатель для пуска электродвигателя, питающегося от ПЧ. 3: Отправьте в ремонт.
oU2 («6»)	Перенапряжение во время работы	1: Напряжение питания слишком велико 2: Перегрузка из-за неправильной работы ПИД-регулятора 3: Несоответствующий тормозной резистор или тормозной модуль	1: Проверьте напряжение питания 2: Подстройте коэффициенты обратной связи 3: Установите соответствующий тормозной резистор или тормозной модуль
oU3 («7»)	Перенапряжение при торможении	1: Малое время торможения 2: Напряжение питания слишком велико. 3: Большой момент инерции нагрузки. 4: Неподходящий тормозной резистор. 5: Неправильно выбран коэффициент использования тормозного модуля.	1: Увеличьте время торможения 2: Проверьте напряжение источника питания 3: Установите подходящий тормозной резистор и тормозной модуль.

Инструкция по эксплуатации преобразователя частоты серии IDD mini PLUS

Код ошиб ки	Описание	Возможная причина	Устранение
KII			4: Подберите соответствующее тормозное сопротивление. 5: Установите подходящее значение коэффициента использования тормозного модуля.
POF («8»)	Перегрузка зарядного резистора	Высокое напряжение на входе преобразователя в течение продолжительного время.	Проверить напряжение источника питания.
LU («9»)	Пониженное напряжение	1: Источник питания выдает пониженное напряжение 2: Отсутствие напряжение питания 3: Высвечивается при включении преобразователя (не является ошибкой)	1: Проверьте напряжение источника питания. 2: Проверьте автоматический выключатель и наличие напряжения
oL2 («10») oL1 («11»)	ПЧ и / или двигатель перегружен	1: Большая нагрузка 2: Малое время ускорения 3: Установлен большой буст (параметрРС08) 4: Неправильно задана зависимость для V/F- кривой 5: Низкое напряжение в электросети 6: Запуск ПЧ при вращающемся двигателе 7: Заклинивание нагрузки 8: Номинальный ток двигателя задан не верно	1: Уменьшите нагрузку или увеличьте мощность ПЧ 2: Увеличьте время ускорения. 3: Уменьшите буст 4: Задайте подходящую зависимость для V/F- кривой 5: Проверьте напряжение электросети или увеличьте мощность ПЧ. 6: Измените режим пуска ПЧ 7: Проверьте нагрузку электродвигателя 8: Правильно задайте параметр РС10
оН («14»)	Перегрев силового модуля в ПЧ	1. Высокая температура окружающей среды 2. Засорен воздушный фильтр в шкафу 3. Не работает вентилятор 4. Поврежден температурный датчик 5. Поврежден силовой модуль ПЧ	1. Снизить температуру окр. среды 2. Обратитесь к поставщику.
EF («15»)	Внешняя ошибка управления	Ошибка управляющего сигнала на программируемом входе преобразователя	Проверить схему подключения внешнего сигнала. Проверить программирование соответствующих входов
Co («16»)	Нарушение передачи дан- ных	1: Неправильное подсоединение проводов для передачи данных 2: Неправильно настроены параметры передачи данных 3: Неподходящий формат передачи данных	1:Проверьте соответствующие соединения 2: Настройте параметры 3:Проверьте формат передачи данных, установите соответствие между Мастером сети и ПЧ.
LP («24»)	Обратная связь ПИД ниже нижнего предела	1: Ошибка датчика обратной связи 2: Ошибка программирования ПИД	1: Проверить провода от датчика на «обрыв» и сам датчик 2: Скорректировать параметры ПИД
HP («27»)	Обратная связь ПИД выше верхнего предела	1: Ошибка датчика обратной связи 2: Ошибка программирования ПИД	1: Проверить провода от датчика на «обрыв» и сам датчик 2: Скорректировать параметры ПИД

Код	Описание	Возможная причина	Устранение
ошиб			
КИ			
LL	Ошибка	1: Ошибка датчика обратной связи	1: Проверить провода от датчика
(«28»)	«сухой ход»	2: Ошибка программирования ПИД	на «обрыв» и сам датчик
		3: Отсутствует вода в трубопроводе	2: Скорректировать параметры
			пид
			3: Проверить трубопровод
20	Отсутствует	Обрыв цепи обратной связи	1: Устранить обрыв
(«31»)	токовый сигнал		2: Отремонтировать или заменить
	обратной связи		датчик обратной связи
SLP	Спящий режим	Преобразователь частоты находится в	
		спящем режиме в процессе работы ПИД	
		регулятора	

8-6 Устранение стандартных ошибок

Если причины возникновения ошибки не известны, то рекомендуется установка параметров в заводские значения. После этого необходимо провести настройку преобразователя еще раз.

