EDS84AVTCxx 13387462

L-force *Drives*

Software Manual

8400

E84AVTCxxxxx

Inverter Drives 8400 TopLine C

Overview of technical documentation for Inverter Drives 8400

Project planning, selection & ordering	Legend:
□ 8400 hardware manual	Printed documentation
Catalogue	Online documentation (PDF/Engineer online help)
Mounting & wiring	Abbreviations used:
MA 8400 BaseLine/StateLine/HighLine/TopLine	BA Operating Instructions
MA for the communication module	KHB Communication manual
MA for the extension module	MA Mounting instructions
MA for the safety module	SW Software Manual
MA for the accessories	
Parameterisation	
BA keypad	
☐ SW 8400 BaseLine	
☐ SW 8400 StateLine	
☐ SW 8400 HighLine	
☐ SW 8400 TopLine	← This documentation
☐ KHB for the communication module	
Drive commissioning	
☐ SW 8400 BaseLine/StateLine/HighLine/TopLine	
→ Chapter "Commissioning"	
→ Chapter "Diagnostics & error management"	
□ Remote maintenance manual	
Networking	
□ KHR for the communication medium used	

Contents

About	t this d	<u>ocumenta</u>	tion		
1.1	Docun	nent histo	<u>ry</u>		
1.2	Conve	ntions use	<u>ed</u>		
1.3	Termir	nology use			
			e notes used		
			erising the controller		
			n parameters		
			emory module		
			ypad		
			otection		
	2.4.1		d protection		
	2.4.2		ersonalisation		
	2.4.3		ing the controller with a MasterPin		
			-		
	ımissioning				
3.1	<u>Selecti</u>	on of the	right commissioning tool		
3.2	<u>Safety</u>	instructio	ns with regard to commissioning		
3.3	Notes	<u>on motor</u>	<u>control</u>		
3.4	Precon	ditions fo	r commissioning with the »Engineer«		
3.5	<u>Troubl</u>	<u>e-shootin</u>	g during commissioning		
3.6	Comm	issioning	of the "Actuating drive speed" technology application		
	3.6.1	Prepare	controller for commissioning		
	3.6.2	Creating	an »Engineer« project & going online		
	3.6.3	<u>Paramet</u>	erising the motor control		
	3.6.4	<u>Paramet</u>	erising the application		
	3.6.5	Saving p	arameter settings safe against mains failure		
	3.6.6	Enable c	ontroller and test application		
3.7	Comm	issioning	of the "Table positioning" technology application		
	3.7.1	Prepare	controller for commissioning		
	3.7.2	Creating	an »Engineer« project & going online		
	3.7.3	<u>Paramet</u>	erising the motor control		
	3.7.4	<u>Paramet</u>	erising the application		
		3.7.4.1	Set machine parameters		
		3.7.4.2	Set the position encoder		
		3.7.4.3	Set homing		
		3.7.4.4	Enter one or more profiles		

		3.7.5	Saving parameter settings safe against mains failure	70
		3.7.6	Enable controller and test application	70
	3.8	Comm	issioning of the "Switch-off positioning" technology application	72
		3.8.1	Prepare controller for commissioning	74
		3.8.2	Creating an »Engineer« project & going online	75
		3.8.3	Parameterising the motor control	76
		3.8.4	Parameterising the application	77
		3.8.5	Saving parameter settings safe against mains failure	79
		3.8.6	Enable controller and test application	79
	3.9	PC mar	nual control	80
		3.9.1	Activating PC manual control	80
		3.9.2	Speed control.	83
		3.9.3	Set/reset home position	85
		3.9.4	Manual jog	86
		3.9.5	Positioning (relative or absolute)	87
4	Devic	e contr	ol (DCTRL)	89
	4.1	Device	commands (C00002/x)	91
		4.1.1	Load Lenze setting	94
		4.1.2	Load all parameter sets	95
		4.1.3	Save all parameter sets	96
		4.1.4	Enable/Inhibit controller	97
		4.1.5	Activate/Deactivate quick stop	98
		4.1.6	Reset error	99
		4.1.7	Delete logbook	99
		4.1.8	Device search function	100
	4.2	Device	state machine and device statuses	101
		4.2.1	FirmwareUpdate	102
		4.2.2	<u>Init</u>	103
		4.2.3	MotorIdent	104
		4.2.4	SafeTorqueOff	105
		4.2.5	ReadyToSwitchOn	106
		4.2.6	<u>SwitchedOn</u>	107
		4.2.7	OperationEnabled	108
		4.2.8	<u>TroubleQSP</u>	109
		4.2.9	<u>Trouble</u>	110
		4.2.10	<u>Fault</u>	111
		4.2.11	SystemFault	111
	4.3	Autom	atic restart after mains connection/fault	112
		4.3.1	"Inhibit at power-on" auto-start option	112
		4.3.2	Auto-start option "Inhibit at Lenze setting"	114

	4.4	Intern	<u>al interface</u>	es "LS_DriveInterface" system block	115
		4.4.1	wCANCo	ntrol/wMCIControl control words	118
		4.4.2	wDevice9	tatusWord status word	119
5	Mot	or contr	ol (MCTRL)		120
	5.1	Motor	selection/	Motor data	121
		5.1.1	Selecting	a motor from the motor catalogue in the »Engineer«	124
		5.1.2	<u>Automat</u>	ic motor data identification	126
	5.2	Select	ing the con	trol mode	131
		5.2.1	Selection	<u>help</u>	135
	5.3	Defini	ng current	and speed limits	136
	5.4	Pole p	osition ide	ntification (PPI)	139
		5.4.1		tion identification 360°	140
		5.4.2		tion identification without motion	144
	5.5	V/f ch	aracteristic	control (VFCplus)	147
		5.5.1		erisation dialog/signal flow	148
		5.5.2		ings	150
			5.5.2.1	Defining the V/f characteristic shape	151
			5.5.2.2	<u>Defining current limits (Imax controller)</u>	152
		5.5.3	<u>Optimisir</u>	ng the control mode	153
			5.5.3.1	Adapting the V/f base frequency	154
			5.5.3.2	Adapting the Vmin boost	156
			5.5.3.3	Optimising the Imax controller	158
			5.5.3.4	Optimising the stalling behaviour	159
			5.5.3.5	Torque limitation	160
			5.5.3.6	Defining a user-defined V/f characteristic	162
		5.5.4	Remedies	s for undesired drive behaviour	165
	5.6	V/f ch		control - energy-saving (VFCplusEco)	166
		5.6.1		erisation dialog/signal flow	167
		5.6.2		on of VFCplusEco - VFCplus	169
		5.6.3		ings	170
		5.6.4		ng the control mode	171
			5.6.4.1	Improving the behaviour at high dynamic load changes	172
			5.6.4.2	Adapting the slope limitation for lowering the Eco function	173
		ГСГ	5.6.4.3	Optimising the cos/phi controller	173
		5.6.5		s for undesired drive behaviour	174
	5.7		-	lus + encoder)	176
		5.7.1		erisation dialog/signal flow	176
		5.7.2		ings	178
			5.7.2.1	<u>Parameterising the slip regulator</u>	179

5.8	Sensor	sorless vector control (SLVC)					
	5.8.1	<u>Paramete</u>	erisation dialog/signal flow	183			
	5.8.2	Types of	control	185			
		5.8.2.1	Speed control with torque limitation	185			
		5.8.2.2	Torque control with speed limitation	186			
	5.8.3	Basic set	tings	187			
	5.8.4	<u>Optimisi</u>	ng the control mode	188			
		5.8.4.1	Optimising the starting performance after a controller enable	188			
		5.8.4.2	Optimise speed controller	189			
		5.8.4.3	Optimising dynamic performance and field weakening behaviour	191			
		5.8.4.4	Optimising the stalling behaviour	192			
		5.8.4.5	Optimise response to setpoint changes and determine mass inertia	194			
		5.8.4.6	Slip calculation from motor equivalent circuit diagram data	196			
	5.8.5	Remedie	s for undesired drive behaviour	197			
5.9	Sensor	less contro	ol for synchronous motors (SLPSM)	198			
	5.9.1		erisation dialog/signal flow	200			
	5.9.2	Types of control					
	5.9.3	Basic settings					
	5.9.4	Optimising the control mode					
		5.9.4.1	Optimise current controller	207			
		5.9.4.2	Optimise speed controller	208			
		5.9.4.3	Optimise response to setpoint changes and determine mass inertia	212			
5.10	Servo d	ontrol (SC	<u>)</u>	214			
			erisation dialog/signal flow	215			
			control	220			
		5.10.2.1	Speed control with torque limitation	220			
		5.10.2.2	Torque control with speed limitation	221			
	5.10.3	Basic set	tings	222			
	5.10.4	<u>Optimisi</u>	ng the control mode	223			
		5.10.4.1	Optimise current controller	224			
		5.10.4.2	Optimise speed controller	225			
		5.10.4.3	Optimise response to setpoint changes and determine mass inertia	229			
		5.10.4.4	Setting the current setpoint filter (band-stop filter)	231			
		5.10.4.5	Adapting the max. acceleration change (jerk limitation)	232			
		5.10.4.6	Slip calculation from motor equivalent circuit diagram data	233			
		5.10.4.7	Temperature compensation within the motor control	234			
		5.10.4.8	Optimising the behaviour of the asynchronous motor				
			in the field weakening range	235			

5.11	1 Parameterisable additional functions 2								
	5.11.1	Selection of switching frequency							
	5.11.2	Operation with increased rated power							
	5.11.3	Correction of the stator leakage inductance							
	5.11.4	Flying restart function	247						
	5.11.5	OC-injection braking							
		5.11.5.1 Manual DC-injection braking (DCB)	251						
		5.11.5.2 <u>Automatic DC-injection braking (Auto-DCB)</u>	251						
	5.11.6	Slip compensation	255						
	5.11.7	Oscillation damping	256						
		5.11.7.1 Oscillation damping voltage range	257						
		5.11.7.2 Oscillation damping in the field weakening range	258						
	5.11.8	Phase sequence reversal for correcting misconnected UVW motor phases	259						
	5.11.9	Field weakening for synchronous motors	260						
5.12	<u>Positio</u>	n control/additive speed specification	264						
5.13	Braking	g operation/brake energy management	265						
	5.13.1	Setting the voltage source for braking operation	267						
	5.13.2	Selecting the response to an increase of the DC-bus voltage	268						
		5.13.2.1 <u>Inverter motor brake</u>	270						
	5.13.3	Avoiding thermal overload of the brake resistor	273						
5.14	Monito	oring	274						
	5.14.1	Device overload monitoring (Ixt)	275						
	5.14.2	Motor load monitoring (I2xt)	276						
	5.14.3	Motor temperature monitoring (PTC)	278						
	5.14.4	Brake resistor monitoring (I2xt)	279						
	5.14.5	Motor phase failure monitoring	281						
	5.14.6	Motor phse error monitoring before operation	281						
	5.14.7	Mains phase failure monitoring	283						
	5.14.8	Maximum current monitoring	283						
	5.14.9	Maximum torque monitoring	284						
	5.14.10	Motor speed monitoring	284						
5.15	Interna	l interfaces system block "LS_MotorInterface"	285						
5.16	Interna	Il status signals system block "LS DeviceMonitor"	291						

<u>Enco</u>	der/fee	<u>dback system</u>	•••••
6.1	<u>Param</u>	eterisation dialog/signal flow	
6.2	Resolv	er at X7	
	6.2.1	Parameterising the resolver	
	6.2.2	Optimising resolver behaviour	
	6.2.3	Internal interfaces "LS Resolver" system block	
6.3	Multi-	Encoder at X8	
	6.3.1	Parameterising Multi-Encoders	
		6.3.1.1 TTL incremental encoder	
		6.3.1.2 Sin/cos encoder	
		6.3.1.3 Absolute value encoder (sin/cos encode	r with hiperface)
		6.3.1.4 <u>SSI encoder</u>	
	6.3.2	Internal interfaces "LS MultiEncoder" system blo	ock
		6.3.2.1 <u>Recognition of invalid encoder values</u>	
		6.3.2.2 <u>Setting of a static position offset</u>	
6.4	HTL er	coder at DI1/DI2 or DI6/DI7	
	6.4.1	Parameterising digital inputs as encoder inputs	
	6.4.2	Encoder evaluation method	
	6.4.3	HTL encoder at DI1/DI2	
	6.4.4	HTL encoder at DI6/DI7	
6.5	Monit	oring	
	6.5.1	Resolver/multi-encoder open-circuit monitoring.	
	6.5.2	Open-circuit monitoring HTL encoder	
	6.5.3	Motor temperature monitoring (KTY)	
	6.5.4	Encoder - angular drift monitoring	
		6.5.4.1 Angular drift monitoring for encoders	
		without absolute information	
		6.5.4.2 <u>Angular drift monitoring for encoders w</u>	
		<u>absolute information</u>	
<u>I/O t</u>	<u>ermina</u>	<u>s</u>	
7.1	Digita	input terminals	
	7.1.1	Change function assignment	
		7.1.1.1 Using DI1(6) and DI2(7) as digital inputs	<u></u>
		7.1.1.2 Using DI1(6) and DI2(7) as frequency in	<u>puts</u>
		7.1.1.3 Using DI1(6) as counting input	
	7.1.2	Internal interfaces System block "LS DigitalInput	<u>t"</u>
		7.1.2.1 Output of the encoder position of the D	11/DI2 frequency input
7.2	<u>Digit</u> a	output terminals	
	7.2.1	Internal interfaces System block "LS DigitalOutp	

	7.3	<u>Analog</u>	g terminals	352
		7.3.1	Parameterising analog input	355
			7.3.1.1 Signal adaptation by means of characteristic	357
		7.3.2	Parameterising analog output	359
		7.3.3	Internal interfaces System block "LS AnalogInput"	360
		7.3.4	Internal interfaces System block "LS AnalogOutput"	361
	7.4	Touch	probe detection	362
		7.4.1	Parameter setting	364
		7.4.2	Internal interfaces System block "LS TouchProbe"	367
			7.4.2.1 Application example: "Position measurement"	368
	7.5	Config		369
	7.6	User-d	defined terminal assignment	370
		7.6.1		371
		7.6.2		372
		7.6.3		374
0	Toels	nology	applications	277
8				377
	8.1			377
		8.1.1		377
		8.1.2		378
		8.1.3		379
	8.2	<u>Overvi</u>	iew of available technology applications	381
	8.3	<u>Selecti</u>	ion of the technology application and the control mode	382
	8.4	TA "Ac	tuating drive speed"	383
		8.4.1		384
		8.4.2	Internal interfaces application block "LA NCtrl"	386
		8.4.3	Terminal assignment of the control modes	394
				395
			8.4.3.2 Terminals 2	396
			8.4.3.3 <u>Terminals 11</u>	397
			8.4.3.4 <u>Terminal 16</u>	398
			8.4.3.5 <u>Keypad</u>	399
			8.4.3.6 <u>PC</u>	400
			8.4.3.7 <u>CAN</u>	401
			8.4.3.8 <u>MCI</u>	402
		8.4.4	Process data assignment for fieldbus communication	403
		8.4.5	Setting parameters (short overview)	405
		8.4.6	Configuration parameters	407

8.5	TA "Ta	<u>able positioning"</u> 41					
	8.5.1	Basic sig	nal flow	411			
		8.5.1.1	Possibilities for the position selection	412			
	8.5.2	<u>Internal</u>	interfaces Application block "LA_TabPos"	414			
	8.5.3	<u>Termina</u>	l assignment of the control modes	424			
		8.5.3.1	Terminals 0	426			
		8.5.3.2	Terminals 2	427			
		8.5.3.3	Terminals 11	428			
		8.5.3.4	<u>Terminal 16</u>	429			
		8.5.3.5	<u>Keypad</u>	430			
		8.5.3.6	<u>PC</u>	431			
		8.5.3.7	<u>CAN</u>	432			
		8.5.3.8	<u>MCI</u>	433			
	8.5.4	<u>Process</u>	data assignment for fieldbus communication	434			
	8.5.5		parameters (short overview)	436			
	8.5.6	Configu	ration parameters	436			
8.6	TA "Sw	vitch-off p	ositioning"	440			
	8.6.1	Basic sig	<u>nal flow</u>	442			
	8.6.2	<u>Internal</u>	interfaces application block "LA SwitchPos"	443			
		8.6.2.1	Truth table for activating the pre-switch off	450			
	8.6.3	<u>Termina</u>	l assignment of the control modes	451			
		8.6.3.1	Terminals 0	452			
		8.6.3.2	Terminals 2	453			
		8.6.3.3	Terminals 11	454			
		8.6.3.4	<u>Terminal 16</u>	455			
		8.6.3.5	<u>Keypad</u>	456			
		8.6.3.6	<u>PC</u>	457			
		8.6.3.7	<u>CAN</u>	458			
		8.6.3.8	<u>MCI</u>	459			
	8.6.4	<u>Process</u> (data assignment for fieldbus communication	460			
	8.6.5	Setting p	parameters (short overview)	462			
	8.6.6	Configu	ration parameters	464			
8.7	"Gene	ralPurpose	e" functions	467			
	8.7.1	Analog s	<u>witch</u>	467			
	8.7.2	<u>Arithme</u>	<u>tic</u>	468			
	8.7.3	Multipli	cation/Division	468			
	8.7.4	Binary d	elay element	469			
	8.7.5	Binary lo	ogic	469			
	8.7.6	Analog o	comparison	470			
	8.7.7	Binary si	gnal monitor	470			
	8.7.8	Analog s	ignal monitor	471			

	8.7.9 8.7.10		<u>vp</u>
3asic	drive fu	unctions (MCK)
9.1	Basic s	ignal flow	 '
9.2			es System block "LS MotionControlKernel"
	9.2.1		trol word
	9.2.2		tus word
	9.2.3		te machine
	9.2.4		e to safety system
9.3	MCKIn	terface	······
	9.3.1		nputs "L MckCtrlInterface" function block
		9.3.1.1	Alternative functions for control bit "PosExecute"
		9.3.1.2	Operating mode change with profile number
	9.3.2	Status o	utputs FB "L_MckStateInterface"
9.4	Basic s	ettings	
	9.4.1	Machine	parameters
		9.4.1.1	Gearbox ratio
		9.4.1.2	Feed constant
		9.4.1.3	Activation of the modulo measuring system
	9.4.2	Min/Ma	x speed
	9.4.3	Limit pos	sition monitoring
		9.4.3.1	Software limit positions
		9.4.3.2	Hardware limit switch
	9.4.4		osition monitoring (status "drive in target")
	9.4.5		ng of the maximum travel distance
	9.4.6	<u>Followin</u>	g error monitoring system
9.5			
	9.5.1		er setting
		9.5.1.1	Functional settings
	9.5.2		ng the operating mode
	9.5.3		selection
9.6	Homin		
	9.6.1		er setting
		9.6.1.1	Referencing mode
		9.6.1.2	Home position & home value offset
	9.6.2	9.6.1.3	Traversing a sequence profile after completion of homing
	9.6.2		ng the operating mode
	د.ن.ر	9.6.3.1	Homing on the fly

9.7 <u>Manual jog</u>					
	9.7.1	<u>Paramet</u>	er setting	534	
		9.7.1.1	Functional settings	535	
		9.7.1.2	Smooth start and quick stop of the drive	536	
		9.7.1.3	Second speed	536	
		9.7.1.4	<u>Time-based start of second speed</u>	537	
	9.7.2	Requesti	ng the operating mode	538	
	9.7.3	Executin	g manual jogging	538	
		9.7.3.1	Manual jog to limit position	539	
		9.7.3.2	Retracting of an operated limit switch	540	
9.8	Positio	ning		541	
	9.8.1	Possible	motion profiles	542	
	9.8.2	<u>Paramet</u>	er setting	543	
		9.8.2.1	Functional settings	544	
		9.8.2.2	Profile entry	545	
		9.8.2.3	Positioning modes	548	
		9.8.2.4	Touch probe positioning	549	
		9.8.2.5	S-ramp time for jerk limitation	550	
	9.8.3	Requesti	ng the operating mode	552	
	9.8.4	Carrying	out positioning	552	
		9.8.4.1	Stipulation of the profile to be executed	552	
		9.8.4.2	Starting/cancelling a traversing task	553	
		9.8.4.3	Override of the parameterised positioning mode	554	
		9.8.4.4	Position teaching	555	
9.9	Stop			556	
	9.9.1	<u>Paramet</u>	er setting	556	
	9.9.2		ng the operating mode	556	
9.10	Positio	n followe	<u>r</u>	557	
			er setting	557	
			Functional settings	557	
	9.10.2		ng the operating mode	558	
			selection	558	
9.11	Overrio	de	······	559	
			<u>/erride</u>	560	
			tion override	561	
			moothing override	562	

	9.12	<u>Holdin</u>	g brake co	<u>ntrol</u>	563
		9.12.1	<u>Internal i</u>	nterfaces	564
		9.12.2	<u>Paramete</u>	er setting	565
			9.12.2.1	Operating mode	567
			9.12.2.2	<u>Functional settings</u>	569
			9.12.2.3	Switching thresholds	570
			9.12.2.4	Application and release time	571
			9.12.2.5	Ramp time for approaching the setpoint speed	573
			9.12.2.6	Motor magnetising time (only with asynchronous motor)	574
			9.12.2.7	Actual value monitoring	574
		9.12.3	Process w	vhen brake is released	575
				vhen brake is closed	576
				<u>rr in case of pulse inhibit</u>	578
		9.12.6	<u>Feedforw</u>	vard control of the motor before release	579
10	Diagi	nostics 8	& error ma	<u>inagement</u>	581
	10.1	Basics (on error ha	andling in the controller	581
	10.2	LED sta	ntus displa	<u>ys</u>	582
		10.2.1	LED statu	is displays of the device status	583
	10.3	Drive d	liagnostics	with the »Engineer«	584
		10.3.1	Display d	etails of the status determining error.	586
	10.4	Drive d	liagnostics	s via keypad/bus system	587
	10.5	Logboo	<u>ok</u>		590
		10.5.1	Function	al description	591
		10.5.2	Filtering	logbook entries	591
		10.5.3	Reading o	out logbook entries	592
		10.5.4	Exporting	g logbook entries to a file	593
		10.5.5	File logbo	ook in project	594
	10.6	Monito	oring		595
		10.6.1	<u>Monitori</u>	ng configuration	596
		10.6.2	Setting th	ne error response	597
		10.6.3	<u>AutoFailF</u>	Reset function	598
	10.7	Malope	eration of	the drive	599
	10.8	<u>Operat</u>	ion witho	ut mains supply	601
	10.9	Error m	nessages o	f the operating system	602
		10.9.1	Structure	of the 32-bit error number (bit coding)	602
		10.9.2	Structure	of the 16-bit error number (bit coding)	605
		10.9.3	Reset erre	or messages	606
		10.9.4	Export er	ror texts	607

		10.9.5	Short overview (A-Z)	608
		10.9.6	Cause & possible remedies	611
	10.10 System block "LS_SetError_1"			
	10.13	1 <u>System</u>	n block "LS SetError 2"	636
11	Syste	em bus "	"CAN on board"	638
	11.1	Genera	al information	639
		11.1.1	General data and application conditions	640
		11.1.2	Supported protocols	640
		11.1.3	Communication time	641
	11.2	Possibl	<u>le settings via DIP switch</u>	642
		11.2.1	Activating the bus terminating resistor	642
		11.2.2	Setting the baud rate	643
		11.2.3	Setting the node address	643
	11.3	LED sta	atus displays for the system bus	644
	11.4	Going	online via system bus (CAN on board)	645
	11.5	Reinitia	alising the CANopen system bus interface	645
	11.6	Structu	ure of the CAN data telegram	646
		11.6.1	<u>Identifier</u>	646
		11.6.2	User data	648
	11.7	Comm	nunication phases/network management	649
		11.7.1	Status transitions	650
		11.7.2	Network management telegram (NMT)	651
		11.7.3	Parameterising the controller as CAN master	652
	11.8	Process	s data transfer	653
		11.8.1	Available process data objects	654
			11.8.1.1 RPDO1 Port block "LP CanIn1"	655
			11.8.1.2 RPDO2 Port block "LP CanIn2"	656
			11.8.1.3 RPDO3 Port block "LP CanIn3"	657
			11.8.1.4 TPDO1 Port block "LP CanOut1"	658
			11.8.1.5 TPDO2 Port block "LP CanOut2"	659
			11.8.1.6 TPDO3 Port block "LP_CanOut3"	660
		11.8.2	<u>Identifiers of the process data objects</u>	661
		11.8.3	<u>Transmission type</u>	662
		11.8.4	PDO synchronisation via sync telegram	
		11.8.5		
	11.8.6 Configuring exception handling of the CAN PDOs			

	11.9	Param	11.9 Parameter data transfer 668			
		11.9.1	Identifiers of the parameter data objects	669		
		11.9.2	<u>User data</u>	669		
			11.9.2.1 <u>Command</u>	670		
			11.9.2.2 Addressing by means of index and subindex	671		
				672		
				673		
		11.9.3		675		
				675		
				676		
			11.9.3.3 Read block parameters	677		
	11.10	Monito Monito	oring	680		
		11.10.1	1 Integrated error detection	680		
		11.10.2		682		
				683		
				683		
				685		
		11.10.3	3 <u>Emergency telegram</u>	686		
	11.13	l <u>Implen</u>	nented CANopen objects	687		
	11.12	2 <u>Interna</u>	al interfaces System block "LS_CANManagement"	710		
12	<u>Field</u>	<u>bus inte</u>	<u>erface</u>	711		
	12.1	Proces	s data transfer	712		
	12.2	Contro	ol mode "MCI"	714		
				715		
				716		
13	Δχίς	hus		717		
	-			718		
	15.1			718		
				718		
				720		
				720		
				722		
				723		
				724		
	13 2			726		
				727		
				729		
				730		

14	<u>Sync</u>	chronisation of the internal time base			
	14.1	Interna	al interface	es System block "LS SyncManagement"	733
15		<u>Parameter change-over</u>			
13					
15.1 <u>Internal interfaces System block "LS_WriteParamList"</u>					
	15.2 Configuring the list using the »Engineer« parameterisation dialog				
			-	ist by means of parameterisation	739
	15.4	Selecti	ng a value	<u>set</u>	740
	15.5	<u>Activat</u>	ting the wi	iting of the parameters	740
16	Parai	meter re	eference		. 742
	16.1	Structi	are of the r	parameter descriptions	743
				······································	744
		16.1.2	Paramete	ers with read-only access	744
		16.1.3	<u>Paramete</u>	ers with write access	745
			16.1.3.1	Parameters with setting range	745
			16.1.3.2	Parameters with selection list	745
			16.1.3.3	Parameters with bit-coded setting	746
			16.1.3.4	Parameters with subcodes	747
		16.1.4	<u>Paramete</u>	<u>er attributes</u>	747
	16.2	Param	eter list		749
		16.2.1	Selection	lists for connection parameters	1028
			16.2.1.1	Selection list - analog signals	1028
			16.2.1.2	Selection list - digital signals	1034
			16.2.1.3	Selection list - angle signals	1041
	16.3	Table o	of attribute	<u>25</u>	1043
17	Work	cing wit	h the FB E	<u>litor</u>	1058
	17.1	Basics			1058
		17.1.1	Basic con	ponents of a drive solution	1059
			17.1.1.1	What is a function block?	1060
			17.1.1.2	Parameterisable function blocks	1061
			17.1.1.3	What is a system block?	1061
			17.1.1.4	What is a port block?	1062
			17.1.1.5	What is an application block?	1062
		17.1.2	Conventi	ons used for input/output identifiers	1063
		17.1.3 Scaling of physical units			1064

17.2	User in	<u>nterface</u>	1065
	17.2.1	<u>Toolbar</u>	1066
	17.2.2	Search function	1067
	17.2.3	<u>Level selection</u>	1068
	17.2.4	Editor view/overview	1070
	17.2.5	Context menu	1071
		Status bar	1071
	17.2.7	Overview window	1072
17.3	Using t	the FB Editor as "Viewer"	1074
	17.3.1	Following connections of inputs and outputs	1075
	17.3.2	Keyboard commands for navigation	1076
	17.3.3	<u>Change online display format</u>	1077
17.4	Reconf	figuring the predefined interconnection	1079
	17.4.1	Inserting/Deleting objects	1079
		17.4.1.1 <u>Inserting a function block</u>	1080
		17.4.1.2 <u>Inserting a system block</u>	
		17.4.1.3 <u>Inserting a port block</u>	1084
		17.4.1.4 <u>Inserting a comment</u>	1086
		17.4.1.5 <u>Deleting objects that are no longer required</u>	
	17.4.2	Changing connector visibilities	1089
	17.4.3		1090
	17.4.4	Creating/deleting connections	1091
		17.4.4.1 <u>Creating a connection using the connection line</u>	1093
		17.4.4.2 <u>Creating a connection using port identifiers</u>	1094
		17.4.4.3 <u>Creating a connection via connection dialog</u>	1095
	17.45		
		Changing the processing order	
	17.4.6	Copying interconnection elements (across all devices)	
	17.4.7	17.4.6.1 Insert options for copied elements	1101
17.5		ing online and offline interconnection	
17.6	<u>Printin</u>	g the interconnection	1104
17.7	Compa	aring interconnections	1105
17.8	Copyin	ng an interconnection	1108
17.9	Exporting/Importing an interconnection		

18	<u>Func</u>	tion library	1110
	18.1	<u>Function blocks</u>	1110
		18.1.1 <u>L Absolute 1</u>	1115
		18.1.2 <u>L Absolute 2</u>	1115
		18.1.3 <u>L AddSub 1</u>	1116
		18.1.4 <u>L AnalogSwitch 1</u>	1117
		18.1.5 <u>L AnalogSwitch 2</u>	
		18.1.6 <u>L AnalogSwitch 3</u>	1119
		18.1.7 <u>L AnalogSwitch 4</u>	
		18.1.8 <u>L AnalogSwitch 5</u>	
		18.1.9 <u>L And 1</u>	
		18.1.10 <u>L And 2</u>	
		18.1.11 <u>L And 3</u>	
		18.1.12 <u>L And5 1</u>	
		18.1.13 <u>L And5 2</u>	
		18.1.14 <u>L_Arithmetik_1</u>	
		18.1.15 <u>L Arithmetik 2</u>	
		18.1.16 <u>L Arithmetik 3</u>	
		18.1.17 <u>L Arithmetik 4</u>	
		18.1.18 <u>L Arithmetik 5</u>	
		18.1.19 L ArithmetikPhi 1	
		18.1.20 L ArithmetikPhi 2	
		18.1.21 L ArithmetikPhi 3	
		18.1.22 L CalcDiameter 1	
		18.1.22.1 Set initial value	
		18.1.22.2 Calculate diameter	
		18.1.22.3 Select change direction, web break monitoring	
		18.1.22.4 Holding the current value	
		18.1.22.5 Limit value monitoring	
		18.1.22.6 Converting diameter in 1/D	
		18.1.22.7 Physical state variables.	
		18.1.23 <u>L Compare 1</u>	
		18.1.23.1 Function 1: nln1 = nln2	
		18.1.23.2 <u>Function 2: nln1 > nln2</u>	
		18.1.23.4 Function 4: n n1 = n n2	
		18.1.23.5 <u>Function 5: nln1 > nln2 </u>	
		18.1.23.6 Function 6: nln1 < nln2	1149
		18.1.25 L Compare 3	1151
		18.1.26 L Compare 4	
		<u> </u>	 /

18.1.27 <u>L Compare 5</u>	1153
18.1.28 <u>L ComparePhi 1</u>	1154
18.1.28.1 <u>Function 1: dnln1 = dnln2</u>	1155
18.1.28.2 <u>Function 2: dnln1 > dnln2</u>	
18.1.28.3 <u>Function 3: dnln1 < dnln2</u>	1157
18.1.28.4 Function 4: dnIn1 = dnIn2	1158
18.1.28.5 Function 5: dnln1 > dnln2	
18.1.28.6 Function 6: dnln1 < dnln2	1158
18.1.29 <u>L ComparePhi 2</u>	1159
18.1.30 <u>L_ComparePhi_3</u>	
18.1.31 <u>L ComparePhi 4</u>	
18.1.32 <u>L ComparePhi 5</u>	1162
18.1.33 <u>L ConvAP 1</u>	
18.1.34 <u>L ConvAP 2</u>	
18.1.35 <u>L ConvAP 3</u>	
18.1.36 L ConvBitsToWord 1	
18.1.37 L ConvBitsToWord 2	
18.1.38 L ConvBitsToWord 3	
18.1.39 L ConvDIntToWords 1	
18.1.40 L ConvDIntToWords 2	
18.1.41 <u>L ConvDIntToWords 3</u>	1171
18.1.42 <u>L ConvPA 1</u>	
18.1.43 <u>L_ConvPA_2</u>	
18.1.44 <u>L ConvPA 3</u>	
18.1.45 <u>L ConvPP 1</u>	
18.1.46 <u>L_ConvPP_2</u>	
18.1.47 <u>L ConvPP 3</u>	
18.1.48 L ConvUnitsToIncr 1	
18.1.49 <u>L_ConvUnitsToIncr_2</u>	
18.1.50 L ConvUnitsToIncr 3	1180
18.1.51 <u>L ConvW 1</u>	1181
18.1.52 <u>L ConvW_2</u>	
18.1.53 <u>L_ConvW_3</u>	
18.1.54 <u>L ConvW_4</u>	
18.1.55 L ConvWordsToDInt 1	
18.1.56 <u>L ConvWordsToDInt 2</u>	
18.1.57 <u>L_ConvWordsToDInt_3</u>	
18.1.58 <u>L ConvWordToBits 1</u>	
18.1.59 <u>L ConvWordToBits 2</u>	
18.1.60 L ConvWordToBits 3	1191

18.1.61 <u>L ConvX 1</u>	1192
18.1.62 <u>L ConvX 2</u>	1193
18.1.63 <u>L ConvX 3</u>	1194
18.1.64 <u>L Counter 1</u>	1195
18.1.65 <u>L Counter 2</u>	1197
18.1.66 <u>L Counter 3</u>	1199
18.1.67 <u>L Curve 1</u>	1201
18.1.67.1 <u>Function 3: nOut_a = f(table)</u>	1202
18.1.68 <u>L Curve 2</u>	
18.1.69 <u>L Curve 3</u>	1207
18.1.70 <u>L DFlipFlop 1</u>	1209
18.1.71 L DFlipFlop 2	1210
18.1.72 <u>L_DFRFG_1</u>	1211
18.1.72.1 Ramp function generator (profile generator)	1213
18.1.72.2 <u>Quick stop</u>	1215
18.1.72.3 Ramp function generator stop	1216
18.1.72.4 Reset angle setpoint	1216
18.1.72.5 Detecting the angular difference	1216
18.1.72.6 Offset setting	1217
18.1.73 <u>L DFSET 1</u>	1220
19 1 72 1 Master value rail/slave sassade	1227
18.1.73.1 Master value rail/slave cascade	1223
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor	
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor	1224 1225
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values	1224 1225 1227
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values	1224 1225 1227 1229
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals	1224 1225 1227 1229 1230
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions.	1224 1225 1227 1229 1230 1231
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L Digital Delay 1	1224 1225 1227 1229 1230 1231 1233
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2	1224 1225 1227 1229 1230 1231 1233
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3	1224 1225 1227 1229 1230 1231 1233 1234
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1	1224 1225 1227 1229 1230 1231 1233 1234 1235
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1. 18.1.78 L DigitalLogic 2.	1224 1225 1227 1229 1230 1231 1233 1234 1235 1237
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1 18.1.78 L DigitalLogic 2 18.1.79 L DigitalLogic 2	1224 1225 1227 1229 1230 1231 1233 1234 1235 1237 1239
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1 18.1.78 L DigitalLogic 2 18.1.79 L DigitalLogic 3 18.1.80 L DigitalLogic 5 1.	1224 1225 1227 1229 1230 1231 1233 1234 1235 1237 1241 1243
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1. 18.1.78 L DigitalLogic 2. 18.1.79 L DigitalLogic 3. 18.1.80 L DigitalLogic 5 1. 18.1.81 L DigitalLogic 5 2.	1224 1225 1227 1229 1230 1231 1233 1234 1235 1237 1241 1243
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1 18.1.78 L DigitalLogic 2 18.1.79 L DigitalLogic 3 18.1.80 L DigitalLogic 5 1. 18.1.81 L DigitalLogic 5 1. 18.1.82 L DT1 1	1224 1225 1227 1229 1230 1231 1233 1234 1235 1241 1243 1245
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1 18.1.78 L DigitalLogic 2 18.1.79 L DigitalLogic 3 18.1.80 L DigitalLogic 3 18.1.80 L DigitalLogic 5 1 18.1.81 L DigitalLogic 5 2. 18.1.82 L DT1 1 18.1.83 L FixSet a 1	1224 1225 1227 1230 1231 1233 1234 1235 1237 1241 1243 1245 1246
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1. 18.1.78 L DigitalLogic 2. 18.1.79 L DigitalLogic 3. 18.1.80 L DigitalLogic 5 1. 18.1.81 L DigitalLogic 5 2. 18.1.82 L DT1 1 18.1.83 L FixSet a 1. 18.1.84 L FixSet w 1	1224 1225 1227 1229 1230 1231 1233 1234 1235 1241 1243 1245 1246 1247
18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor 18.1.73.3 Processing correction values. 18.1.73.4 Synchronising slave drive to master drive 18.1.73.5 Masking out touch probe signals 18.1.73.6 Process monitoring functions. 18.1.74 L DigitalDelay 1 18.1.75 L DigitalDelay 2 18.1.76 L DigitalDelay 3 18.1.77 L DigitalLogic 1. 18.1.78 L DigitalLogic 2. 18.1.79 L DigitalLogic 3 18.1.80 L DigitalLogic 3 18.1.81 L DigitalLogic 5 1. 18.1.82 L DT1 1 18.1.83 L FixSet a 1 18.1.84 L FixSet w 1 18.1.85 L FixSet w 2	1224 1225 1227 1230 1231 1233 1234 1235 1241 1243 1245 1246 1247 1248

18.1.89 <u>L_GainOffsetP_1</u>	1252
18.1.90 <u>L_GainOffsetP_2</u>	1253
18.1.91 <u>L_GainOffsetP_3</u>	1254
18.1.92 L GainOffsetPhiP 1	
18.1.93 L GainOffsetPhiP 2	
18.1.94 <u>L GearComp 1</u>	1257
18.1.95 <u>L Interpolator 1</u>	
18.1.95.1 Signal interpolation	1260
18.1.95.2 Signal monitoring	1261
18.1.96 L JogCtrlExtension 1	
18.1.97 <u>L Limit 1</u>	1264
18.1.98 <u>L Limit 2</u>	
18.1.99 <u>L_LimitPhi_1</u>	
18.1.100 <u>L LimitPhi 2</u>	
18.1.101 <u>L LimitPhi 3</u>	1268
18.1.102 <u>L MPot 1</u>	
18.1.102.1 Activate & control motor potentiometer	1271
18.1.102.2 Deactivate motor potentiometer	1272
18.1.103 <u>L MulDiv 1</u>	
18.1.104 <u>L_MulDiv_2</u>	
18.1.105 <u>L Mux 1</u>	1275
18.1.106 <u>L Negation 1</u>	
18.1.107 <u>L_Negation_2</u>	
18.1.108 <u>L NLim 1</u>	
18.1.109 <u>L NLim 2</u>	
18.1.110 <u>L_Not_1</u>	
18.1.111 <u>L_Not_2</u>	1283
18.1.112 <u>L Not 3</u>	1284
18.1.113 <u>L Not 4</u>	1284
18.1.114 <u>L Not 5</u>	1285
18.1.115 <u>L Not 6</u>	1285
18.1.116 <u>L Not 7</u>	1286
18.1.117 <u>L NSet 1</u>	1287
18.1.117.1 Main setpoint path	1290
18.1.117.2 <u>JOG setpoints</u>	1291
18.1.117.3 Setpoint inversion	1291
18.1.117.4 Value range of the input signal	1291
18.1.117.5Skip frequency function	1292
18.1.117.6Ramp function generator for the main setpoint	1295
18.1.117.7 <u>S-shaped ramp</u>	1297
18.1.117.8Additional setpoint	1297
18.1.117.9Application example for the additional load function	1297

18.1.118 <u>L_Odometer_1</u>	
18.1.119 <u>L_OffsetGain_1</u>	1300
18.1.120 <u>L_OffsetGain_2</u>	1301
18.1.121 <u>L_OffsetGain_3</u>	1302
18.1.122 <u>L_OffsetGainP_1</u>	1303
18.1.123 <u>L_OffsetGainP_2</u>	1304
18.1.124 <u>L_OffsetGainP_3</u>	1305
18.1.125L OffsetGainPhiP 1	1306
18.1.126L OffsetGainPhiP 2	1307
18.1.127 <u>L Or 1</u>	1308
18.1.128 <u>L Or 2</u>	1309
18.1.129 <u>L_Or_3</u>	1310
18.1.130 <u>L Or 4</u>	1311
18.1.131 <u>L_Or5_1</u>	1312
18.1.132 <u>L_Or5_2</u>	1313
18.1.133 <u>L_PhaseDiff_1</u>	
18.1.134 <u>L_PhaseDiff_2</u>	1315
18.1.135 <u>L_PhaseIntK_1</u>	1316
18.1.135.1 Function at constant input value	1317
18.1.135.2 Function at input value with sign reversal	1318
18.1.135.3 Calculation of the output signal	1319
18.1.136 <u>L PhaseIntK 2</u>	1320
18.1.137L_PhiIntegrator_1	1322
18.1.137.1 <u>Function</u>	1324
18.1.137.2 <u>Example</u>	1325
18.1.138 <u>L_PosCtrlLin_1</u>	1326
18.1.139 <u>L PosCtrlLin 2</u>	1329
18.1.140L PosiShaftCtrlInterface 1	1332
18.1.141L ProcessCtrl 1	
18.1.141.1Control characteristic	1335
18.1.142 <u>L PCTRL 1</u>	1337
18.1.142.1Control characteristic	
18.1.142.2 Ramp function generator	1342
18.1.142.3 Operating range of the PID process controller	1342
18.1.142.4Evaluation of the output signal	1343
18.1.142.5 Comparison function "Actual value = setpoint"	1343
18.1.142.6 Control functions	1344
18.1.143 <u>L PT1 1</u>	
18.1.144 <u>L PT1 2</u>	
18.1.145 <u>L PT1 3</u>	
18 1 146L RIO 1	1348

	18.1.147 <u>L_RSFIIDFIOD_1</u>	1349
	18.1.148 <u>L_RSFlipFlop_2</u>	1350
	18.1.149L SampleHold 1	1351
	18.1.150 <u>L_SampleHold_2</u>	1352
	18.1.151 <u>L_SignalMonitor_a</u>	1353
	18.1.152L SignalMonitor b	1354
	18.1.153 <u>L SignalSwitch 1</u>	1355
	18.1.154 <u>L SignalSwitch 2</u>	1356
	18.1.155 <u>L SignalSwitch 3</u>	1357
	18.1.156 <u>L SignalSwitch 4</u>	1358
	18.1.157 <u>L SignalSwitch32_1</u>	1359
	18.1.158 <u>L SignalSwitch32 2</u>	1360
	18.1.159 <u>L_SignalSwitch32_3</u>	1361
	18.1.160 <u>L_SQrt_1</u>	1362
	18.1.161 <u>L_SRFG_1</u>	1363
	18.1.162 <u>L_SRFG_2</u>	1365
	18.1.163 <u>L_SwitchPoint_1</u>	1367
	18.1.163.1 Definition of the switching range	1369
	18.1.163.2 Dead time compensation	1369
	18.1.163.3 Switching hysteresis	1370
	18.1.163.4 Position/time-based cams	1371
	18.1.164 <u>L Transient 1</u>	1372
	18.1.164.1 Function 0: Evaluate rising signal edges	1373
	18.1.164.2 Function 1: Evaluate falling signal edges	1373
	18.1.164.3 Function 2: Evaluate rising and falling signal edges	1374
	18.1.165 <u>L_Transient_2</u>	1375
	18.1.166 <u>L Transient 3</u>	1376
	18.1.167 <u>L Transient 4</u>	1377
	18.1.168 <u>L Transient 5</u>	1378
	18.1.169 <u>L Transient 6</u>	1379
	18.1.170 <u>L Transient 7</u>	1380
	18.1.171 <u>L Transient 8</u>	1381
18.2	System blocks	1382
	18.2.1 LS AnalogInput	
	18.2.2 LS AnalogOutput	
	18.2.3 LS AxisBusAux	
	18.2.4 LS AxisBusIn	
	18.2.5 LS AxisBusIO.	
	18.2.6 LS AxisBusOut	
	18.2.7 LS CANManagement	
	18.2.8 LS DataAccess	

18.2.9 LS DeviceMonitor	1385
18.2.10 LS DigitalInput	1385
18.2.11 LS DigitalOutput	1385
18.2.12 LS DisFree	1386
18.2.13 LS DisFree a	1387
18.2.13.1 Display of internal process variables in application units	1388
18.2.14 LS DisFree b	1389
18.2.15 LS DisFree p	1390
18.2.16 LS DriveInterface	1390
18.2.17 LS Keypad	1391
18.2.18 LS MotionControlKernel	1392
18.2.19 LS MotorInterface	1392
18.2.20 LS MultiEncoder	1392
18.2.21 LS ParFix	1393
18.2.22 <u>LS ParFree</u>	1394
18.2.23 LS ParFree 2	1395
18.2.24 LS ParFree a	1396
18.2.25 LS ParFree a 2	1397
18.2.26 LS ParFree b	1398
18.2.27 LS ParFree p	1399
18.2.28 LS ParFree v	1400
18.2.29 LS ParFree v 2	1401
18.2.30 <u>LS_ParFree32</u>	1402
18.2.31 LS ParFreeUnit	1403
18.2.32 LS ParFreeUnit 2	1404
18.2.33 LS ParReadWrite 1-6	1405
18.2.33.1 Arithmetic function	1407
18.2.34 LS PulseGenerator	
18.2.35 <u>LS Resolver</u>	1410
18.2.36 LS RetainData	1411
18.2.37 LS SetError 1	1413
18.2.38 LS SetError 2	1413
18.2.39 LS SyncManagement	1413
18.2.40 LS TouchProbe	1413
18.2.41 LS WriteParamList	1413
<u>Index</u>	1414
Your opinion is important to us	1432
Total opinion is important to as	T-100

19

1 About this documentation

Danger!