(1) Параметр не может быть изменен

Причина и способ устранения:

- а: параметр заблокирован. Установите значение параметра Pb18 «0» (доступен), а затем снова перейдите к установке нужного параметра.
- b: неправильная передача данных. Подключите провода к клеммам заново, проверьте соединительные провода.
- с: данный параметр не может быть изменен во время работы двигателя. Установите значение данного параметра во время остановки преобразователя.
- (2) Двигатель не запускается при нажатии кнопки пуска на внешнем пульте управления. Причина и способ устранения:
- а: установлен неправильный режим работы, убедитесь, что параметр Pb02 = 1.
- b: нет задания частоты или заданная частота меньше пусковой частоты.
- с: проверьте внешние соединительные провода.
- d: неправильно запрограммирована функция входной клеммы, внешний соединительный провод подключен к другой клемме, проверьте значения параметров Pd15 Pd18.
- е: выход из строя кнопки пуска, обрыв управляющего провода.
- f: ПЧ находится под действием защиты. Устраните причину, вызвавшую срабатывание защиты, и только после устранения причины запустите преобразователь заново.
- g: двигатель не подключен или отсутствует питание одной из фаз двигателя, проверьте соединительные провода двигателя.
- h: неисправный двигатель, проверьте двигатель.
- і: ПЧ вышел из строя, проверьте работу ПЧ с заведомо исправным двигателем и контролем фазного тока двигателя.
- (3) Перегрев двигателя

Причина и способ устранения:

- а: температура окружающей среды превышает допустимую, примите меры для ее понижения
- b: слишком большая нагрузка, фактическая нагрузка превышает номинальный вращающий момент двигателя. Поставьте более мощный двигатель.
- с: повреждение изоляции двигателя. Замените двигатель.

d: слишком большое расстояние между двигателем и ПЧ, уменьшите расстояние, установите между ПЧ и двигателем дроссель переменного тока.

е: «Жесткий режим» запуска двигателя, поэтому при включении ПЧ по обмоткам двигателя протекает большой ток. Величина максимального кратковременного тока не должна превышать номинальный ток двигателя более чем в три раза, поэтому установите подходящий двигатель.

f: двигатель работает на низкой скорости. Установите на двигатель понижающий редуктор, чтобы двигатель работал на более высокой скорости.

(4) Двигатель вибрирует или шумит

Причина и способ устранения:

а: заклинивание ротора двигателя, отсутствие смазки. Проверьте нагрузку двигателя.

b: резонансная вибрация двигателя. Измените частоту ШИМа, измените время ускорения/торможения, установите антивибрационные прокладки, установите зону пропуска частоты, совпадающей с резонансной частотой.

(5) Двигатель не работает в режиме вращения назад.

Причина и способ устранения:

вращение назад заблокировано. Разблокируйте его.

(6) Двигатель работает в режиме вращения назад.

Причина и способ устранения:

а: измените порядок подключения двух выходных силовых клемм U,V,W.

b: управляющий сигнал задает вращение назад. Правильно запрограммируйте функцию дискретного входа

(7) Запуск ПЧ нарушает работу других устройств.

Возможная причина: ПЧ является источником электромагнитных помех.

Способ устранения:

а: уменьшите частоту ШИМа.

b: правильно заземлите ПЧ и двигатель отдельными толстыми медными проводами.

с: соедините ПЧ и двигатель экранированным кабелем, экран должен надежно соединяться с корпусом двигателя, а с другой стороны кабеля - с монтажной металлической панелью, на которой установлен преобразователь. Панель должна быть надежно заземлена.

d: установите выходной дроссель переменного тока на силовом выходе ПЧ.