The controller is a source of danger which may lead to death or severe injury of persons.

To protect yourself and others against these dangers, observe the safety instructions before switching on the controller.

Please read the safety instructions provided in the 8400 mounting instructions and in the 8400 hardware manual. Both documents are supplied with the controller.

This software manual contains information on the parameterisation of the 8400 TopLine C controller by means of the L-force »Engineer« and the X400 keypad.

The information provided in this software manual applies to the 8400 TopLine C controller with the following nameplate data:

Product series	Type designation	from software version
8400 TopLine C	E84AVTCxxxxx	01.00

All screenshots provided in this documentation are application examples. Depending on the software version of the controller and the version of the installed »Engineer« software, the screenshots in this documentation may differ from the representation in the »Engineer«.

Information and tools for Lenze products are provided in the download area at http://www.Lenze.com

1.1 **Document history**

Version			Description
2.0	08/2011	TD05	Extended by new functions for 8400 TopLine C V02.00.00
1.2	02/2011	TD05	Error corrections & supplements
1.1	11/2010	TD05	First edition

1.2 Conventions used

This Software Manual uses the following conventions to distinguish between different types of information:

Type of information	Writing	Examples/notes	
Spelling of numbers			
Decimal separators	Point	The decimal point is generally used. For example: 1234.56	
Text			
Version info	Blue text colour	Information that is only valid for or from a certain software version of the controller is marked accordingly in this manual. Example: This function extension is available from version 02.00.00!	
Program name	» «	The Lenze »Engineer« PC software	
Window	italics	The Message window / The Options dialog box	
Variable identifier		Set bEnable to TRUE to	
Control element	bold	The OK button / The Copy command / The Properties tab / The Name input field	
Sequence of menu commands		If the execution of a function requires several commands, the individual commands are separated by an arrow: Select File→Open to	
Shortcut	<bold></bold>	Press <f1></f1> to open the online help.	
		If a command requires a combination of keys, a "+" is placed between the key symbols: Use <shift>+<esc></esc></shift> to	
Hyperlink	underlined	Optically highlighted reference to another topic. In this documentation activated by mouse-click.	
lcons			
Page reference	(💷 26)	Optically highlighted reference to another page. In this documentation activated by mouse-click.	
Step-by-step instructions		Step-by-step instructions are indicated by a pictograph.	

Information that is only valid for or from a certain software version of the controller is marked accordingly in this manual.

Terminology used 1.3

Term	Meaning
»Engineer«	Lenze PC software which supports you in "engineering" (parameterisation, diagnostics and configuration) throughout the whole life cycle, i.e. from planning to maintenance of the commissioned machine.
Application block	Block for a technology application (e.g. actuating drive speed) A technology application is a drive solution based on the experience and know-how of Lenze in which function blocks interconnected to a signal flow form the basis for implementing typical drive tasks.
ASM	Abbreviation for asynchronous motor
Code	Parameter used for controller parameterisation or monitoring. The term is usually called "index".
Display code	Parameter that displays the current status or value of an input/output of a system block.
Emergency brake	The emergency brake serves to shutdown rotary or translatory masses in motion in emergency situations. Emergency situations are exceptional situations that only occur sporadically.
FB Editor	Function block editor Graphical interconnection tool which is provided for FB interconnections in the »Engineer« on the FB Editor tab and by means of which the applications integrated in the 8400 HighLine controller can also be reconfigured and extended by individual functions.
Function block	General designation of a function block for free interconnection (from "HighLine" device version). A function block can be compared with an integrated circuit that contains a certain control logic and delivers one or several values when being executed. Each function block has a unique identifier (the instance name) and a processing number which defines the position at which the function block is calculated during the task cycle. Example: "L_Arithmetik1" (function block for arithmetic operations)
Holding brake	The holding brake serves to statically hold e.g. a position during the downtimes of a robot/travelling/synchronous/hoist drive.
Keypad	 The keypad is an alternative to the PC for the local operation, parameterisation, and diagnostics in a simple manner. Detailed type designation: X400 keypad Order designation: EZAEBK1001
LA	Abbreviation for Lenze Application block Example: "LA_NCtrl" (block for the "Actuating drive speed" application)
Lenze setting	This setting is the default factory setting of the device.
LP	Abbreviation for Lenze Port block Example: "LP_CanIn1" (CAN1 port block)
LS	Abbreviation for Lenze System block Example: "LS_DigitalInput" (system block for digital input signals)
Port block	Block for implementing the process data transfer via a fieldbus
PSM	Abbreviation for permanently excited synchronous motor
QSP	Abbreviation for quick stop
SC	Abbreviation for Servo Control
Service brake	The service brake serves to shutdown rotary or translatory masses in motion in a controlled manner. The energy to be dissipated in this process is produced in the form of friction energy. Unlike emergency braking, this process is a regular and recurring operating mode.
SLPSM	Abbreviation for sensorless control of synchronous motors
SLVC	Abbreviation for SensorLess Vector Control

8400 TopLine C | Software Manual About this documentation

Terminology used

Term	Meaning
Subcode	If a code contains several parameters, the individual parameters are stored under "subcodes". This Manual uses a slash "/" as a separator between code and subcode (e.g. "C00118/3"). The term is usually called "subindex".
System block	System blocks provide interfaces to basic functions and to the hardware of the controller in the FB Editor of the »Engineer« (e.g. to the digital inputs).
USB diagnostic adapter	The USB diagnostic adapter is used for the operation, parameterisation, and diagnostics of the controller. Data are exchanged between the PC (USB connection) and the controller (diagnostic interface on the front) via the diagnostic adapter. • Order designation: E94AZCUS
VFCplus	Abbreviation for Voltage Frequency Control

1.4 Definition of the notes used

The following signal words and symbols are used in this Software Manual to indicate dangers and important information:

Safety instructions

Layout of the safety instructions:

Pictograph and signal word!

(characterise the type and severity of danger)

Note

(describes the danger and informs how to prevent dangerous situations)

Pictograph	Signal word	Meaning
4	Danger!	Danger of personal injury through dangerous electrical voltage Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
\triangle	Danger!	Danger of personal injury through a general source of danger Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
STOP	Stop!	Danger of property damage Reference to a possible danger that may result in property damage if the corresponding measures are not taken.

Application notes

Pictograph	Signal word	Meaning
i	Note!	Important note to ensure trouble-free operation
- 🔓 -	Tip!	Useful tip for easy handling

2 **Introduction: Parameterising the controller**

[2-1] Exemplary constellation for parameterising the controller

Being a component of a machine which includes a speed-variable drive system, the controller needs to be adjusted to its drive task. The controller is adjusted by changing parameters which are saved in the memory module. These parameters can be accessed by keypad, by the L-force »Engineer« or by a master control via fieldbus communication:

- ▶ Simply plug in the X400 keypad onto the controller if you would like to use it.
- ▶ The USB diagnostic adapter, for instance, can be used for the communication between the PC (including the L-force »Engineer« software) and the controller, see illustration. The USB diagnostic adapter is the connection between the PC (free USB port) and the controller (X6 diagnostic interface).
- The "CAN on board" CAN interface and the MCI interface are provided for fieldbus communication and can be used for a communication module (e.g. PROFIBUS).

How to obtain/update the L-force »Engineer« software:

• Download from the Internet:

The full version of the »Engineer StateLevel« is provided free of charge. Current software can be found on the Internet in the "Services & Downloads" area under http://www.Lenze.com.

· Requesting the CD

You can also request the L-force »Engineer« separately on CD free of charge at your Lenze representative. See the "About Lenze" area on our homepage for e.g. the corresponding German address.

2.1 General notes on parameters

All parameters for controller parameterising or monitoring are saved as so-called "codes".

- ▶ The codes are numbered and indicated by the prefix "C" before the code, e.g. "C00002".
- ▶ In addition, every code has a name and specific attributes:
 - Access type (read, write)
 - Data type
 - Limit values
 - Lenze setting (factory settings)
- ► For the sake of clarity, some codes contain "subcodes" for saving parameters. This Manual uses a slash "/" as a separator between code and subcode, e.g. C00118/3".
- ▶ According to their functionality, the parameters are divided into three groups:

Parameter group	Examples
Setting parameters Parameters for specifying setpoints and for setting device / monitoring functions.	C00005: Application selection C00012: Accel. time - main setpoint C00169: Logbook setting C00604: Resp. to device overload (lxt)
Configuration parameters Parameters for configuring signal connections (function block interconnections) within the device, e.g. assignment of the digital input terminals to the control inputs of the technology application.	C00700: LA_NCtrl: Analog connection list C00701: LA_NCtrl: Digital connection list C00710: LA_TabPos: Analog connection list C00711: LA_TabPos: Digital connection list
Diagnostic/Display parameters Parameters for displaying device-internal process factors, current actual values, and status messages, e.g. for diagnostic purposes. These are read-only parameters.	C00052: Motor voltage C00137: Device status C00150: Status word C00165: Error information

The terms "code" and "subcode" generally correspond to the terms "index" and "subindex" and "parameter" and "subparameter".

Handling the memory module

2.2 Handling the memory module

All parameters of the drive system are saved in the integrated memory module of the controller. These include

- ▶ the parameters of the controller
- ▶ the parameters of the communication module plugged into the MCI interface
- ▶ the parameters of the possibly existing safety module (device variant)

When handling the memory module, a distinction is drawn between the following scenarios:

Delivery

- ▶ All devices are delivered with a plugged-on memory module.
- ► In the delivery state, the Lenze setting of the parameters has been saved to the memory module.
- ▶ The memory module can be preconfigured with customised data.
- ▶ The memory module is available as a spare part without any data.

During operation

Note!

Automatic saving is explicitly not supported because this significantly reduces the service life of the memory module.

- ▶ Plugging and unplugging the memory module results in a message.
- ► Full functionality of the memory module is even provided if the power supply has been switched off and only the electronic components of the controller are externally supplied by a 24 V DC voltage, e.g. via the X5/24E terminal.
- ▶ Parameter sets can be saved manually.
- ▶ Parameter sets can be loaded manually.

Removing the memory module

- ► The memory module can be plugged and unplugged during operation. The behaviour of the device remains basically unchanged because all parameters are available in the RAM after the device has been started.
- ▶ Unplugging the memory module during operation results in an error message and should therefore be avoided.
- ► The device can also be parameterised when the memory module is unplugged. Of course, the parameter sets cannot be saved to the memory module then (cp. <u>Saving the</u> parameters to the memory module safe against mains failure (□ 33)).

Replacing the controller

- ▶ In the event of a device replacement, the entire parameter data of an axis can be copied to the replacement device by "taking along" the memory module, so that additional PC or keypad operations are not required.
- ► When replacing the controller, the versions of the old device and the new device are of importance. Before data are actually transferred, the versions are internally checked. Basically, the following applies:
 - Parameter sets of old devices with V 1.0 can be processed on new devices ≥ V 1.0 (downward compatibility).
 - Parameters of devices with higher versions are not supported on devices with lower versions. An error message will be issued if the parameter set versions of the two devices are not compatible.
 - Parameter sets of devices with versions that have less functions (e.g. 8400 StateLine) can be loaded into and executed on devices with versions that have more functions (e.g. 8400 HighLine). The reverse is not possible!

Saving the parameters to the memory module safe against mains failure

Controller parameter changes via the »Engineer«, the keypad, or a master control via fieldbus communication will be lost after mains switching of the controller unless the settings have been explicitly saved to the memory module.

- ► Execute the "Save all parameter sets" device command (C00002/11) to save the current parameter settings to the memory module. (© 96)
- ▶ Using the keypad, you can also press function key to save the parameter settings.

Note!

When the device or the external 24 V DC voltage supply is switched on, all parameters are automatically loaded from the memory module into the main memory of the controller.

Please observe the following points during the storage process to avoid data inconsistencies which would result in an error when loading the parameters from the memory module:

- Do not switch off the supply voltage!
- Do not remove the memory module from the device!

8400 TopLine C | Software Manual

Introduction: Parameterising the controller Handling the memory module

Parameter set transfer using the »Engineer«

When an online connection to the controller has been established, the following transfer functions can directly be executed via the *Toolbar* or the **Online** menu using the L-force »Engineer«:

Symbol	Menu command	Shortcut
₽	Download parameter set	<f5></f5>
-	Read parameter set from device	<f7></f7>
	Save parameter set	

Detailed information on parameter set transfers using the »Engineer« can be found in the »Engineer« online help.

2.3 Handling the keypad

Use the keypad for quick and simple parameter setting and for displaying current actual values and device statuses via the respective display parameters. For this purpose, plug in the keypad onto the X6 diagnostic interface on the front of the standard device.

Danger!

In general, changing a parameter causes an immediate response in the controller!

- This may lead to undesirable behaviour on the motor shaft if the controller has been enabled!
- Setpoint sources, for instance, may switch over all of a sudden (e.g. when configuring the signal source for the main setpoint).

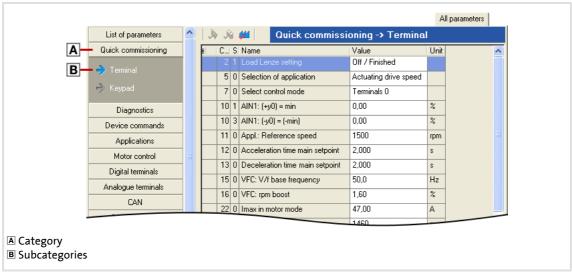
Certain device commands or settings which may cause critical states of drive behaviour constitute exceptions. Such parameter changes are only possible if the controller is inhibited. Otherwise, a corresponding error message will be issued.

Note!

Plugging and unplugging the keypad is possible during operation.

Detailed information on the keypad can be found in the operating instructions accompanying the keypad!

Menu structure


In the keypad, the parameters are classified into various menus and submenus.

- ➤ The **USER menu** includes a selection of frequently used parameters (freely configurable in C00517).
- ► The **Code list** contains all parameters.
- ► The **Go to param** function enables you to reach the corresponding parameter directly.
- ► The **Logbook** logs all errors and their chronological history.

Handling the keypad

▶ All other menus and submenus in the keypad correspond precisely to the categories and subcategories which are displayed in the form of buttons on the left hand side of the All parameters tab in the »Engineer«:

[2-2] All parameters tab in the »Engineer«

General operation

- 1. Use the $^{\diamondsuit}/^{\diamondsuit}$ navigation keys to select the desired menu.
 - Use the ♦/♦ navigation keys to reach a higher/lower menu level.
 - Use the E function key to return to the main menu.
- 2. Use the $\diamondsuit/\diamondsuit$ navigation keys to select the parameter to be set within a submenu.
- 3. Use the magnitude function key to switch over to the editing mode.
- 4. Use the navigation keys to set the desired value.
 - Use the ♦/♦ navigation keys to move the cursor to the left/right.
 - Use the $\diamondsuit/\diamondsuit$ navigation keys to change the selected digit.
- 5. Use the ox function key to accept the change and to leave the editing mode.
 - Use the see function key to leave the editing mode without accepting the change.

General information on setting parameters using the »Engineer« can be found in the »Engineer« online help.

Introduction: Parameterising the controller Device access protection

2.4 Device access protection

Various tasks can be carried out via the functions of the device access protection:

► Password protection

- Only authorised persons (who know the password) are permitted to read/change all parameters of the controller.
- Unauthorised persons (who do not know the password) are only granted access to the max. 32 parameters of the user menu.

► Device personalisation

 Only controllers and memory modules which are personalised with a specific binding ID can be used for the system.

Note!

If password protection/device personalisation is used:

- Let the end customer know that Lenze can only provide limited service in case of devices with access protection.
- Lenze cannot modify e.g. a replacement device via special access to make it work with a personalised memory module.
- The keypad does not support the alpha-numeric entry of a password, thus the keypad cannot be used for entry.

Device access protection

2.4.1 Password protection

If password protection has been activated, only a write/read access to the parameters of the user menu is possible. Possible configurations of various protective functions, personalised for every single communication channel, are being prepared.

Short overview of the relevant parameters for password protection:

Parameter	Info	Lenze setting				
<u>C00505/3</u>	Password The password The password Iower case Note: After the execut parameter pro					
	OFF	No password has been set, password protection is not active (Lenze delivery status).				
	ON	 ON Password has been set, password protection is active. This status is also displayed after an unsuccessful check/deletion of the password due to an invalid entry. 				
	OK	OK Password has been set, password protection is not active.Password protection is temporarily deactivated.				
Device commands Before the following of	device command	Is are executed, enter the corresponding password in <u>C</u>				
<u>C00002/31</u>	Set password • Activating p	0: Off / ready				
C00002/32	Check passwor	0: Off / ready				
C00002/33	Delete passwo Deactivating	0: Off / ready				
Status displays						
<u>C00003</u>	Status of the la	ast device command	-			
<u>C00507/1</u>	Password prot Bit coded d	-				
	Bit 0	Only access to user menu				
	Bit 1	Parameter write protection				
	Bit 2	Parameter read protection				
	Bit 3 14	Reserved				
	Bit 16					
Highlighted in grey = display						

Activating password protection

Password protection is activated by setting a password.

How to set a password:

- 1. Enter the desired password in C00505/3.
 - The password can have a maximum length of 16 characters.
 - The password may contain the following characters: lower case letters (a - z), upper case letters (A - Z), digits (0 - 9)
- 2. Execute "Set password" device command: C00002/31 = "1: On / start"
 - After successful execution, password status ON is displayed in C00505/3 and password protection takes immediate effect.

Temporary deactivation of active password protection

Execute the "Check password" device command to deactivate the password protection temporarily to be able to carry out password protected functions.

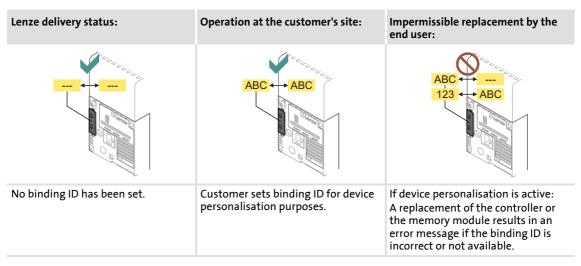
- ▶ Password protection will be deactivated until
 - a valid password is entered and checked
 - the external 24 V supply of the control electronics is switched off (< 19 V).

How to temporarily deactivate active password protection:

- 1. Enter the set password in C00505/3.
- 2. Execute "Check password" device command C00002/32 = "1: On / start"
 - After a successful check, password status OK is displayed in C00505/3.

Deactivating password protection/changing the password

Password protection can simply be deactivated by deleting the set password. If you would like to change the set password, delete the set password first. Then set the desired new password.


How to delete the set password:

- 1. Enter the set password in C00505/3.
- 2. Execute "Delete password" device command C00002/33 = "1: On / start"
 - After a successful deletion, password status OFF is displayed in C00505/3.

2.4.2 Device personalisation

The device personalisation serves to connect the controller to the memory module by means of a binding ID. If the device personalisation is active, write/read actions between the controller and the memory module are only executed if both components have identical binding IDs.

If, for instance, a parameter set has been loaded from the memory module when the device personalisation was active, this parameter set cannot be saved to another memory module that has a different binding ID or no binding ID at all.

► Hence, a parameter set cannot be copied from a personalised memory module to a non-personalised memory module!

The following two types are distinguished during the check:

- ► If a different binding ID is detected during switch-on of the controller (during device initialisation):
 - The "Fault" error response is returned.
 - The "PS10: Invalid memory module binding" error message is entered into the logbook.
- ► If a different binding ID is detected during the execution of a device command for loading/saving the parameter set:
 - The loading/saving process is not carried out.
 - A corresponding status for the device command is output in C00003.

Short overview of the relevant parameters for device personalisation:

Parameter	Info		Lenze setting			
<u>C00505/2</u>	Binding ID The binding binding lower case Note: After the execuparameter pro					
		No binding ID has been set.				
	ON	Binding ID has been set.				
Device commands Before the following d	levice command	Is are executed, enter the corresponding binding ID in	<u> 200505/2</u> .			
<u>C00002/29</u>	Set binding ID 0: Off / ready Activating device personalisation					
<u>C00002/30</u>	Delete binding ID Deactivating the device personalisation/changing the binding ID 0: Off / read					
Status displays						
C00003	Status of the la	ast device command	-			
<u>C00507/1</u>	•	ection - all communication channels isplay of the active protective functions:	-			
	Bit 0	Only access to user menu				
	Bit 1	Parameter write protection				
	Bit 2	Parameter read protection				
	Bit 3 14	Bit 3 14 Reserved				
	Bit 16					
Highlighted in grey = display	parameter					

Activating device personalisation

The device personalisation is activated by setting a binding ID.

How to set a binding ID:

- 1. Enter the desired binding ID in C00505/2.
 - The binding ID can have a maximum length of 16 characters.
 - The binding ID may contain the following characters: lower case letters (a - z), upper case letters (A - Z), digits (0 - 9)
- 2. Execute "Set binding ID" device command C00002/29 = "1: On / start"
 - After successful execution, status ON is displayed in C00505/2.

Introduction: Parameterising the controller

Device access protection

Deactivating the device personalisation/changing the binding ID

The device personalisation is simply deactivated by deleting the set binding ID. If you would like to change the set binding ID, delete the set binding ID first. Then set the desired new binding ID.

How to delete the binding ID:

- 1. Enter the set binding ID in C00505/2.
 - If the controller and the memory module have different binding IDs, enter the binding ID of the memory module to delete the binding IDs of both components.
- 2. Execute "Delete binding ID" device command C00002/30 = "1: On / start"
 - After a successful deletion, status OFF is displayed in <u>C00505/2</u>.

2.4.3 Unlocking the controller with a MasterPin

Every controller has an individual master password, the MasterPin. A controller which is locked due to password mechanism can reach the delivery status again if the MasterPin is entered.

Stop!

If the MasterPin is entered, the parameter set both in the controller and in the memory module is reset to the Lenze setting!

- Customised parameterisation will be permanently lost and must be recreated!
- The reset to the Lenze setting may lead to unexpected level changes at the I/O terminals (e.g. brake control)!

How to re-establish the delivery status:

- 1. Inhibit the controller if it is enabled, e.g. via the C00002/16 device command.
- 2. Enter the MasterPin in C00505/1.
 - The last six digits of the serial number of the memory module represent the MasterPin.
- 3. Execute "Check MasterPin" device command C00002/28 = "1: On / start"

3 Commissioning

Danger!

Uncontrolled motor movements can occur

Under certain conditions the motor may rotate after mains connection.

Possible consequences:

- Persons in the vicinity of the machine or plant risk getting hurt.
- Unexpected starting action may damage the machine or plant.

Protective measures:

- Commissioning with external 24 V supply and without mains voltage. In this case, the controller can only be parameterised and diagnosed during commissioning.
- · Ensure that setpoints are not active.

- Information on some of the operating statuses can quickly be obtained via the LED status displays on the front of the controller. (582)
- Check firmware: Particularly with regard to the use of older controllers (e.g. if the customer is using one from stock) it makes sense to check the software (firmware) version. The software version of the controller can be seen on the nameplate in the "HW/SW" line and can be determined by reading out code C00099.
- Restore delivery status: Set code C00002/1 to "1: On / start" to reset all parameter settings of the device to the Lenze setting. This leaves you with a defined device configuration. ▶ Load Lenze setting (□ 94)

Commissioning Selection of the right commissioning tool

3.1 Selection of the right commissioning tool

There are two possibilities for commissioning the 8400 TopLine controller:

- ► Commissioning via keypad (diagnosis terminal)
 - If you only have a few parameters to adapt.
 - For test / demonstration purposes.
- ► Commissioning via PC / »Engineer«
 - In general, commissioning via the »Engineer« is suitable for every drive task, particularly for those with higher requirements or more comprehensive parameterisation.
 - Via the »Engineer« all parameters of the 8400 TopLine controller can easily be accessed which makes commissioning highly flexible.
 - Moreover, the »Engineer« provides comprehensive diagnostics options and an integrated online help which can be called via function key [F1].

The following chapters describe the commissioning of the available technology applications with the »Engineer«.

Information on the commissioning with the keypad (diagnosis terminal) is provided in the **8400 hardware manual**.

• The hardware manual has been stored in electronic form on the data carrier supplied with the 8400 drive controller.

3.2 Safety instructions with regard to commissioning

General safety instructions

To avoid injury to persons or damage to material assets,

- ► check <u>before connecting the mains voltage</u>
 - the wiring for completeness, short circuit, and earth fault
 - the "emergency stop" function of the entire system
 - that the motor circuit configuration (star/delta) is adapted to the output voltage of the controller
 - the in-phase connection of the motor
- ► check the setting of the most important drive parameters <u>before enabling the controller</u>:
 - the V/f rated frequency must be adapted to the motor circuit configuration!
 - the drive parameters relevant for your application must be set correctly!
 - the configuration of the I/O terminals must be adapted to the wiring!
- ensure that there are no active speed setpoints before enabling the controller.

Safety instructions with regard to motor operation

Danger!

- Continuous operation of self-ventilated motors at small field frequencies and rated motor currents is not permissible for thermal reasons!
 - In the Lenze setting, the <u>Motor temperature monitoring (PTC)</u> is activated.
 (□ 278)
 - Activate the <u>Brake resistor monitoring (I2xt)</u> if necessary. (<u>Q</u> 279)
- C00015 must be used to select 87 Hz operation if a delta-connected asynchronous motor (nameplate data: $400 \text{ V}_{\Upsilon}/230 \text{ V}_{\Delta}$) is to be operated in conjunction with a drive controller for a mains voltage of 400 V.

3.3 Notes on motor control

In the Lenze setting, the V/f characteristic control (VFCplus) as motor control is set in C00006 with a linear characteristic.

- ▶ V/f characteristic control (VFCplus) is a motor control mode for classic frequency inverter applications on the basis of a simple and robust control procedure for the operation of machines with a linear or quadratic load torque characteristic (e.g. fans).
- ► The presettings of the parameters ensure that the controller is ready for operation right away and the motors works adequately without further parameterisation if a controller and a 50 Hz asynchronous machine with matching performances are assigned.

Note!

Check the nameplate data against the motor data set in the controller. Further information is provided in the chapter "Motor selection/Motor data". (© 121)

Recommendations for the following application cases:

- ► If the controller and motor differ greatly in terms of performance: Set the Imax limit (in motor mode) in <u>C00022</u> to 2x rated motor current.
- ▶ If a high starting torque is required: When the motor is idling, set a value for Vmin boost in <u>C00016</u> which ensures that the rated motor current flows at a field frequency of f = 3 Hz (display in C00058).
- ► For noise optimisation: In C00018, set a switching frequency of "16 kHz var./drive-opt.".
- ► If a high torque must be provided at small speeds without feedback: Select "Sensorless vector control (SLVC) as motor control mode in C00006.

Related topics:

▶ Motor control (MCTRL) (□ 120)

3.4 Preconditions for commissioning with the »Engineer«

For commissioning, you need

- ▶ a PC that satisfies the following requirements:
 - processor with 1.4 GHz or higher
 - at least 512 MB RAM and 650 MB free hard disc space
 - Microsoft® Windows® 2000 operating system (from service pack 2 onwards) or Windows® XP
- ▶ the Lenze »Engineer« PC software
- ▶ a connection to the controller, e.g. via a USB diagnostic adapter:
 - connect the USB diagnostic adapter to the X6 diagnostic interface.
 - establish a connection between the USB diagnostic adapter and the PC via a free USB port.

How to obtain/update the L-force »Engineer« software:

• Download from the Internet:

The full version of the »Engineer StateLevel« is provided free of charge. Current software can be found on the Internet in the "Services & Downloads" area under http://www.Lenze.com.

· Requesting the CD

You can also request the L-force »Engineer« separately on CD free of charge at your Lenze representative. See the "About Lenze" area on our homepage for e.g. the corresponding German address.

8400 TopLine C | Software Manual

Commissioning Trouble-shooting during commissioning

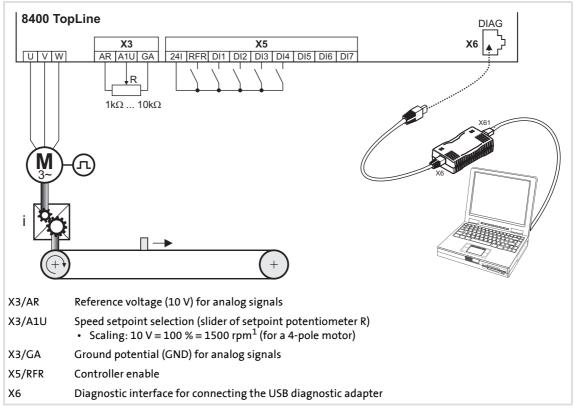
3.5 Trouble-shooting during commissioning

With the »Engineer« trouble during commissioning can be detected and eliminated conveniently. Proceed as follows:

- ► Check whether error messages are displayed in the »Engineer«.
 - On the Diagnostics tab, relevant actual states of the controller and pending error messages are displayed in a well-arranged visualisation.
- ▶ Check the input terminals for their corresponding setpoints.
 - On the **Terminal assignment** tab, the current input and output signals are displayed.
- ► Check the signal flow of the application.
 - For this purpose, click the Signal flow button on the Application parameter tab. The
 displayed signal flow shows active setpoints and their further processing.

- ▶ Diagnostics & error management (☐ 581)
- ▶ LED status displays (☐ 582)
- ▶ Error messages of the operating system (☐ 602)

3.6 Commissioning of the "Actuating drive speed" technology application



Note!

Take all the necessary safety precautions before you carry out the following commissioning steps and switch the device on!

▶ Safety instructions with regard to commissioning (□ 45)

System constellation

[3-1] Block diagram for wiring the commissioning example for the "Actuating drive speed" application

Commissioning steps

Find a description of the commissioning steps of the "Actuating drive speed" technology application below.

Please observe the sequence of the steps in the following chapters and follow them through carefully. This will help you to commission your controller quickly and as safely as possible:

- ▶ Prepare controller for commissioning (☐ 50)
- ▶ Creating an »Engineer« project & going online (☐ 51)
- ▶ Parameterising the motor control (□ 52)
- ▶ Parameterising the application (☐ 53)

- ▶ Saving parameter settings safe against mains failure (☐ 55)
- ▶ Enable controller and test application (☐ 55)

3.6.1 Prepare controller for commissioning

- 1. Power connection wiring
 - Refer to the mounting instructions supplied with the drive controller to find help on how to correctly design the power connections to match the requirements of your device.
- 2. Wire the control connections
 - The assignment for your digital inputs should correspond to one of the preconfigured control modes (C00007) for terminal control:

	Assignment of the digital terminals						
Control mode	DI1	DI2	DI3	DI4			
Terminals 0	JOG 1/3	JOG 2/3	DCB	Cw/Ccw			
Terminals 2	JOG 1/3	JOG 2/3	QSP	Cw/Ccw			
Terminals 11	Cw/Ccw	DCB	MPotUp	MPotDown			
Terminal 16	JOG 1/3	JOG 2/3	Cw/QSP	Ccw/QSP			

Abbreviations used:

JOG	Selection of fixed setpoints 1 3 parameterised in C00039/13
DCB	Manual DC-injection braking
Cw/Ccw	CW/CCW rotation
QSP	Quick stop
MPotUp	Motor potentiometer: Increase speed
MPotDown	Motor potentiometer: Reduce speed
Cw/QSP	Fail-safe selection of the direction of rotation in connection with quick stop
Ccw/QSP	

- 3. Inhibit controller: Set terminal X5/RFR to LOW level or open contact.
- 4. Connect USB diagnostic adapter.
- 5. Switch on voltage supply of the controller.
 - Without motor operation: Connect external 24 V supply.
 - With motor operation: Connect mains voltage.

If the green "DRV-RDY" LED is blinking and the red "DRV-ERR" LED is off, the controller is ready for operation and commissioning can proceed.

- ▶ Automatic restart after mains connection/fault... (□ 112)
- ▶ <u>LED status displays</u> (☐ 582)

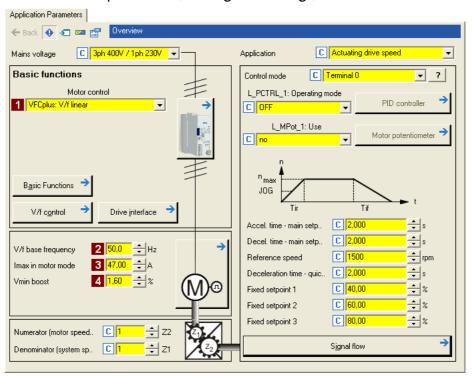
3.6.2 Creating an »Engineer« project & going online

You can find detailed information on the general use of the »Engineer« in the online help which you can call with [F1].

The chapter "Working with projects" describes, among other things, all
options of the Start-up wizard which are available to create a new »Engineer«
project.

The following steps serve to describe a general method for creating a project with the **Select component from catalogue** option. For this purpose, individual components (controller, motor, etc.) are selected from selection lists.

- 1. Start the »Engineer«.
- 2. Create a new project with the *Start-up wizard* and the **Select component from catalogue** option:
 - In the **Component** step, select the 8400 TopLine controller.
 - In the **Device modules** step, select the available communication module.
 - In the Application step, select the "Actuating drive speed" application. (The application can also be selected any time afterwards via the Application parameter tab or C00005.)
 - In the Other components step, select other components (motor / gearbox) to be added to the project.
- 3. A Go online.
 - After a connection to the controller has been established, the following status is displayed in the Status line:

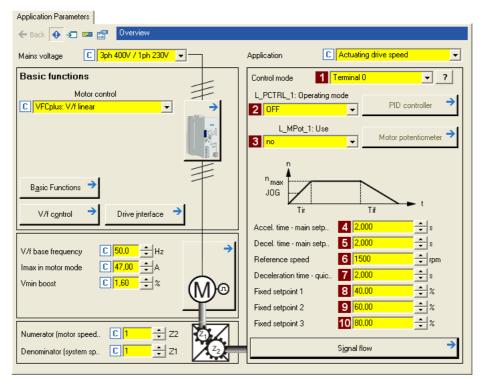


- 4. Fransfer parameter set to the device.
 - This command serves to overwrite the current parameter settings in the controller with the parameter settings of the »Engineer« project.

3.6.3 Parameterising the motor control

- 1. Go to Workspace and change to the Application parameters tab.
 - The motor control parameters, among other things, can be found on the left:

- 2. In the **1** Motor control list field (C00006), select the desired motor control.
- 3. Adapt the motor control parameters:


Parameter		Lenze setting		Info	
		Value	Unit		
2	V/f base frequency (C00015)	50.0	Hz	▶ <u>Adapting the V/f base frequency</u> (☐ 154)	
3	Imax in motor mode (C00022)	47.00	Α	▶ Optimising the Imax controller (□ 158)	
4	Vmin boost (<u>C00016</u>)	1.60	%	► Adapting the Vmin boost (□ 156)	

- ▶ <u>Notes on motor control</u> (Ш 46)
- ▶ Motor control (MCTRL) (□ 120)

3.6.4 Parameterising the application

The application parameters can be found on the right side of the **Application parameter** tab:

- 1. In the 1 Control mode list field (C00007), select the control mode suitable for the wiring of the terminals.
 - The corresponding wiring diagram is displayed in a pop-up window if you click the
 button right to the list field.
 - For a detailed description, see the chapter "<u>Terminal assignment of the control modes</u>". (
 394)
- 2. Optional: Use a process controller.
 - For this purpose, select the desired operating mode in the L_PCTRL_1: Operating mode list field (C00242).
 - For a detailed description see the <u>L_PCTRL_1</u> function block. (□ 1337)
 - Go to the parameterisation dialog of the process controller via the Process controller button.
- 3. Optional: Use a motor potentiometer.
 - For this purpose, select "1: On" in the 3 L_MPot_1: Use list field (C00806).
 - For a detailed description see the <u>L MPot 1</u> function block. (□ 1269)
 - Go to the parameterisation dialog of the motor potentiometer via the Motor potentiometer button.