е: установите специальный высокочастотный фильтр на силовом входе ПЧ.

f: Проложите проводку силового контура не ближе 10 см от проводки управляющего контура.

g: В качестве управляющей линии используйте экранированные витые пары проводов.

h: Установите ферритовое кольцо на входные и выходные провода.

8-7 Борьба с электромагнитными помехами

Возможны две ситуации, связанные с помехами. В первом случае ПЧ является источником помех для других устройств, см. пункт (7) подраздела 8-6; во втором случае другие устройства служат источником помех для ПЧ и нарушают его работу.

При борьбе с помехами необходимо найти источник помех и способ их распространения. В случае ПЧ можно выделить три канала распространения помех: электромагнитное излучение, электропроводимость и индуктивная связь.

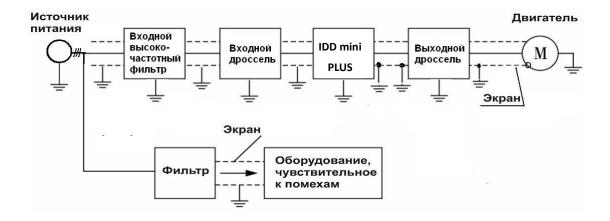
(1) Электромагнитное излучение

Действие электромагнитного излучения может быть нейтрализовано с помощью экранирования и заземления оборудования, установки на обмотки пускателей и реле ограничителей перенапряжения, например, RC-цепочек.

(2) Электропроводимость

Источником помех могут служить электроустановки, например, электродвигатели, подключаемые с помощью электромагнитных пускателей. В данном случае двигатели создают коммутационные выплески напряжения, которые распространяются по электросети и нарушают работу других приборов и источников питания. Проблема может быть решена с помощью электромагнитной фильтрации, защищающей преобразователь: установкой сетевых дросселей переменного тока или реакторов постоянного тока, а также установкой развязывающих силовых трансформаторов.

(3) Индуктивная связь

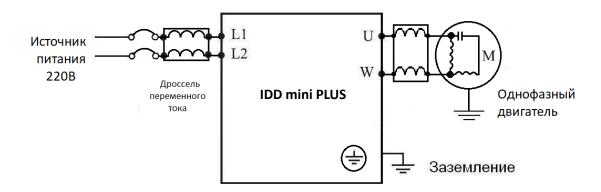

Между двумя соседними контурами может образоваться индуктивная связь, в результате чего возникнут помехи.

Устранение:

- Разнесите друг от друга источник помех и устройства, которые сильно подвержены влиянию помех. Сварочный аппарат является мощным источником помех, поэтому запрещается подключать его к одному источнику питания с ПЧ.
- Электромагнитная фильтрация. Установка фильтров на силовые входные и выходные линии ПЧ (дросселей, ферритовых колец и т.д.) для подавления помех, действующих на источники питания и двигатель.
- Экранирование. В общем случае, для экранирования помех используется экранированные провода; выходные линии экранируются с помощью металлической изолированной оболочки; в качестве управляющей линии должна использоваться экранированные витые пары проводов; проложите силовые линии питания и двигателя отдельно от управляющих проводов.

о Заземление

- хорошее заземление существенно уменьшает влияние помех, наведение помех на линию управления внутри прибора и в целом увеличивает помехоустойчивость всей системы.
- на схеме ниже, в качестве примера, показано использование экранированных кабелей с заземленными экранами для подавления помех:

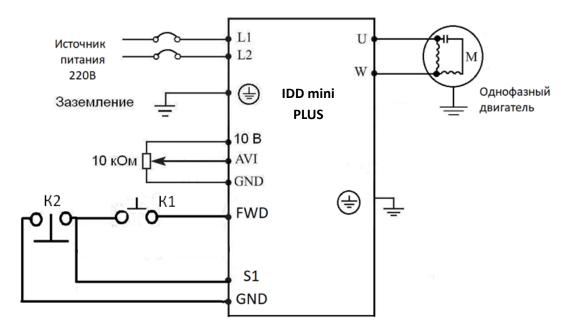

Глава 9 Выбор дополнительных опций

9-1 Назначение опций

,	
Название	Назначение
Автоматический выключатель	Защита силовой проводки, питающей ПЧ
Электромагнитный пускатель	Удобное включение и выключение. Обеспечение нулевой защиты привода
Высокочастотный фильтр	Уменьшает уровень электромагнитных помех, создаваемых ПЧ
Company was a sale was a very sale was	Защита ПЧ от импульсного напряжения, подавление высших гармоник во
Сетевой дроссель переменного тока	входном силовом токе
T	Поглощает рекуперированную энергию от двигателя, находящегося в гене-
Тормозной резистор	раторном режиме
Моторный дроссель переменного	Уменьшает уровень электромагнитных помех, уменьшает потери в двига-
тока	теле, подавляет высшие гармоники в выходном силовом токе
Ферритовое кольцо	Подавляет электромагнитные помехи, созданные ПЧ