4. Adapt the application parameters:

Parameter		Lenze setting		Info	
		Value	Unit		
4	Accel. time - main setpoint (C00012)	2.000	S	The setpoint is led via a ramp function generator with linear characteristic. The ramp function generator	
5	Decel. time - main setpoint (C00013)	2.000	S	converts setpoint step-changes at the input into a ramp. L NSet 1 (1287)	
6	Reference speed (C00011)	1500	rpm	All speed setpoint selections are provided in % and always refer to the reference speed set in <u>C00011</u> . The motor reference speed is indicated on the motor nameplate.	
7	Decel. time - quick stop (C00105)	2.000	S	If quick stop is requested, motor control is decoupled from the setpoint selection and, within the deceleration time parameterised in C00105, the motor is brought to a standstill (n _{act} = 0). Activate/Deactivate quick stop (198)	
8	Fixed setpoint 1 (C00039/1)	40.00	%	A fixed setpoint for the setpoint generator can be activated instead of the main setpoint via the digital DI1	
9	Fixed setpoint 2 (C00039/2)	60.00	%	 and DI2 inputs. Fixed setpoints are selected in [%] based on the reference speed (C00011). 	
10	Fixed setpoint 3 (C00039/3)	80.00	%	▶ <u>L NSet 1</u> (□ 1287)	

- Click the **Signal flow** button to go down one dialog level to the signal flow of the application with further possible parameter settings. See chapter "Basic signal flow". (@ 384)
- The preconfigured I/O connection in the selected control mode can be changed via configuration parameters. See chapter "User-defined terminal assignment". (🕮 370)

More detailed information on the technology application:

- ► TA "Actuating drive speed" (☐ 383)
- ▶ Internal interfaces | application block "LA NCtrl" (□ 386)
- ▶ Process data assignment for fieldbus communication (□ 403)
- ▶ Terminal assignment of the control modes (☐ 394)
- ▶ Setting parameters (short overview) (☐ 405)
- ▶ Configuration parameters (☐ 407)

3.6.5 Saving parameter settings safe against mains failure

The parameter set must be saved to the device safe against mains failure to prevent parameter settings becoming lost due to mains switching.

► 📴 Save parameter set.

3.6.6 Enable controller and test application

Stop!

Before stipulating a speed setpoint, check whether the brake in the form of a holding brake on the motor shaft has been released!

Note!

If the controller is enabled and the "Inhibit at power-on" auto-start option is activated in C00142 (Lenze setting) when the mains is connected, the controller remains in the "ReadyToSwitchOn" state.

To be able to change to the "<u>SwitchedOn</u>" status, the controller enable must be deactivated first: Set terminal X5/RFR to LOW level.

If the controller is in the "SwitchedOn" status:

- 1. Enable controller: Set terminal X5/RFR to HIGH level or close contact.
 - If there is no other active source for the controller inhibit, the controller changes from the "SwitchedOn" status to the "OperationEnabled" status.
 - The **Diagnostics** tab and C00158 display all active sources for the controller inhibit.
- 2. Select speed setpoint.
 - In the "Terminal 0" control mode by selecting a voltage at the analog input via the setpoint potentiometer or by selecting a fixed setpoint via the digital DI1/DI2 inputs:

DI1	DI2	Speed selection			
LOW	LOW	The setpoint speed is selected via analog input 1 • Scaling: 10 V ≡ 100 % ≡ reference speed (C00011)			
HIGH	LOW	Fixed setpoint 1 (C00039/1) is used as setpoint speed. • Lenze setting: 40 % of the reference speed (C00011)			
LOW	HIGH	Fixed setpoint 2 (C00039/2) is used as setpoint speed. • Lenze setting: 60 % of the reference speed (C00011)			
HIGH	HIGH	Fixed setpoint 3 (C00039/3) is used as setpoint speed. • Lenze setting: 80 % of the reference speed (C00011)			

8400 TopLine C | Software Manual

Commissioning

Commissioning of the "Actuating drive speed" technology application

Note!

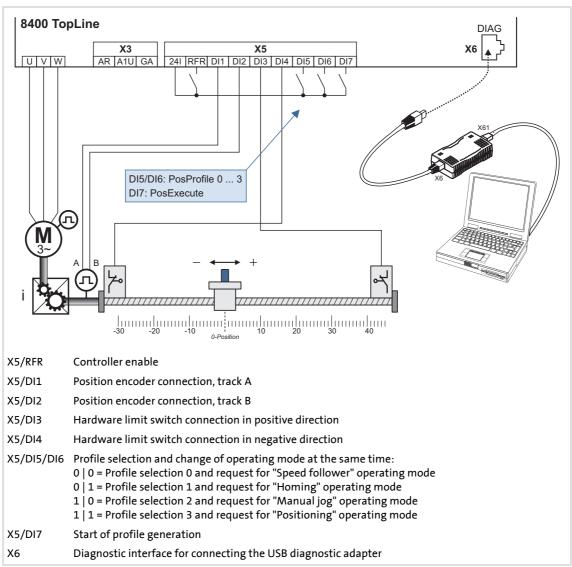
Observe the actual speed value (display in C00051) as well as the LED status displays. (582)

Other control functions in the "Terminal 0" control mode:

- DI3: HIGH level
 = Request DC-injection braking
- DI4: HIGH level ≡ Request a change of direction of rotation

- ▶ "Inhibit at power-on" auto-start option (☐ 112)
- ▶ Trouble-shooting during commissioning (□ 48)
- ▶ <u>Diagnostics & error management</u> (☐ 581)

3.7 Commissioning of the "Table positioning" technology application



Note!

Take all the necessary safety precautions before you carry out the following commissioning steps and switch the device on!

▶ Safety instructions with regard to commissioning (☐ 45)

System constellation

[3-2] Block diagram for wiring the commissioning example for the "Table positioning" application

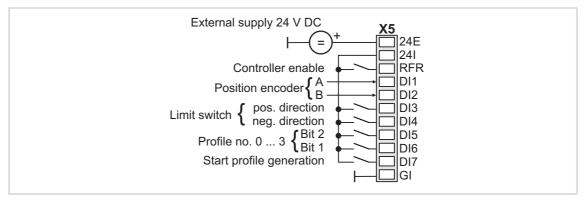
8400 TopLine C | Software Manual

Commissioning

Commissioning of the "Table positioning" technology application

Commissioning steps

Below find a description of the commissioning steps of the "Table positioning" application shown in illustration [3-2].


Please observe the sequence of the steps in the following chapters and follow them through carefully. This will help you to commission your controller quickly and as safely as possible:

- ▶ Prepare controller for commissioning (☐ 59)
- ► Creating an »Engineer« project & going online (60)
- ▶ Parameterising the motor control (☐ 61)
- ▶ Parameterising the application (□ 62)
- ▶ Saving parameter settings safe against mains failure (☐ 70)
- ▶ Enable controller and test application (☐ 70)

3.7.1 Prepare controller for commissioning

- 1. Power connection wiring
 - Refer to the mounting instructions supplied with the drive controller to find help on how to correctly design the power connections to match the requirements of your device.
- 2. Wire the control connections
 - The system constellation including position encoder and hardware limit switches shown in illustration [3-2] requires wiring according to control mode "Terminals 0":

- 3. Inhibit controller: Set terminal X5/RFR to LOW level or open contact.
- 4. Connect USB diagnostic adapter.
- 5. Switch on voltage supply of the controller.
 - Without motor operation: Connect external 24 V supply.
 - With motor operation: Connect mains voltage.

If the green "DRV-RDY" LED is blinking and the red "DRV-ERR" LED is off, the controller is ready for operation and commissioning can proceed.

- ▶ Automatic restart after mains connection/fault... (□ 112)
- ▶ <u>LED status displays</u> (☐ 582)

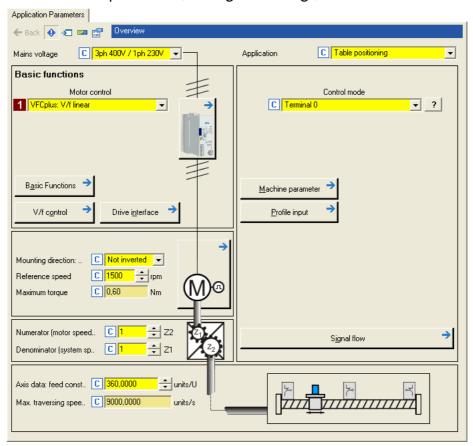
3.7.2 Creating an »Engineer« project & going online

You can find detailed information on the general use of the »Engineer« in the online help which you can call with [F1].

The chapter "Working with projects" describes, among other things, all
options of the Start-up wizard which are available to create a new »Engineer«
project.

The following steps serve to describe a general method for creating a project with the **Select component from catalogue** option. For this purpose, individual components (controller, motor, etc.) are selected from selection lists.

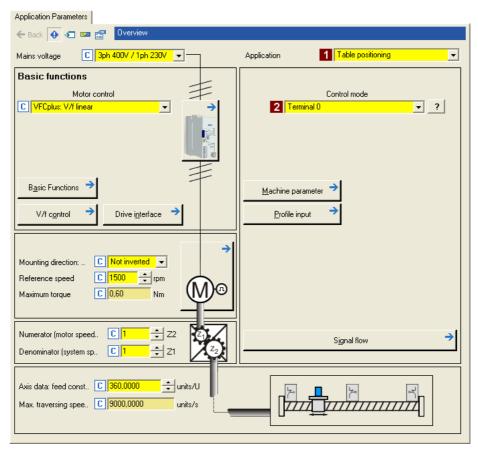
- 1. Start the »Engineer«.
- 2. Create a new project with the *Start-up wizard* and the **Select component from catalogue** option:
 - In the **Component** step, select the 8400 TopLine controller.
 - In the **Device modules** step, select the available communication module.
 - In the Application step, select the "Table positioning" application. (The application can also be selected any time afterwards via the Application parameter tab or C00005.)
 - In the Other components step, select other components (motor / gearbox) to be added to the project.
- 3. A Go online.
 - After a connection to the controller has been established, the following status is displayed in the Status line:



- 4. Fransfer parameter set to the device.
 - This command serves to overwrite the current parameter settings in the controller with the parameter settings of the »Engineer« project.

3.7.3 Parameterising the motor control

- 1. Go to Workspace and change to the Application parameters tab.
 - The motor control parameters, among other things, can be found on the left:


2. In the **1** Motor control list field (C00006), select the desired motor control.

- ▶ <u>Notes on motor control</u> (Ш 46)
- ▶ Motor control (MCTRL) (□ 120)

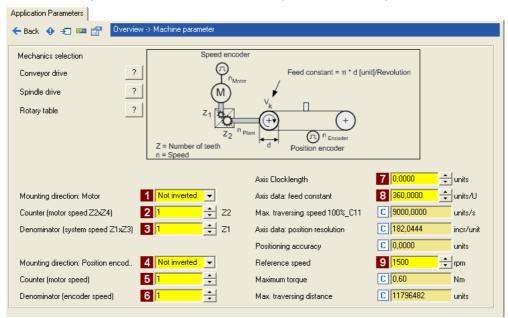
3.7.4 Parameterising the application

The application parameters can be found on the right side of the **Application parameter** tab:

- 1. Select "Table positioning" in the **1** Application list field (C00005) (if you have not already done so while creating the project).
 - After the "Table positioning" application is selected, the contents of the tab change,
 e.g. the Machine parameters and Profile entry buttons are shown now.
- 2. In the **2** Control mode list field (C00007), the preset "Terminals 0" control mode is already suitable for the system constellation shown in illustration [3-2] and need not be changed.
 - The corresponding wiring diagram is displayed in a pop-up window if you click the
 button right to the list field.
 - For a detailed description, see the chapter "<u>Terminal assignment of the control</u> modes". (© 394)

3.7.4.1 Set machine parameters

Note!


Setting the machine parameters is a basic prerequisite for the operating modes "Homing", "Manual jog" and "Positioning".

The more precisely the machine parameters are set, the better the results of positioning!

Detailed information on the machine parameters is provided in chapter "Basic drive functions" in subchapter "Machine parameters". (

498)

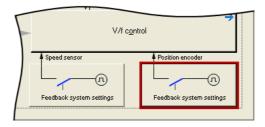
1. Go to the right side of the **Application parameter** tab and click the **Machine parameter** button to change to the *Overview* → *Machine parameter* dialog level:

2. Set the machine parameters according to the system constellation at hand.

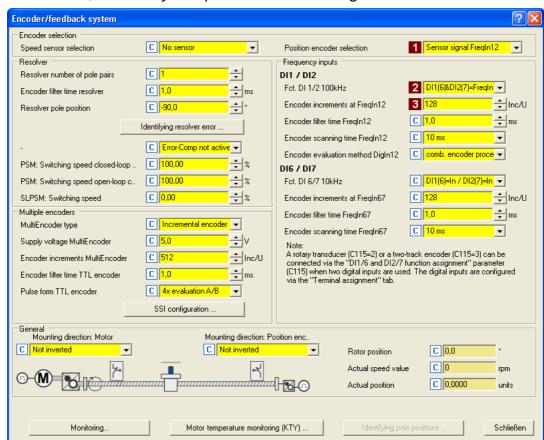
Parameter	Lenze setting Value Unit	Info
Mounting direction: Motor (C01206/1)	not inverted	Inversion if motor mounting is mirrored.
Numerator (Z2) (C01202/1)	1	Gearbox factor - motor • Entry of the gearbox factor as
Denominator (Z1) (C01202/2)	1	numerator/denominator ratio (numerator = motor speed and denominator = output speed of gearbox) or from the number of teeth of the gearbox arrangement.
Mounting direction: Position encoder (C01206/2)	not inverted	Inversion if position encoder mounting is mirrored.

Parameter		Lenze setting		Info	
		Value	Unit		
5	Numerator (<u>C01203/1</u>)	1		Gearbox factor - position encoder • Entry of the gearbox factor as	
6	Denominator (<u>C01203/2</u>)	1		numerator/denominator ratio, with numerator = motor speed and denominator = position encoder speed.	
7	Axis cycle (<u>C01201/1</u>)	0.0000	units	 Cycle for Modulo measuring system The Modulo system is activated by setting a cycle (C01201/1) > 0 units. When the cycle (C01201/1) is set to 0 units (Lenze setting), the traversing range is unlimited (classical measuring system). 	
8	Feed constant (C01204)	360.0000	units/rev.	 The feed constant corresponds to the machine movement for one revolution of the gearbox output shaft. The value is entered in application units referred to one revolution. 	
9	Reference speed (C00011)	1500	rpm	All speed setpoint selections are provided in % and always refer to the reference speed set in <u>C00011</u> . The motor reference speed is indicated on the motor nameplate.	

3. After setting the machine parameters, click the **Back** button to change to the *Overview* dialog level.


3.7.4.2 Set the position encoder

In the Lenze setting, the digital input terminals are configured as "normal" digital inputs. Since in this system constellation DI1 and DI2 are used to connect a two-track position encoder, the function assignment of these two inputs must be changed accordingly.



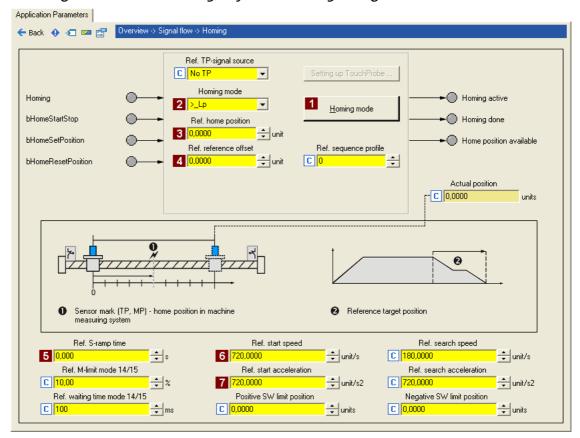
Detailed information on how to use a resolver/encoder as motor or position encoder can be found in the main chapter "Encoder/feedback system". (**) 293)

- 1. Go to the right side of the **Application parameter** tab and click the **Signal flow** button to change to the *Overview* → *Signal flow* dialog level.
- 2. Click the Feedback system settings button in the signal flow:

The Encoder/Feedback system parameterisation dialog will be shown:

- 3. In the **1 Position encoder selection** list field (C00490), select "Encoder signal FreqIn12".
- 4. In the **2** Fct. DI 1/2 100kHz list field (C00115/1), select "DI1(6)&DI2(7)=FreqIn (2-track)".
 - This selection ensures that the digital DI1 and DI2 input terminals are configured as frequency inputs.
- 5. Set the number of position encoder increments in the **1 Number of encoder** increments at FreqIn12 input field (C00420/1).
- 6. Click the **Close** button to close the parameterisation dialog again.

- ▶ Digital input terminals (☐ 329)
- ▶ Using DI1(6) and DI2(7) as frequency inputs (☐ 333)
- ► Encoder/feedback system (🕮 293)



3.7.4.3 Set homing

Detailed information on the "Homing" operating mode is provided in chapter "Basic drive functions" in subchapter "Homing". (© 517)

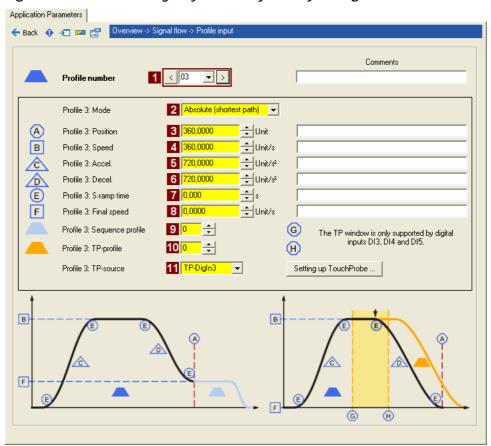
1. Click the _____ button (in the "MotionControlKernel" block) in the signal flow to change to the Overview → Signal flow → Homing dialog level:

- 2. Select the homing mode and hence the type of homing via the **1** Homing mode button or directly in the **2** Homing mode list field (C01221).
 - A graphic display of all possible homing modes can be seen via the Homing mode button.
 - In this system constellation without touch probe, the preset ">_Lp" mode can be used: movement in positive direction, positive edge of the limit switch sets reference.
- 3. Set the position to be used for loading the set position and the actual position after homing has finished in the **3** Homing home position input field (C01227/2).

- 4. Recommendation: Set an offset in the 4 Homing home offset input field (C01227/1) to prevent the machine from stopping at an activated limit switch.
 - Background: The load machine can also leave the travel range limit switch. There
 follows a return to the home position that was set with the positive edge of the
 travel range limit switch.
- 5. Set suitable profile parameters for the homing:

Parameter		Lenze setting		Info
		Value	Unit	
5	S-ramp time (C01226/1)	0.000	S	S-ramp time for reference search/homing. • Setting "0 s" ≡ no rounding
6	Start speed (C01224/1)	720.0000	unit/s	Starting speed for approaching the pre-stop signals.
7	Start acceleration (C01225/1)	720.0000	unit/s ²	Starting acceleration for the starting speed ramps.

6. After setting the parameters for the homing, click the **Back** button to change back to the *Overview* → *Signal flow* dialog level.



3.7.4.4 Enter one or more profiles

You can find detailed information on entering profiles in the chapter entitled "Basic drive functions", subchapter "Profile entry". (© 545)

1. Click the **Profile entry** button (in the "MotionControlKernel" block) in the signal flow to change to the *Overview* → *Signal flow* → *Profile entry* dialog level:

i

Note!

In the Lenze setting, the profiles are assigned to certain operating modes, i.e. the selection of a profile also results in a change of operating mode:

- If profile 0 is stipulated: Activation of "Speed follower" operating mode
- If profile 1 is stipulated: Activation of "Homing" operating mode
- If profile 2 is stipulated: Activation of "Manual jog" operating mode
- If profile 3 ... 15 is stipulated: Activation of "Positioning" operating mode
- 2. Select number 3 in the **1 Profile number** list field to enter a positioning profile which can be selected via digital inputs DI5 and DI6.

3. Set the profile parameters:

Para	Parameter		setting _{Unit}	Info
2	Profile x: Mode (C01300/x)		olute st way)t	Selection of the way in which positioning is to be carried out. ▶ Positioning modes (□ 548)
3	Profile x: Position (C01301/x)	360.0000	unit	Target position or distance to be traversed.
4	Profile x: Speed (C01302/x)	360.0000	unit/s	Maximum speed at which the target is to be approached.
5	Profile x: Acceleration (C01303/x)	720.0000	unit/s ²	Stipulation of the change in speed at which maximum acceleration is to take place.
6	Profile x: Deceleration (C01304/x)	720.0000	unit/s ²	Stipulation of the change in speed at which maximum deceleration to a standstill is to take place.
7	Profile x: S-ramp time (C01306/x)	0.000	S	Due to stipulation of an S-ramp time for a profile, the profile is executed with S-shaped ramps, i.e. acceleration and braking processes are initiated smoothly in order to reduce jerk and thus the stress on the drive components.
8	Profile x: Final speed (C01305/x)	0.0000	unit/s	This specifies the speed at which the drive is to start the next profile after reaching the target position.
9	Profile x: Sequence profile (C01307/x)	0		Optional: Sequence profile for profile linkage / following block control. After execution of the profile (target position reached), the set following (subsequent) profile is started automatically. In this way, profile chains can be stipulated without additional control processes.
10	Profile x: TP profile (C01308/x)	0		 Optional: Profile number of the profile (1 15) that is to be executed after a touch probe has been detected. If "0" is set, there will be no profile stepping through touch probe. Only relevant for positioning modes with touch-probe.
11	Profile x: TP source (C01308/x)	TP-D	igIn3	Optional: Selection of the signal source for touch probe detection. Only relevant for positioning modes with touch-probe.

^{4.} After entering the profile, click the **Back** button to change back to the *Overview* → *Signal flow* dialog level.

- ► Touch probe detection (🕮 362)
- ▶ Operating mode change with profile number (□ 495)
- ▶ Positioning (□ 541)

8400 TopLine C | Software Manual

Commissioning

Commissioning of the "Table positioning" technology application

More detailed information on the technology application:

- ► TA "Table positioning" (□ 410)
- ▶ Basic signal flow (□ 411)
- ▶ Internal interfaces | Application block "LA TabPos" (□ 414)
- ▶ Process data assignment for fieldbus communication (□ 434)
- ▶ Terminal assignment of the control modes (□ 424)
- ▶ Setting parameters (short overview) (□ 436)
- ▶ Configuration parameters (☐ 436)

3.7.5 Saving parameter settings safe against mains failure

The parameter set must be saved to the device safe against mains failure to prevent parameter settings becoming lost due to mains switching.

► 📴 Save parameter set.

3.7.6 Enable controller and test application

Stop!

Before stipulating a speed setpoint, check whether the brake in the form of a holding brake on the motor shaft has been released!

Note!

If the controller is enabled and the "Inhibit at power-on" auto-start option is activated in C00142 (Lenze setting) when the mains is connected, the controller remains in the "ReadyToSwitchOn" state.

To be able to change to the "<u>SwitchedOn</u>" status, the controller enable must be deactivated first: Set terminal X5/RFR to LOW level.

If the controller is in the "SwitchedOn" status:

- 1. Enable controller: Set terminal X5/RFR to HIGH level or close contact.
 - If there is no other active source for the controller inhibit, the controller changes from the "<u>SwitchedOn</u>" status to the "<u>OperationEnabled</u>" status.
 - The **Diagnostics** tab and <u>C00158</u> display all active sources for the controller inhibit.
- 2. Select the respective control signals via the digital inputs (see sections below).

Note!

Observe the actual speed value (display in C00051) as well as the LED status displays. (582)

Homing

- 1. Requesting the "Homing" operating mode:
 - Set digital input DI5 to LOW level and digital input DI6 to HIGH level to select profile 1 and request the "Homing" operating mode at the same time.
- 2. Start homing:
 - Set digital input DI7 to HIGH level ("Alternative function PosExecute").
- 3. Conclude homing when homing position has been reached:
 - Reset digital input DI7 to LOW level.

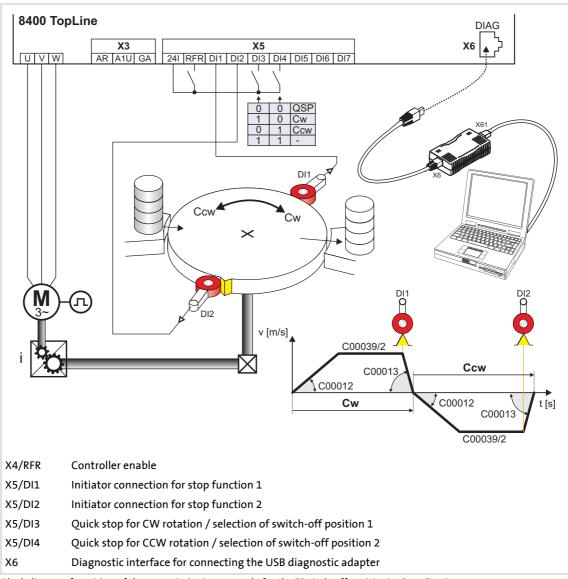
Positioning

- 1. Requesting the "Positioning" operating mode:
 - Set digital inputs DI5 and DI6 to HIGH level to select profile 3 and request the "Positioning" operating mode at the same time.
- 2. Start positioning:
 - Set digital input DI7 to HIGH level ("Alternative function PosExecute").
- 3. Conclude positioning when the target position has been reached:
 - Reset digital input DI7 to LOW level.

The active operating mode (C01243) in the signal flow can also be controlled by means of the setting of the switch in the "Motion Control Kernel" block.

- ▶ "Inhibit at power-on" auto-start option (☐ 112)
- ▶ Trouble-shooting during commissioning (□ 48)
- ▶ Diagnostics & error management (☐ 581)

3.8 Commissioning of the "Switch-off positioning" technology application



Note!

Take all the necessary safety precautions before you carry out the following commissioning steps and switch the device on!

▶ Safety instructions with regard to commissioning (☐ 45)

System constellation

[3-3] Block diagram for wiring of the commissioning example for the "Switch-off positioning" application

Functional principle of a switch-off positioning without pre-switch off

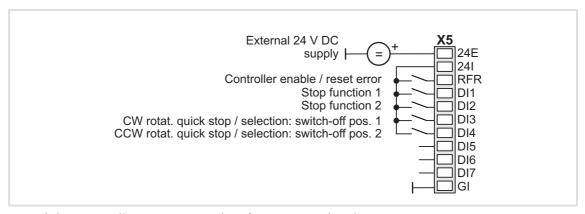
In case of the switch-off positioning <u>without</u> pre-switch off shown above, it makes sense to use the "Terminals 2" control mode:

- 1. Set DI3 to HIGH level to activate CW rotation.
- 2. The drive accelerates along the acceleration ramp (C00012) up to the traversing speed set in C00039/2.
- 3. After reaching the DI1 contact, the drive comes to a stop with quick stop (QSP) in the target position.
- 4. Reset DI3 to LOW level and set DI4 to HIGH level to activate CCW rotation now.
- 5. The drive is accelerated along the acceleration ramp (C00012) up to the traversing speed set in C00039/2.
- 6. After reaching the DI2 contact, the drive comes to a stop in the initial position with quick stop (QSP).

- In order to avoid positioning inaccuracy due to signal propagation delays, the
 initiators can be directly evaluated by the drive controller. Limit switch
 evaluation can be configured in the drive controller. In code <u>C00488/x</u> you can
 change the method of detecting position signals from level evaluation to edge
 evaluation.
- In order to prevent unintended movements of the load in the target position, the use of a holding brake is recommended as an alternative to DC-injection braking (limited torque).
- The device terminals and their function assignment do not appear in the FB Editor. The assignment of (hardware) terminals to (software) functions is explained in the chapter "Terminal assignment of the control modes". (451)

Commissioning steps

As shown in illustration [3-3], below find a description of the commissioning steps of the "Switch-off positioning" application without pre-switch off.


Please observe the sequence of the steps in the following chapters and follow them through carefully. This will help you to commission your controller quickly and as safely as possible:

- ▶ Prepare controller for commissioning (☐ 74)
- ▶ Creating an »Engineer« project & going online (□ 75)
- ▶ Parameterising the motor control (☐ 76)
- ▶ Parameterising the application (□ 77)
- ▶ Saving parameter settings safe against mains failure (☐ 79)
- ▶ Enable controller and test application (□ 79)

3.8.1 Prepare controller for commissioning

- 1. Power connection wiring
 - Refer to the mounting instructions supplied with the drive controller to find help on how to correctly design the power connections to match the requirements of your device.
- 2. Wire the control connections
 - In case of the application shown in illustration [3-3], switch-off positioning without pre-switch off, wiring according to the "Terminals 2" control mode makes sense:

- 3. Inhibit controller: Set terminal X5/RFR to LOW level or open contact.
- 4. Connect USB diagnostic adapter.
- 5. Switch on voltage supply of the controller.
 - Without motor operation: Connect external 24 V supply.
 - With motor operation: Connect mains voltage.

If the green "DRV-RDY" LED is blinking and the red "DRV-ERR" LED is off, the controller is ready for operation and commissioning can proceed.

Related topics:

- ▶ Automatic restart after mains connection/fault... (□ 112)
- ▶ LED status displays (□ 582)

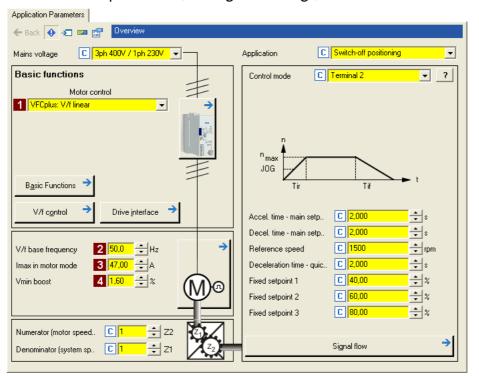
3.8.2 Creating an »Engineer« project & going online

You can find detailed information on the general use of the »Engineer« in the online help which you can call with [F1].

The chapter "Working with projects" describes, among other things, all
options of the Start-up wizard which are available to create a new »Engineer«
project.

The following steps serve to describe a general method for creating a project with the **Select component from catalogue** option. For this purpose, individual components (controller, motor, etc.) are selected from selection lists.

- 1. Start the »Engineer«.
- 2. Create a new project with the *Start-up wizard* and the **Select component from catalogue** option:
 - In the **Component** step, select the 8400 TopLine controller.
 - In the **Device modules** step, select the available communication module.
 - In the Application step, select the "Switch-off positioning" application. (The application can also be selected any time afterwards via the Application parameter tab or <u>C00005</u>.)
 - In the Other components step, select other components (motor / gearbox) to be added to the project.
- 3. A Go online.
 - After a connection to the controller has been established, the following status is displayed in the Status line:



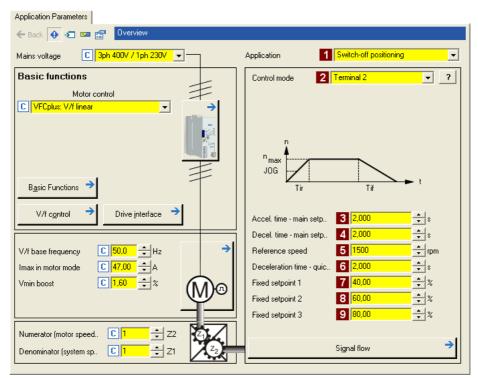
- 4. Fransfer parameter set to the device.
 - This command serves to overwrite the current parameter settings in the controller with the parameter settings of the »Engineer« project.

3.8.3 Parameterising the motor control

- 1. Go to Workspace and change to the Application parameters tab.
 - The motor control parameters, among other things, can be found on the left:

- 2. In the **1** Motor control list field (C00006), select the desired motor control.
- 3. Adapt the motor control parameters:

Parameter		Lenze	setting	Info
		Value	Unit	
2	V/f base frequency (C00015)	50.0	Hz	▶ <u>Adapting the V/f base frequency</u> (☐ 154)
3	Imax in motor mode (C00022)	47.00	Α	▶ Optimising the Imax controller (□ 158)
4	Vmin boost (<u>C00016</u>)	1.60	%	► Adapting the Vmin boost (□ 156)


Related topics:

- ▶ <u>Notes on motor control</u> (Ш 46)
- ▶ Motor control (MCTRL) (□ 120)

3.8.4 Parameterising the application

The application parameters can be found on the right side of the **Application parameter** tab:

- 1. In the **1** Application list field (C00005), select the "Switch-off positioning" application (if you have not already done so while creating the project).
 - After the "Switch-off positioning" application is selected, the contents of the tab change, e.g. the **Process controller** and **Motor potentiometer** buttons are not shown any more.
- 2. In the **2** Control mode list field (C00007) and in case of illustration [3-3], for the shown switch-off positioning without pre-switch off the "Terminals 2" control mode must be selected.
 - The corresponding wiring diagram is displayed in a pop-up window if you click the
 button right to the list field.
 - For a detailed description, see the chapter "<u>Terminal assignment of the control modes</u>". (© 394)

3. Adapt the application parameters:

Parameter		Lenze setting		Info		
			Unit			
3	Accel. time - main setpoint (C00012)	2.000	S	The setpoint is led via a ramp function generator with linear characteristic. The ramp function generator		
4	Decel. time - main setpoint (C00013)	2.000	S	converts setpoint step-changes at the input into a ramp. Note: These settings only apply if no other ramp times have been selected at the <u>L_NSet</u> FB!		
5	Reference speed (C00011)	1500	rpm	All speed setpoint selections are provided in % and always refer to the reference speed set in <u>C00011</u> . The motor reference speed is indicated on the motor nameplate.		
6	Decel. time - quick stop (C00105)	2.000	S	If quick stop is requested, motor control is decoupled from the setpoint selection and, within the deceleration time parameterised in C00105, the motor is brought to a standstill (n _{act} = 0). Activate/Deactivate quick stop (198)		
7	Fixed setpoint 1 (C00039/1)	40.00	%	Fixed setpoints are selected in [%] based on the reference speed (C00011).		
8	Fixed setpoint 2 (C00039/2)	60.00	%	Fixed setpoint 2 must be less than fixed setpoint 3! Otherwise, the drive will start at a low speed and accelerate after the pre-switch off.		
9	Fixed setpoint 3 (C00039/3)	80.00	%	·		

- Click the **Signal flow** button to go down one dialog level to the signal flow of the application with further possible parameter settings. See chapter "Basic signal flow". (442)
- The preconfigured I/O connection in the selected control mode can be changed via configuration parameters. See chapter "User-defined terminal assignment". (370)
- Low-jerk traversing profiles can be implemented by means of S-shaped ramps.
- In the case of high breakaway torques combined with horizontal motion sequences, "Sensorless vector control (SLVC)" can be used as motor control (C00006).
- For reversal of rotation direction (bidirectional motion), comprehensive configuration options are available in the drive controller (e.g. by means of the L DFlipFlop function block).

More detailed information on the technology application:

- ▶ TA "Switch-off positioning" (☐ 440)
- ▶ Internal interfaces | application block "LA SwitchPos" (□ 443)
- ▶ Process data assignment for fieldbus communication (☐ 460)
- ▶ Terminal assignment of the control modes (□ 451)
- ▶ Setting parameters (short overview) (☐ 462)
- ▶ Configuration parameters (☐ 464)

3.8.5 Saving parameter settings safe against mains failure

The parameter set must be saved to the device safe against mains failure to prevent parameter settings becoming lost due to mains switching.

► 📴 Save parameter set.

3.8.6 Enable controller and test application

Stop!

Before stipulating a speed setpoint, check whether the brake in the form of a holding brake on the motor shaft has been released!

Note!

If the controller is enabled and the "Inhibit at power-on" auto-start option is activated in C00142 (Lenze setting) when the mains is connected, the controller remains in the "ReadyToSwitchOn" state.

To be able to change to the "<u>SwitchedOn</u>" status, the controller enable must be deactivated first: set terminal X5/RFR to LOW level.

If the controller is in the "SwitchedOn" status:

- 1. Enable controller: Set terminal X5/RFR to HIGH level or close contact.
 - If there is no other active source for the controller inhibit, the controller changes from the "SwitchedOn" status to the "OperationEnabled" status.
 - The **Diagnostics** tab and C00158 display all active sources for the controller inhibit.
- 2. Select the respective control signals via the digital inputs.

Note!

Observe the actual speed value (display in <u>C00051</u>) as well as the <u>LED status</u> <u>displays</u>. (<u>LL 582</u>)

Related topics:

- ▶ "Inhibit at power-on" auto-start option (□ 112)
- ► <u>Trouble-shooting during commissioning</u> (48)
- ▶ <u>Diagnostics & error management</u> (Ш 581)

3.9 PC manual control

For test and demonstration purposes, PC manual control can be used to manually control various drive functions via the »Engineer« when an online connection has been established.

Supported drive functions:

- ► Speed control (follow a speed setpoint)
- ► Activate/Deactivate quick stop
- ► Set/reset home position
- ► Manual jog
- ► Positioning (relative or absolute)

Other control functions:

- ► Reset error messages
- ► Set digital/analog outputs (in preparation)

Diagnostic functions:

- ▶ Display of the actual speed value and motor current (in a temporal characteristic)
- ▶ Display of the current device status
- ▶ Display of the status determining error
- ▶ Display of the status of the digital/analog inputs (in preparation)

3.9.1 Activating PC manual control

Stop!

PC manual control must be explicitly activated by the user.

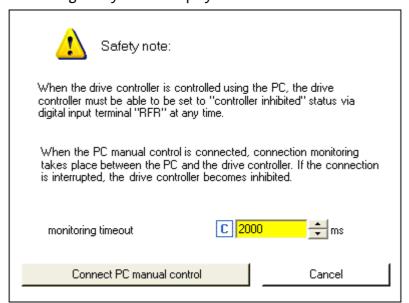
If PC manual control is activated, the controller is inhibited via device command (C00002/16) first.

Note!

For activated PC manual control:

The online connection between the PC and the controller is monitored by the controller.

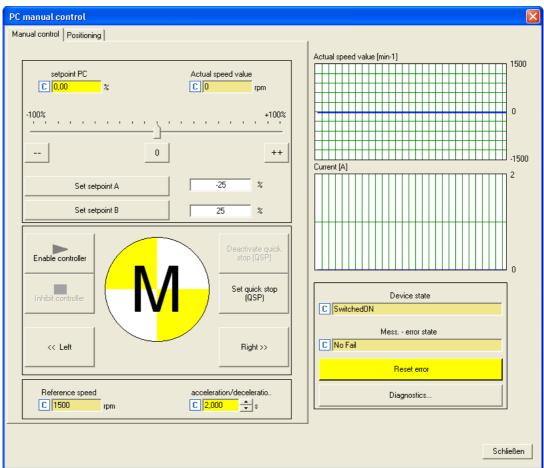
- If the online connection is interrupted for longer than the set timeout (Lenze setting: 2 s):
 - Error response "Fault" is triggered, i.e. the motor becomes torqueless and is coasting unless it already is at standstill.
 - The "Ck16: Time overflow manual control" error message is entered into the logbook.


PC manual control provides the **Motion Control Kernel** and the motor interface with all required control signals and setpoint signals.

- The existing application (function block interconnection) is now decoupled from these interfaces but will be processed as before and remains unchanged.
- It does not matter what type of motor control is set in C00006.

How to activate PC manual control:

- 1. If an online connection to the controller has not been established yet:
 - Go online.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the *Overview* dialog level and click the "**PC manual control**" button.
 - The following safety note is displayed first:


- Click the Cancel button to abort the action and close the dialog box.
- The Timeout monitoring input field serves to adapt the timeout for monitoring the connection between the PC and the controller.

- 4. To acknowledge the note and activate PC manual control: Click the **Activate PC manual control** button.
 - The controller is inhibited via device command (C00002/16).
 - The PC manual control operator dialog is displayed.

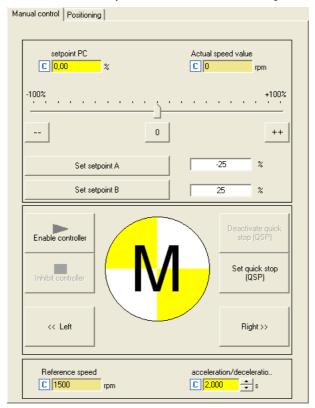
PC manual control operator dialog

On the left-hand side, the *PC manual control* operator dialog includes several tabs which serve to select various control functions. On the right-hand side, setpoint and status displays are provided for diagnostic purposes:

i

Note!

PC manual control can be exited any time by clicking the **Close** button.


If you exit PC manual control or change to another tab, the controller is inhibited via device command ($\frac{\text{C00002/16}}{\text{1}}$), i.e. the motor becomes torqueless and is coasting unless it already is at standstill.

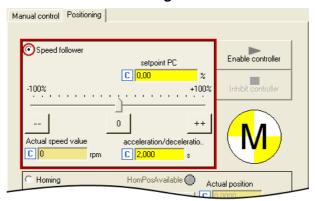
The execution of the various functions is described in the following chapters.

3.9.2 **Speed control**

Via the Speed control tab, simply make the drive rotate in the "Speed follower" operating mode without the need to set control parameters or feedback systems:

How to make the motor rotate in its most basic way:

- 1. Set the desired speed setpoint in [%] based on the reference speed, e.g. directly in the **Setpoint PC** input field or via the slider.
 - Via the -- / 0 / ++ buttons, the currently set speed setpoint can be reduced/increased in steps of 10 percent or set to zero.
 - Via the Set setpoint A/B buttons, the speed setpoint can be set to a previously set constant value A/B.
- 2. To start the speed follower:


Enable the controller via the **Enable controller** button.