9-2 Внешние опции

9-2-1 Дроссель переменного тока (сетевой и моторный для максимальной рабочей частоты 50Гц). Если используется однофазное питание преобразователя частоты и однофазный сетевой дроссель, то последний должен быть включен в разрыв фазного питающего провода.



9-2-2 Тормозной резистор

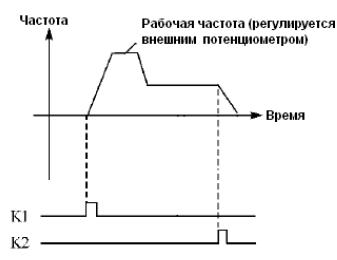
Модель ПЧ	Модель резистора	Кол-во, схема подклю- чения	Тормозной резистор, Ом	Тормозной модуль	Тормозной момент (продолжительность включения 10%)	Двига- тель, кВт
IDD401M21E						
IDD751M21E			Подключение	не предусмотре	но	
IDD152M21E						
IDD222M21E	ZC-BR-300W-70	1	70	Встроенный	125	2,2

Пример простого применения

- 1. Использование внешних входов для включения ПЧ, запуска режима вращения вперед или назад, настройка частоты с помощью внешнего потенциометра.
- а: Схема соединения

b: Настройка параметров, программирование входов:

Рь01=1 установка частоты с помощью аналогового напряжения (выход потенциометра).


Pb02=1 подача команд с помощью управляющих входов.

Pd15=6 Функция «Вращение назад» присвоена входу FWD

Pd17=8 Функция «Остановка» присвоена входу S1

Pd29=2 Схема подключения трёхпроводная, режим 1

с: Диаграмма функционирования:

К1 Вращение вперед

К2 Остановка

Приложение 2

Использование протокола связи Modbus для управления преобразователем INNOVERT IDD mini PLUS

Для преобразователей INNOVERT серии IDD mini PLUS используются протоколы Modbus ASCII и Modbus RTU.

Функции протокола Modbus, используемые в преобразователе INNOVERT:

Код функции	03	Чтение данных из одного или нескольких регистров
	06	Запись данных в регистр

Ниже, в таблице 1 представлены структуры сообщений, которыми обмениваются Мастер сети и преобразователь частоты. В цифровой сети преобразователь может быть только ведомым устройством.

Структура сообщений	Структура сообщений Таблица 1												
Режим ASCII	Символ «начало сооб- щения»	Адрес преобразователя	Код функции	Данные	Контрольная сумма (LRC)	Команда перехода к сле- дующему сообщению (СR LF)	Количество байт в со- общении	Примечания					
Преобразователь получает сообщение	:	01	03	2000 000i	XX	0D 0A	 17байт	где i=N/2					
Ответ преобразователя на полученное сообщение	·	01	03	02 XX XX 04 XX XX 0N XX XX *	XX	0D 0A	11+2·N байт	N=2,4,6,8 определяет считы- вание от 1 до 4 регистров					
Ответ преобразователя на сообщение, в котором до- пущена ошибка**	:	01	03	00	XX	0D 0A	11байт						
Преобразователь получает сообщение	:	01	06	2000 0010	XX	0D 0A	17байт						
Ответ преобразователя на полученное сообщение	:	01	06	2000 0010	XX	0D 0A	17байт						
Ответ преобразователя на сообщение, в котором до-	:	01	06	00	XX	0D 0A	11байт						