- Please observe that the controller will not be enabled if other sources of controller inhibit (e.g. terminal RFR) are active.
- The enabled controller is now following the selected speed setpoint.
- To avoid shocks or overload in case of great setpoint changes, the speed setpoint follows a linear ramp generator with adjustable acceleration/deceleration time.
- Via the Inhibit controller button, the controller can be inhibited again, i.e. the motor becomes torqueless and is coasting unless it already is at standstill.

Further functions:

- ▶ If the **Set quick stop (QSP)** button is clicked, the motor is braked to a standstill within the deceleration time parameterised in C00105.
 - Via the **Deactivate quick stop (QSP)** button, the quick stop can be deactivated.
- ▶ Via the << CCW and CW >> buttons, the direction of rotation can be changed.
- ► The "Speed follower" operating mode can also be activated without the functions described before via the second **Positioning** tab:

Set/reset home position 3.9.3

The measuring system in the machine is selected by means of homing and the 0 position is set within the possible physical travel range.

Detailed information on the "Homing" operating mode is provided in chapter "Basic drive functions" in subchapter "Homing". (517)

The change to the "Homing" mode can be made by selecting the correspondent option on the **Positioning** tab:

How to set the reference manually with a stopped motor:

Click the **Set reference** button.

The current actual position in the machine measuring system now corresponds to the home position set in C01227/2 (Lenze setting: 0.0000 units).

Stop!

If you set the reference with the PC manual control, the drive is referenced.

If another home position is required for normal operation:

Click the **Cancel reference** button and reset the status signals *HomPosAvailable* and HomePosDone in the MCK status word in order that no mechanical problems can occur during normal operation.

• Setpoints and actual positions remain untouched until a renewed reference setting or homing.

3.9.4 Manual jog

In the "Manual jog" mode, the drive can be traversed manually in a clockwise or counterclockwise direction.

You can find detailed information on the "Manual jog" mode in the chapter entitled "Basic drive functions" in the subchapter "Manual jog". (533)

The change to the "Manual jog" mode can be made by selecting the correspondent option on the Positioning tab:

▶ The profile parameters saved in the parameter set for the basic "manual control" function are used:

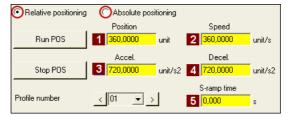
Parameter		Lenze setting		Info		
			Unit			
1	Speed 1 (C01231/1)	360.0000	units/s	Speed for manual jog		
2	Acceleration (C01232/1)	720.0000	units/s ²	For accelerating and decelerating, different values can be set so that smooth starting and quick stopping of the		
3	Deceleration (C01232/2)	720.0000	units/s ²	drive can be implemented.		
4	S-ramp time (C01233/1)	0.000	S	In order to reduce jerking, the two ramps can be set in such a way that they are s-shaped. This is done by entering a relative S-ramp time.		

How to traverse the drive manually in inching mode:

- 1. If the controller is still inhibited, enable the controller via the **Enable controller** button.
 - Please observe that the controller will not be enabled if other sources of controller inhibit (e.g. terminal RFR) are active.

If the controller is in the "OperationEnabled" status:

2. Click << Left or Right >> (and keep it pressed) to traverse the drive in the corresponding direction of rotation.


3.9.5 Positioning (relative or absolute)

Positioning means that a workpiece/tool or material is moved from a starting position to a defined destination.

You can find detailed information on the "Positioning" mode in the chapter entitled "Basic drive functions" in the subchapter "Positioning". (2) 541)

The change to the "Positioning" operating mode and the simultaneous selection of the positioning mode (relative or absolute) is made by selecting the corresponding option on the **Positioning** tab:

► The profile parameters saved in the parameter set for the basic "Positioning" function are used:

Parameter	Lenze	setting	Info		
	Value	Unit			
Position (C01301/115)	360.0000	units	 Target position or distance to be traversed. When "Relative positioning" has been selected: Distance to starting position (current position). When "Absolute positioning" has been selected: Distance to defined zero position. 		
Speed (C01302/115)	360.0000	units/s	Maximum speed at which the target is to be approached.		
Acceleration (C01303/115)	720.0000	units/s ²	Stipulation of the change in speed at which maximum acceleration is to take place.		
Deceleration (C01304/115)	720.0000	units/s ²	Stipulation of the change in speed at which maximum deceleration to a standstill is to take place.		
5-ramp time (C01306/115)	0.000	S	By defining an S-ramp time, a profile is travelled with S-shaped ramps.		

Note!

In order that no complex travel motions occur, <u>no</u> forwarding to following profile set in the profile data takes place with PC manual control!

You can find detailed information on entering profiles in the chapter entitled "Basic drive functions", subchapter "Profile entry". (© 545)

8400 TopLine C | Software Manual

Commissioning PC manual control

How to execute a positioning:

- 1. Select the profile to be travelled (1 ... 15) in the **Profile number** list field.
- 2. If the controller is still inhibited, enable the controller via the **Enable controller** button.
 - Please observe that the controller will not be enabled if other sources of controller inhibit (e.g. terminal RFR) are active.

If the controller is in the "OperationEnabled" status:

- 3. Click the **Run POS** button to start the positioning process.
 - Click the **Stop POS** button to stop an active positioning process anytime.

4 Device control (DCTRL)

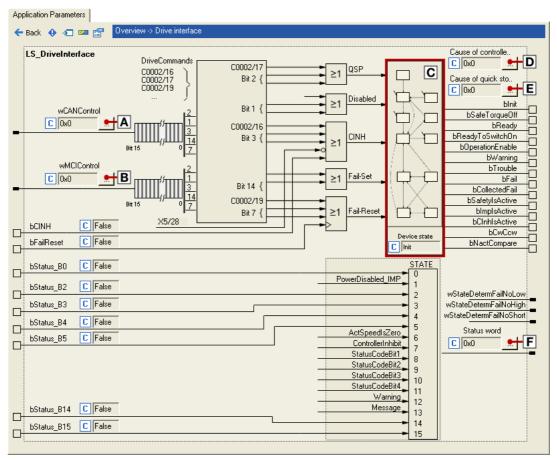
This chapter provides information on internal device control as well as the device commands which can be executed via the subcodes of C00002.

- ▶ The device control causes the controller to take defined device statuses.
- ▶ The device control provides a multitude of status information in many ways:
 - Visually via the <u>LED status displays</u> on the front of the controller. (☐ 583)
 - As text messages in the Logbook. (☐ 590)
 - As process signals via the outputs of the LS <u>DriveInterface</u> system block. (☐ 115)
 - Via diagnostic / display parameters which are included in the »Engineer« parameter list as well as in the **Diagnostics** category in the keypad.

Note!

The device statuses of the controller are based on the operating statuses of the CiA402 standard. ▶ Device state machine and device statuses (☐ 101)

Device control (DCTRL)



How to get to the parameterisation dialog of the device control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the *Overview* dialog level and click the **Drive interface** button.

Parameterisation dialog in the »Engineer«

The parameterisation dialog shows the input / output signals and the internal signal flow of the <u>LS_DriveInterface</u> system block which displays the device control in the function block editor:

Range	Range / Meaning			
A	Display of the control word via system bus (CAN)	<u>C00136/2</u>		
В	Display of the control word via communication module (e.g. PROFIBUS)	<u>C00136/1</u>		
C	Display of the internal state machine and the current device status	<u>C00137</u>		
D	Display of all active sources of a controller inhibit	<u>C00158</u>		
E	Display of all active sources of a quick stop	<u>C00159</u>		
F	Display of the status word of the device control	<u>C00150</u>		

4.1 Device commands (C00002/x)

This chapter describes the device commands which are provided in the subcodes of C00002 and can be carried out using the keypad or, alternatively, the »Engineer« when an online connection has been established.

The device commands serve, among other things, to directly control the controller, to organise parameter sets, and to call diagnostic services.

Regarding the execution of the device commands, a distinction is drawn between:

- ▶ Device commands which have an immediate effect on control (e.g. "Activate quick stop")
 - After being called in <u>C00002/x</u>, these device commands provide <u>static</u> status information ("On" or "Off").
- ▶ Device commands with longer execution duration (several seconds)
 - After being called in <u>C00002/x</u>, these device commands provide <u>dynamic</u> status information ("Work in progress 20%" → "Work in progress 40%", etc.).
 - The execution of the device command has not finished successfully until the "Off / ready" status information is provided in <u>C00002/x</u>.
 - In the event of an error, the "Action cancelled" status information is provided in <u>C00002/x</u>. In this case, further details can be obtained from the status of the device command executed last which is displayed in C00003.

Stop!

Before the supply voltage is switched off after a device command has been transmitted via $\frac{\text{C00002/x}}{\text{x}}$, the device command must be checked for successful completion on the basis of the status information provided in $\frac{\text{C00002/x}}{\text{x}}$!

• This is of particular importance for device commands which save data to the memory module of the device. Incomplete storage processes may lead to data inconsistencies in the memory module.

Note!

- Before activating device commands by a master control, wait for the "Ready" signal of the controller.
- The device will reject a write process to C00002/x if the value is >1 and issue an error message.
- <u>C00003</u> displays the status of the device command that was executed last.

8400 TopLine C | Software Manual

Device control (DCTRL)
Device commands (C00002/x)

Activate device command

When an online connection has been established, simply use the »Engineer« to activate a device command by selecting the corresponding option from the **Parameters** tab in C00002/x ("0: off" or "1: On / start").

- ► Alternatively, the device command can also be activated via e.g. keypad or through a master control by writing to C00002/x.
- ➤ Some of the frequently used device commands (such as "Save parameter set") can also be executed via the *Toolbar* icons of the »Engineer« when an online connection has been established:

Symbol	Function
Ń	Enable controller
ŵ	Inhibit controller
	Save parameter set (for 8400: Save all parameter sets)

Note!

Device commands that can be executed via the *Toolbar* of the »Engineer« always affect the element currently selected in the *Project view* including all subelements!

• If no controller but e.g. a system module is selected in the *Project view* instead, the corresponding device command will be activated in all lower-level controllers that have an online connection to the »Engineer«.

Before the desired action is carried out, a confirmation prompt appears first, asking whether the action is really to be carried out.

Short overview of device commands

Device commands described in this chapter:

C00002 Subcode:	Device command	Controller inhibit required	Status information
1	Load Lenze setting	•	dynamic
6	Load all parameter sets	•	dynamic
11	Save all parameter sets		dynamic
16	Enable/Inhibit controller		static
17	Activate/Deactivate quick stop		static
19	Reset error		static
21	Delete logbook		static
27	<u>Device search function</u>		static

Device commands described in other chapters:

C00002 Subcode:	Device command	Controller inhibit required	Status information
23	Motor parameter identification ▶ Automatic motor data identification	•	dynamic
25	Identify resolver error ▶ Optimising resolver behaviour	•	dynamic
26	CAN reset node ▶ Reinitialising the CANopen system bus interface		static
28	Check MasterPin ▶ Unlocking the controller with a MasterPin	•	static
29	Set binding ID ▶ Device personalisation		static
30	Delete binding ID ▶ Device personalisation		static
31	Set password Password protection		static
32	Check password ▶ Password protection		static
33	Delete password Password protection		static
34	Identify pole position (360°) ▶ Pole position identification (PPI)	•	dynamic

8400 TopLine C | Software Manual

Device control (DCTRL) Device commands (C00002/x)

4.1.1 **Load Lenze setting**

The C00002/1 = "1: On / start" device command resets the parameters to the Lenze setting which are saved in the controller Firmware.

- ► Can only be executed if the controller is inhibited; otherwise, the feedback C00002/1 = "6: No access - controller inhibit" will be returned.
- ▶ All parameter changes which have been carried out after the last time the parameter set was saved will be lost!
- ▶ This device command has an effect on the settings of the parameters of the operating system, application and module.

How to load the Lenze setting:

- 1. If the controller is enabled, it must be inhibited, e.g. by executing the "Enable/Inhibit controller" device command (C00002/16 = "0: Off / ready").
- 2. Execute the "Load Lenze setting" device command: C00002/1 = "1: On / start"

The loading process may take a couple of seconds. After the device command has been called, C00002/1 returns dynamic status information ("Work in progress 20%" → "Work in progress 40 %" → "Work in progress 60 %", etc.).

4.1.2 Load all parameter sets

The $\frac{\text{C00002/6}}{\text{C00002/6}} = "1: \text{On / start" device command reloads all parameter settings from the$ memory module to the controller.

- ► Can only be executed if the controller is inhibited; otherwise, the feedback C00002/6 = "6: No access - controller inhibit" will be returned.
- ▶ All parameter changes which have been carried out after the last time the parameter set was saved will be lost!
- ▶ This device command has an effect on the settings of the parameters of the operating system, application and module.

Note!

The controller is currently provided with one data record for all parameters, i.e. every parameter has a value. Several data records per controller are in preparation.

For up to 32 freely selectable parameters, the basic function Parameter changeover provides a change-over between four sets with different parameter values. (1 734)

How to load the parameter settings from the memory module:

- 1. If the controller is enabled, it must be inhibited, e.g. by executing the "Enable/Inhibit controller" device command (C00002/16 = "0: Off / ready").
- 2. Execute the "Load all parameter sets" device command: C00002/6 = "1: On / start"

The loading process may take a couple of seconds. After the device command has been called, C00002/6 returns dynamic status information ("Work in progress 20 %" → "Work in progress 40 %" → "Work in progress 60 %", etc.).

Device control (DCTRL) Device commands (C00002/x)

4.1.3 Save all parameter sets

If parameter settings are changed in the controller, those changes will be lost after mains switching of the controller unless the settings have been saved explicitly.

The C00002/11 = "1: On / start" device command saves the current parameter settings safe against mains failure to the memory module of the controller.

Note!

When the device is switched on, all parameters are automatically loaded from the memory module to the main memory of the controller.

Observe the following to avoid data inconsistencies which cause errors when the parameters are loaded from the memory module:

During the storage process:

- · Do not switch off the supply voltage!
- Do not remove the memory module from the device!

The controller is currently provided with one data record for all parameters, i.e. every parameter has a value. Several data records per controller are in preparation.

How to save the parameter settings to the memory module:

Execute the "Save all parameter sets" device command: C00002/11 = "1: On / start"

The storage process may take a couple of seconds. After the device command has been called in C00002/11, dynamic status information ("Work in progress 20%" → "Work in progress 40%" → "Work in progress 60%", etc.) is returned.

- This device command can also be activated via the 📴 toolbar icon.
- The "Load Lenze setting" device command (C00002/1 = "1: On / start") resets the parameter settings to the delivery status of the device.

4.1.4 Enable/Inhibit controller

The $\underline{\text{C00002/16}}$ = "1: On / start" device command enables the controller, provided that no other source of a controller inhibit is active.

The $\underline{\text{C00002/16}}$ = "0: Off / ready" device command inhibits the controller again, i.e. the power output stages in the controller are inhibited and the speed/current controllers of the motor control are reset.

- ▶ The motor becomes torqueless and coasts, if it has not yet been in standstill.
- ► When the controller is inhibited, the status output *bCInhActive* of the <u>LS DriveInterface</u> system block is set to TRUE.
- ► When the controller inhibit request is reset, the drive synchronises to the actual speed. For this purpose,
 - If the flying restart circuit is activated in <u>C00990</u>, the flying restart function parameterised in <u>C00991</u> is used for the synchronisation to the rotary or standing drive. ► <u>Flying restart function</u> (<u>L1247</u>)
 - In the case of an operation with feedback, the actual speed is read out by the encoder system.
 - In the case of a sensorless vector control (SLVC), the actual speed from the motor model of the motor control is used for the synchronisation.
- ► <u>C00158</u> provides a bit coded representation of all active sources/triggers of a controller inhibit:

Bit	Cause/Source of controller inhibit
Bit 0	Terminal controller enable
Bit 1	CAN control word
Bit 2	MCI control word
Bit 3	SwitchOn
Bit 4	Application (LS_DriveInterface system block: bClnh input)
Bit 5	Device command (C00002/16)
Bit 6	Error with a "Fault"/"Trouble" error response or system error, respectively
Bit 7	Internal signal
Bit 8	Reserved
Bit 9	Reserved
Bit 10	AutoStartLock
Bit 11	Motor parameter identification
Bit 12	Automatic brake operation
Bit 13	DCB-IMP
Bit 14	Reserved
Bit 15	Reserved

The controller can also be enabled or inhibited via the \hat{N} and \hat{N} toolbar icons.

Device control (DCTRL)
Device commands (C00002/x)

4.1.5 Activate/Deactivate quick stop

The $\underline{\text{C00002/17}}$ = "1: On / start" device command activates the quick stop function, i.e. the motor control is separated from the setpoint selection, and within the deceleration time parameterised in $\underline{\text{C00105}}$ the motor is brought to a standstill (n_{act} = 0).

Parameter Info		Lenze setting		
		Value	Unit	
C00105	Decel. time - quick stop	2.000	S	

- ▶ The motor is kept at a standstill during closed-loop operation.
- ▶ A pulse inhibit (CINH) is set if the auto DCB function has been activated via <u>C00019</u>.
- ► In <u>C00104</u>, the position control can be activated during ramp-down and/or at standstill.

The $\underline{\text{C00002/17}}$ = "0: Off / ready" device command deactivates the quick stop again, provided that no other source of a quick stop is active.

► <u>C00159</u> provides a bit coded representation of all active sources/triggers of a quick stop:

Bit	Cause/Source of controller inhibit
Bit 0	Reserved
Bit 1	CAN control word (bit 2)
Bit 2	MCI control word (bit 2)
Bit 3	Reserved
Bit 4	Application (LS_MotorInterface system block: bQspOn input)
Bit 5	Device command (C00002/17)
Bit 6	Device error with "TroubleQSP" error response
Bit 7	Internal signal
Bit 8	Reserved
Bit 9	Reserved
Bit 10	Operating system
Bit 11	Reserved
Bit 12	MCK (System block <u>LS_MotionControlKernel</u> : Input <i>bQspOn</i>)
Bit 13	Reserved
Bit 14	Reserved
Bit 15	Reserved

4.1.6 **Reset error**

The C00002/19 = "1: On / start" device command acknowledges an existing error message if the error cause has been eliminated and thus the error is not pending anymore.

- ▶ After the reset (acknowledgement) of the current error, further errors may be pending which must also be reset.
- ▶ The status-determining error is displayed in C00168.
- ▶ The current error is displayed in C00170.

An error message can also be acknowledged by activating the **Reset error** button in the **Diagnostics** tab.

Detailed information on error messages can be found in the "Diagnostics & error management" chapter. (581)

Delete logbook 4.1.7

The C00002/21 = 1: On / start device command deletes all logbook entries.

Click the Logbook button in the Diagnostics tab to display the logbook in the »Engineer«.

In the Logbook dialog box, it is also possible to delete all logbook entries by clicking the **Delete** button.

Detailed information on the logbook can be found in the "Diagnostics & error management" chapter. (581)

8400 TopLine C | Software Manual

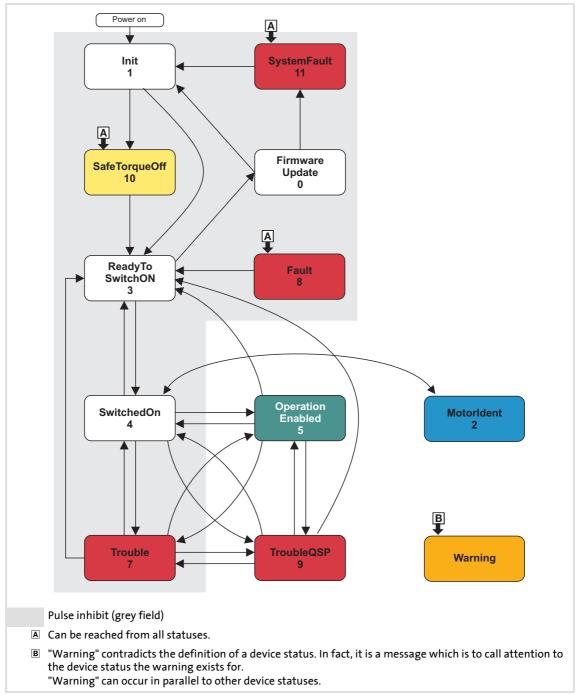
Device control (DCTRL)
Device commands (C00002/x)

4.1.8 Device search function

In some applications where controllers are installed in control cabinets or are positioned in a spacious plant, it is often difficult to locate a device connected online for e.g. maintenance work. There is an established online connection with the device but you do not know where the controller is located physically.

The C00002/27 = "1: On / start" device command serves to carry out an "optical location":

- ► For the time set in C00181/1, all four status LEDs at the front of the controller flash. Afterwards, the function is turned off automatically.
- ▶ If the device command is executed again within the set time period, the duration is extended accordingly.
- ▶ The setting C00002/27 = "0: Off / ready" serves to abort or switch off the function.
- ► Adjustable time period: 0 ... 6000 s (Lenze setting: 5 s)



The device search function can also be activated via the *interview toolbar* icon.

4.2 Device state machine and device statuses

The behaviour of the controller is mainly determined by the current device status within the device state machine. Which device status is active and device status is next depends on certain control signals (e.g. for controller inhibit and quick stop) and status parameters.

- [4-1] Device state machine
 - ▶ The arrows between the device statuses mark possible status changes.
 - ▶ The digits stand for the status ID (see table below).

- ▶ The change from one status to the other is carried out within a 1-ms cycle. If within this time there are several requests for status changes, the status with the higher priority is processed first (see table below).
- ► <u>C00137</u> displays the current device state.
- ► <u>C00150</u> (status word) provides a bit coded representation of the current device state via bits 8 ... 11 (see table below).

ID	Device status (Display in <u>C00137</u>)	Priority	Status bits (Display in <u>C00150</u>)		<u>0</u>)	Meaning	
			Bit 11	Bit 10	Bit 9	Bit 8	
0	<u>FirmwareUpdate</u>	-	0	0	0	0	Firmware update function is active
1	<u>Init</u>	-	0	0	0	1	Initialisation is active
2	<u>MotorIdent</u>	-	0	0	1	0	Motor parameter identification is active
3	<u>ReadyToSwitchOn</u>	Prio 5	0	0	1	1	Device is ready to start
4	<u>SwitchedOn</u>	Prio 4	0	1	0	0	Device is switched on
5	<u>OperationEnabled</u>	Prio 1	0	1	0	1	Operation
6	-	-	0	1	1	0	-
7	<u>Trouble</u>	Prio 3	0	1	1	1	Trouble is active
8	<u>Fault</u>	Prio 7	1	0	0	0	Fault is active
9	<u>TroubleQSP</u>	Prio 2	1	0	0	1	TroubleQSP is active
10	<u>SafeTorqueOff</u>	Prio 6	1	0	1	0	Safe torque off is active
11	<u>SystemFault</u>	Prio 8	1	0	1	1	System fault is active

[4-1] Device statuses, priorities, and meaning of the status bits in the status word

4.2.1 FirmwareUpdate

Note!

This function may only be executed by qualified Lenze personnel!

4.2.2 Init

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Displ	ay in status	word 1 (<u>CO</u>	0150)
			Bit 11	Bit 10	Bit 9	Bit 8
Off	Off	Init	0	0	0	1

The controller is in this status immediately after switching on its 24 V supply voltage.

In the "Init" status, the operating system is initialised and all device components (communication module, memory module, power section, etc.) are identified. When identifying the power section, it is checked first if it is switched on or if the required voltage lies within the tolerance zone, respectively.

- ► The inverter is inhibited, i.e. the motor terminals (U, V, W) of the inverter are deenergised.
- ▶ The digital and analog inputs are not yet evaluated at this time.
- ► The bus systems (CAN, PROFIBUS etc.) do not work yet, i.e. communication is not possible.
- ► The application is not yet processed.
- ▶ The monitoring functions are not yet active.
- ► The controller cannot be parameterised yet and no device commands can be carried out yet.

Note!

If the 24V voltage supply is in the valid range (>19V) and the initialisation is finished, the device changes automatically to the "ReadyToSwitchOn" status.

If only the 24V voltage supply is available during the mains connection, the error message "<u>LU: Undervoltage in the DC bus</u>" is also entered into the logbook of the drive controller.

4.2.3 MotorIdent

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Display in status word 1 (C00150)			0150)
			Bit 11	Bit 10	Bit 9	Bit 8
	Off	MotorIdent	0	0	1	0

The controller has been provided with the "Motor parameter identification" function for automatic identification of the motor parameters. If the motor parameter identification is active, the controller is in the "MotorIdent" device status.

The "MotorIdent" device status can only be reached from the "SwitchedOn" device status, i.e. the controller must be inhibited first so that motor parameter identification can be started via the "Motor parameter identification" device command (C00002/23).

Stop!

While the motor parameters are being detected,

- the controller does not respond to setpoint changes or control processes (e.g. speed setpoints, quick stop, torque limitations),
- the application remains active,
- all system interfaces (IO, bus systems, etc.) remain active,
- · error monitoring remains active,
- the inverter is controlled independently of the setpoint sources.

After the motor parameter identification is completed, the status changes back to "SwitchedOn".

Detailed information on motor parameter identification can be found in the "Automatic motor data identification" subchapter on motor control. (126)

4.2.4 SafeTorqueOff

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Displ	ay in status	word 1 (<u>CO</u>	0150)
			Bit 11	Bit 10	Bit 9	Bit 8
	Off	SafeTorqueOff	1	0	1	0

Note!

This device status is only possible in connection with an integrated safety system and if a power section supply is available!

Integrated safety systems with Inverter Drives 8400

Drive controller of the 8400 series can be equipped with the integrated "Safe torque off (STO)" safety system.

The integrated safety system is applicable on machines for the protection of persons.

The drive function is still carried out by the drive controller. The safety system provides safe inputs. If the safety system is activated, it executes control functions according to EN 60204-1 directly in the drive controller in case of errors.

Safety status

If the drive controller is switched off by the safety system, the device changes to the "SafeTorqueOff" status.

If the safety system deactivates the "Safe torque off (STO)" request, the device changes to the "ReadyToSwitchOn" status.

Detailed information on the integrated safety system can be found in the hardware manual!

The hardware manual contains important notes on the safety system which must be observed!

• The hardware manual has been stored in electronic form on the data carrier supplied with the 8400 drive controller.

Device control (DCTRL)

Device state machine and device statuses

4.2.5 ReadyToSwitchOn

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Displ	ay in status	word 1 (<u>CO</u>	0150)
			Bit 11	Bit 10	Bit 9	Bit 8
	Off	ReadyToSwitchOn	0	0	1	1

The controller is in this device status directly after the initialisation has been completed!

- ▶ The bus systems are running and the terminals and encoders are evaluated.
- ► The monitoring modes are active.
- ► The controller can be parameterised.
- ► The application is basically executable.

Note!

- The "ReadyToSwitchOn" status is not only activated after the mains connection, but also after the deactivation of "<u>Trouble</u>", "<u>Fault</u>" or "SafeTorqueOff".
- If <u>C00142</u> activates the autostart option "Inhibit at power-on" (Lenze setting), explicit deactivation of the controller inhibit after mains connection is always required for the controller to change from the "ReadyToSwitchOn" status to the "SwitchedOn" status.
- If only the 24V voltage supply is available during the mains connection, the
 error message "<u>LU: Undervoltage in the DC bus</u>" is entered into the logbook of
 the drive controller and the drive controller remains in the
 "ReadyToSwitchOn" status.

Danger!

If the "Inhibit at power-on" auto-start option has been deactivated in <u>C00142</u>, the "ReadyToSwitchOn" status switches directly to the <u>SwitchedOn</u>" status after mains connection.

▶ <u>Automatic restart after mains connection/fault...</u> (☐ 112)

4.2.6 SwitchedOn

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Display in status word 1 (C00150)			0150)
			Bit 11	Bit 10	Bit 9	Bit 8
	Off	SwitchedON	0	1	0	0

The drive is in this device status if the DC bus voltage is applied and the controller is still inhibited by the user (controller inhibit).

- ▶ The bus systems are running and the terminals and encoders are evaluated.
- ▶ The monitoring modes are active.
- ► The application is basically executable.

If the controller inhibit is deactivated, the devices changes to the "<a href="OperationEnabled" status and the motor follows the setpoint defined by the active application." The setpoint defined by the active application.

<u>C00158</u> provides a bit coded representation of all active sources/triggers of a controller inhibit.

Depending on certain conditions, a status change takes place based on the "SwitchedOn" device status:

Change condition	Changeover to the device status
Control bit "EnableOperation" of all control channels = "1" AND terminal RFR = HIGH level (controller enable)	<u>OperationEnabled</u>
"SwitchOn" control bit of a control channel = "0".	<u>ReadyToSwitchOn</u>
Motor parameter identification requested.	MotorIdent
Undervoltage in the DC bus.	<u>Trouble/Fault</u> (depending on <u>C00600/1</u>)
Error with error response "Trouble" occurs.	Trouble
Error with error response "TroubleQSP" occurs.	TroubleQSP

Related topics:

▶ <u>wCANControl/wMCIControl control words</u> (☐ 118)

Device control (DCTRL)

Device state machine and device statuses

4.2.7 OperationEnabled

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Displ	ay in status	word 1 (<u>CO</u>	0150)
			Bit 11	Bit 10	Bit 9	Bit 8
	Off	OperationEnabled	0	1	0	1

The drive controller is in this device status if the controller inhibit is deactivated and no error ("Trouble" or "TroubleOSP") has occurred.

If the operation is enabled and the magnetisation in case of servo control (SC) and sensorless vector control (SLVC) has been completed, the motor follows the setpoint determined by the active application.

Depending on certain conditions, a status change takes place based on the "OperationEnabled" device status.

Change condition	Changeover to the device status
Control bit "EnableOperation" of a control channel = "0" OR terminal RFR = LOW level (controller inhibit).	SwitchedOn
"SwitchOn" control bit of a control channel = "0".	ReadyToSwitchOn
Undervoltage in the DC bus.	Trouble/Fault (depending on C00600/1)
Error with error response "Trouble" occurs.	Trouble
Error with error response "TroubleQSP" occurs.	TroubleQSP

Related topics:

▶ wCANControl/wMClControl control words (□ 118)

4.2.8 TroubleQSP

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Display in status word 1 (C00150)			
			Bit 11	Bit 10	Bit 9	Bit 8
		TroubleQSP	1	0	0	1

This device status will be active as soon as a monitoring mode responds, the error response "TroubleOSP" has been parameterised for.

- ► The drive is decelerated to standstill with torque within the deceleration time parameterised for quick stop independently of the defined setpoint and can be kept there.
- ► The device status can only be abandoned by acknowledging the error if the error cause is removed.
- ▶ When the controller is inhibited, it is possible to jump to the "<u>SwitchedOn</u>" status even during the error status since the controller inhibit function has a higher priority. As long as the error is pending and has not been acknowledged, the status is changed back to the "TroubleOSP" status when the controller is enabled afterwards.

Depending on certain conditions a status change takes place based on the "TroubleQSP" device status.

Change condition	Changeover to the device status
"SwitchOn" control bit of a control channel = "0".	<u>ReadyToSwitchOn</u>
Control bit "EnableOperation" of all control channels = "1" AND terminal RFR = HIGH level (controller enable) AND error is reset by the control bit "ResetFault" AND no more errors are pending.	<u>OperationEnabled</u>
Control bit "EnableOperation" of a control channel = "0" OR terminal RFR = LOW level (controller inhibit) AND error is reset by the control bit "ResetFault" AND no more errors are pending.	SwitchedOn
A message is active in the system.	Trouble

Related topics:

- ▶ wCANControl/wMCIControl control words (□ 118)
- ▶ <u>Basics on error handling in the controller</u> (☐ 581)
- ▶ Error messages of the operating system (☐ 602)

Device control (DCTRL)

Device state machine and device statuses

4.2.9 Trouble

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Display in status word 1 (C00150)			
			Bit 11	Bit 10	Bit 9	Bit 8
Off		Trouble	0	1	1	1

This device status becomes active as soon as a monitoring mode responds for which the error response "Trouble" has been parameterised.

- ▶ The motor has no torque (is coasting) due to the inhibit of the inverter.
- ► The "Trouble" device status is automatically abandoned if the error cause has been removed.

Note!

If the "Inhibit at trouble" auto-start option has been activated in <u>C00142</u>, explicit deactivation of the controller inhibit is required before this status can be abandoned.

Depending on certain conditions a status change takes place based on the "Trouble" device status.

Change condition	Changeover to the device status
The error cause is no longer active.	<u>ReadyToSwitchOn</u>
Control bit "EnableOperation" of all control channels = "1" AND terminal RFR = HIGH level (controller enable) AND the message has been cancelled.	<u>OperationEnabled</u>
Control bit "EnableOperation" of a control channel = "0" OR terminal RFR = LOW level (controller inhibit) AND the message has been cancelled.	SwitchedOn
In the system, there is an error configured on "TroubleQSP". AND the message has been cancelled.	TroubleQSP

Related topics:

- ▶ wCANControl/wMClControl control words (□ 118)
- ▶ Basics on error handling in the controller (☐ 581)
- ▶ Error messages of the operating system (☐ 602)

4.2.10 Fault

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Display in status word 1 (C00150)			0150)
			Bit 11	Bit 10	Bit 9	Bit 8
Off		Fault	1	0	0	0

This device status will be active as soon as a monitoring mode responds, the error response "Fault" has been parameterised for.

- ▶ The motor has no torque (is coasting) due to the inhibit of the inverter.
- ► The error must explicitly be reset ("acknowledged") in order to exit the device status, e.g. by the device command "Reset error" or via the control bit "ResetFault" in the control word wCanControl or wMCIControl.

Note!

If an undervoltage in the DC bus of the drive controller occurs (error message "LU"), the device changes to the "<u>Trouble</u>" status.

An additional error of higher priority leads the device into the "Fault" status.

According to the <u>Device state machine</u>, the device changes to the "<u>ReadyToSwitchOn</u>" status after acknowledging the error although the undervoltage is still available!

If the "Inhibit at fault" auto-start option has been activated in <u>C00142</u>, explicit deactivation of the controller inhibit is required before the status can be abandoned.

Related topics:

- ▶ wCANControl/wMClControl control words (□ 118)
- ▶ Basics on error handling in the controller (☐ 581)
- ▶ Error messages of the operating system (☐ 602)

4.2.11 SystemFault

LED DRIVE READY	LED DRIVE ERROR	Display in C00137	Display in status word 1 (C00150)			
			Bit 11	Bit 10	Bit 9	Bit 8
Off		SystemFault	1	0	1	1

This device status becomes active if a system fault occurs.

- ► The device status can only be abandoned by
 - mains switching or
 - a system restart (in preparation).

8400 TopLine C | Software Manual

Device control (DCTRL)

Automatic restart after mains connection/fault...

4.3 Automatic restart after mains connection/fault...

.../Error/undervoltage/loading of the Lenze setting

In <u>C00142</u>, the starting performance of the controller after mains connection, undervoltage, loading of the Lenze setting as well as a "<u>Trouble</u>" or a "<u>Fault</u>" reset can be parameterised individually:

Auto-start opt	ion (C00142)	Lenze setting
Bit 0	"Inhibit at power-on" auto-start option	1 ≡ Inhibit is active
Bit 1	Inhibit at trouble	0 ≡ Inhibit is not active
Bit 2	Inhibit at fault	0 ≡ Inhibit is not active
Bit 3	Inhibit at undervoltage	1 ≡ Inhibit is active
Bit 4	Auto-start option "Inhibit at Lenze setting"	1 ≡ Inhibit is active
Bit 5	Reserved	0
Bit 6		
Bit 7		

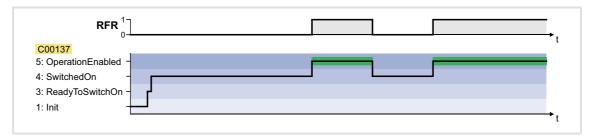
Note!

In the Lenze setting, automatic restart after mains connection, undervoltage, and loading of the Lenze setting is inhibited.

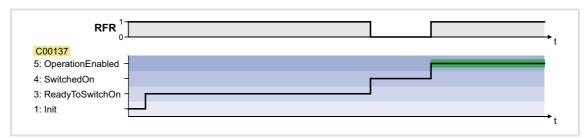
4.3.1 "Inhibit at power-on" auto-start option

The auto-start option "Inhibit at power-on" prevents the change to the "<u>SwitchedOn</u>" status after mains connection if the controller is already enabled at mains connection.

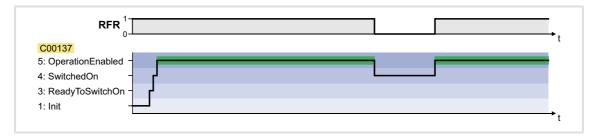
Danger!


If the "Inhibit at power-on" auto-start option has been deactivated in $\underline{\text{C00142}}$, (bit 0 = 0), the motor can directly start to run if the controller is enabled after mains connection!

The following three cases describe the behaviour of the controller after mains connection depending on whether the controller is enabled and the set auto-start option. Here, it is assumed that after mains connection, no errors and trouble occur in the controller and the "EnableOperation" control bit in the wDriveControl is set to "1".


Case 1: No controller enable at mains connection

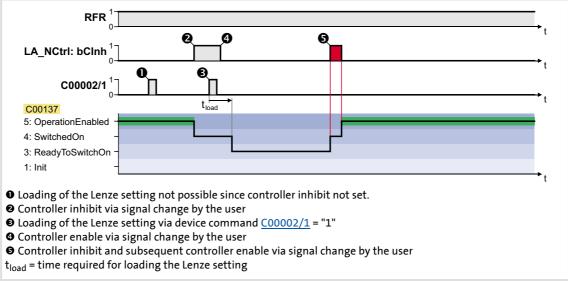
If the controller is not enabled at mains connection, the controller remains in the "SwitchedOn" status. Only with the controller enable, the status changes to the "OperationEnabled" status, independent of the set auto-start option:


Case 2: Controller enable at mains connection and "Inhibit at power-on" activated

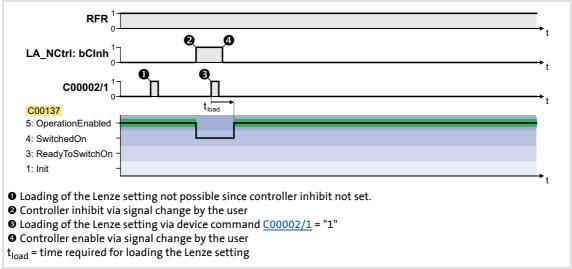
If the controller is enabled at mains connection and the auto-start option "Inhibit at power-on" is activated, the controller remains in the "ReadyToSwitchOn" status. For changing to the "SwitchedOn" status, the controller enable must first be deactivated. Only when the controller is enabled again afterwards, the status changes to "OperationEnabled":

Case 3: Controller enable at mains connection and "Inhibit at power-on" deactivated

If the "Inhibit at power-on" auto-start option is deactivated in $\underline{C00142}$ (bit 0 = 0), the status first changes from "ReadyToSwitchOn" to "SwitchedOn" and then to "OperationEnabled" after mains connection with enabled controller:

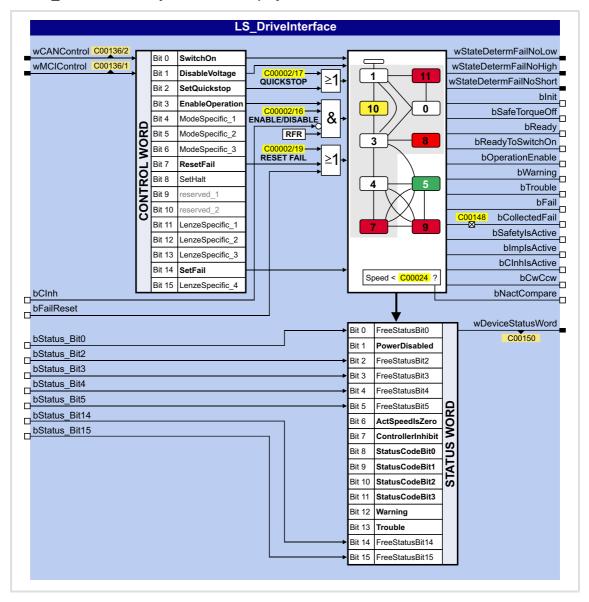


Automatic restart after mains connection/fault...


4.3.2 Auto-start option "Inhibit at Lenze setting"

The "Inhibit at Lenze setting" auto-start option configurable via bit 4 of <u>C00142</u> prevents the change to the "<u>SwitchedOn</u>" status after the Lenze setting has been loaded and the controller is enabled.

For a change to the "<u>SwitchedOn</u>" status, the controller enable must first be deactivated after the Lenze setting has been loaded. Only if the controller is enabled again afterwards, the status changes to "<u>OperationEnabled</u>":


[4-2] Example 1: Behaviour with activated auto-start option "Inhibit at Lenze setting" (C00142: Bit 4 = "1")

[4-3] Example 2: Behaviour with deactivated auto-start option "Inhibit at Lenze setting" (C00142: Bit 4 = "0")

4.4 Internal interfaces | "LS_DriveInterface" system block

The LS_DriveInterface system block displays the device control in the FB Editor.

Inputs

Identifier	DIS code data type	Information/p	ossible settings	
wCANContro	ol C00136/2 WORD	 The control the CANope input by the For a detail 	ria system bus (CAN) ler controlled by a master control (e.g. IPC) receives its control word by en system bus interface. The process data word is provided at this e upstream port block LP CanIn1 . ed description of the individual control bits, see chapter trol/wMClControl control words ". (118)	
wMCIContro	C00136/1 WORD	 The control a plugged-i input by the For a detail 	ria communication module (e.g. PROFIBUS) ler controlled by a master control (e.g. IPC) receives its control word by n communication module. The process data word is provided at this e upstream port block LP Mciln1 . ed description of the individual control bits, see chapter trol/wMCIControl control words ". (118)	
bCInh		► Enable/Inhibit controller (□ 97)		
	C00833/36 BOOL	FALSE	Enable controller: The controller switches to the "OperationEnabled" device status if no other source of a controller inhibit is active. • C00158 provides a bit coded representation of all active sources/triggers of a controller inhibit.	
		TRUE	Inhibit controller (controller inhibit): The controller switches to the "SwitchedOn" device status.	
bFailReset		▶ Reset error r	nessages (🕮 606)	
	C00833/37 BOOL	FALSE7TRUE	The current error is reset.	
bStatus_Bit0 bStatus_Bit2 bStatus_Bit3 bStatus_Bit4 bStatus_Bit5 bStatus_Bit1 bStatus_Bit1	2 3 4 5	, ,	ole bits in the status word of the controller. these bits for returning information to the master control (e.g. IPC).	

Outputs

Identifier DIS code data type	Value/meaning
wDeviceStatusWord C00150 WORD	 Status word of the controller (based on DSP-402) The status word contains all information relevant for controlling the controller. The status word is sent as a process data word to the master control via a port block: Port block <u>LP CanOut1</u> when the CANopen system bus interface is used or Proft block <u>LP MciOut</u> when a plugged-in communication module is used (e.g. PROFIBUS). For a detailed description of each status bit see chapter "<u>wDeviceStatusWord status word</u>". (☐ 119)
wStateDetermFailNoLow WORD	Display of the status determining error (32-bit error number, Low-Word) • If the "Use I16BitFailNo" (bit 15 = "1") option is activated in C00148, the short 16-bit error number (wStateDetermFailNoShort) is provided via this output as well. —In this case, the wStateDetermFailNoHigh output is "0". —Advantage: The bus transfer of the error numbers is possible via a data word without changing the interconnection of the technology application.
wStateDetermFailNoHigh word	Display of the status determining error (32-bit error number, High-Word)
wStateDetermFailNoShort WORD	Display of the status determining error (16-bit error number)

Identifier DIS code data ty	Value/meanin	g
blnit BO	TRUE	" <u>Init</u> " device status is active
bSafeTorqueOff BO	TRUE	" <u>SafeTorqueOff</u> " device status is active
bReady BO	TRUE	"SwitchedOn" device status is active
bReadyToSwitchOn	TRUE	"ReadyToSwitchOn" device status is active
bOperationEnable BO	TRUE	"OperationEnabled" device status is active
bWarning BO	TRUE	A warning is indicated
bTrouble BO	TRUE	" <u>Trouble</u> " device state is active
bFail BO	TRUE	" <u>Fault</u> " device state is active
bCollectedFail BO	TRUE	Group error: A device status according to the group error configuration in C00148 has occurred, the drive is not able to follow the setpoint selection.
bSafetyIsActive BO	TRUE	In preparation
bImplsActive BO		Pulse inhibit is active
bCInhIsActive BO	TRUE	Controller inhibit is active
bCwCcw		Motor rotates in CW direction
ВО	TRUE	Motor rotates in CCW direction
bNactCompare BO	TRUE	During open-loop operation: Speed setpoint < Comparison value (C00024)
		During closed-loop operation: Actual speed value < Comparison value (C00024)

Option "Lock bFail at TroubleQSP"

The <u>TroubleQSP</u> device status gets active as soon as a monitoring function responds that has been parameterised for the "TroubleQSP" error response. Since the *bFail* status output is not set in this case, it is not recognisable after pulse inhibit due to e.g. automatic brake operation (as well for a higher-level control), why the drive is standing und does not start when the setpoint is selected. Only after an error reset, a setpoint is accepted again.

From version 02.00.00: If the "Lock bFail at TroubleQSP" option is activated (bit 14 = "1") in C00148, the bFail status output is also set to TRUE if the device status is TroubleQSP.

Internal interfaces | "LS DriveInterface" system block

4.4.1 wCANControl/wMCIControl control words

The controller is controlled by a master control (e.g. IPC) via the *wCanControl* or *wMCIControl* control word, respectively.

- ► wCANControl: Control word via system bus (CAN)
 - The process data word is provided at the wCanControl input via the upstream
 LP CanIn1 port block.
 - Display parameter: C00136/2
- ▶ wMCIControl: Control word via a plugged-in communication module (e.g. PROFIBUS)
 - The process data word is provided at the wMCIControl input via the upstream
 LP Mciln1 port block.
 - Display parameter: C00136/1
- ► The bit assignment for the wCanControl/wMCIControl control words can be seen from the table below.

Note!

The assignment of bits 11 ... 13 and bit 15 depends on the technology application selected in C00005!

• See description of the corresponding technology application.

Bit	Name	Function
Bit 0	SwitchOn	 1 = Change to the "SwitchedOn" device status This bit must be set in the CAN AND MCI control word in order that the drive changes to the "SwitchedOn" state after main connection. In order to reach the "ReadyToSwitchOn" state, it is sufficient to set the bit to 0 in one of the two control words.
Bit 1	DisableVoltage	1 = Inhibit inverter control (IMP - pulse inhibit)
Bit 2	SetQuickStop	Activate quick stop (QSP) ▶ Activate/Deactivate quick stop (□ 98)
Bit 3	EnableOperation	 1 ≡ Enable controller (RFR) This bit must be set in CAN AND in the MCI control word, otherwise the controller will be inhibited.
Bit 4	ModeSpecific_1	Reserved (currently not assigned)
Bit 5	ModeSpecific_2	
Bit 6	ModeSpecific_3	
Bit 7	ResetFault	 1 ≡ Reset fault (trip reset) Acknowledge fault message (if the error cause has been eliminated).
Bit 8	SetHalt	1 = Activate stop functionStop drive via stopping ramp (in preparation).
Bit 9	reserved_1	Reserved (currently not assigned)
Bit 10	reserved_2	
Bit 11	LenzeSpecific_1	Assignment depends on the selected technology application
Bit 12	LenzeSpecific_2	See description of the corresponding technology application.
Bit 13	LenzeSpecific_3	
Bit 14	SetFail	1 = Set error (trip set)
Bit 15	LenzeSpecific_4	Assignment depends on the selected technology application • See description of the corresponding technology application.

If a bus control is not wanted (e.g. in case of control via terminals):

Connect both control word inputs with the *wDriveCtrl* output signal of the <u>LS ParFix</u> system block. This output signal has the fixed value "9", which corresponds to the following assignment:

- Bit 0, SwitchOn = 1
- Bit 3, EnableOperation = 1
- All others: 0

4.4.2 wDeviceStatusWord status word

The wDeviceStatusWord status word provided by the control system contains all information relevant for controlling the controller.

- ▶ The status word is sent as a process data word to the master control via a port block:
 - The LP CanOut1 port block if "CAN on board" is used or
 - the LP_MciOut1 port block if a plugged-in communication module is used (e.g. PROFIBUS).
- ▶ Display parameter: C00150
- ▶ The bit assignment of the wDeviceStatusWord status word can be seen from the table below.

Bit	Name	Status
Bit 0	FreeStatusBit0	Free status bit 0
Bit 1	PowerDisabled	1 = Inverter control inhibited (pulse inhibit is active)
Bit 2	FreeStatusBit2	Free status bit 2 (not assigned, freely assignable)
Bit 3	FreeStatusBit3	Free status bit 3 (not assigned, freely assignable)
Bit 4	FreeStatusBit4	Free status bit 4 (not assigned, freely assignable)
Bit 5	FreeStatusBit5	Free status bit 5 (not assigned, freely assignable)
Bit 6	ActSpeedIsZero	During open-loop operation: 1 ≡ Speed setpoint < Comparison value (C00024)
		During closed-loop operation: 1 ≡ Actual speed value < Comparison value (C00024)
Bit 7	ControllerInhibit	1 = Controller inhibited (controller inhibit is active)
Bit 8	StatusCodeBit0	Bit coded display of the active device status
Bit 9	StatusCodeBit1	Device state machine and device statuses (see table [4-1])
Bit 10	StatusCodeBit2	
Bit 11	StatusCodeBit3	
Bit 12	Warning	1 ≡ A warning is indicated
Bit 13	Trouble	 1 = Controller is in the "Trouble" device status E.g. if an overvoltage has occurred.
Bit 14	FreeStatusBit14	Free status bit 14 (not assigned, freely assignable)
Bit 15	FreeStatusBit15	Free status bit 15 (not assigned, freely assignable)

5 Motor control (MCTRL)

This chapter provides information on the parameter setting of the controller's internal motor control. The 8400 TopLine controller both supports synchronous and asynchronous motors.

Topics:

Basic settings:

- ▶ Motor selection/Motor data
- ▶ Selecting the control mode
- ▶ Defining current and speed limits
- ▶ Pole position identification (PPI)

Description of the motor control types:

- ▶ V/f characteristic control (VFCplus)
- ▶ V/f characteristic control energy-saving (VFCplusEco)
- ▶ V/f control (VFCplus + encoder)
- ▶ Sensorless vector control (SLVC)
- ▶ Sensorless control for synchronous motors (SLPSM)
- ▶ Servo control (SC)

Parameterisable additional functions:

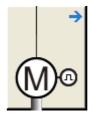
- ▶ Selection of switching frequency
- ▶ Operation with increased rated power
- ▶ Correction of the stator leakage inductance...
- ▶ Flying restart function
- ▶ DC-injection braking
- ▶ Slip compensation
- ▶ Oscillation damping
- ▶ Phase sequence reversal for correcting misconnected UVW motor phases
- ▶ Field weakening for synchronous motors

Further topics:

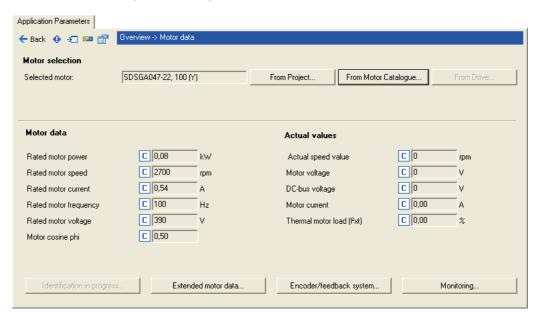
- ▶ Position control/additive speed specification
- ▶ Braking operation/brake energy management
- **▶** Monitoring

Internal interfaces (process signals):

- ▶ Internal interfaces | system block "LS MotorInterface"
- ▶ Internal status signals | system block "LS DeviceMonitor"


5.1 Motor selection/Motor data

The motor data term comprises all parameters that only depend on the motor and that only characterise the electrical behaviour of the machine. The motor data are independent of the application in which the controller and the motor are used.



Proceed as follows to open the dialog for parameterising the motor data:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the *Overview* dialog level and click the following button:

Parameterisation dialog in the »Engineer«

- Via the From Motor Catalogue button, the motor catalogue can be opened to select another motor. ▶ Selecting a motor from the motor catalogue in the »Engineer« (□ 124)
- ▶ Via the From drive... button, the motor data set in the controller can be copied to the »Engineer« when an online connection has been established.
- ▶ When an online connection has been established to the controller, the Identification in **progress...** button serves to automatically identify different motor data. ▶ Automatic motor data identification (1126)
- ▶ The Encoder/feedback system... serves to get to the settings for the encoder/feedback system, if available. ▶ Encoder/feedback system (□ 293)

Note!

Sensorless vector control (SLVC) and sensorless control for synchronous motors (SLPSM) in particular requires the motor data parameters to be set. The motor data comprise the data of the motor nameplate and the data of the motor equivalent circuit.

If the motor has been selected via the motor catalogue of the »Engineer« or the motor data have been adapted offline using the »Engineer«, all motor data must then be copied to the controller and saved power-failure-proof to the memory module (device command: C00002/11) when an online connection has been established.

If the motor has a rated motor frequency with decimal position (e.g. motor nameplate data "23.7 Hz"), the following motor nameplate data must be increased by the factor 10:

- C00089: Rated motor frequency
- C00081: Rated motor power
- C00087: Rated motor speed
- C00090: Rated motor voltage

With a rated motor frequency of "23.7 Hz", for instance 237 Hz must be set in C00089.

Motor data

In the parameterisation dialog, the data of the motor nameplate for the selected motor are displayed under "Motor data".

Parameter	Info
C00081	Rated motor power
<u>C00087</u>	Rated motor speed
C00088	Rated motor current
C00089	Rated motor frequency
<u>C00090</u>	Rated motor voltage
<u>C00091</u>	Motor cos φ

Actual values

When an online connection to the controller has been established, the following actual values are displayed in the parameterisation dialog under "Actual values":

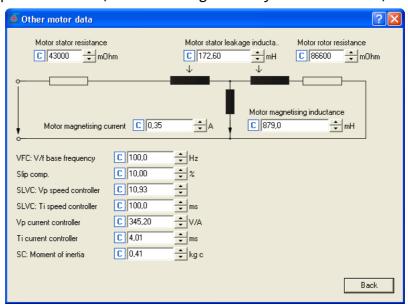
Parameter	Info	
<u>C00051</u>	Actual speed value	
<u>C00052</u>	Motor voltage	
<u>C00053</u>	DC-bus voltage	
<u>C00054</u>	Motor current	
<u>C00066</u>	Thermal motor load (I2xt)	
Highlighted in grey = display parameter		

Adapting motor data manually

If a third party manufacturer's motor is used, the displayed motor data can exactly be adapted to the real motor by clicking the **From project**... button and selecting the "Own motor settings" entry from the **Motor selection** dialog box afterwards. For this purpose, the data of the motor nameplate and the equivalent circuit diagram must be available.

For a better concentricity factor, we recommend to perform motor parameter identification of the third party manufacturer's motor first. The motor parameters can be manually adapted afterwards.

Improving the concentricity factor includes

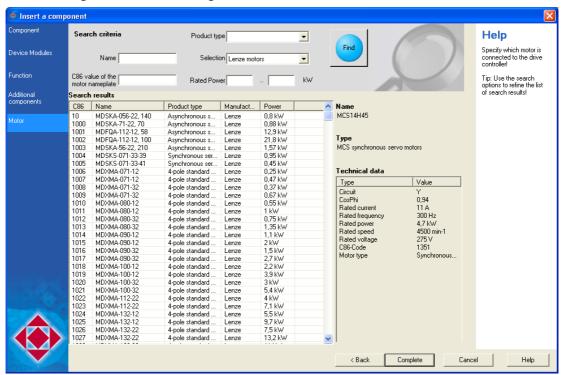

- the adjustment of the inverter error characteristic to the drive system and
- the knowledge of the motor cable resistance.

Both factors are determined in the course of motor parameter identification.

▶ Automatic motor data identification (☐ 126)

Other motor data

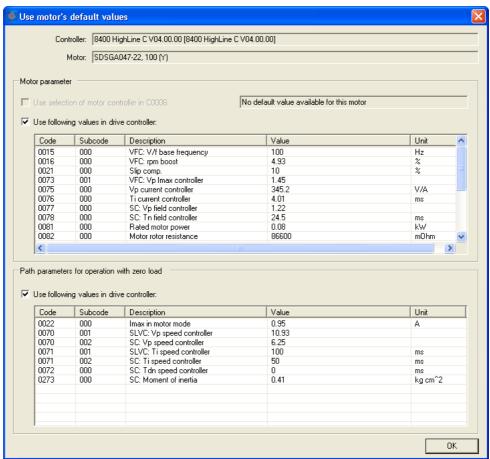
Click the **Other motor data...** button and go to the *Other motor data* dialog box including the motor equivalent circuit (in the following for an asynchronous motor):


Parameter	Info	ASM	PSM
C00084	Motor stator resistance	•	•
<u>C00085</u>	Motor stator leakage inductance	•	•
C00082	Motor rotor resistance	•	
C00095	Motor magnetising current	•	
C00092	Motor magnetising inductance	•	
C00015	VFCplus: V/f base frequency	•	
<u>C00021</u>	Slip compensation	•	

Parameter	Info	ASM	PSM
<u>C00070</u>	SLVC: Vp speed controller	•	
<u>C00071</u>	SLVC: Ti speed controller	•	
<u>C00075</u>	Vp current controller	•	•
<u>C00076</u>	Ti current controller	•	•
C00273	Moment of inertia	•	•

5.1.1 Selecting a motor from the motor catalogue in the »Engineer«

If a checkmark is set in the **Motor** control field in the "Other components" dialog when the controller is inserted into the project, the motor for the controller can be selected from the motor catalogue in another dialog:



- ► Alternatively, the motor can be inserted into the project at a later time via the **Insert a component** command.
- ► Go to the **Application parameters** tab in the *Overview* → *Motor data* dialog level and click the **From motor catalogue...** button to also reach the motor catalogue for the selection of another motor.

Accepting the default values of the motor

If a motor is selected from the motor catalogue at a later time, the *Use motor's default values* dialog box is displayed afterwards which includes all motor data of the selected motor. Please select here which of the default values are to be copied to the controller:

- ► The listed motor parameters are already optimally preset for the selected Lenze motor. An adaptation is not required.
- ▶ The "plant parameter" term comprises all parameters that result from the combination of motor and load. These characterise the transfer behaviour of the entire controlled system.
 - The plant parameters depend on the application in which the controller and motor are used.
 - When a Lenze motor is selected in the »Engineer«, plant parameters are suggested for this motor for a load-free operation.

If a third party manufacturer's motor is used, select a Lenze motor from the motor catalogue first which is similar in terms of current, voltage and speed rating. Adapt the preselected motor data exactly to the real motor afterwards.

5.1.2 **Automatic motor data identification**

Via the motor parameter identification, the inverter characteristic, the influences of the motor cable, and the motor parameters listed in the table below can be identified automatically:

Parameter	Info	ASM	PSM
<u>C00015</u>	V/f base frequency	•	
<u>C00016</u>	V _{min} boost	•	
<u>C00021</u>	Slip compensation	•	
<u>C00082</u>	Motor rotor resistance	•	
<u>C00083</u>	Motor rotor time constant	•	
<u>C00084</u>	Motor stator resistance	•	•
<u>C00085</u>	Motor stator leakage inductance	•	•
<u>C00092</u>	Motor magnetising inductance	•	
C00095	Motor magnetising current	•	

For the execution of the motor parameter identification, two modes are available in C02867/1:

- ▶ "1: Basic identification"
 - Only for asynchronous motors
 - Duration approx. 30 s
- ▶ "2: extended identification"
 - Stands out due to increased accuracy of the determined motor parameters.
 - Also supports synchronous motors and asynchronous motors with a power of more than 11 kW.
 - Duration approx. 80 s

In the Lenze setting, a setting of "0: automatic" is selected in C02867/1. This setting ensures that the controller automatically selects the optimum procedure for motor parameter identification.

Danger!

During motor parameter identification, the motor is energised via the outputs U, V and W of the controller!

Observe the corresponding safety instructions!

Stop!

- If motor parameter identification is aborted, unstable drive behaviour may be the result!
- The following applies to the motor parameter identification of synchronous motors:
 - Only the extended motor parameter identification can be used.
 - During the motor parameter identification, the shaft of the synchronous motor mus rotate freely (must not be locked).
 - During motor parameter identification, rotations take place.
- For asynchronous motors as of a power of 11 kW, the following applies:
 - Only the extended motor parameter identification can be used.
- When the extended motor parameter identification is started, it is decided based on the motor control selected in <u>C00006</u> whether an asynchronous motor or a synchronous motor is to be identified.
 - Thus, set a suitable motor control for the motor in <u>C00006</u> <u>before starting</u> the extended motor parameter identification! ▶ <u>Selecting the control</u> <u>mode</u> (☐ 131)

Note!

- We strongly recommend motor parameter identification before the initial commissioning of the sensorless vector control (SLVC) and the sensorless control for synchronous motors (SLPSM).
- The motor parameter identification must be carried out when the motor is cold!
- The load machine may remain connected. Holding brakes, if present, may remain in the braking position.
- With an idling motor, a small angular offset may occur at the motor shaft.
- The amplitude of the rated motor current (C00088) is injected to identify the stator resistance. If the rated motor current amounts to less than 60 % of the rated inverter current, at least 60 % of the rated inverter current will be injected to ensure sufficient motor parameter identification accuracy.

Motor control (MCTRL) Motor selection/Motor data

Preconditions

The motor parameters listed in the table below are excluded from automatic identification and must therefore be adapted to the used motor <u>before motor parameter identification</u> is carried out (see motor nameplate).

Parameter	Info
<u>C00081</u>	Rated motor power
<u>C00087</u>	Rated motor speed
C00088	Rated motor current
C00089	Rated motor frequency
C00090	Rated motor voltage
C00091	Motor cos φ

Furthermore, the available motor cable must be specified in terms of length and cross-section:

Parameter	Info
<u>C00915</u>	Motor cable length
C00916	Motor cable cross-section

Sequence of the motor parameter identification

- 1. The motor stator resistance (C00084) is measured.
- 2. The inverter error characteristic is measured.
- 3. The motor stator leakage inductance (C00085) is measured

For asynchronous motors only:

- 4. The motor magnetising inductance (C00092) and the motor rotor resistance (C00082) are measured.
- 5. The motor magnetising current (C00095) is measured.
- 6. The V/f base frequency (C00015) is calculated.
- 7. Slip compensation (C00021) is calculated.
- 8. V_{min} boost (<u>C00016</u>) is detected.

Optimising motor parameter identification

For the measurement of the required variables, the motor is energised via the controller terminals U, V and W during the motor parameter identification.

The corresponding current controller can be set via the following parameters:

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00075</u>	Vp current controller	7.00	V/A
<u>C00076</u>	Ti current controller	10.61	ms

In the Lenze setting, the current controller is preset in such a way that an optimum controller behaviour is obtained for an asynchronous motor with power adaptation to the controller.

Note!

The motor parameter identification can be aborted in the following cases:

- If a special motor (e.g. mid-frequency motor) or a servo motor is used.
- If there is a large deviation between inverter and motor power.

In this case we recommend (with the simple motor parameter identification):

- to reduce the P component Vp of the current controller (C00075) e.g. by halving.
- to increase the time constant Ti of the current controller (C00076) e.g. by doubling.

With the extended motor parameter identification, the current controller parameters are determined automatically. If the identification is aborted all the same, the current controller parameters set in $\underline{\text{C00075}}$ and $\underline{\text{C00076}}$ can be used by parameterising $\underline{\text{C02866}}$ to "1".

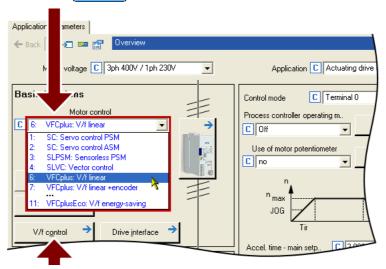
Another cause for the abort of the motor parameter identification could be the implausibility of the entered nameplate data, e.g. the entry P = 0 kW for the motor power.

Motor control (MCTRL) Motor selection/Motor data

How to carry out automatic motor parameter identification:

- 1. Inhibit the controller if it is enabled, e.g. via the C00002/16 device command or a LOW signal at the X5/RFR terminal.
 - For executing the motor parameter identification, the controller must be in the "SwitchedOn" status.
- 2. Wait until the drive is at standstill.
- 3. Ensure that a motor control suitable for the motor is set in C00006.
- 4. Transfer the nameplate data to the following codes:
 - C00081: Rated motor power
 - C00087: Rated motor speed
 - C00088: Rated motor current (according to the connection method Υ/Δ)
 - C00089: Rated motor frequency (according to the connection method Υ/Δ)
 - C00090: Rated motor voltage (according to the connection method Υ/Δ)
 - C00091: Motor cos φ
- 5. Defining the motor cable length and motor cable cross-section:
 - C00915: Motor cable length
 - C00916: Motor cable cross-section

The resulting motor cable resistance is displayed in C00917.


- Activate motor parameter identification via the C00002/23 = "1: On / start" device command.
- 7. Enable the controller again.
 - The controller changes to the "MotorIdent" device status.
 - Motor parameter identification starts.
 - The progress of the identification run can be seen in C00002/23.
 - The identification is completed if the "0: Off / ready" message is displayed in C00002/23.
 - After successful identification, it changes back to the "SwitchedOn" device status.
- 8. Inhibit controller again.

5.2 Selecting the control mode

The 8400 TopLine controller supports various modes for motor control (open loop or closed

- ▶ V/f characteristic control (VFCplus) with linear characteristic for asynchronous motors is preset.
- ▶ The control mode can be selected in the »Engineer« on the Application parameter tab via the Motor control (C00006) list field:

▶ A click on the Motor control... button leads you to the parameterisation dialog of the selected motor control. (The button is labelled according to the selected motor control.)

In order to make the selection of the motor control easier, we provide a selection help with recommendations and alternatives for standard applications in the subchapter entitled "Selection help". (@ 135)

The following section briefly describe the control modes. A reference to more details can be found at the end of each section.

Motor control (MCTRL) Selecting the control mode

V/f characteristic control (VFCplus)

The V/f characteristic control (VFCplus) is a motor control mode for standard frequency inverter applications based on a simple and robust control process which is suitable for the operation of asynchronous motors with linear or square-law load torque characteristic (e.g. fans). Furthermore, this motor control mode is also suitable for group drives and special motors. Due to the low parameterisation effort, commissioning of such applications is fast and easy.

The V_{min} -boost (C00016) and slip compensation (C00021) required for optimising the drive behaviour are dimensioned for asynchronous motors with power adaptations to the inverter in the Lenze setting.

▶ V/f characteristic control (VFCplus) (☐ 147)

V/f characteristic control - energy-saving (VFCplusEco)

In contrast to the V/f characteristic control mode (VFCplus), this motor control mode uses a $\cos \varphi$ control in partial load operational range to automatically reduce the power loss in the asynchronous motor (energy optimisation).

The motor data required for the $\cos \varphi$ control and the V $_{min}$ boost (C00016) and slip compensation (C00021) required for optimising the drive behaviour are dimensioned for asynchronous motors with power adaptations to the inverter in the Lenze setting.

The required motor data (motor rotor resistance, motor stator resistance, motor stator leakage inductance and mutual motor inductance) only affect the extent of energy optimisation but not the stability.

In case of applications with dynamically very high sudden load variations from the unloaded operation, this motor control mode should not be used since a motor stalling cannot be excluded.

Energy optimisation for dynamic applications is not possible with this motor control mode.

▶ V/f characteristic control - energy-saving (VFCplusEco) (☐ 166)

V/f control (VFCplus + encoder)

The V/f control can be selected for operating asynchronous motors with speed feedback. With this motor control, a slip regulator can be additionally parameterised which adjusts the actual speed value dynamically to the speed setpoint.

▶ V/f control (VFCplus + encoder) (□ 176)

Sensorless vector control (SLVC)

Sensorless (field-oriented) vector control for asynchronous motors is based on a decoupled, separate control for the torque-producing and the field-producing current component. In addition, the actual speed is reconstructed by means of a motor model so that a speed sensor is not required.

In comparison to the V/f characteristic control without feedback, the following can be achieved by means of sensorless vector control SLVC:

- ▶ A higher maximum torque throughout the entire speed range
- ► A higher speed accuracy
- ► A higher concentricity factor
- ► A higher level of efficiency
- ▶ The implementation of torque-actuated operation with speed limitation
- ► The limitation of the maximum torque in motor and generator mode for speedactuated operation

If a high torque without feedback is to be provided at small speeds, we recommend the "Sensorless vector control" motor control mode.

▶ Sensorless vector control (SLVC) (□ 182)

Sensorless control for synchronous motors (SLPSM)

This sensorless control enables an encoderless control of synchronous motors. The process is based on field-oriented control within a higher speed range (e.g. > 10 % of the rated motor speed). The actual speed value and rotor position are reconstructed via a motor model.

Standard applications for this control type are pumps and fans, horizontal materials handling and simple positioning technology.

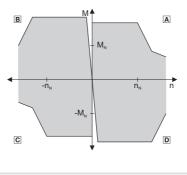
▶ Sensorless control for synchronous motors (SLPSM) (□ 198)

Servo control (SC)

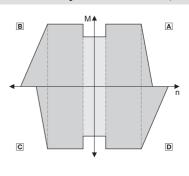
Field-oriented servo control (SC) is based on a decoupled, separate control of the torqueproducing and the field-producing current component. The motor control is based on a field-oriented, cascaded controller structure with feedback function and enables dynamic and stable operation in all of the four quadrants.

The servo control can be used for synchronous motor (PSM) and asynchronous motors (ASM) and basically offers the same advantages as the sensorless vector control (SLVC).

▶ Servo control (SC) (□ 214)


Speed feedback

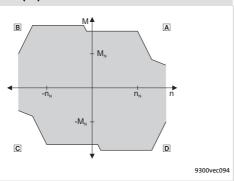
As shown in the following graphics, the drive systems with feedback have, independently of the motor control, more advantages than systems without feedback.



- ⚠ Operation in motor mode (CW rotation), ᠖ Operation in generator mode (CCW rotation),
- © Operation in motor mode (CCW rotation), D Operation in generator mode (CW rotation)

Sensorless vector control (SLVC)

Sensorless control for synchronous motors (SLPSM)



■ Operation in motor mode (CW rotation),
© Operation in generator mode (CCW rotation),

9300vec095

© Operation in motor mode (CCW rotation), D Operation in generator mode (CW rotation)

Servo control (SC)

- ⚠ Operation in motor mode (CW rotation), 🖪 Operation in generator mode (CCW rotation),
- © Operation in motor mode (CCW rotation), D Operation in generator mode (CW rotation)

5.2.1 Selection help

To ease the selection of the motor control mode, the two following tables contain recommendations and alternatives to standard applications.

Application	recommended	Alternatively
Single drives		
With constant load	VFCplus: V/f linear	SLVC or SLPSM
With extremely alternating loads	VFCplus: V/f linear	SLVC
With high starting duty	SLVC	VFCplus: V/f linear
Torque limitation	SLVC	SLPSM
With torque limitation (power control)	VFCplus: V/f linear	SLPSM
Three-phase reluctance motor	VFCplus: V/f linear	-
Three-phase sliding rotor motor	VFCplus: V/f linear	-
Three-phase AC motors with permanently assigned frequency/voltage characteristic	VFCplus: V/f linear	-
Pump and fan drives with quadratic load characteristic	VFCplusEco	SLVC or SLPSM
Simple hoists	VFCplus: V/f linear	-
Group drives (several motors connected to controller)		
Identical motors and loads	VFCplus: V/f linear	-
Different motors and/or alternating loads	VFCplus: V/f linear	-

[5-1] Standard applications without speed feedback

Application	recommended	Alternatively	
Single drives			
With constant load	SC	VFCplus / SLVC	
With extremely alternating loads	SC	VFCplus / SLVC	
With high starting duty	SC	VFCplus / SLVC	
With speed control (speed feedback)	SC	VFCplus	
With high dynamic performance e.g. for positioning and infeed drives	SC	-	
Torque limitation	SC	SLVC	
With torque limitation (power control)	-	-	
Winder with dancer position control	SC	VFCplus	
Unwinder with dancer position control	SC	VFCplus	
Three-phase reluctance motor	-	-	
Three-phase sliding rotor motor	-	-	
Three-phase AC motors with permanently assigned frequency/voltage characteristic	-	-	
Pump and fan drives with quadratic load characteristic	-	-	
Simple hoists	VFCplus: V/f linear	-	
Group drives (several motors connected to controller)			
Identical motors and loads	VFCplus	-	
Different motors and/or alternating loads	-	VFCplus	

[5-2] Standard applications with speed feedback

5.3 Defining current and speed limits

Limitation of the speed setpoint

Parameterising the reference speed in <u>C00011</u> means that the drive must rotate at the set speed if a speed setpoint of 100% is specified.

All speed setpoint selections are provided in % and always refer to the reference speed set in C00011.

For reasons of achievable resolution and the accuracy involved, the reference speed should be geared to the speed range required for the respective application.

Lenze recommendation: Reference speed (C00011) = 1500 ... 3000 rpm

Irrespective of the selected motor control, there are more limitation options:

Parameter	Info	Lenze setting	
		Value	Unit
C00909/1	Max. positive speed	120	%
C00909/2	Max. negative speed	120	%
C00910/1	Max. positive output frequency	1000	Hz
C00910/2	Max. negative output frequency	1000	Hz

Note!

In the torque-controlled operation (bTorquemodeOn = TRUE), the limitation of the speed setpoint does not have any effect! In this case, a permissible speed range can be defined via speed limitation (nSpeedHighLimit and nSpeedLowLimit).

Current limitation in motor and generator mode

In the various motor control modes, the controller is provided with functions which determine the dynamic behaviour under load and counteract exceedance of the maximum current in motor or generator mode.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00022</u>	Imax in motor mode	47.00	Α
<u>C00023</u>	Imax in generator mode • 100 % ≡ Imax in motor mode (C00022)	100	%

The current limits must be selected depending on

- ▶ the permissible maximum current of the motor \rightarrow recommendation: I(Mot)_N < 1.5 ... 2.0
- ▶ the permissible maximum current of the inverter
- ▶ the torque in motor/generator mode required for the application

Note!

Highly dynamic applications

(that have e.g. too short acceleration/deceleration times or excessively changing loads)

The overcurrent disconnection may respond (fault message OC1 or OC11) if the setting of the maximum current in motor mode in C00022 approximately corresponds to the maximum permissible value of the respective inverter.

Remedies:

- Increase of the acceleration and deceleration ramp times
- Reduction of the maximum current in motor mode (C00022)
- Reduction of the maximum current in generator mode (C00023)
- Adaptation of the indirect peak current limitation (procedure depends on the selected motor control mode, see below)
- Reduction of the reset time of the current limiting controller (C00074/1)

Influencing the torque in motor/generator mode

The torque in motor and generator mode can be limited via the *nTorqueMotLim* and *nTorqueGenLim* process signal inputs.

- If V/f characteristic control (VFCplus) is selected, limitation is $\underline{indirectly}$ performed via a so-called I_{max} controller.
- If sensorless vector control (SLVC), sensorless control for synchronous motors (SLPSM) or servo control (SC) is selected, limitation has a <u>direct</u> effect on the torque-producing current component.

If keypad control is selected, the nTorqueMotLim and nTorqueGenLim process signals can be parameterised via $\underline{C00728/1...2}$.

8400 TopLine C | Software Manual

Motor control (MCTRL) Defining current and speed limits

How to adapt the peak current limitation:

V/f characteristic control (VFCplus):

• Reduce the slip compensation with C00021.

V/f control (VFCplus + encoder):

- Reduce the slip limitation to twice the rated motor slip with C00971.
- Reduce the V_{min} boost in <u>C00016</u>.

Sensorless vector control (SLVC):

- Reduce the slip compensation with C00021.
- Reduce the limitation of the torque in motor mode via nTorqueMotLimit a (C00728/1) and the limitation of the torque in generator mode via nTorqueGenLimit a (C00728/2).

Servo control (SC):

- Reduce the jerk limitation with C00274.
- Reduce the limitation of the torque in motor mode via nTorqueMotLimit a (C00728/1) and the limitation of the torque in generator mode via $nTorqueGenLimit_a$ (C00728/2).

5.4 Pole position identification (PPI)

Note!

Only required:

- For servo control with synchronous motor of a third-party manufacturer.
- For servo control with synchronous motor and use of incremental encoders (TTL or sin/cos encoders as well as multi-pole pair resolvers).
- After changes of the motor feedback system, e.g. encoder exchange.

For the sensorless control of synchronous motors (SLPSM), a pole position identification is not required.

For the control of permanent-magnet synchronous machines, the pole position – the angle between the motor phase U and the field axis of the rotor – must be known.

- ► For Lenze motors with absolute value encoder or resolver, the pole position is already set correctly in C00926/1...2.
- ▶ When incremental encoders (TTL or sin/cos encoders) are used, a pole position identification (PPI) is always required after mains switching, even with Lenze motors.
- ▶ The controller can also evaluate multi-pole-pair resolvers.
 - When the number of motor pole pairs is an integer multiple of the number of pole pairs of the resolver, a pole position identification must only be executed once.
 - When the number of motor pole pairs is <u>no</u> integer multiple of the number of pole pairs of the resolver, a pole position identification must be executed after every mains switching.
- ► The device command "Identify pole position (360°)" serves to detect the pole position for the motor encoder currently activated in C00495 (see the following instructions).

Motor control (MCTRL)
Pole position identification (PPI)

5.4.1 Pole position identification 360°

Procedure for "pole position identification 360°"

If all conditions are met, the motor is energised with a direct current corresponding to the lower of the following two values:

$$\sqrt{2}\cdot \mathsf{Rated}$$
 device current or $\sqrt{2}\cdot \mathsf{Rated}$ motor current

- ► The rotor is aligned through the current flow. This is absolutely necessary for the procedure.
- ▶ To ensure that the torque-neutral axis is not accidentally energised and the rotor stops, a 45° current vector is (electrically) generated for a short instant and then (electrically) switched back to 0° (\equiv phase U).
 - Then a DC current of the above-mentioned value could be measured in this motor phase.
- ▶ If a resolver or an optical encoder without absolute track is used, the difference between the preselected current angle and the mechanical rotor angle is determined. After this, the current vector is (electrically) turned by another 22.5° and the difference between current angle and rotor angle is determined once again.
 - The procedure is repeated 16 times. This corresponds to one electrical revolution. The machine rotates by 360° (mech.)/pole pair number.
 - Take the average value of the 16 measurements to compensate for asymmetries.

Adjustment of the pole position identification 360°

The pole position identification can be adjusted to the respective machine and the prevailing moments of inertia by means of the parameters described below:

Parameter	Info	Lenze setting	
		Value	Unit
C00644/1	PLI 360° traversing direction	right rotating field	
C00645/2	PLI 360° max. error tolerance	0.0	0
C00646/2	PLI 360° current amplitude	100	%
C00647/2	PLI 360° ramp time	100	%

- ▶ The current amplitude can be adjusted proportionally in C00646/2.
 - For large machines and high mass inertia values or for linear direct drives, the current amplitude usually has to be increased.
 - The Lenze setting "100 %" corresponds to the smaller of the two following values:

$\sqrt{2}\cdotRated$ device current	
or	
$\sqrt{2}\cdotRated$ motor current	

Stop!

If there is no temperature monitoring in the motor and/or the I2xt motor monitoring and the maximum current monitoring are not parameterised correctly, the motor may be permanently damaged when the current amplitude is set too high (e.g. to the maximum value)!

- ▶ Motor load monitoring (I2xt) (☐ 276)
- ▶ Maximum current monitoring (☐ 283)

Note!

If the current amplitude is set to > 100 % in $\underline{C00646/2}$, the device utilisation (Ixt) monitoring and/or one of the motor monitoring functions may respond and cause the abort of the pole position identification.

- ▶ The ramp time can be adjusted proportionally in C00647/2.
 - For large machines and high mass inertia values, the ramp time usually has to be increased.
 - For small machines, a reduction of the ramp time can speed up the pole position identification process.
- ▶ In some situations it may be helpful to reverse the travel direction in C00644/2 for the pole position identification (e.g. for linear motor at the end stop).
- ► The "pole position identification 360°" procedure comprises a plausibility check. If the rotor position determined via the encoder system does not correspond to the controlled output position:
 - the pole position identification procedure is aborted.
 - the response parameterised in C00643/1 (Lenze setting: "Fault") is activated.
 - the error message "<u>ID5: Pole position identification error</u>" is entered into the logbook.
- ▶ The preset fault tolerance for the plausibility check can be changed in C00645/2.

Execute pole position identification 360°

Danger!

The machine must not be braked or blocked during the pole position identification! For this reason, the pole position identification is not permitted for hanging loads!

During the pole position identification the rotor aligns itself. The motor shaft moves by max. one electrical revolution which causes the corresponding movement of the connected mechanical components!

Stop!

Check the correct parameterisation of the max. motor current monitoring before carrying out the pole position identification to prevent the motor from being permanently damaged.

► Maximum current monitoring (283)

Note!

By means of controller inhibit, the procedure started can be cancelled anytime, if required, without carrying out a change in C00926.

If the pole position identification is aborted, the response parameterised in $\underline{\text{C00643/1}}$ is activated (Lenze setting: "Fault").

 If this behaviour is not wanted, deactivate the monitoring by selecting "0: No response" in <u>C00643/1</u>.

Preconditions for the execution

- ► A synchronous motor has been selected.
- ▶ No other identification is active.
- ▶ No error has occurred.