пущена ошибка

Режим RTU (наиболее часто исполь- зуемый)	Адрес преобра- зователя	Код функции	Данные	Контрольная сумма, со- стоящая из двух байт: CRCH – старший байт, CRCL – младший байт	Размер со- общения	Примечания
Преобразователь получает сообщение	01	03	2000 000i	XX XX (CRCH CRCL)	8байт	где i=N/2, N=2,4,6,8
Ответ преобразователя на полученное сообщение	01	03	02 XX XX 04 XX XX 0N XX XX *	XX XX	5+N байт	определяет считывание от 1 до 4 реги- стров
Ответ преобразователя на сообщение, в котором до- пущена ошибка**	01	03	00	20 F0	5 байт	
Преобразователь получает сообщение	01	06	2000 0010	83 C6	8 байт	
Ответ преобразователя на полученное сообщение	01	06	2000 0010	83 C6	8 байт	
Ответ преобразователя на сообщение, в котором до- пущена ошибка	01	06	00	XX XX	5 байт	

Примечания к таблице 1:

* Здесь указывается обозначение регистра по порядку считывания (0N) и значение этого регистра, в данном случае оно равно XX XX Н (в шестнадцатеричной системе). При считывании более одного регистра, в ответе преобразователя обозначение регистра и его значение будут указаны подряд, например в ответе преобразователя можно получить следующие данные (считываем четыре регистра):

 $02\ 01$ F4 $04\ 05$ DC $06\ 00$ 2D $08\ 05$ 78 — значение 1-ого регистра 01F4H, значение 2-ого регистра 5DCH, значение 3-его регистра 2DH, значение 4-ого регистра 578H

** Одна из причин возникновения ошибок:

номер параметра, значение которого необходимо считать, отсутствует в меню преобразователя

*** Х - шестнадцатеричная цифра

Принятый порядок обмена данными в преобразователе INNOVERT серии IDD mini PLUS

Связь преобразователя с Мастером сети (внешним устройством, посылающим сообщения), осуществляется через клеммы преобразователя «RS+», «RS-».

Для организации обмена данными между Мастером сети и преобразователем необходимо, чтобы у них были одинаковые настройки:

- скорость передачи данных (параметр РН00), бит/с: 4800; 9600
- формат данных (параметр РН01):

0: 8N1 для ASCII

Стартовый бит	0	1	2	3	4	5	6	7	Стоповый бит			
	Строка состоит из 8 информационных битов											
	Формат знакоместа: 10 бит											

1: 8E1 для ASCII

Стартовый бит	0	1	2	3	4	5	6	7	Проверка на четность	Стоповый бит
	Стј	хинн								
	битов									
Формат знакоместа: 11 бит										

2: 8O1 для ASCII

дилюен											
Стартовый бит	0	1	2	3	4	5	6	7	Проверка на нечетность	Стоповый бит	
	Формат знакоместа: 11 бит										

3: 8N1 для RTU

Стартовый бит	0	1	2	3	4	5	6	7	Стоповый бит			
	Строка состоит из 8 информационных битов											
Формат знакоместа: 10 бит												

4: 8E1 для RTU

Стартовый бит	0	1	2	3	4	5	6	7	Проверка на четность	Стоповый бит	
	Стј	нных									
	битов										
			•	Форм	лат зі	накоме	ста: 1	1 бит			

5: 8O1 для RTU

(Стартовый бит	0	1	2	3	4	5	6	7	Проверка на нечетность	Стоповый бит
		Строка состоит из 8 информационных									
-	битов Формат знакоместа: 11 бит										
	Ψορικαί Shakomeeta. 11 Out										

Адреса преобразователя, устанавливаемые в сообщении:

00Н: одновременная передача данных всем преобразователям (широковещательная передача), при этом ответные сообщения от преобразователей не формируются.

01Н: Преобразователь с адресом №1;

0FH: Преобразователь с адресом №15;

10Н: Преобразователь с адресом №16, и так далее по аналогии до 240-ого адреса.

Адреса используемых регистров (см. табл. 3):

- 1) 2000Н: адрес регистра для записи команды пуска, останова и др.
- 1) 2001Н: Задание частоты (0-400.0 Γ ц). Если Pb01 = 5, то частота задаётся в регистре 2001Н, если Pb01=0, то частота задаётся в параметре Pb00 в меню преобразователя.
- 2) Каждому параметру соответствует свой регистр, в котором хранится значение этого параметра. Номер регистра состоит из трех цифр: первая цифра выбирается в соответствии с таблицей 2, последние две цифры берутся из названия параметра.