8400 TopLine C | Software Manual

Motor control (MCTRL) Pole position identification (PPI)

How to execute the pole position identification:

- 1. Inhibit the controller if it is enabled, e.g. via the C00002/16 device command or a LOW signal at the X5/RFR terminal.
- 2. Start the pole position identification with the device command $\frac{C00002}{34}$ = "1: On / start".
- 3. Enable the controller again.
 - The pole position identification starts.
 - The progress of the identification run can be seen in C00002/34.
 - The identification is completed if the "0: Off / ready" message is displayed in C00002/34.
- 4. Inhibit controller again.

After successful completion...

...the controller is inhibited automatically and the pole position determined for the activated feedback system is set in the corresponding subcode of C00926.

- ▶ For a permanent acceptance of the identified pole position, the parameter set must be saved (C00002/11 = "1: On / start").
- ▶ The next controller inhibit and subsequent controller enable serve to cancel the controller inhibit automatically set by the procedure (e.g. by first executing the device command C00002/16 = "0: Off / ready" and then executing the device command C00002/16 = "1: On / start").

In the event of an error

If an error occurs during the procedure or the pulse inhibit gets active (e.g. due to shorttime undervoltage), the procedure is terminated with controller inhibit without making a change in C00926.

If the machine was braked or blocked during the procedure, this will be recognised at the end of the measurement and no change is made in C00926.

- ▶ If the pole position identification is aborted:
 - the response parameterised in <u>C00643/1</u> (Lenze setting: "Fault") is activated.
 - the error message "ID5: Pole position identification error" is entered into the logbook.

Motor control (MCTRL) Pole position identification (PPI)

5.4.2 Pole position identification without motion

This function extension is available from version 02.00.00!

Note!

Function only possible with:

- Servo control (SC) for synchronous motors
- Sensorless control for synchronous motors (SLPSM)

From version 02.00.00, a pole position identification without motion is also possible in case of servo control and sensorless control.

- ▶ For sensorless control of synchronous motors (SLPSM), this function is already activated in the Lenze setting, i.e. with every controller enable the rotor displacement angle is identified and thus jerks in the machine after controller enable can be avoided.
 - In order to achieve the same behaviour as before, set bit 0 to "0" in C02874.
- ▶ For servo control, this function can be activated for various events in C02874 via the bits 1 ... 3:
 - Bit 1: Pole position identification after mains connection
 - Bit 2: Pole position identification after controller enable
 - Bit 3: Pole position identification after error acknowledgement

Note!

- The "Pole position identification without motion" cannot completely replace the "pole position identification 360°"!
 - The electrical rotor displacement angle can only be electrically identified with an error of up to 10°. This inaccuracy can cause a worse torque accuracy and a worse energy efficiency.
- The identification takes motor-dependent 1 ... 15 ms. The setpoint enabling of the device is reduced by this time.
- In the Lenze setting, the function is preset so that in most of the cases no further settings have to be made.

In case of servo control (SC), it is generally sufficient to activate this function only once after mains connection of the device (C02874: Bit 1 = "1").

Typical application case: A speed sensor with an unknown pole position is used (e.g. encoder). The pole position identification 360°, however, cannot be used since, e.g. the motor is locked, the application does not permit it or the identification takes too long.

Short overview of the relevant parameters:

Parameter	Info	Lenze sett	ing		
		Value	Unit		
<u>C02874</u>	PLI without motion	0x1 (bit cod	ded)		
<u>C02872</u>	PLI without motion: Adaptation of time duration	0			
<u>C02875</u>	PLI without motion: Adaptation of ident angle	0	o		
<u>C02870</u>	PLI without motion: Optimisation factor	-	%		
<u>C02871</u>	PLI without motion: Running time	-	ms		
<u>C02873</u>	PPI without motion: Identified rotor displacement angle	-	0		
Highlighted in grey = display parameter					

Note!

In case of synchronous motors with a stator time constant < 1 ms, the pole position identification is not executed since the resulting test current pulse could exceed the permissible motor current.

- This, however, only affects very few synchronous motors with very low power (e.g. Lenze motor MDSKS-020-13-300 with rated power of 40 W).
- A non-executed pole position identification can be recognised by the display <u>C02870</u> = 0 % and <u>C02871</u> = 0 ms.
- ► The stator time constants can be calculated based on the following formula:

$$T_s[ms] = \frac{L_{ss}[mH]}{R_s[\Omega]}$$

 T_S = stator time constant

L_{ss} = Motor stator leakage inductance (C00085)

 R_s = Motor stator resistance (C00084)

Motor control (MCTRL) Pole position identification (PPI)

Optimising the pole position identification

Stop!

In case of a too high setting in C02872, an impermissible motor current may occur during pole position identification. In this case, the "Fault" error response occurs and the "ID5: Pole position identification error" error message entered in the logbook.

In case of aconsiderably too high setting in C02872:

- The following current monitoring functions can be triggered:
 - OC7: Motor overcurrent
 - OC11: Active clamp operation
 - OC1: Power section short circuit
- The optimisation degree "0 %" is displayed in C02870.
- The time "0 ms" is displayed in C02871.

How to optimise the pole position identification without motion:

- 1. For optimisation, enable the controller for various rotor displacement angles.
- 2. After every controller enable, check the optimisation degree displayed in C02870. The pole position identification is set optimally if an optimisation degree in the range 70 ... 130 % is displayed in C02870 after every controller enable.
- 3. When the optimisation degree is > 130 %: Reduce the setting in C02872 step by step an execute controller enable for various rotor displacement angles until an optimisation degree < 130 % is displayed.
- 4. When the optimisation degree is < 70 %: Increase setting in C02872 step by step and execute controller enable for various rotor displacement angles until an optimisation degree > 70 % is displayed.
- 5. Optional: C02875 serves to increase or reduce the identified electrical rotor displacement angle. This can prevent e.g. a reversing of the motor due to the accuracy of identification if applications require it.

5.5 V/f characteristic control (VFCplus)

In case of the V/f characteristic control (VFCplus), the motor voltage of the inverter is determined by means of a linear or quadratic characteristic depending on the field frequency or motor speed to be generated. The voltage follows a preselected characteristic.

Stop!

- The V/f characteristic control is only suitable for asynchronous motors.
- The following must be observed when operating drives with quadratic V/f characteristic:
 - Please always check whether the corresponding drive is suitable for operation with a quadratic V/f characteristic!
 - If you pump or fan drive is not suitable for operation with a square-law V/f characteristic, we recommend using the energy-saving V/f characteristic control (VFCplusEco). Alternatively, you can use the V/f characteristic control with linear V/f characteristic or the sensorless vector control (SLVC) or servo control (SC).
- For adjustment, observe the thermal performance of the connected asynchronous motor at low output frequencies.
 - Usually, standard asynchronous motors with insulation class B can be operated for a short time with their rated current in the frequency range 0 Hz ... 25 Hz.
 - Contact the motor manufacturer to get the exact setting values for the max. permissible motor current of self-ventilated motors in the lower speed range.
 - If you select square-law V/f characteristics, we recommend setting a lower
 V_{min} or using the energy-saving V/f characteristic control (VFCplusEco).
- The nameplate data of the motor (at least rated speed and rated frequency) must be entered if, instead of a standard motor, an asynchronous motor is used with the following values:
 - rated frequency ≠ 50 Hz (star) or
 - rated frequency ≠ 87 Hz (delta) or
 - number of pole pairs $\neq 2$

Note!

When the auto DCB threshold (C00019) is set > 0 rpm, there is no torque at the motor shaft in the lower speed range!

► <u>Automatic DC-injection braking (Auto-DCB)</u> (251)

Motor control (MCTRL) V/f characteristic control (VFCplus)

5.5.1 Parameterisation dialog/signal flow

Proceed as follows to open the dialog for parameterising the motor control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Select the motor control from the Overview dialog level in the Motor control list field:
 - "6: VFCplus: V/f linear" for linear characteristic or
 - "8: VFCplus: V/f quadr" for square-law characteristic

More available V/f characteristic control modes:

- "10: VFCplus: V/f definable". With this motor control, the V/f characteristic can be freely defined. ▶ Defining a user-defined V/f characteristic (1162)
- "11: VFCplusEco: V/f energy-saving". With this motor control, the motor is always operated in an optimal efficiency range via a cosφ control and the resulting voltage reduction (reduced copper losses in the asynchronous motor). ▶ V/f characteristic control - energy-saving (VFCplusEco) (LLL 166)
- 4. Click the **Motor control V/f** button to change to the *Overview* \rightarrow *Motor control V/f* dialog box.
 - This dialog level only shows a simplified signal flow with the most important parameters.
 - When you click the >>More details button in the left-most position, a signal flow with more details/parameters is displayed.

Parameter	Info	Parameter	Info	Parameter	Info
1 <u>C00056/2</u>	Actual torque value	13 <u>C00021</u>	Slip compensation	18 <u>C00056/2</u>	Actual torque value
2 <u>C00830/29</u>	Limitation of torque in motor mode	14 <u>C00051</u>	Actual speed value	19 <u>C00058</u>	Output frequency
3 <u>C00830/28</u>	Limitation of torque in generator mode	15 <u>C00050</u>	Speed setpoint	20 <u>C00006</u>	Motor control
4 <u>C00054</u>	Motor current	16 <u>C00910/1</u>	Max. pos. output frequency	21 <u>C00830/26</u>	MCTRL: nBoost_a
5 <u>C00022</u>	Imax in motor mode	17 <u>C00910/2</u>	Max. neg. output frequency	22 <u>C00015</u>	V/f base frequency
6 <u>C00023</u>	Imax in generator mode			23 <u>C00016</u>	Vmin boost
7 <u>C00074</u>	Ti Imax controller			24 <u>C00018</u>	Switching frequency
8 <u>C00073</u>	Vp Imax controller			25 <u>C00830/32</u>	MCTRL: nPWMAngleOffset_a
9 <u>C00830/22</u>	Speed setpoint			26 <u>C00830/31</u>	MCTRL: nVoltageAdd_a
10 <u>C00909/1</u>	Max. pos. speed			27 <u>C00052</u>	Motor voltage
11 <u>C00909/2</u>	Max. neg. speed				
12 <u>C00105</u>	Decel. time - quick stop				

Motor control (MCTRL) V/f characteristic control (VFCplus)

5.5.2 **Basic settings**

The "Initial commissioning steps" listed in the table below are sufficient for a simple characteristic control.

▶ Detailed information on the individual steps can be found in the following subchapters.

Initial commissioning steps

- 1. Defining the V/f characteristic shape. (151)
- 2. Defining current limits (Imax controller). (152)

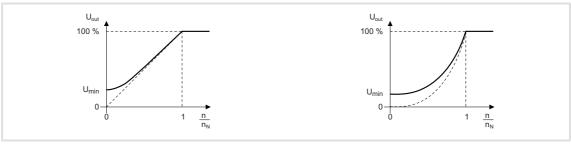
Information on the optimisation of the control mode and the adaptation to the real application is provided in the chapter "Optimising the control mode". (153)

Parameterisable additional functions are described correspondingly in the chapter "Parameterisable additional functions". (240)

5.5.2.1 Defining the V/f characteristic shape

In principle, four different characteristic shapes can be stipulated:

1. Linear V/f characteristic:


For drives for a constant, speed-independent load torque.

2. Quadratic V/f characteristic:

For drives with a load torque curve which is quadratic or in relation to speed. Quadratic V/f characteristics are preferred in the case of centrifugal pumps and fan drives.

3. Freely definable V/f characteristic:

For drives that require adaptation of the magnetising current by means of the output speed. The freely definable V/f characteristic can be used e.g. for operation in conjunction with special machines such as reluctance motors in order to suppress oscillations at the machine or to optimise energy consumption.

[5-3] Principle of a linear V/f characteristic (on the left) and a quadratic V/f characteristic (on the right)

4. Linear V/f characteristic with voltage reduction:

For drives which often work in partial load operation, the energy-saving V/f characteristic control (VFCplusEco) offers the opportunity to reduce the voltage at low load in order to save energy. At higher loads, the voltage reduction is cancelled and a linear characteristic is caused.

The V/f characteristic shape is defined by selecting the corresponding motor control mode in C00006:

V/f characteristic shape	Motor control to be selected (C00006)
Linear V/f characteristic	6: VFCplus: V/f linear
Square-law V/f characteristic	8: VFCplus: V/f quadr
User-definable V/f characteristic	10: VFCplus: V/f definable
Linear V/f characteristic with voltage reduction	11: VFCplusEco: V/f energy-saving

- You can find detailed information on freely definable V/f characteristics in the subchapter entitled "Defining a user-defined V/f characteristic". (2) 162)
- You can find detailed information on the linear V/f characteristic with voltage reduction in the chapter entitled "V/f characteristic control - energy-saving (VFCplusEco)". (166)

Motor control (MCTRL)
V/f characteristic control (VFCplus)

5.5.2.2 Defining current limits (Imax controller)

The V/f characteristic control (VFCplus) and the V/f control (VFCplus + encoder) operating modes are provided with a current limitation control which is decisive for the dynamic behaviour under load and counteracts exceedance of the maximum current in motor or generator mode. This current limitation control is called I_{max} control.

- ► The efficiency (motor current) measured by the I_{max} control is compared with the current limit value for motor load set in C00022 and the current limit value for generator load set in C00023.
- ▶ If the current limit values are exceeded, the controller changes its dynamic behaviour.

Motor overload during acceleration

The controller prolongs the acceleration ramp to keep the current on or below the current limit.

Generator overload during deceleration

The controller prolongs the deceleration ramp to keep the current on or below the current limit.

Increasing load with constant speed

- ▶ If the motor current limit value is reached:
 - The controller reduces the effective speed setpoint until a stable working point is set or an effective speed setpoint of 0 rpm is reached.
 - If the load is reduced, the controller increases the effective speed setpoint until the setpoint speed is reached or the load reaches the current limit value again.
- ▶ When the generator current limit value is reached:
 - The controller increases the effective speed setpoint until a stable working point is set or the maximally permissible speed (<u>C00909</u>) or output frequency is reached (<u>C000910</u>).
 - If the load is reduced, the controller reduces the effective speed setpoint until the setpoint speed is reached or the load reaches the current limit value again.
- ▶ If a sudden load is built up at the motor shaft (e.g. drive is blocked), the overcurrent disconnection may respond (fault message OC1 or OC11).

Motor control (MCTRL)
V/f characteristic control (VFCplus)

5.5.3 Optimising the control mode

The V/f characteristic control (VFCplus) is generally ready for operation. It can be adapted subsequently by adapting the characteristic and/or the drive behaviour.

Adapting characteristic

For the linear and quadratic characteristic, it is also possible to match its curve to different load profiles or motors by adapting the V/f base frequency ($\underline{\text{C00015}}$) and the V_{min} boost ($\underline{\text{C00016}}$).

- ▶ Adapting the V/f base frequency (☐ 154)
- ▶ Adapting the Vmin boost (☐ 156)

Freely defining the characteristic

The V/f characteristic can also be defined freely if the linear and quadratic characteristics are not suitable.

▶ <u>Defining a user-defined V/f characteristic</u> (□ 162)

Adapting drive behaviour

- ► Limitation of the maximum current by a current limitation controller (e.g. to prevent the motor from stalling or to limit to the maximally permissible motor current). ► Optimising the Imax controller (□ 158)
- ► Adaptation of the field frequency by a load-dependent slip compensation (improved speed accuracy for systems without feedback)
- ► Adaptation of the controller parameters of the slip regulator if V/f control (VFCplus + encoder) is selected. ► <u>Parameterising the slip regulator</u> (☐ 179)

5.5.3.1 Adapting the V/f base frequency

The V/f base frequency ($\underline{\text{C00015}}$) determines the slope of the V/f characteristic and has considerable influence on the current, torque, and power performance of the motor.

- ▶ The setting in C00015 applies to all permitted mains voltages.
- ▶ Mains fluctuations or fluctuations of the DC-bus voltage (operation in generator mode) do not need to be considered when the V/f base frequency is set. They are automatically compensated for by the internal mains voltage compensation of the device.
- ▶ Depending on the setting in <u>C00015</u>, it may be required to adapt the reference speed (C00011) to traverse the entire speed range of the motor.
- ► The V/f base frequency is automatically calculated from the stored motor nameplate data by the motor parameter identification:

$$C00015 [Hz] = \frac{U_{FI} [V]}{U_{Ratedmot} [V]} \cdot f_{Rated} Hz$$

U_{FU}: Mains voltage 400 V or 230 V

U_{ratedmot}: Rated motor voltage depending on the connection method

f_{rated}: Rated motor frequency

[5-4] Calculation of the V/f base frequency

Typical values of the V/f base frequency

Drive controller with 400 V mains connection						
Motor voltage [V]	Motor frequency [Hz]	Motor connection	V/f base frequency (C00015)			
230 / 400	50	Y	50 Hz			
220 / 380	50	Υ	52.6 Hz			
280 / 480	60	Y	50 Hz			
400 / 690 400	50 50	Δ	50 Hz			
230 / 400 280 / 480 400	50 60 87	Δ	87 Hz			
220 / 380	50	Δ	90.9 Hz			

Drive controller with 230 V mains connection						
Motor voltage [V]	Motor frequency [Hz]	Motor connection	V/f base frequency (C00015)			
230	50	Δ	50 Hz			
220 / 380	50	Δ	52.3 Hz			

Motor control (MCTRL) V/f characteristic control (VFCplus)

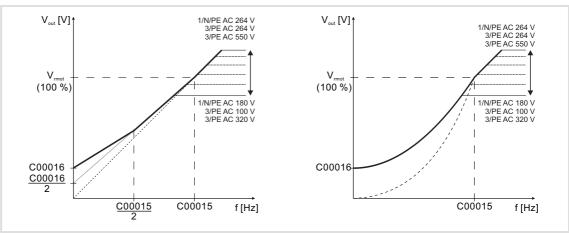
Note!

87-Hz operation

4-pole asynchronous motors which are designed for a rated frequency of f = 50 Hz in star connection can be operated in delta connection when being constantly excited up to f = 87 Hz.

- Advantages:
 - Higher speed-setting range
 - 73% higher power output in case of standard motors
- Motor current and motor power increase by the factor $\sqrt{3}$.
- The field weakening range starts above 87 Hz.
- Generally, this process can also be used with motors which have different numbers of pole pairs. In case of 2-pole asynchronous motors, the mechanical limit speed must be maintained.

Adapting the Vmin boost 5.5.3.2


The V_{min} boost (C00016) of the motor voltage serves to select a load independent magnetising current which is required for asynchronous motors. The torque behaviour of the motor can be optimised by adapting the setting in C00016.

Note!

The V_{min} boost has an effect on output frequencies below the V/f base frequency (C00015).

The general linear and quadratic V/f characteristics are shown in the illustrations below. The illustrations show the impacts of the parameters used to adapt the characteristic shape.

Representation of the linear V/f characteristic (on the left) and quadratic V/f characteristic (on the right) [5-5]

How to set the V_{min}boost:

- 1. Operate motor in idle state at approx. 6 % of the rated motor speed.
- 2. Increase V_{min} boost (C00016) until the following motor current is reached:

Motor in short-time operation up to 0.5 n_{rated}

- for self-ventilated motors: $I_{motor} \approx I_{rated motor}$
- for forced ventilated motors: $I_{motor} \approx I_{rated motor}$

Motor in continuous operation up to 0.5 n_{rated}

- for self-ventilated motors: $I_{motor} \approx 0.8 I_{rated motor}$
- for forced ventilated motors: I_{motor} ≈ I_{rated motor}

Motor control (MCTRL)
V/f characteristic control (VFCplus)

Note!

 V_{min} boost is automatically calculated by the motor parameter identification using the data specified on the motor nameplate so that a no-load current of approx. 0.8 $I_{rated\ motor}$ results at the slip frequency of the machine.

V/f control (VFCplus + encoder)

If V/f control (VFCplus + encoder) is selected, we recommend a decidedly lower V_{min} boost:

• In this case, select a V_{min} boost which ensures that approx. 50 % of the rated motor current flows at slip frequency when the motor is idling.

Motor control (MCTRL)
V/f characteristic control (VFCplus)

5.5.3.3 Optimising the Imax controller

Using the Lenze setting of the current limitation controller, the drive is stable:

Parameter	Info	Lenze setting	
		Value	Unit
C00073/1	VFC: Vp Imax controller	0.25	
C00074/1	VFC: Ti Imax controller	65	ms

Most applications do not require optimisation.

The setting of the current limitation controller must be adapted if

- ▶ power control including great moments of inertia is performed.
 - Recommendation: Increase of the reset time Ti (C00074/1) of the I_{max} controller.
- ▶ vibrations occur in the V/f control (VFCplus + encoder) mode during the intervention of the current limitation controller.
 - Recommendation: Increase of the reset time Ti ($\underline{\text{C00074/1}}$) of the I_{max} controller.
- overcurrent errors (e.g. OC3) occur due to load impulses or too high acceleration ramps.
 - Recommendation: Reduction of the gain Vp ($\underline{\text{C00073/1}}$) and reset time Ti ($\underline{\text{C00074/1}}$) of the I_{max} controller.

5.5.3.4 Optimising the stalling behaviour

Motor stalling due to a torque overload in the field weakening range is prevented in all characteristic-based motor control types (VFCplus) by means of an inverter-internal stalling current monitoring. In the field weakening range, hence at frequencies above the base frequency, it reduces the maximum current to prevent the motor from stalling. The reduction depends on the current field frequency, the base frequency, the DC-bus voltage and the maximum current (C00022). Generally it applies that a higher field frequency causes a stronger limitation of the maximum current.

The behaviour in the field weakening range can be adapted via the override point of field weakening (C00080). This parameter serves to shift the frequency-dependent maximum current characteristic:

► C00080 > 0 Hz:

- The maximum current characteristic is shifted by the entered frequency to higher field frequencies.
- The maximally permissible current and the maximum torque increase in the field weakening range.
- The risk of motor stalling increases.

► C00080 < 0 Hz:

- The maximum current characteristic is shifted by the entered frequency to lower field frequencies.
- The maximally permissible current and the maximum torque are reduced in the field weakening range.
- The risk of motor stalling is reduced.

Note!

We recommend to keep the Lenze setting (0 Hz).

Motor control (MCTRL)
V/f characteristic control (VFCplus)

5.5.3.5 Torque limitation

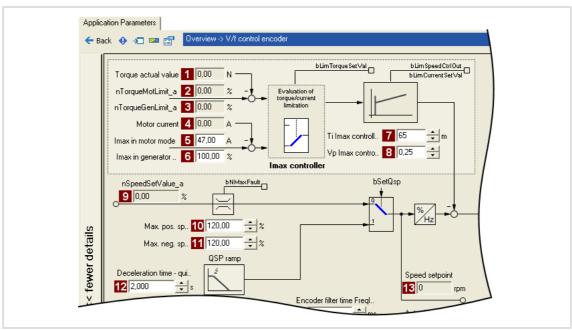
The previous chapter, "Optimising the Imax controller", describes how the drive can be protected from overload. During commissioning, these settings are carried out once and remain unchanged afterwards. However, it is often necessary to limit the torque to a lower value for plant or process reasons.

► To avoid overload in the drive train, the torque in motor mode can be limited via the *nTorqueMotLimit_a* process input signal, and the torque in generator mode can be limited via the *nTorqueGenLimit_a* process input signal:

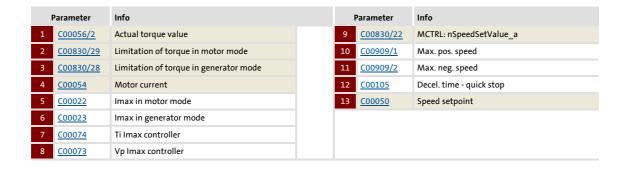
Identifier DIS code data type	Information/possible settings
nTorqueMotLimit_a <u>C00830/29</u> INT	 Torque limitation in motor mode Scaling: 16384 = 100 % M_{max} (C00057) Setting range: 0 +199.99 % If keypad control is performed: Parameterisable via C00728/1.
nTorqueGenLimit_a <u>C00830/28</u> INT	Torque limitation in generator mode • Scaling: 16384 ≡ 100 % M _{max} (C00057) • Setting range: -199.99 0 % • If keypad control is performed: Parameterisable via C00728/2.

Note!

- The actual torque (C00056/2) is directly calculated from the current slip speed of the machine. This requires correct entry of the motor data. ▶ Motor selection/Motor data (□ 121)
- To avoid instabilities during operation with active slip compensation, the torque limit values are internally processed as absolute values.
- If slip compensation is deactivated (<u>C00021</u> = 0), <u>indirect</u> torque limitation (differential signal between the apparent motor current and nTorqueMotLimit_a or nTorqueGenLimit_a). Above the no-load current of the motor, the accuracy of the indirect torque limitation is limited.



V/f characteristic control (VFC)


The accuracy of the torque limitation is limited because the actual torque ($\frac{\text{C00056/2}}{\text{conly}}$) is only calculated from the slip speed measured indirectly via the motor current.

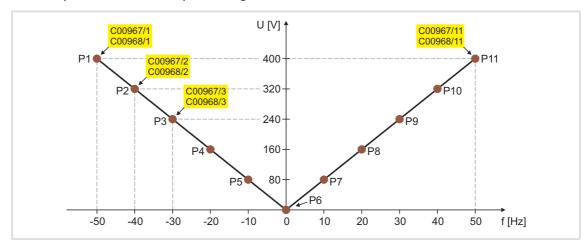
V/f control (VFC + encoder)

The slip speed of the motor is available at the slip controller output. This leads to a high accuracy for the actual torque (C00056/2) and the torque limitation.

[5-6] Extract from the signal flow of the V/f control (VFC + encoder)

5.5.3.6 Defining a user-defined V/f characteristic

For individual adaptation of the motor magnetisation to the actual application, the motor control "10: VFCplus: V/f definable" with a freely definable characteristic can be selected in C00006 as an alternative if the linear and quadratic characteristics are not suitable.


Note!

The V/f base frequency ($\underline{\text{C00015}}$) and the V_{min} boost ($\underline{\text{C00016}}$) no longer exert an influence if this motor control is chosen.

- ► The 11 grid points (voltage/frequency values) of the characteristic are stipulated by means of the 11 subcodes of C00967 and C00968.
 - It is necessary to set all 11 grid points by means of corresponding subcodes.
 - If fewer grid points (voltage/frequency values) are needed, this can be achieved indirectly by ascribing the same voltage and frequency values to consecutive grid points.

Example: C00967/3 = C00967/4 and C00968/3 = C00968/4

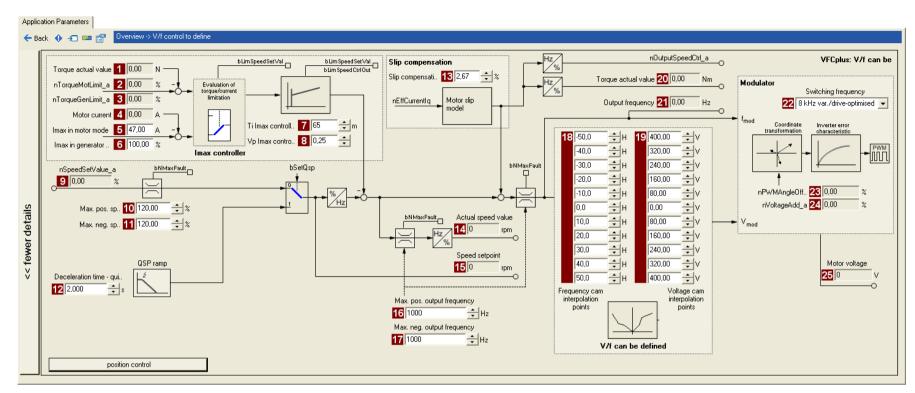
- The grid points can be specified in any sequence. Internally, they are automatically ordered from the minimum to the maximum frequency value.
- Above the maximum and below the minimum frequency, the previous rise is continued until the maximum output voltage.
- ▶ In the Lenze setting, the 11 grid points represent a linear characteristic.
 - 3-phase devices: Output voltage 400 V at f = 50 Hz
 - 1-phase devices: Output voltage 230 V at f = 50 Hz

	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11
V	400 V	320 V	240 V	160 V	80 V	0 V	80 V	160 V	240 V	320 V	400 V
f	-50 Hz	-40 Hz	-30 Hz	-20 Hz	-10 Hz	0 Hz	10 Hz	20 Hz	30 Hz	40 Hz	50 Hz

[5-7] Freely definable characteristic (Lenze setting for 3-phase devices)

Motor control (MCTRL) V/f characteristic control (VFCplus)

Cases of application for this function:


- Operation of reluctance motors or synchronous motors during controlled acceleration (reduction of natural frequencies caused by wrong excitation).
- Adaptation of the voltage requirement for the motor, depending on specific load conditions.

Proceed as follows to open the dialog for parameterising the motor control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Select the motor control "10: VFCplus: V/f definable" from the Overview dialog box in the Motor control list field:
- 4. Click the **Motor control V/f definable** button to change to the *Overview* → *Motor* control V/f dialog box.
 - This dialog level only shows a simplified signal flow with the most important parameters.
 - When you click the >>More details button in the left-most position, a signal flow with more details/parameters is displayed.

Motor control (MCTRL)
V/f characteristic control (VFCplus)

8400 TopLine C | Software Manual

Parameter	Info	Parameter	Info	Parameter	Info
1 <u>C00056/2</u>	Actual torque value	13 <u>C00021</u>	Slip compensation	18 <u>C00967/x</u>	Frequency interpol. points
2 <u>C00830/29</u>	Limitation of torque in motor mode	14 <u>C00051</u>	Actual speed value	19 <u>C00968/x</u>	Voltage interpol. points
3 <u>C00830/28</u>	Limitation of torque in generator mode	15 <u>C00050</u>	Speed setpoint	20 <u>C00056/2</u>	Actual torque value
4 <u>C00054</u>	Motor current	16 <u>C00910/1</u>	Max. pos. output frequency	21 <u>C00058</u>	Output frequency
5 <u>C00022</u>	Imax in motor mode	17 <u>C00910/2</u>	Max. neg. output frequency	22 <u>C00018</u>	Switching frequency
6 <u>C00023</u>	Imax in generator mode			23 <u>C00830/32</u>	MCTRL: nPWMAngleOffset_a
7 <u>C00074</u>	Ti Imax controller			24 <u>C00830/31</u>	MCTRL: nVoltageAdd_a
8 <u>C00073</u>	Vp Imax controller			25 <u>C00052</u>	Motor voltage
9 <u>C00830/22</u>	Speed setpoint				
10 <u>C00909/1</u>	Max. pos. speed				
<u>C00909/2</u>	Max. neg. speed				
12 <u>C00105</u>	Decel. time - quick stop				

Remedies for undesired drive behaviour 5.5.4

Drive behaviour	Remedy
Inadequate smooth running at low speeds, especially in the case of operation with a long motor cable	► <u>Automatic motor data identification</u> (☐ 126)
Problems in case of high starting duty (great mass inertia)	► Adapting the Vmin boost (□ 156)
Drive does not follow the speed setpoint.	The current controller intervenes in the set field frequency to limit the controller output current to the maximum current (C0022, C0023). Therefore: • Prolong acceleration/deceleration times: C00012: Accel. time - main setpoint C00013: Decel. time - main setpoint • Consider a sufficient magnetising time of the motor. Depending on the motor power, the magnetising time amounts to 0.1 0.2 s. • Increase the maximally permissible current: C00022: Imax in motor mode C00023: Imax in generator mode)
For operation without speed feedback (C00006 = 6): Insufficient speed constancy at high load (setpoint and motor speed are not proportional anymore)	 Increase slip compensation (C00021). Important: Unstable drive due to overcompensation! With cyclic load impulses (e. g. centrifugal pump), a smooth motor characteristic is achieved by smaller values in C00021 (possibly negative values). Note: The slip compensation is only active for operation without speed feedback.
"Clamp operation active" error message (OC11): Controller cannot follow dynamic processes, i.e. too short acceleration/deceleration times in terms of load ratios.	 Increase the gain of the I_{max} controller (C00073/1) Reduce the reset time of the I_{max} controller (C00074/1) Prolong the acceleration time (C00012) Prolong the deceleration time (C00013)
Motor stalling in the field weakening range (adaptation especially required for small machines)	 Reduce the override point of field weakening (C00080) If motor power < inverter power: Set C00022 to I_{max} = 2 I_{rated motor} Reduce dynamic performance of setpoint generation

5.6 V/f characteristic control - energy-saving (VFCplusEco)

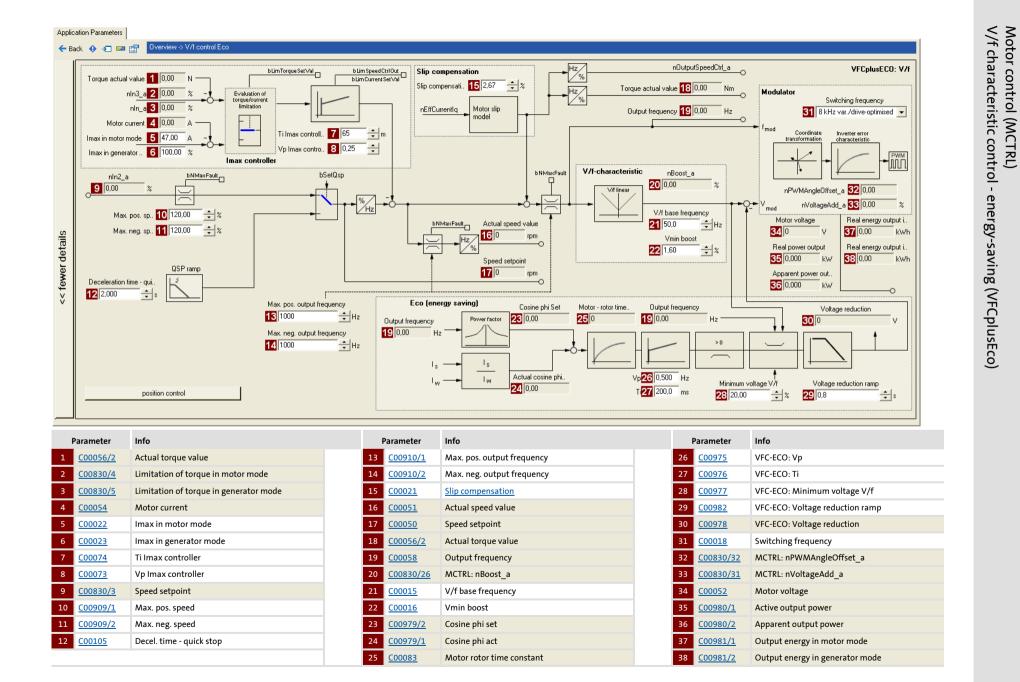
With the energy-saving V/f characteristic control mode (VFCplusEco), the motor voltage of the inverter is detected by means of a linear characteristic depending on the field frequency to be created or the motor speed. Moreover, a $\cos \varphi$ control and the resulting voltage reduction causes the motor to be always operated in the optimum efficiency range (reduction of copper losses in the asynchronous motor).

- ▶ Hence, these are the advantages of this motor control mode:
 - Good robustness
 - Easy parameter setting
 - High energy efficiency (lower heating of the motor in partial load operational range)
 - Same speed accuracy and maximum torques as with VFCplus
- ▶ Predestinated application areas of this motor control mode are materials handling technology and pump and fan systems.
- ► This motor control mode serves to improve efficiency of standard asynchronous motors with efficiency class IE1 (standard IEC 60034-30 2008) in the range 0 ... M_{efficiency_max} between 0 ... 20 % (Ø 5 ... 10 %).
 - For asynchronous motors with energy efficiency class IE2 the potential for efficiency improvement is reduced to approx. 0 ... 15 %.
 - Description of M_{efficiency_max}: Indicates the torque [%] of M_{rated_motor}, where the motor has the max. efficiency.)
- ▶ In case of asynchronous motors with a higher energy efficiency class (IE2 and IE3), the absolute energy saving of the motor control mode is lower due to improved efficiency of the machine. However, energy saving is still achieved in a higher load range.
- ► M_{efficiency_max} is performance-related and listed in the following table for some power values of the energy efficiency class IE1 and IE2:

	M _{Efficiency_max} (related to M _{rated_motor})		
Power	IE1	IE2	
0.25 kW	75 %		
0.75 kW	65 %	75 %	
2.2 kW	55 %	85 %	
7.5 kW	30 %	45 %	
22 kW	23 %		
45 kW	21 %		

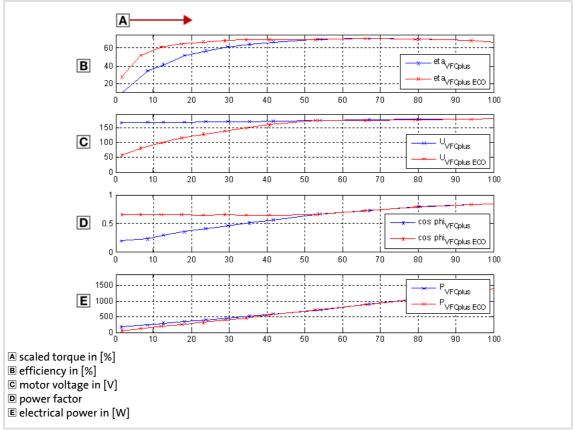
Stop!

- For adjustment, observe the thermal performance of the connected asynchronous motor at low output frequencies.
 - Usually, standard asynchronous motors with insulation class B can be operated for a short time with their rated current in the frequency range 0 Hz ... 25 Hz.
 - Contact the motor manufacturer to get the exact setting values for the max. permissible motor current of self-ventilated motors in the lower speed range.
- The nameplate data of the motor (at least rated speed and rated frequency) must be entered if, instead of a standard motor, an asynchronous motor is used with the following values:
 - rated frequency \neq 50 Hz (star) or
 - rated frequency ≠ 87 Hz (delta) or
 - number of pole pairs $\neq 2$


5.6.1 Parameterisation dialog/signal flow

Proceed as follows to open the dialog for parameterising the motor control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Select the motor control"11: VFCplusEco: V/f energy-saving" from the Overview dialog box in the Motor control 11list field:
- 4. Click the **Motor control V/f Eco** button to change to the *Overview* → *Motor control* V/f dialog box.
 - This dialog level only shows a simplified signal flow with the most important parameters.
 - When you click the >>More details button in the left-most position, a signal flow with more details/parameters is displayed.



5.6.2 Comparison of VFCplusEco - VFCplus

The following characteristics show the impact of the energy-saving V/f characteristic control (VFCplusEco) compared to the standard V/f characteristic control (VFCplus).

► The characteristics were recorded with a standard asynchronous motor 2.2 kW with energy efficiency class IE1 at speed = 600 rpm.

[5-8] Comparison of VFCplusEco - VFCplus

Motor control (MCTRL)

V/f characteristic control - energy-saving (VFCplusEco)

Basic settings 5.6.3

The "Initial commissioning steps" listed in the table below are sufficient for the V/f characteristic control - energy-saving (VFCplusECo).

▶ Detailed information on the individual steps can be found in the following subchapters.

Initial commissioning steps

- 1. Determine the motor control: C00006 = "11: VFCplusEco: V/f energy-saving"
- 2. The required motor data are pre-initialised depending on the device and thus, they do not need to be entered directly. In order to achieve a high energy optimisation, these motor data can be entered (see the following section).

Set the motor selection/motor data

When selecting and parameterising the motor, the motor nameplate data and the equivalent circuit diagram data are relevant. Detailed information can be found in the "Motor selection/Motor data" chapter. (1121)

Depending on the motor manufacturer, proceed as follows:

Lenze motor:

Selecting a motor from the motor catalogue in the »Engineer«

- or -
- 1. Set the motor nameplate data
- 2. Automatic motor data identification

Third party manufacturer's motor:

- 1. Set the motor nameplate data
- 2. Automatic motor data identification or set known equivalent circuit diagram manually:

C00084: Motor stator resistance

C00085: Motor stator leakage inductance C00092: Motor magnetising inductance

3. Defining current limits (Imax controller). (152)

Information on the optimisation of the control mode and the adaptation to the real application is provided in the chapter "Optimising the control mode". (2) 171)

Parameterisable additional functions are described correspondingly in the chapter "Parameterisable additional functions". (🕮 240)

5.6.4 Optimising the control mode

The V/f characteristic control - energy-saving (VFCplus) is generally ready for operation. It can be adapted subsequently by adapting the characteristic and/or the drive behaviour.

Adapting characteristic

For the linear characteristic as part of the V/f characteristic control - energy-saving (VFCplusEco), it is also possible (like in case of the standard V/f characteristic control) to match its curve to different load profiles or motors by adapting the V/f base frequency ($\underline{\text{C00015}}$) and the V_{min} boost ($\underline{\text{C00016}}$).

Note!

For an adaptation of the V_{min} boost, the V/f characteristic control - energy-saving (VFCplusEco) must not be set. For this purpose, set the $\frac{V/f\ characteristic\ control\ (VFCplus)}{control\ (VFCplus)}$.

- ▶ Adapting the V/f base frequency (☐ 154)
- ▶ Adapting the Vmin boost (☐ 156)

Adapting drive behaviour

- ► Limitation of the maximum current by a current limitation controller (e.g. to prevent the motor from stalling or to limit to the maximally permissible motor current). ► Optimising the Imax controller (□ 158)
- Adaptation of the field frequency by a load-dependent slip compensation (improved speed accuracy for systems without feedback).
- ▶ Improving the behaviour at high dynamic load changes. (□ 172)
- ► Adapting the slope limitation for lowering the Eco function. (☐ 173)
- ▶ Optimising the cos/phi controller. (🕮 173)

Torque limitation

Limit the torque to a lower value. ▶ <u>Torque limitation</u> (☐ 160)

Motor control (MCTRL)

V/f characteristic control - energy-saving (VFCplusEco)

5.6.4.1 Improving the behaviour at high dynamic load changes

Due to the voltage reduction executed via the $cos\phi$ control, the motor may stall in the Lenze setting at high dynamic load torque changes. This is caused by the flux reduction and the connected reduction of the stalling torque of the motor current:

$$M_{Max(t)} = M_{Stalling} \cdot \frac{U_{Motor(t)}^2}{\left(U_{Motor(t)} - U_{Reduction}\right)^2} \qquad \text{with } M_{Stalling} = 1.6 \dots 2.5 \cdot M_{Rated_motor}$$

$$V_{Motor} = \text{display in } \frac{C00052}{C00978}$$

$$V_{Reduction} = \text{display in } \frac{C00978}{C00978}$$

It generally applies that when the output voltage is divided in halves, the maximum torque is approx. reduced by the factor 4. A reduction by the factor 3 reduces the torque to approx. 15%.

The minimum voltage and thus the maximum influence access of the Eco function on the output voltage can be defined in <u>C00977</u>. With full influence of the Eco function, the following stalling torque can be ensured depending on the setting in <u>C00977</u>:

Minimum voltage V/f (C00977)	Maximum torque
100 %	160 % 250 % M _{rated}
70 %	80 % 130 % M _{rated}
50 %	40 % 70 % M _{rated}
20 %	15 % 50 % M _{rated}

An adaptation of the minimum voltage V/f ($\underline{\text{C00977}}$) improves the stability in case of load impulses.

- ▶ In the Lenze setting, the minimum voltage V/f is set to 20 % for the highest energy optimisation. This setting serves to respond to load torques if these amount to approx. 25 % of the rated torque or occur with low dynamics.
- ▶ An increase of the minimum voltage V/f to 70 % permits to apply a dynamic load impulse from 0 to 100 % rated motor torque without the motor stalling. This reduces the energy optimisation to be achieved by approx. 75 %.
- ▶ A further increase of the stability at still higher dynamic load impulses can be achieved by a further increase of the minimum voltage V/f, but means a further loss in energy optimisation.

Note!

The energy optimisation can be switched off by setting the minimum voltage V/f(C00977) to 100 %. Then, the behaviour corresponds to the V/f characteristic control (VFCplus) with linear characteristic.

In case of applications with very high dynamic sudden load variations from the unloaded operation, this motor control mode should not be used or the energy optimisation should be switched off, since a motor stalling cannot be excluded.

Motor control (MCTRL)

V/f characteristic control - energy-saving (VFCplusEco)

5.6.4.2 Adapting the slope limitation for lowering the Eco function

The ramp set in <u>C00982</u> for voltage reduction serves as slope limitation in order to prevent that voltage is suddenly applied to the motor when the Eco function is deactivated. Otherwise, the overvoltage limitation (Imax, Clamp) would be activated.

► This ramp is, depending on the device, pre-initialised to approx. the triple rotor time constant. An adaptation of this parameter is not required.

When the Eco function is switched off, a quick reaction (high dynamic performance) is required, but with a low current overshoot and a small torque jump. Thus, the Lenze setting of $\underline{\text{C00982}}$ is a compromise regarding the switch-off of the Eco function (voltage reduction = 0).

- To increase the dynamics when switching off the Eco function:
 Reduce → setting in C00982.
 (Current compensation actions increase when the Eco function is switched off.)
- In order to reduce current compensation actions when switching off the Eco function: Increase → setting in C00982.
 (The dynamics when switching off the eco function is reduced)

5.6.4.3 Optimising the cos/phi controller

With the Lenze setting, the $\cos \varphi$ controller is set such that usually no adaptation is required for all power ratings and application cases.

Behaviour	Remedy/recommendation
The $cos\phi$ actual value ($\underline{C00979/1}$) varies greatly.	Reduce gain Vp (C00975) and reset time Ti (C00976).
The $\cos \varphi$ actual value ($\underline{\text{C00979/1}}$) is permanently lower than the $\cos \varphi$ setpoint ($\underline{\text{C00979/2}}$).	Increase gain Vp (C00975) and reset time Ti (C00976).

5.6.5 Remedies for undesired drive behaviour

Drive behaviour	Remedy
Inadequate smooth running at low speeds, especially in the case of operation with a long motor cable	► <u>Automatic motor data identification</u> (☐ 126) Reduce the influence of the Eco function by increasing the minimum voltage V/f (C00977).
Problems in case of high starting duty (great mass inertia)	1. Set motor control VFCplus with linear characteristic (C00006 = 6). 2. Adapting the Vmin boost. (156) 3. Again set motor control VFCplusEco (C00006 = 11).
Drive does not follow the speed setpoint	The current controller intervenes in the set field frequency to limit the controller output current to the maximum current (C0022, C0023). Therefore: • Prolong acceleration/deceleration times: C00012: Accel. time - main setpoint C00013: Decel. time - main setpoint • Consider a sufficient magnetising time of the motor. Depending on the motor power, the magnetising time amounts to 0.1 0.2 s. • Increase the maximally permissible current: C00022: Imax in motor mode C00023: Imax in generator mode • Make adaptations for the Eco function: - Improving the behaviour at high dynamic load changes. (112) - Adapting the slope limitation for lowering the Eco function. (1173) - Optimising the cos/phi controller. (1173)
Insufficient speed constancy at high load (setpoint and motor speed are not proportional anymore)	 Increase slip compensation (C00021). Important: Unstable drive due to overcompensation! With cyclic load impulses (e. g. centrifugal pump), a smooth motor characteristic is achieved by smaller values in C00021 (possibly negative values). Note: The slip compensation is only active for operation without speed feedback.
"Clamp operation active" error message (OC11): Controller cannot follow dynamic processes, i.e. too short acceleration/deceleration times in terms of load ratios.	 Increase the gain of the I_{max} controller (C00073) Reduce the reset time of the I_{max} controller (C00074) Prolong the acceleration time (C00012) Prolong the deceleration time (C00013) Make adaptations for the Eco function: Improving the behaviour at high dynamic load changes. (□ 172) Adapting the slope limitation for lowering the Eco function. (□ 173)
Motor stalling in the field weakening range (adaptation especially required for small machines)	If motor power < inverter power: Set C00022 to I _{max} = 2 I _{rated motor} Reduce dynamic performance of setpoint generation Make adaptations for the Eco function: —Improving the behaviour at high dynamic load changes. (□ 172) —Adapting the slope limitation for lowering the Eco function. (□ 173)
Speed variations in no-load operation for speeds > 1/3 rated speed.	Minimise speed oscillations with oscillation damping (C00234).

8400 TopLine C | Software Manual Motor control (MCTRL) V/f characteristic control - energy-saving (VFCplusEco)

Drive behaviour	Remedy
Speed variations in no-load operation and with load for speeds > rated speed.	Minimise speed oscillations with increasing the oscillation damping field weakening (C00236). Caution: If C00236 is increased, the maximum output voltage of the device is reduced!
Output voltage is too low. There is a too low maximum torque in the high field weakening range.	Reduction of the oscillation damping field weakening (C00236). Caution: When C00236 = 0, oscillation damping field weakening is inactive. Thus, a maximum output voltage is available but the tendency to speed oscillations in the field weakening range at no-load operation and with load increases.

Motor control (MCTRL) V/f control (VFCplus + encoder)

5.7 V/f control (VFCplus + encoder)

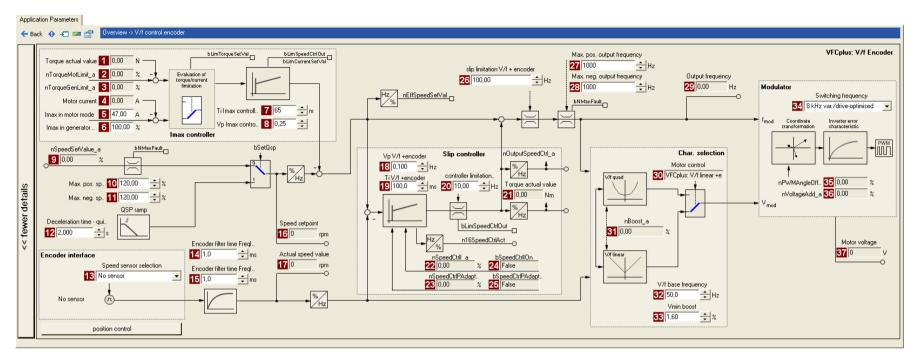
The previously described V/f characteristic control (VFCplus) can be operated with a feedback of speed. This bears the following advantages:

- ► Stationary accuracy of speed
- ► Low parameterisation effort compared to sensorless vector control (SLVC)
- ▶ Improved dynamics compared to V/f characteristic control without feedback or to sensorless vector control (SLVC).
- ► Suitability for group drives

The descriptions in chapter "V/f characteristic control (VFCplus)" also apply for the V/f control. (147)

Note!

As the slip is calculated in the feedback V/f operation and injected through the slip regulator, the slip compensation (C00021) is deactivated with V/f control.


Parameterisation dialog/signal flow 5.7.1

Proceed as follows to open the dialog for parameterising the motor control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Select the motor control from the *Overview* dialog level in the **Motor control** (C00006) list field:
 - "7: VFCplus: V/f linear +encoder" for linear characteristic or
 - "9: VFCplus: V/f quadr +encoder" for square-law characteristic
- 4. Click the **Motor control V/f encoder** button to change to the *Overview* → *Motor* control V/f dialog box.
 - This dialog level only shows a simplified signal flow with the most important parameters.
 - When you click the >>More details button in the left-most position, a signal flow with more details/parameters is displayed, as shown in the following subchapter.

Parameter	Info	Pa	rameter	Info		Parameter	Info
C00056/2	Actual torque value	16	<u> 200050</u>	Speed setpoint	2	<u>C00058</u>	Output frequency
<u>C00830/29</u>	Limitation of torque in motor mode	17	C00051	Actual speed value	3	C00006	Motor control
C00830/28	Limitation of torque in generator mode	18 (<u> 200972</u>	Vp Vf+encoder	3	C00830/26	MCTRL: nBoost_a
<u>C00054</u>	Motor current	19	<u> 200973</u>	Ti Vf+encoder	3	<u>C00015</u>	V/f base frequency
<u>C00022</u>	Imax in motor mode	20 (200971/1	Controller limitation Vf+encoder	3	<u>C00016</u>	Vmin boost
<u>C00023</u>	Imax in generator mode	21 (200056/2	Actual torque value	3	<u>C00018</u>	Switching frequency
<u>C00074</u>	Ti Imax controller	22 <u>C</u>	200830/24	MCTRL: nSpeedCtrll_a	3	<u>C00830/32</u>	MCTRL: nPWMAngleOffs
<u>C00073</u>	Vp Imax controller	23 <u>C</u>	200830/25	MCTRL: nSpeedCtrlPAdapt_a	3	<u>C00830/31</u>	MCTRL: nVoltageAdd_a
<u>C00830/22</u>	Speed setpoint	24	200833/31	MCTRL: bSpeedCtrlIOn	3	<u>C00052</u>	Motor voltage
.0 <u>C00909/1</u>	Max. pos. speed	25 <u>C</u>	200833/69	MCTRL: bSpeedCtrlPAdaptOn			
<u>C00909/2</u>	Max. neg. speed	26	200971/2	Slip limitation Vf+encoder			
2 <u>C00105</u>	Decel. time - quick stop	27	C00910/1	Max. pos. output frequency			
3 <u>C00495</u>	Speed sensor selection	28	200910/2	Max. neg. output frequency			
4 <u>C00497/2</u>	Encoder filter time FreqIn67						
<u>C00497/1</u>	Encoder filter time FreqIn12						

Motor control (MCTRL) V/f control (VFCplus + encoder)

5.7.2 **Basic settings**

In order to protect the drive system, carry out the commissioning of the V/f control and the slip regulator in several steps.

▶ Detailed information on the single steps can be found in the following subchapters or in the corresponding subchapters for V/f characteristic control.

Initial commissioning steps

- 1. Define the V/f characteristic:
 - C00006 = 7: Linear characteristic
 - <u>C00006</u> = 9: Square-law characteristic
- 2. Defining current limits (Imax controller). (152)
- 3. Parameterise the encoder/feedback system.
 - ▶ Encoder/feedback system (□ 293)
- 4. If special motors with a rated frequency other than 50 Hz or with a number of pole pairs ≠ 2 are used, set the motor parameters according to the motor nameplate.
 - ▶ Motor selection/Motor data (☐ 121)
- 5. Define speed setpoint (e.g. 20 % of the rated speed) and enable controller.
- 6. Check whether the actual speed value (C00051) ≈ speed setpoint (C00050) and then inhibit the controller
 - · In case of a sign reversal between actual value and setpoint, check the connection or setting of the encoder.
 - In case the actual value differs considerably from the setpoint (factor 2), set the motor parameters according to motor nameplate. Then repeat step 5.
- 7. For protecting the drive, reduce slip regulator limitation in C00971/1.
 - e.g. reduction to half the slip frequency (≈ 2 Hz)
- 8. Define speed setpoint (e.g. 20 % of the rated speed) and enable controller.
- 9. In case of a semi-stable operational performance, reduce the reset time (C00972) or the proportional gain (C00973) of the slip regulator until a stable operation has been achieved.
 - ▶ Parameterising the slip regulator (☐ 179)
- 10. In a final step, increase the slip regulator limitation again in C00971/1.
 - · e.g. increase to twice the slip frequency

Information on the optimisation of the control mode and the adaptation to the real application is provided in the "Optimising the control mode" chapter for the V/f characteristic control (VFCplus). (153)

Parameterisable additional functions are described correspondingly in the chapter "Parameterisable additional functions". (240)

5.7.2.1 Parameterising the slip regulator

The slip regulator is designed as a PI controller. In order to improve the response to setpoint changes, the setpoint speed or setpoint frequency is added to the output (correcting variable) of the slip regulator as feedforward control value.

- ► In contrast to the conventional speed controller, the slip regulator only regulates the slip.
- ▶ In the Lenze setting, the slip regulator features a configuration with a goof robustness and moderate dynamics.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00971/1</u>	VFC: Controller limitation V/f +encoder	10.00	Hz
C00971/2	VFC: Slip limitation V/f +encoder	100.00	Hz
C00972	VFC: Vp V/f +encoder	0.100	Hz/Hz
C00973	VFC: Ti V/f +encoder	100.0	ms

Slip regulator gain Vp

The setting range of the slip regulator gain Vp (C00972) which leads to a stable operational performance, mainly depends on the resolution of the speed sensor. There is a direct relationship between encoder resolution and gain:

▶ The higher the encoder resolution, the higher the gain can be set.

The following table provides maximum and recommended slip regulator gains for encoder with standard encoder increments:

Encoder increment	Slip regulator gain Vp		
[Increments/revolution]	maximum	recommended	
8	0,09	0,06	
64	0,52	0,31	
100	0,79	0,47	
120	0,94	0,57	
128	1,00	0,60	
256	1,29	0,77	
386	1,63	0,98	
512	1,97	1,18	
640	2,31	1,38	
768	2,65	1,59	
896	2,99	1,79	
1014	3,33	2,00	
1536	4,69	2,81	
2048	6,05	3,63	
3072	8,77	5,26	
4096	11,49	6,90	

[5-1] Slip regulator gain Vp based on the encoder increment

Motor control (MCTRL) V/f control (VFCplus + encoder)

How to adapt the slip regulator gain to the operating conditions:

- 1. Adapt the slip regulator gain (C00972) to the encoder increment according to table [5-1].
- 2. Set controller limitation (C00971/1) to half the slip frequency (\approx 2 Hz).
- 3. Select speed setpoint (e.g. 20 % of the rated speed).
- 4. Enable controller.
- 5. Increase slip regulator gain (C00972) until the drive becomes semi-stable.
 - This can be recognised by motor noises or "humming" of the motor or by a noise on the actual speed signal.
- 6. Reduce slip regulator gain (C00972) until the drive runs stable again (no motor "humming").
- 7. Reduce slip regulator gain (C00972) to approx. half the value.
 - For lower encoder resolutions, another reduction of the slip regulator gain for lower speeds (speed setpoint \approx 0) may become necessary.
 - It is recommended to check as a final step the behaviour at setpoint speed = 0 and further reduce the slip regulator gain in case of irregular running.
- 8. Increase controller limitation (C00971/1) again (e.g. to twice the slip frequency).

Slip regulator time constant Ti

How to set the slip regulator time constant:

- 1. Set controller limitation (C00971/1) to half the slip frequency (\approx 2 Hz).
- 2. Select speed setpoint (e.g. 20 % of the rated speed).
- 3. Enable controller.
- 4. Reduce slip regulator time constant (C00973) until the drive becomes semi-stable.
 - This can be recognised by engine noises or motor "oscillating" or by oscillation on the actual speed signal.
- 5. Increase slip regulator time constant (C00973) until the drive runs stable again (no motor "oscillation").
- 6. Increase the slip regulator time constant (C00973) to approx. twice the value.
- 7. Increase controller limitation (C00971/1) again (e.g. to twice the slip frequency).

Controller limitation

Max. intervention of the controller is limited by the controller limitation (C00971/1).

- ▶ The controller can be limited depending on the application.
- ▶ We recommend to limit the max. intervention to twice the rated slip of the motor.
- ► The rated slip is calculated as follows:

$$f_{Slip_{Rated}}[Hz] \ = \ f_{Rated}[Hz] - \left(\frac{n_{Motor_{Rated}}[rpm]}{60} \cdot p_{Number\ of\ pole\ pairs}\right)$$

[5-9] Calculation of the rated slip

Note!

The setting $\underline{\text{C00971/1}} = 0$ Hz deactivates the slip regulator. In this case, the structure of the V/f control corresponds to the structure of the V/f characteristic control without feedback.

Slip limitation

In addition to limiting the slip regulator, the field frequency to be injected can also be limited by another limiting element, the slip limitation ($\frac{\text{C00971/2}}{\text{C00971/2}}$).

- ► A slip limitation to, for instance, double the rated slip of the motor prevents the motor from stalling in very dynamic processes.
- ► Motor stalling is caused by:
 - High overcurrent at very steep speed ramps
 - very fast speed changes due to load, e.g. abrupt stopping of the drive due to an encounter with a stop or a load that is not moving.

Motor control (MCTRL)
Sensorless vector control (SLVC)

5.8 Sensorless vector control (SLVC)

Sensorless vector control (SLVC) is based on a better motor current control according to a field-oriented control mode by Lenze.

Stop!

- The sensorless vector control (SLVC) is only suitable for asynchronous motors.
- The connected motor must not be more than two power classes smaller than the motor assigned to the controller.
- Operation of the sensorless vector control (SLVC) is only permissible for one single drive!
- Operation of the sensorless vector control (SLVC) is not permissible for hoists!
- The Lenze setting permits the operation of a power-adapted motor. Optimal operation is only possible if <u>either</u>:
 - the motor is selected via the Lenze motor catalogue
 - the motor nameplate data are entered and motor parameter identification is carried out afterwards
 - or
 - the nameplate data and equivalent circuit data of the motor (motor leakage inductance and mutual motor inductance, slip compensation and motor stator resistance) are entered manually.
- When you enter the motor nameplate data, take into account the phase connection implemented for the motor (star or delta connection). Only enter the data applying to the selected connection type.
 - In this context, also observe the instructions in the chapter entitled
 "Adapting the V/f base frequency" relating to V/f characteristic control.
 (L) 154)

Note!

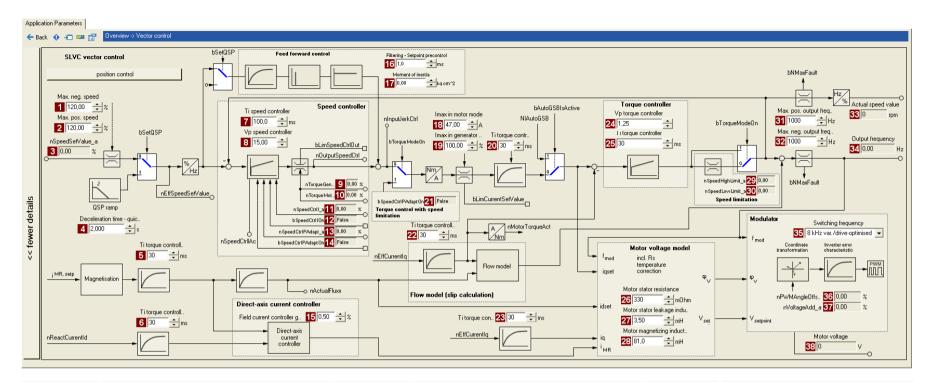
Optimal operation of the sensorless vector control (SLVC) can be achieved from a minimum speed of approx. 0.5-fold slip speed. At lower speed values below the 0.5-fold slip speed, the maximum torque is reduced.

The maximum field frequency with this motor control mode is 650 Hz.

Motor control (MCTRL) Sensorless vector control (SLVC)

In comparison to the V/f characteristic control without feedback, the following can be achieved by means of sensorless vector control SLVC:

- ▶ A higher maximum torque throughout the entire speed range
- ► A higher speed accuracy
- ► A higher concentricity factor
- ► A higher level of efficiency
- ▶ The implementation of torque-actuated operation with speed limitation
- ▶ The limitation of the maximum torque in motor and generator mode for speedactuated operation


5.8.1 Parameterisation dialog/signal flow

Proceed as follows to open the dialog for parameterising the motor control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Select the motor control "4: SLVC: Vector control" from the Overview dialog level in the Motor control list field (C00006):
- 4. Click the **Motor control vector** button to change to the *Overview* → *Motor control* vector dialog box.
 - This dialog level only shows a simplified signal flow with the most important parameters.
 - When you click the >>More details button in the left-most position, a signal flow with more details/parameters is displayed, as shown in the following subchapter.

Motor control (MCTRL)
Sensorless vector control (SLVC)

8400 TopLine C | Software Manual

Parameter	Info	Parameter	Info		Parameter	Info
<u>C00909/2</u>	Max. neg. speed	16 <u>C00275</u>	Setpoint feedforward control filtering	2	4 <u>C00073/2</u>	SLVC: Vp torque controller
2 <u>C00909/1</u>	Max. pos. speed	17 <u>C00273</u>	Moment of inertia	2	<u>C00074/2</u>	SLVC: Ti torque controller
3 <u>C00830/22</u>	Speed setpoint	18 <u>C00022</u>	Imax in motor mode	2	<u>C00084</u>	Motor stator resistance
4 <u>C00105</u>	Decel. time - quick stop	19 <u>C00023</u>	Imax in generator mode	2	7 <u>C00085</u>	Motor stator leakage inductan
5 <u>C00074/2</u>	SLVC: Ti torque controller	20 <u>C00074/2</u>	SLVC: Ti torque controller	2	8 <u>C00092</u>	Motor magnetising inductance
6 <u>C00074/2</u>	SLVC: Ti torque controller	21 <u>C00833/69</u>	MCTRL: bSpeedCtrlPAdaptOn	2	9 <u>C00830/88</u>	MCTRL: nSpeedHighLimit_a
7 <u>C00071/1</u>	SLVC: Ti speed controller	22 <u>C00074/2</u>	SLVC: Ti torque controller	3	O C00830/23	MCTRL: nSpeedLowLimit_a
8 <u>C00070/1</u>	SLVC: Vp speed controller	23 <u>C00074/2</u>	SLVC: Ti torque controller	3	1 <u>C00910/1</u>	Max. pos. output frequency
9 <u>C00830/28</u>	Limitation of torque in generator mode			3	2 <u>C00910/2</u>	Max. neg. output frequency
<u>C00830/29</u>	Limitation of torque in motor mode			3	<u>C00051</u>	Actual speed value
<u>C00830/24</u>	MCTRL: nSpeedCtrll_a			3	4 <u>C00058</u>	Output frequency
12 <u>C00833/31</u>	MCTRL: bSpeedCtrlIOn			3	5 <u>C00018</u>	Switching frequency
C00830/25	MCTRL: nSpeedCtrlPAdapt_a			3	6 <u>C00830/32</u>	MCTRL: nPWMAngleOffset_a
C00833/69	MCTRL: bSpeedCtrlPAdaptOn			3	7 <u>C00830/31</u>	MCTRL: nVoltageAdd_a
<u>C00985</u>	SLVC: Field current controller gain			3	8 <u>C00052</u>	Motor voltage

5.8.2 Types of control

The sensorless vector control can be operated in two different modes:

- ► <u>Speed control with torque limitation</u> (bTorquemodeOn = FALSE)
- ► Torque control with speed limitation (bTorquemodeOn = TRUE)

5.8.2.1 Speed control with torque limitation

A speed setpoint is selected and the drive system is operated in a speed-controlled manner.

The operational performance can be adapted in the following ways:

- ► Overload limitation in the drive train
 - The torque is limited via the torque setpoint.
 - The torque setpoint is identical to the value at the output of the speed controller, nOutputSpeedCtrl.
 - To avoid overload in the drive train, the torque in motor mode can be limited via the nTorqueMotLimit_a process input signal, and the torque in generator mode can be limited via the nTorqueGenLimit a process input signal:

Identifier DIS code data type	Information/possible settings
nTorqueMotLimit_a <u>C00830/29</u> INT	 Torque limitation in motor mode Scaling: 16384 = 100 % M_{max} (C00057) Setting range: 0 +199.99 % If keypad control is performed: Parameterisable via C00728/1.
nTorqueGenLimit_a <u>C00830/28</u> INT	Torque limitation in generator mode • Scaling: 16384 ≡ 100 % M _{max} (C00057) • Setting range: -199.99 0 % • If keypad control is performed: Parameterisable via C00728/2.

Note!

To avoid instabilities during operation, the torque limit values are internally processed as absolute values.

► Motor current limitation

- A cross current setpoint is calculated from the torque setpoint which is limited depending on the magnetising current, the max. current in motor mode (<u>C00022</u>), and the max. current in generator mode (<u>C00023</u>).
- Here, the total current injected into the motor does not exceed the max. currents in motor and generator mode.
- ► Slip compensation (□ 255)
 - Using a slip model, the slip of the machine is reconstructed.
 - The slip compensation (C00021) acts as the influencing parameter.

Motor control (MCTRL) Sensorless vector control (SLVC)

5.8.2.2 Torque control with speed limitation

For torque-controlled operation, a torque setpoint is defined in the drive system. Unlike the <u>Speed control with torque limitation</u>, this type of control has a <u>deactivated</u> speed controller and torque limitation.

- ▶ The torque setpoint is calculated directly from *nTorqueSetValue a*.
- ▶ The speed is defined by the process.
- ▶ Due to its limitation, the speed-controlled drive can only rotate within a speed range whose positive speed is limited by *nSpeedHighLimit_a* and whose negative speed is limited by *nSpeedLowLimit_a*.

Identifier DIS code data type	Information/possible settings
nTorqueSetValue_a <u>C00830/27</u> INT	Torque setpoint / additive torque • Scaling: 16384 ≡ 100 % M _{max} (C00057)
nSpeedHighLimit_a <u>C00830/88</u> INT	Upper speed limit for speed limitation (only for torque-controlled operation) • Scaling: 16384 ≡ 100 % rated speed (C00011)
nSpeedLowLimit_a C00830/23 INT	Lower speed limit for speed limitation (only for torque-controlled operation) • Scaling: 16384 ≡ 100 % rated speed (C00011)

Basic settings 5.8.3

The following "Initial commissioning steps" must be performed to commission the sensorless vector control:

Initial commissioning steps

1. Determine the motor control: C00006 = "4: SLVC: Vector control"

- 2. Set the motor selection/motor data
 - · When selecting and parameterising the motor, the motor nameplate data and the equivalent circuit diagram data are relevant. Detailed information can be found in the "Motor selection/Motor data" chapter. (1121)

Depending on the motor manufacturer, proceed as follows:

Lenze motor:

Selecting a motor from the motor catalogue in the »Engineer«

- or -
- 1. Set the motor nameplate data
- 2. Automatic motor data identification

Third party manufacturer's motor:

- 1. Set the motor nameplate data
- 2. Automatic motor data identification or set known equivalent circuit diagram data manually:
 - C00082: Motor rotor resistance
 - C00084: Motor stator resistance C00085: Motor stator leakage inductance
 - C00092: Motor magnetising inductance
 - C00095: Motor magnetising current

3. Define the type of control:

bTorquemodeOn = FALSE: Speed control with torque limitation bTorquemodeOn = TRUE: Torque control with speed limitation

4. Set the slip compensation (C00021). ▶ Slip compensation (255)

Information on the optimisation of the control mode and the adaptation to the real application is provided in the chapter "Optimising the control mode". (1) 188)

We recommend to use the flying restart function for connecting/synchronising the inverter to an already rotating drive system. ▶ Flying restart function (247)

Parameterisable additional functions are described correspondingly in the chapter "Parameterisable additional functions". (240)

Motor control (MCTRL)
Sensorless vector control (SLVC)

5.8.4 Optimising the control mode

5.8.4.1 Optimising the starting performance after a controller enable

After the controller has been enabled, the starting action of the motor is delayed due to the magnetisation of the motor. Under consideration of the motor rotor time constant (C00083), the time delay is calculated as follows:

Magnetisation = 1.5 * motor rotor time constant

If this delay cannot be tolerated for specific applications, the motor must always be operated in an energised condition. For this, select one of the following options:

Procedure without setting a controller inhibit

- 1. Deactivate the auto DCB function with C00019 = 0.
- 2. Do <u>not</u> activate the controller inhibit. Instead, stop the drive by selecting a setpoint of 0 or by activating the quick stop function.

Procedure with setting a controller inhibit due to application requirements

- 1. Deactivate the auto DCB function with $\underline{\text{C00019}} = 0$.
- 2. Enter a greater value for the motor rotor resistance (max. factor 2!) to reduce the magnetisation time in C00082.

Note!

During the starting action, a jerk may occur in the machine due to the temporarily increased motor current!

5.8.4.2 Optimise speed controller

The speed controller is designed as a PI controller.

▶ In the Lenze setting, the configuration of the speed controller provides robustness and moderate dynamics.

Parameter	Info	Lenze setting	
		Value	Unit
C00070/1	SLVC: Vp speed controller	15.00	
C00071/1	SLVC: Ti speed controller	100.0	ms

Speed controller gain Vp

The gain Vp (C00070/1) of the speed controller is defined in a scaled representation which enables a comparable parameterisation almost independent of the power of the motor or inverter. Here, the speed input difference of the controller is scaled to the rated motor speed whereas the output torque refers to the rated motor torque. A gain of 10 means that a speed difference of 1 % is gained through the P component with 10 % torque.

If the rated data of the motor and the mass inertia of the drive system are known, we recommend the following setting:

$$\begin{split} V_{p} \approx 1.5 &... 3 \cdot \frac{T_{M}[s]}{0.01[s]} \\ T_{M}[s] &= \frac{2 \cdot \pi \cdot n_{N}[rpm]}{M_{N}[Nm] \cdot 60} \cdot J_{Drive,\,total}[kgm^{2}] \\ M_{N}[Nm] &= \frac{P_{N}[W] \cdot 60}{2 \cdot \pi \cdot n_{N}[rpm]} \end{split}$$

 V_p = Gain of the speed controller (C00070/1)

 T_M = Time constant for the acceleration of the motor

M_N = Rated motor torque

n_N = Rated motor speed

J_{drive, total} = Total moment of inertia of the drive

[5-10] Recommendation for the setting of the gain of the speed controller

Values recommended by Lenze for the setting of the (proportional) gain:

- For drive systems without feedback: Vp = 6 ... 25
- For drive systems with a good disturbance behaviour: Vp > 15
 In this case, we recommend the optimisation of the dynamic performance of the torque controller.

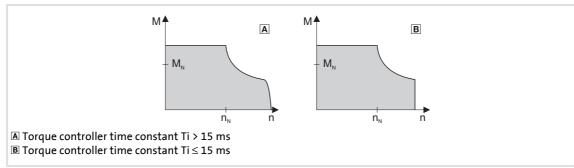
Motor control (MCTRL) Sensorless vector control (SLVC)

Speed controller reset time Ti

Apart from setting the P component, $\underline{\text{C00071/1}}$ provides the possibility to take influence on the I component of the PI controller.

Value range recommended by Lenze for the setting of the reset time:

Ti = 20 ms ... 150 ms


5.8.4.3 Optimising dynamic performance and field weakening behaviour

In the Lenze setting, the torque controller has been preset in such a way that robust and stable operation with a moderate dynamic response is enabled over the entire speed range. Retrospective optimisation of the controller parameters is not necessary.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00073/2</u>	SLVC: Vp torque controller	1.25	
C00074/2	SLVC: Ti torque controller	30	ms

A greater dynamic performance of the sensorless vector control can be achieved by reducing time constant Ti of the speed controller (C00074/2).

A greater dynamic performance of the field weakening function can be achieved by setting a time constant \leq 15 ms. This means for actual speeds above rated speed a better torque-speed-characteristic in the field weakening range:

[5-11] Speed / torque characteristic diagram in the field weakening range

- ► For Ti > 15 ms (see △), the actual speed value slightly drops in the field weakening range if the load torque increases in the motor mode.
- ► For Ti ≤ 15 ms (see 🖪), the speed remains stable in the field weakening range if the torque is within the M/n characteristic field highlighted in grey.

For applications with high dynamic performance and speed/torque accuracy requirements in the field weakening range, we recommend a time constant $Ti \le 15$ ms.

In this case, the maximum torque should be limited via the $nTorqueMotLimit_a$ and $nTorqueGenLimit_a$ process input signals to $1.5 \times M_N$ to ensure stable operation in the field weakening range.

Motor control (MCTRL) Sensorless vector control (SLVC)

5.8.4.4 Optimising the stalling behaviour

Motor stalling due to a torque overload in the field weakening range in sensorless vector control is prevented by means of an inverter-internal stalling current monitoring. In the field weakening range, hence at frequencies above the base frequency, it reduces the maximum current to prevent the motor from stalling. The reduction depends on the current field frequency, the base frequency, the DC-bus voltage and the maximum current (C00022). Generally it applies that a higher field frequency causes a stronger limitation of the maximum current.

The field weakening behaviour of the sensorless vector control depends on the setting of the reset time Ti of the torque controller (C00074/2).

The following applies to the reset time Ti (C00074/2) > 15 ms:

The behaviour in the field weakening range can be adapted via the override point of field weakening (C00080). This parameter serves to shift the frequency-dependent maximum current characteristic:

► C00080 > 0 Hz:

- The maximum current characteristic is shifted by the entered frequency to higher field frequencies.
- The maximally permissible current and the maximum torque increase in the field weakening range.
- The risk of motor stalling increases.

► C00080 < 0 Hz:

- The maximum current characteristic is shifted by the entered frequency to lower field frequencies.
- The maximally permissible current and the maximum torque are reduced in the field weakening range.
- The risk of motor stalling is reduced.

Note!

We recommend to keep the Lenze setting (0 Hz).

Motor control (MCTRL)
Sensorless vector control (SLVC)

The following applies to the reset time Ti $(C00074/2) \le 15$ ms:

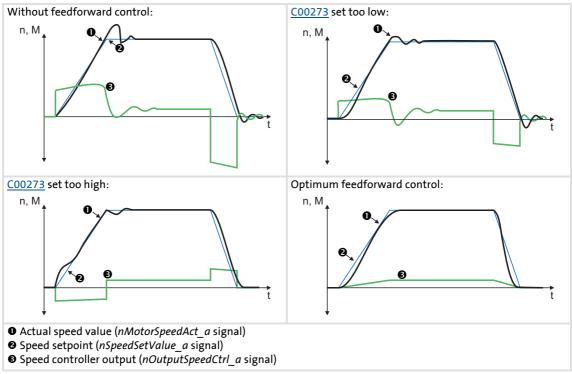
The reduction of the magnetising current in the field weakening range can be adapted via the override point of field weakening (C00080):

► C00080 > 0 Hz:

The reduction of the magnetising current is shifted to higher field frequencies. Here, there is a risk of the motor being magnetised too much and having too little voltage reserve for the torque-creating current.

► C00080 < 0 Hz:

The reduction of the magnetising current is shifted to lower field frequencies.


Note!

A function for enabling a stable operation can only be implemented to a limited extent with a reset time $Ti \le 15$ ms For applications with speeds above the 2-fold rated speed, we recommend a reset time Ti (C00074/2) > 15 ms.

5.8.4.5 Optimise response to setpoint changes and determine mass inertia

Setting the total moment of inertia under <u>C00273</u> provides the optimum torque feedforward control. Depending on the application, an adjustment of the setting under <u>C00273</u> may be necessary to optimise the response to position/speed setpoint changes by means of the torque feedforward control.

[5-12] Typical signal characteristics for different settings of the load moment of inertia

Motor control (MCTRL) Sensorless vector control (SLVC)

How to optimise the torque feedforward control:

- 1. Run a typical speed profile and record the inputs and outputs of the speed controller with the data logger.
 - Motor control variables to be recorded: nSpeedSetValue a (speed setpoint) *nMotorSpeedAct a* (actual speed value) nOutputSpeedCtrl a (speed controller output)
- 2. Estimate the moment of inertia and set it in C00273 in relation to the motor end (i.e. with account being taken of the gearbox factors).
- 3. Repeat the data logger recording (see step 1).
 - Now the data logger should show that part of the required torque is generated by the feedforward control and the speed controller output signal (nOutputSpeedCtrl_a) is correspondingly smaller. The resulting following error decreases.
- 4. Change the setting in C00273 and repeat the data logger recording until the intended response to setpoint changes is reached.
 - The optimisation could aim at the speed controller being completely relieved (see signal characteristics in Fig. [5-12]).
- 5. Save the parameter set (device command: C00002/11).

Motor control (MCTRL) Sensorless vector control (SLVC)

5.8.4.6 Slip calculation from motor equivalent circuit diagram data

This function extension is available from version 02.00.00!

In order to achieve a better speed stability and torque accuracy, the slip calculation can be either derived from the motor nameplate data (e.g. rated motor speed) or the motor equivalent circuit diagram data (stator resistance, rotor resistance etc.).

The data to be used for sensorless vector control is selected via bit 0 in C02879/1:

Setting		Info
Bit 0	SLVC	In case of sensorless vector control: • "0" ≡ Slip calculation from motor nameplate data (Lenze setting) • "1" ≡ Slip calculation from motor equivalent circuit diagram data
Bit 1	SC_ASM	In case of servo control for asynchronous motors: • "0" ≡ Slip calculation from motor nameplate data • "1" ≡ Slip calculation from motor equivalent circuit diagram data (Lenze setting)
Bit 2 7	Reserved	

Note!

In order that the slip can be calculated from the motor equivalent circuit diagram data, the equivalent circuit data (stator resistance, rotor resistance etc.) must be known as exactly as possible.

- Selecting a motor in the »Engineer« motor catalogue loads the exact motor equivalent circuit diagram data.
- When the motor nameplate data is entered manually and the motor equivalent circuit diagram data is then detected via the motor parameter identification, the "extended identification" (C02867/1 = 2) must be used.
 Automatic motor data identification (LD 126)

In the slip calculation from the motor equivalent circuit diagram data, the slip compensation (C00021) has no influence anymore.

5.8.5 Remedies for undesired drive behaviour

Drive behaviour	Remedy
Deviation between no-load current and magnetising current or bad speed or torque accuracy.	Adapt the motor magnetising inductance (C00092) for no-load operation. • If the no-load current is greater than the magnetising current (C00095) at 0.5-fold rated motor speed, the magnetising inductance must be reduced until the no-load current and the magnetising current have the same values. • Otherwise, the magnetising inductance must be increased. Tendency of the correction of C00092: PN: Rated motor power
Insufficient speed constancy at high load: Setpoint and motor speed are not proportional anymore. Caution: Overcompensation of the settings mentioned under "Remedy" may result in unstable behaviour!	Via the slip compensation (<u>C00021</u>), the speed stability under high loads can be affected: • If n _{act} > n _{slip} , reduce the value in <u>C00021</u> • If n _{act} < n _{slip} , increase the value in <u>C00021</u>
Unstable control with higher speeds.	 Check the setting of the magnetising inductance (C00092) by comparing the current consumption in no-load operation with the rated magnetising current (C00095). Optimise oscillation damping (C00234).
"Short circuit" (OC1) or "Clamp operation active" (OC11) error messages at short acceleration time (C00012) in proportion to the load (controller cannot follow the dynamic processes).	 Increase the gain of the torque controller (C00073/2). Reduce the reset time of the torque controller (C00074/2). Increase the acceleration (C00012)/deceleration (C00013) time.
Mechanical resonance at certain speeds.	The L NSet 1 function block masks out those speed ranges that include resonance.
Speed variations in no-load operation for speeds > 1/3 rated speed.	Minimise speed oscillations with oscillation damping (C00234).
Drive runs unstable.	Check set motor data (nameplate data and equivalent
Setpoint speed and actual speed differ strongly.	circuit diagram data). • Motor selection/Motor data (🕮 121)
The torque required is not generated at standstill.	Increase motor magnetising current (<u>C00095</u>).
Current overshoots occur when heavy loads are accelerated from standstill (OC1 or OC11 error).	
The machine runs uneven.	