Таблица 2.

Вторая буква в обозначении параметра	A	b	С	d	Е	F	G	Н	i
Цифра, соответствующая букве	0	1	2	3	4	5	6	7	8

Например:

- а) Адрес параметра PA04 (скорость вращения): 4 (два байта в шестнадцатеричной системе 00 04H). Данные формируются в шестнадцатеричной системе, одна единица соответствует 1 об/мин .
- b) Адрес параметра Pb00 (установка рабочей частоты): 100 (два байта в шестнадцатеричной системе 00 64H).
- с) Адрес параметра Рb01 (способ установки частоты):101 (два байта в шестнадцатеричной системе 00 65H).
- d) Адрес параметра Pb07 (время ускорения): 107 (два байта в шестнадцатеричной системе 00 6ВН). Данные формируются в шестнадцатеричной системе, одна единица соответствует 0.1 сек.
- е) Адрес параметра РА03 (выходной ток): 3 (два байта в шестнадцатеричной системе 00 03H). Данные формируются в шестнадцатеричной системе, одна единица соответствует 0.1 ампер.

Таблица 3.

Адрес	Адрес бита	Значение битов в регистре	Чтение или за-	Примечания
регистров	в регистре	(В – бинарный код)	пись	
2000H	BIT1~BIT0	00В: никакого действия	запись	Частота медленного
		01В: останов		вращения устанавли-
		10В: пуск		вается в параметре
		11В: медленное вращение		PE00
	BIT2~BIT3	00В: никакого действия	запись	
		01В: Вращение вперед		
		10В: Вращение назад		
		11В: Реверс		
	BIT4	0В: никакого действия	запись	
		1В: сброс ошибки		
	BIT5~BIT15	Зарезервированы		
2001H	BIT0~BIT15	Задание частоты вращения		Дискрета задания ча-
		0~4000	запись	стоты вращения равна
				0,1 Гц

Сообщение в режиме RTU:

START	Сигнал должен быть дольше или равен 10 мс
Address	Адрес связи: 8-ми разрядный двоичный код
Function	Код функции: 8-ми разрядный двоичный код
DATA (n-1)	Данные:
	n × 8 бит, n = 116
DATA 0	
CRC CHK Low	Проверка с помощью контрольной суммы CRC:
CRC CHK High	16-ти разрядный код проверки состоит из двух 8-ми
	разрядных
	кодов старших разрядов и младших разрядов
END	Стоповый бит. Сигнал должен быть дольше или
	равен 10 мс

Пример формирования сообщения для режима RTU:

Настройка преобразователя для его пуска, останова и задания частоты вращения через последовательную связь:

Pb01 = 5 (Способ установки частоты через порт RS485);

Pb02 = 2 (Способ пуска преобразователя через порт RS485);

РН00 = 1 (Скорость передачи данных 9600);

PH01 = 3 (8N1 ДЛЯ RTU)

PH02 = 1 (адрес преобразователя необходимо учитывать при формировании сообщения к этому преобразователю).

1. Задание частоты:

В регистр 2001Н запишите число 1F4H Это шестнадцатеричное число соответствует значению 500 = 50/0,1 = (задание в Γ ц)/(дискрета задания)

Текст посылаемого сообщения: 01 06 20 01 01 F4 D3 DD

Ответное сообщение от преобразователя: **01 06 20 01 01 F4 D3 DD**

2. Сообщение с командой «Пуск»

Записать число 02Н в регистр 2000Н (Значение 02Н соответствует записи единицы во второй бит (ВІТ1) регистра 2000Н, см. таблицу 3).

Текст посылаемого сообщения: **01 06 20 00 00 02 03 CB**

Ответное сообщение от преобразователя: 01 06 20 00 00 02 03 СВ

3. Сообщение с командой «Останов»

Записать 01Н в регистр 2000Н

Текст посылаемого сообщения: **01 06 20 00 00 01 43 CA**

Ответное сообщение от преобразователя: 01 06 20 00 00 01 43 СА

4. Сообщение «Установить величину времени ускорения Pb07=20.0 (сек) »

В регистр 107 (6ВН) записать число 200 (С8Н). (Дискрета задания времени ускорения и торможения равна 0.1 сек).

Текст посылаемого сообщения: 01 06 00 6B 00 C8 F9 80

Ответное сообщение от преобразователя: 01 06 00 6В 00 С8 F9 80

Значения параметров ограничены определенным диапазоном (от min до max). При попытке записать в параметр значение больше максимального (max), автоматически запишется максимальное значение (max).

Сообщение в режиме ASCII:

STX	Символ «начало текста» = ':'(3AH, см. таблица 4)
Address Hi	Адрес связи:
Address Lo	8-ми разрядный адрес состоит из 2 символов ASCII
Function Hi	Функция:
Function Lo	8-ми разрядный код состоит из 2 символов ASCII
DATA (n-1)	Данные:
	Содержание данных (n × «8 информационных битов») состоит
DATA 0	из 2n символов ASCII
	n ≤ 16, максимум 32 символа ASCII
LRC CHK Hi	Код проверки LRC: 8-ми разрядный код проверки состоит из
LRC CHK Lo	двух символов ASCII
END Hi	Символ «конец текста»:
END Lo	END Hi = CR (0DH), END Lo = LF (0AH)

Примеры формирования сообщений для режима ASCII:

Настройка порта преобразователя для его пуска, останова и задания частоты вращения через последовательную связь:

Pb01 = 5 (Способ установки частоты через порт RS485);

Pb02 = 2(Способ пуска преобразователя через порт RS485);

РН00 = 1(Скорость передачи данных 9600);

PH01= 0 (8N1 для ASCII);

PH02=1 (адрес преобразователя необходимо учитывать при формировании сообщения для этого преобразователя).

1. Задание частоты 50Гц:

В регистр 2001Н запишите число 01F4Н

Текст сообщения: ":010620011388 LRC "CR LF, где LRC – контрольная сумма.

Каждому символу этого сообщения соответствует двузначный код в протоколе Modbus ASCII (например, символу сообщения ":" соответствует код 3A, символу "0" соответствует код 30 и так далее, см. табл. 4).

Таблица 4.

Символ	٠٠.,,	"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"
Код ASCII	3AH	30H	31H	32H	33H	34H	35H	36H	37H
Символ	"8"	"9"	"A"	"B"	"C"	"D"	"E"	"F"	
Код ASCII	38H	39H	41H	42H	43H	44H	45H	46H	

Для задания частоты необходимо отправить сообщение :

3A 30 31 30 36 32 30 30 31 30 31 46 34 LRC 0D 0A

Ответное сообщение от преобразователя:

3A 30 31 30 36 32 30 30 31 31 33 38 38 LRC 0D 0A

2. Сообщение с командой «Пуск»

В регистр 2000Н записать число 02Н

Текст сообщения: ":010620000002 D7"CR LF

Для пуска преобразователя необходимо отправить сообщение:

3A 30 31 30 36 32 30 30 30 30 30 30 32 44 37 0D 0A

Ответное сообщение от преобразователя:

3A 30 31 30 36 32 30 30 30 30 30 30 32 44 37 0D 0A

3. Сообщение с командой «Останов»

В регистр 2000Н записать число 01Н

Текст сообщения: ":010620000001 D8"CR LF

Для остановки преобразователя необходимо отправить сообщение:

3A 30 31 30 36 32 30 30 30 30 30 30 31 44 38 0D 0A

Ответное сообщение от преобразователя:

3A 30 31 30 36 32 30 30 30 30 30 30 31 44 38 0D 0A

4. Сообщение «установить параметр Pb01 равным 3 (Pb01=3)»

Записать число 03H в параметр Pb01 (установка частоты через порт RS485).

Необходимо отправить сообщение: **3A 30 31 30 36 30 30 36 35 30 30 30 33 39 31 0D 0A**

Ответное сообщение от преобразователя:

3A 30 31 30 36 30 30 36 35 30 30 30 33 39 31 0D 0A

5. Записать 05Н в параметр Рь01 (установка частоты с помощью потенциометра)

Необходимо отправить сообщение: **3A 30 31 30 36 30 30 36 35 30 30 30 35 38 46 0D 0A**

Ответное сообщение от преобразователя:

3A 30 31 30 36 30 30 36 35 30 30 30 35 38 46 0D 0A

Проверка контрольной суммы производится по правилам протокола Modbus