5.9 Sensorless control for synchronous motors (SLPSM)

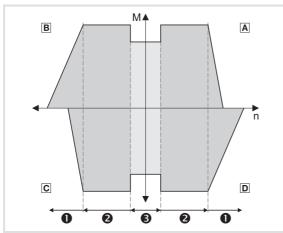
The sensorless control for synchronous motors is based on a decoupled and separated control of the torque-creating and field-creating current share of synchronous motors. In contrast to the servo control, the actual speed value and the rotor position are reconstructed via a motor model.

Stop!

- The sensorless control for synchronous motors is only possible up to a maximum output frequency of 650 Hz!
 - Depending on the number of motor pole pairs, the reference speed (C00011) may only be selected that high that the output frequency displayed in C00059 is lower than 650 Hz.
- We recommend to select a power-adapted combination of inverter and motor.
- The Lenze setting permits the operation of a power-adapted motor. Optimal operation is only possible if either:
 - the motor is selected via the Lenze motor catalogue
 - the motor nameplate data are entered and motor parameter identification is carried out afterwards
 - or -
 - the nameplate data and equivalent circuit data of the motor (motor leakage inductance and motor stator resistance) are entered manually.
- When you enter the motor nameplate data, take into account the phase connection implemented for the motor (star or delta connection). Only enter the data applying to the selected connection type.
- In order to protect the motor (e.g. from demagnetisation), we recommend setting the ultimate motor current in <u>C00939</u>. This ensures motor protection even with an unstable operation. ▶ <u>Maximum current monitoring (□ 283)</u>
- Controller enable is only possible if the motor is at standstill.
 - When the controller is enabled, a jerk may occur due to an angle jump since the rotor displacement angle is not known after controller enable. For some applications, this jerk in the machine is not acceptable.
 - From version 02.00.00, the rotor displacement angle is identified with every controller enable in the Lenze setting, and thus a jerk in the machine after controller enable can be avoided. ▶ Pole position identification without motion (□ 144)
 - A flying restart circuit for synchronising to rotating motors is in preparation.

Stop!

- The injection of a constant current may cause an unwanted heating of the motor at controlled operation.
 - We recommend using a temperature feedback via KTY, PTC or thermal contact.
 - ▶ Motor temperature monitoring (KTY) (☐ 323)
 - ▶ Motor temperature monitoring (PTC) (□ 278)


Note!

Currently, the sensorless control does not contain a flying restart function that enables a synchronisation of the controller to a rotating machine.

- Thus, we recommend taking measures for preventing overvoltages at operation in generator mode (e.g. brake resistor).
- By any means, the delay time for the "DC-bus overvoltage" error trigger in C00601/1 must be set to 0 s.

The motor model-based speed monitoring requires a rotating machine. Thus, the operational performance of the sensorless control for synchronous motors is divided into two categories:

- 1. Open-loop controlled operation ($|n_{setpoint}| < n_{C00996}$)
 - In the range of low speeds, the speed of a synchronous motor is not possible. Thus, only an adjustable and constant current is injected that enables an acceleration.
- 2. Closed-loop controlled operation ($|n_{setpoint}| > n_{C00996}$)
 - In this range, the rotor flux position and the speed are reconstructed via an observer.
 The control is carried out field-oriented. Only the current is injected that is needed for the required torque.

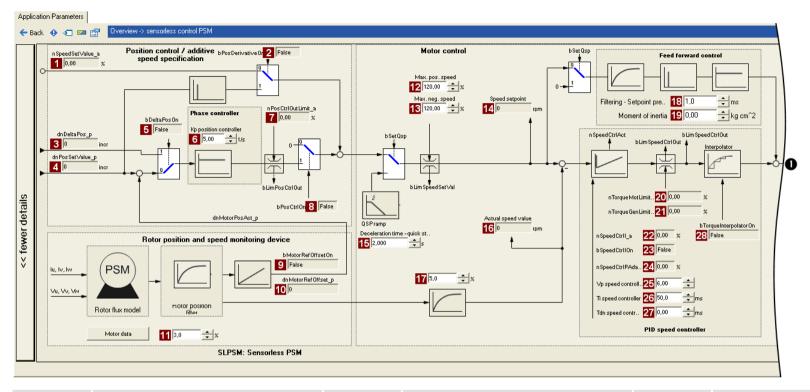
- A Operation in motor mode (CW rotation)
- **B** Operation in generator mode (CCW rotation)
- © Operation in motor mode (CCW rotation)
- D Operation in generator mode (CW rotation)
- Field weakening (in preparation)
- Closed-loop controlled operation
- **❸** Open-loop controlled operation

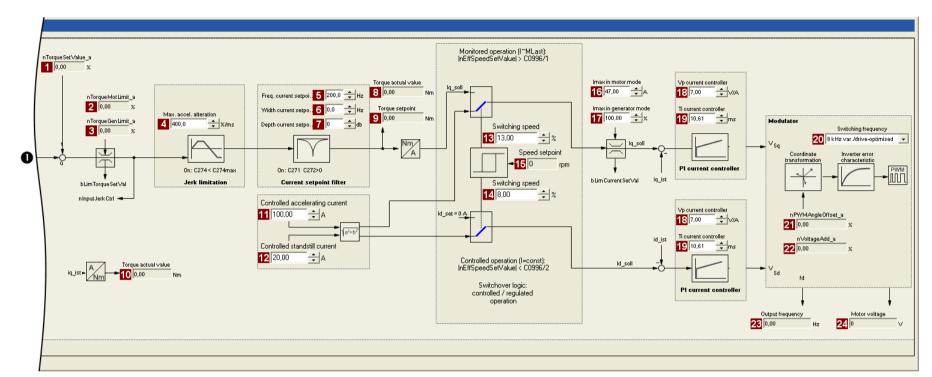
[5-13] Operating ranges of the sensorless control for synchronous motors

Motor control (MCTRL) Sensorless control for synchronous motors (SLPSM)

> The sensorless control for synchronous motors has similar advantages for the closed-loop controlled operating range and the servo control (SC) for synchronous motors. Compared to asynchronous motors, there are the following advantages:

- ► Higher power density of the motor
- ► Higher efficiency
- ▶ Limitation of the maximum torque in motor mode and generator mode in closed-loop operating range
- ► Implementation of simple positioning


Parameterisation dialog/signal flow 5.9.1


Proceed as follows to open the dialog for parameterising the motor control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Select the motor control "3: SLPSM: Sensorless PSM" from the Overview dialog level in the **Motor control** list field:
- 4. Click the Motor control servo SLPSM button to change to the Overview → Motor control vector dialog box.
 - This dialog level only shows a simplified signal flow with the most important parameters.
 - When you click the >>More details button in the left-most position, a signal flow with more details/parameters is displayed.

Parameter	Info	Parameter	Info	Parameter	Info
1 <u>C00830/22</u>	Speed setpoint	12 <u>C00909/1</u>	Max. pos. speed	<u>C00275</u>	Setpoint feedforward control filtering
2 <u>C00833/67</u>	MCTRL: bPosDerivativeOn	13 <u>C00909/2</u>	Max. neg. speed	<u>C00273</u>	Moment of inertia
3 <u>C00834/4</u>	MCTRL: dnDeltaPos_p	14 <u>C00050</u>	Speed setpoint	<u>C00830/29</u>	Limitation of torque in motor mode
4 <u>C00834/5</u>	MCTRL: dnPosSetValue_p	15 <u>C00105</u>	Decel. time - quick stop	<u>C00830/28</u>	Limitation of torque in generator mode
5 <u>C00833/35</u>	MCTRL: bDeltaPosOn	16 <u>C00051</u>	Actual speed value	<u>C00830/24</u>	MCTRL: nSpeedCtrll_a
6 <u>C00254</u>	Kp position controller	17 <u>C00998/2</u>	SLPSM: Filter time actual speed value	<u>C00833/31</u>	MCTRL: bSpeedCtrlIOn
7 <u>C00830/21</u>	MCTRL: nPosCtrlOutLimit_a			<u>C00830/25</u>	MCTRL: nSpeedCtrlPAdapt_a
8 <u>C00833/27</u>	MCTRL: bPosCtrlOn			<u>C00070/3</u>	SLPSM: Vp speed controller
9 <u>C00833/68</u>	MCTRL: bMotorRefOffsetOn			<u>C00071/3</u>	SLPSM: Ti speed controller
10 <u>C00834/6</u>	MCTRL: dnMotorRefOffset_p			27 <u>C00072</u>	SC: Tdn speed controller
11 <u>C00998/1</u>	SLPSM: Filter time rotor position			28 <u>C00833/29</u>	MCTRL: bTorqueInterpolatorOn

8400 TopLine C | Software ManualMotor control (MCTRL)
Sensorless control for synchronous motors (SLPSM)

Parameter	Info		Parameter	Info	Parameter	Info
1 <u>C00830/27</u>	MCTRL: nTorqueSetValue_a	1	C00995/1	SLPSM: Open-loop controlled accelerating current	<u>C00075</u>	Vp current controller
2 <u>C00830/29</u>	Limitation of torque in motor mode	1	<u>C00995/2</u>	SLPSM: Open-loop controlled standstill current	<u>C00076</u>	Ti current controller
3 <u>C00830/28</u>	Limitation of torque in generator mode	1	C00996/1	SLPSM: Closed-loop controlled switching speed	<u>C00018</u>	Switching frequency
4 <u>C00274</u>	SC: Max. change in acceleration	1	4 <u>C00996/2</u>	SLPSM: Open-loop controlled switching speed	<u>C00830/32</u>	MCTRL: nPWMAngleOffset_a
5 <u>C00270</u>	SC: Freq. current setpoint filter	1	<u>C00050</u>	Speed setpoint	<u>C00830/31</u>	MCTRL: nVoltageAdd_a
6 <u>C00271</u>	SC: Current setpoint filter width	1	<u>C00022</u>	Imax in motor mode	<u>C00058</u>	Output frequency
7 <u>C00272</u>	SC: Current setpoint filter depth	1	7 <u>C00023</u>	Imax in generator mode	<u>C00052</u>	Motor voltage
8 <u>C00056/2</u>	Actual torque value					
9 <u>C00056/1</u>	Torque setpoint					
10 <u>C00056/2</u>	Actual torque value					

5.9.2 Types of control

Sensorless control for synchronous motors can only be executed in the "Speed control with torque limitation" (*bTorquemodeOn* = FALSE) mode.

Speed control with torque limitation

A speed setpoint is selected and the drive system is operated in a speed-controlled manner. For adapting the operational performance, the overload in the drive train can be limited:

- ▶ The torque is limited via the torque setpoint.
- ► The torque setpoint is identical to the value at the output of the speed controller, nOutputSpeedCtrl.
- ► To avoid overload in the drive train, the torque in motor mode can be limited via the nTorqueMotLimit_a process input signal, and the torque in generator mode can be limited via the nTorqueGenLimit a process input signal:

Identifier DIS code data type	Information/possible settings
nTorqueMotLimit_a <u>C00830/29</u> INT	 Torque limitation in motor mode Scaling: 16384 = 100 % M_{max} (C00057) Setting range: 0 +199.99 % If keypad control is performed: Parameterisable via C00728/1.
nTorqueGenLimit_a <u>C00830/28</u> INT	Torque limitation in generator mode • Scaling: 16384 ≡ 100 % M _{max} (C00057) • Setting range: -199.99 0 % • If keypad control is performed: Parameterisable via C00728/2.

Stop!

Torque limitation is only active in the closed-loop controlled operation $(|n_{Setpoint}| > n_{C00996})!$

• It must be prevented that the actual speed value is braked into the nonobservable area due to the torque limitation!

Note!

To avoid instabilities during operation, the torque limit values are internally processed as absolute values.

5.9.3 Basic settings

The following "Initial commissioning steps" must be performed to commission the sensorless control for synchronous motors:

Initial commissioning steps

1. Select motor control:

C00006 = "3: SLPSM: Sensorless PSM"

2. Set the motor selection/motor data

 When selecting and parameterising the motor, the motor nameplate data and the equivalent circuit diagram data are relevant. Detailed information can be found in the "Motor selection/Motor data" chapter. (2 121)

Depending on the motor manufacturer, proceed as follows:

Lenze motor:

<u>Selecting a motor from the motor catalogue in the »Engineer«</u>

- or -

1. Set the motor nameplate data

2. Automatic motor data identification

Third party manufacturer's motor:

1. Set the motor nameplate data

2. <u>Automatic motor data identification</u> or set known equivalent circuit diagram manually:

C00084: Motor stator resistance

C00085: Motor stator leakage inductance

- 3. Set speed switching thresholds between open-loop and closed-loop controlled operation:
 - Set transition speed from open-loop to closed-loop operation in <u>C00996/1</u> in [%] with regard to the rated motor speed (<u>C00087</u>).
 - Set transition speed from closed-loop to open-loop operation in <u>C00996/2</u> in [%] with regard to the rated motor speed (<u>C00087</u>).

Tip!

- With voltage-adjusted motors, a speed switching threshold of 10 % is recommended.
- As a rule of thumb, the speed switching threshold should be selected as follows:

$$C00996/1...2 [\%] = \frac{U_{Rated, motor}[V]}{U_{Rated, FI}[V]} \cdot 10$$

- 4. Set open-loop accelerating current in C00995/1 in [%] with regard to the rated motor current (C00088).
 - This value defines the height of the current that is injected during the acceleration process.
 - The accelerating current must be dimensioned so that the required torque in the lower speed range can always be reached (acceleration torque + load torque):

$$C00995/1\,[\%] = \frac{M_{Meax}[Nm]}{M_{Rated}[Nm]} \cdot I_{Rated,\,motor}[A] \cdot 1.3$$

- 5. Set open-loop steady-state current in C00995/2 in [%] with regard to the rated motor current (C00098).
 - This value defines the height of the current for processes without acceleration (e.g. standstill or constant setpoint speed).
- 6. For improving the operating characteristics:

If required, adapt the filter time for reconstructing the rotor position and the actual speed value through the motor model in $\underline{\text{C00998/1}}$ and $\underline{\text{C00998/2}}$.

- We recommend using the Lenze setting:
 Filter time rotor position (<u>C00998/1</u>) = 3 ms
 Filter time actual speed value (<u>C00998/2</u>) = 5 ms
- Deviant from this, the following value range can be used: Filter time rotor position (<u>C00998/1</u>) = 2 ... 5 ms
 Filter time actual speed value (<u>C00998/2</u>) = 3 ... 8 ms
- 7. For protecting the motor from demagnetisation: Set the ultimate current in C00939.

Motor control (MCTRL)

Sensorless control for synchronous motors (SLPSM)

Note!

The Lenze settings of the current controller are predefined for a power-adapted motor. For an optimal drive behaviour of a synchronous motor, we recommend to adapt the controller settings.

Information on the optimisation of the control mode and the adaptation to the real application is provided in the "Optimising the control mode" chapter.

Parameterisable additional functions are described correspondingly in the chapter "Parameterisable additional functions". (240)

Motor control (MCTRL)
Sensorless control for synchronous motors (SLPSM)

5.9.4 Optimising the control mode

The "optimisation steps" given in the table below serve to further optimise the control behaviour of the sensorless control for synchronous motors and adjust it to the concrete application.

▶ Detailed information on the individual steps can be found in the following subchapters.

Generally, the following optimisation steps are recommended:

Optimisation steps

- 1. Optimise current controller. (207)
 - The current controller should always be optimised if a motor of a third-party manufacturer with unknown motor data is used!
- 2. Optimise speed controller. (208)
 - The setting of the speed controller must be adapted depending on the mechanical path.
- 3. Optimise response to setpoint changes and determine mass inertia. (212)
 - For an optimal reference behaviour, the total moment of inertia can be used to make a feedforward control of the speed setpoint.

Note!

Current setpoint filter (band-stop filter) / jerk limitation

The use of the functions is only recommended in exceptional cases.

The functions are described in the "Servo control (SC)" chapter:

- ▶ Setting the current setpoint filter (band-stop filter) (□ 231)
- ▶ Adapting the max. acceleration change (jerk limitation) (☐ 232)

5.9.4.1 Optimise current controller

Note!

An optimisation of the current controller should generally be carried out unless a power-adapted standard motor is used or the motor has been selected from the motor catalogue of the »Engineer«!

An optimisation of the current controller is sensible since the two control parameters gain ($\underline{\text{C00075}}$) and reset time ($\underline{\text{C00076}}$) depend on the required maximum current and the set switching frequency.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00075</u>	Vp current controller	7.00	V/A
C00076	Ti current controller	10.61	ms

► Gain and reset time can be calculated as per the following formulae:

$$\begin{split} V_p &= \frac{L_{ss}[H]}{T_E[s]} \\ V_p &= \text{Current controller gain } \frac{(\text{C00075})}{T_i = \text{Current controller reset time } (\text{C00076})} \\ L_{ss} &= \text{Motor stator leakage inductance } \frac{(\text{C00085})}{R_s = \text{Motor stator resistance } (\text{C00084})} \\ T_E &= \text{Equivalent time constant } (= 500 \, \mu s) \end{split}$$

5.9.4.2 Optimise speed controller

The speed controller is in the form of a PID controller with an additional differential speedsetpoint gain. For optimum behaviour, the PID speed controller has to be optimised and the overall mass inertia of the drive train has to be determined.

▶ In the Lenze setting, the configuration of the speed controller provides robustness and moderate dynamics.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00070/3</u>	SLPSM: Vp speed controller	3.00	
C00071/3	SLPSM: Ti speed controller	100.0	ms
<u>C00072</u>	SC: Tdn speed controller	0.00	ms

Speed controller gain Vp

The gain Vp (C00070/3) of the speed controller is defined in a scaled representation which enables a comparable parameterisation almost independent of the power of the motor or inverter. Here, the speed input difference of the controller is scaled to the rated motor speed whereas the output torque refers to the rated motor torque. A gain of 10 means that a speed difference of 1 % is gained through the P component with 10 % torque.

If the rated data of the motor and the mass inertia of the drive system are known, we recommend the following setting:

$$\begin{aligned} V_{p} &\approx 0.2 ... \, 0.5 \cdot \frac{T_{M}[s]}{0.01[s]} \\ T_{M}[s] &= \frac{2 \cdot \pi \cdot n_{N}[rpm]}{M_{N}[Nm] \cdot 60} \cdot J_{Drive, \, total}[kgm^{2}] \\ M_{N}[Nm] &= \frac{P_{N}[W] \cdot 60}{2 \cdot \pi \cdot n_{N}[rpm]} \end{aligned}$$

 V_p = Gain of the speed controller (C00070/3)

 T_M = Time constant for the acceleration of the motor

M_N = Rated motor torque

n_N = Rated motor speed

J_{drive, total} = Total moment of inertia of the drive

[5-14] Recommendation for the setting of the gain of the speed controller

If the mass inertia of the drive is unknown, the optimisation can be achieved as follows:

- 1. Specify speed setpoint.
 - A small speed just above the switching threshold is recommended in the closed-loop controlled operation.
- 2. Increase Vp (C00070/3) until the drive starts to oscillate (observe engine noise).
- 3. Reduce Vp (C00070/3) until the drive runs stable again.
- 4. Reduce Vp (C00070/3) to approx. half the value.
- 5. Afterwards check results of the optimisation in the entire speed range (one-time passing through of the speed range).

Values recommended by Lenze for the setting of the (proportional) gain:

- For drive systems without feedback: Vp = 2 ... 8
- For drive systems with a good disturbance behaviour: Vp > 6

Speed controller reset time Ti

Apart from setting the P component, C00071/3 provides the possibility to take influence on the I component of the PI controller.

If the mass inertia of the drive is unknown, the optimisation can be achieved as follows:

- 1. Specify speed setpoint.
- 2. Reduce Ti (C00071/3) until the drive starts to oscillate (observe engine noise).
- 3. Increase Ti (C00071/3) until the drive runs stable again.
- 4. Increase Ti (C00071/3) to approx. twice the value.

Value range recommended by Lenze for the setting of the reset time:

Ti = 20 ms ... 150 ms

Motor control (MCTRL)
Sensorless control for synchronous motors (SLPSM)

Using the ramp response for setting the speed controller

If the mechanical components cannot be operated at the stability limit, the ramp response can also be used for setting the speed controller.

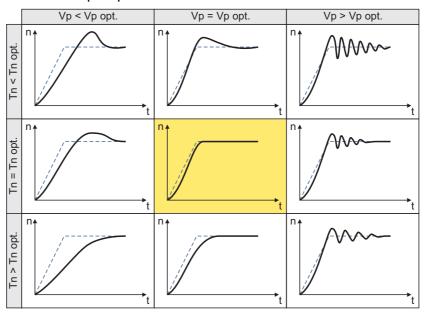
Stop!

If the controller parameters are preset unfavourably, the control can tend to heavy overshoots up to instability!

- Following and speed errors can adopt very high values.
- If the mechanics are sensitive, the corresponding monitoring functions are to be activated.

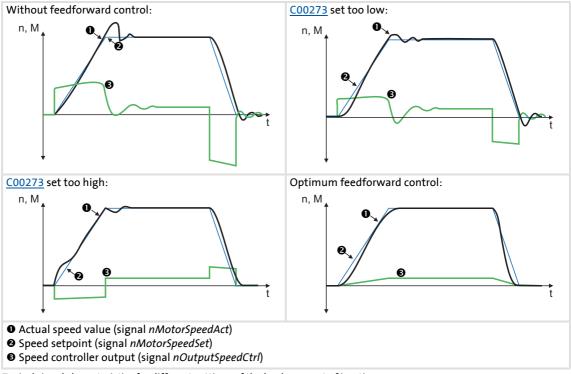
Note!

For an optimal setting, we recommend to determine the mass inertia (optimal response to setpoint changes) first.


▶ Optimise response to setpoint changes and determine mass inertia (☐ 212)

How to optimise the speed controller setting by means of the ramp response:

- 1. Run a typical speed profile and record the ramp response of the speed using the data logger.
 - Motor control variables to be recorded: nSpeedSetValue a (speed setpoint) nMotorSpeedAct_a (actual speed value)
- 2. Evaluate the ramp response:


- Solid line = ramp response (actual speed value)
- Dash line = speed setpoint
- 3. Change gain Vp in C00070/3 and reset time Tn in C00071/3.
- 4. Repeat steps 1 ... 3 until the optimum ramp response is reached.

Sensorless control for synchronous motors (SLPSM)

5.9.4.3 Optimise response to setpoint changes and determine mass inertia

Setting the total moment of inertia under <u>C00273</u> provides the optimum torque feedforward control. Depending on the application, an adjustment of the setting under <u>C00273</u> may be necessary to optimise the response to position/speed setpoint changes by means of the torque feedforward control.

[5-15] Typical signal characteristics for different settings of the load moment of inertia

Motor control (MCTRL)

Sensorless control for synchronous motors (SLPSM)

How to optimise the torque feedforward control:

- 1. Run a typical speed profile and record the inputs and outputs of the speed controller with the data logger.
 - Motor control variables to be recorded: nSpeedSetValue a (speed setpoint) *nMotorSpeedAct a* (actual speed value) nOutputSpeedCtrl a (speed controller output)
- 2. Estimate the moment of inertia and set it in C00273 in relation to the motor end (i.e. with account being taken of the gearbox factors).
- 3. Repeat the data logger recording (see step 1).
 - Now the data logger should show that part of the required torque is generated by the feedforward control and the speed controller output signal (nOutputSpeedCtrl a) is correspondingly smaller. The resulting following error decreases.
- 4. Change the setting in C00273 and repeat the data logger recording until the intended response to setpoint changes is reached.
 - The optimisation could aim at the speed controller being completely relieved (see signal characteristics in Fig. [5-15]).
- 5. Save the parameter set (device command: C00002/11).

5.10 Servo control (SC)

Field-oriented servo control (SC) is based on a decoupled, separate control of the torqueproducing and the field-producing current component. The motor control is based on a field-oriented, cascaded controller structure with feedback function and enables dynamic and stable operation in all of the four quadrants. It can be used for synchronous motors (PSM) and asynchronous motors (ASM).

Stop!

- We recommend to select a power-adapted combination of inverter and motor
- The Lenze setting permits the operation of a power-adapted motor. Optimal operation is only possible if <u>either</u>:
 - the motor is selected via the Lenze motor catalogue
 - the motor nameplate data are entered and motor parameter identification is carried out afterwards
 - or -
 - the nameplate data and equivalent circuit data of the motor are entered manually.
- When you enter the motor nameplate data, take into account the phase connection implemented for the motor (star or delta connection). Only enter the data applying to the selected connection type.

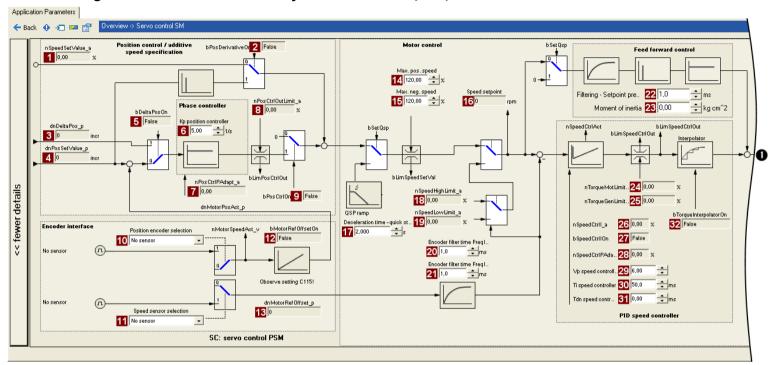
Note!

- The servo control required a speed feedback!
 - See chapter entitled "Encoder/feedback system". (□ 293)
- For closed-loop control of a synchronous motor (PSM), the pole position of the motor must be known!
 - See chapter entitled "Pole position identification (PPI)". (139)
- For closed-loop control of an asynchronous motor (ASM), the maximum current (C00022) should be higher than the magnetising current as otherwise the motor does not generate a torque.

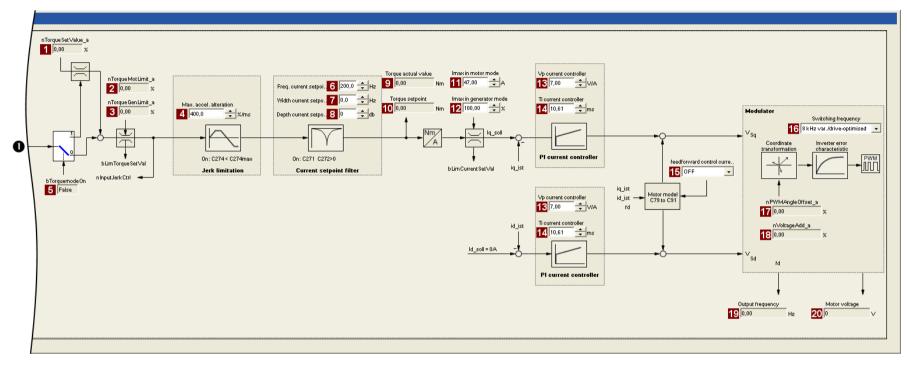
Generally, the servo control offers the same advantages as the sensorless vector control (SLVC), i.e. compared to the V/f characteristic control, the servo control (SC) can be used to achieve

- ▶ A higher maximum torque throughout the entire speed range
- ► A higher speed accuracy
- ► A higher concentricity factor
- ► A higher level of efficiency
- ▶ The implementation of torque-actuated operation with speed limitation
- ▶ The limitation of the maximum torque in motor and generator mode for speedactuated operation

5.10.1 Parameterisation dialog/signal flow

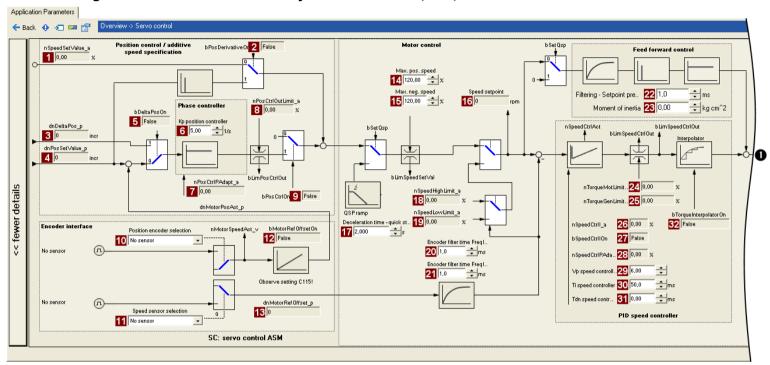

Proceed as follows to open the dialog for parameterising the motor control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Select the motor control from the Overview dialog level in the Motor control (C00006) list field:
 - "1: SC: Servo control PSM" for synchronous motor
 - "2: SC: Servo control ASM" for asynchronous motor
- 4. Click the **Motor control servo** button to change to the *Overview* → *Motor control* vector dialog box.
 - This dialog level only shows a simplified signal flow with the most important parameters.
 - When you click the >>More details button in the left-most position, a signal flow with more details/parameters is displayed, as shown in the following subchapter.

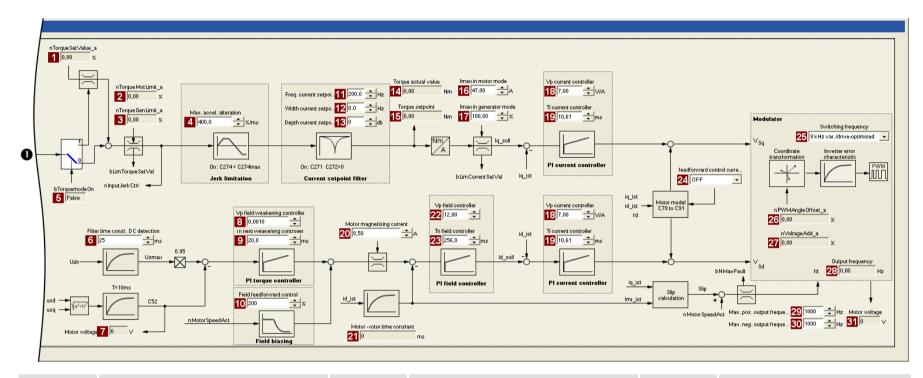


Servo control (SC)

Signal flow for servo control for synchronous motor (PSM):


Parameter	Info	Parameter	Info		Parameter	Info
1 <u>C00830/22</u>	Speed setpoint	14 <u>C00909/1</u>	Max. pos. speed	2	2 <u>C00275</u>	Setpoint feedforward control filtering
2 <u>C00833/67</u>	MCTRL: bPosDerivativeOn	15 <u>C00909/2</u>	Max. neg. speed	2	3 <u>C00273</u>	Moment of inertia
3 <u>C00834/4</u>	MCTRL: dnDeltaPos_p	16 <u>C00050</u>	Speed setpoint	2	4 <u>C00830/29</u>	Limitation of torque in motor mode
4 <u>C00834/5</u>	MCTRL: dnPosSetValue_p	17 <u>C00105</u>	Decel. time - quick stop	2	<u>C00830/28</u>	Limitation of torque in generator mode
5 <u>C00833/35</u>	MCTRL: bDeltaPosOn	18 <u>C00830/88</u>	MCTRL: nSpeedHighLimit_a	2	6 <u>C00830/24</u>	MCTRL: nSpeedCtrll_a
6 <u>C00254</u>	Kp position controller	19 <u>C00830/23</u>	MCTRL: nSpeedLowLimit_a	2	7 <u>C00833/31</u>	MCTRL: bSpeedCtrlIOn
7 <u>C00830/20</u>	MCTRL: nPosCtrlPAdapt_a	20 <u>C00497/1</u>	Encoder filter time FreqIn12	2	8 <u>C00830/25</u>	MCTRL: nSpeedCtrlPAdapt_a
8 <u>C00830/21</u>	MCTRL: nPosCtrlOutLimit_a	21 <u>C00497/2</u>	Encoder filter time FreqIn67	2	9 <u>C00070/2</u>	SC: Vp speed controller
9 <u>C00833/27</u>	MCTRL: bPosCtrlOn			3	0 <u>C00071/2</u>	SC: Ti speed controller
10 <u>C00490</u>	Position encoder selection			3	1 <u>C00072</u>	SC: Tdn speed controller
11 <u>C00495</u>	Speed sensor selection			3	2 <u>C00833/29</u>	MCTRL: bTorqueInterpolatorOn
12 <u>C00833/68</u>	MCTRL: bMotorRefOffsetOn					
13 <u>C00834/6</u>	MCTRL: dnMotorRefOffset_p					

Parameter	Info	Parameter	Info		Parameter	Info
1 <u>C00830/27</u>	MCTRL: nTorqueSetValue_a	6 <u>C00270</u>	SC: Freq. current setpoint filter	15	C00079/1	SC: Current controller - feedforward control
2 <u>C00830/29</u>	Limitation of torque in motor mode	7 <u>C00271</u>	SC: Current setpoint filter width	16	C00018	Switching frequency
3 <u>C00830/28</u>	Limitation of torque in generator mode	8 <u>C00272</u>	SC: Current setpoint filter depth	17	C00830/32	MCTRL: nPWMAngleOffset_a
4 <u>C00274</u>	SC: Max. change in acceleration	9 <u>C00056/2</u>	Actual torque value	18	C00830/31	MCTRL: nVoltageAdd_a
5 <u>C00833/30</u>	MCTRL: bTorqueModeOn	10 <u>C00056/1</u>	Torque setpoint	19	<u>C00058</u>	Output frequency
6 <u>C00280</u>	SC: Filter time const. DC detection	11 <u>C00022</u>	Imax in motor mode	20	<u>C00052</u>	Motor voltage
7 <u>C00052</u>	Motor voltage	12 <u>C00023</u>	Imax in generator mode			
8 <u>C00577</u>	SC: Vp field weakening controller	13 <u>C00075</u>	Vp current controller			
9 <u>C00578</u>	SC: Tn field weakening controller	14 <u>C00076</u>	Ti current controller			
10 <u>C00576</u>	SC: Field feedforward control					


Servo control (SC)

Signal flow for servo control for asynchronous motor (ASM):

Parameter	Info	Parameter	Info		Parameter	Info
1 <u>C00830/22</u>	Speed setpoint	14 <u>C00909/1</u>	Max. pos. speed	22	<u>C00275</u>	Setpoint feedforward control filtering
2 <u>C00833/67</u>	MCTRL: bPosDerivativeOn	15 <u>C00909/2</u>	Max. neg. speed	23	<u>C00273</u>	Moment of inertia
3 <u>C00834/4</u>	MCTRL: dnDeltaPos_p	16 <u>C00050</u>	Speed setpoint	24	C00830/29	Limitation of torque in motor mode
4 <u>C00834/5</u>	MCTRL: dnPosSetValue_p	17 <u>C00105</u>	Decel. time - quick stop	25	<u>C00830/28</u>	Limitation of torque in generator mode
5 <u>C00833/35</u>	MCTRL: bDeltaPosOn	18 <u>C00830/88</u>	MCTRL: nSpeedHighLimit_a	26	C00830/24	MCTRL: nSpeedCtrII_a
6 <u>C00254</u>	Kp position controller	19 <u>C00830/23</u>	MCTRL: nSpeedLowLimit_a	27	C00833/31	MCTRL: bSpeedCtrlIOn
7 <u>C00830/20</u>	MCTRL: nPosCtrlPAdapt_a	20 <u>C00497/1</u>	Encoder filter time FreqIn12	28	<u>C00830/25</u>	MCTRL: nSpeedCtrlPAdapt_a
8 <u>C00830/21</u>	MCTRL: nPosCtrlOutLimit_a	21 <u>C00497/2</u>	Encoder filter time FreqIn67	29	<u>C00070/2</u>	SC: Vp speed controller
9 <u>C00833/27</u>	MCTRL: bPosCtrlOn			30	C00071/2	SC: Ti speed controller
10 <u>C00490</u>	Position encoder selection			31	<u>C00072</u>	SC: Tdn speed controller
11 <u>C00495</u>	Speed sensor selection			32	C00833/29	MCTRL: bTorqueInterpolatorOn
12 <u>C00833/68</u>	MCTRL: bMotorRefOffsetOn					
<u>13</u> <u>C00834/6</u>	MCTRL: dnMotorRefOffset_p					

Servo control (SC)

Parameter	Info	Parameter	Info	Pai	rameter	Info
1 <u>C00830/27</u>	MCTRL: nTorqueSetValue_a	11 <u>C00270</u>	SC: Freq. current setpoint filter	24 🤇	<u> 200079/1</u>	SC: Current controller - feedforward control
2 <u>C00830/29</u>	Limitation of torque in motor mode	12 <u>C00271</u>	SC: Current setpoint filter width	25 (C00018	Switching frequency
3 <u>C00830/28</u>	Limitation of torque in generator mode	13 <u>C00272</u>	SC: Current setpoint filter depth	26 <u>C</u>	C00830/32	MCTRL: nPWMAngleOffset_a
4 <u>C00274</u>	SC: Max. change in acceleration	14 <u>C00056/2</u>	Actual torque value	27 <u>C</u>	200830/31	MCTRL: nVoltageAdd_a
5 <u>C00833/30</u>	MCTRL: bTorqueModeOn	15 <u>C00056/1</u>	Torque setpoint	28 (<u> </u>	Output frequency
6 <u>C00280</u>	SC: Filter time const. DC detection	16 <u>C00022</u>	Imax in motor mode	29	200910/1	Max. pos. output frequency
7 <u>C00052</u>	Motor voltage	17 <u>C00023</u>	Imax in generator mode	30 <u>C</u>	200910/2	Max. neg. output frequency
8 <u>C00577</u>	SC: Vp field weakening controller	18 <u>C00075</u>	Vp current controller	31 (200052	Motor voltage
9 <u>C00578</u>	SC: Tn field weakening controller	19 <u>C00076</u>	Ti current controller			
10 <u>C00576</u>	SC: Field feedforward control	20 <u>C00095</u>	Motor magnetising current			
		21 <u>C00083</u>	Motor rotor time constant			
		22 <u>C00077</u>	SC: Vp field controller			
		23 <u>C00078</u>	SC: Tn field controller			

Motor control (MCTRL) Servo control (SC)

5.10.2 Types of control

The servo control can be operated in two different modes:

- ► <u>Speed control with torque limitation</u> (bTorquemodeOn = FALSE)
- ► Torque control with speed limitation (bTorquemodeOn = TRUE)

A position-controlled application requires a speed control with torque limitation (bTorquemodeOn = FALSE).

5.10.2.1 Speed control with torque limitation

A speed setpoint is selected and the drive system is operated in a speed-controlled manner.

The operational performance can be adapted in the following ways:

- ► Overload limitation in the drive train
 - The torque is limited via the torque setpoint.
 - The torque setpoint is identical to the value at the output of the speed controller, nOutputSpeedCtrl.
 - To avoid overload in the drive train, the torque in motor mode can be limited via the nTorqueMotLimit_a process input signal, and the torque in generator mode can be limited via the nTorqueGenLimit a process input signal:

Identifier DIS code data type	Information/possible settings
nTorqueMotLimit_a <u>C00830/29</u> INT	Torque limitation in motor mode • Scaling: 16384 ≡ 100 % M _{max} (C00057) • Setting range: 0 +199.99 % • If keypad control is performed: Parameterisable via C00728/1.
nTorqueGenLimit_a <u>C00830/28</u> INT	Torque limitation in generator mode • Scaling: 16384 ≡ 100 % M _{max} (C00057) • Setting range: -199.99 0 % • If keypad control is performed: Parameterisable via C00728/2.

Note!

To avoid instabilities during operation, the torque limit values are internally processed as absolute values.

► Motor current limitation

- A cross current setpoint is calculated from the torque setpoint which is limited depending on the magnetising current, the max. current in motor mode (<u>C00022</u>), and the max. current in generator mode (<u>C00023</u>).
- Here, the total current injected into the motor does not exceed the max. currents in motor and generator mode.

5.10.2.2 Torque control with speed limitation

For torque-controlled operation, a torque setpoint is defined in the drive system.

- ► The torque setpoint is calculated directly from *nTorqueSetValue_a*.
- ▶ The speed is defined by the process.
- ▶ Due to its limitation, the speed-controlled drive can only rotate within a speed range whose positive speed is limited by the value of nSpeedHighLimit_a and whose negative speed is limited by the value of nSpeedLowLimit_a.

Identifier DIS code data type	Information/possible settings
nTorqueSetValue_a <u>C00830/27</u> INT	Torque setpoint / additive torque • Scaling: 16384 ≡ 100 % M _{max} (C00057)
nSpeedHighLimit_a <u>C00830/88</u> INT	Upper speed limit for speed limitation (only for torque-controlled operation) • Scaling: 16384 ≡ 100 % rated speed (C00011)
nSpeedLowLimit_a <u>C00830/23</u> INT	Lower speed limit for speed limitation (only for torque-controlled operation) • Scaling: 16384 ≡ 100 % rated speed (C00011)

Motor control (MCTRL) Servo control (SC)

5.10.3 **Basic settings**

The following "Initial commissioning steps" must be performed to commission the servo control:

Initial commissioning steps

- 1. Determine the motor control:
 - For the closed-loop control of a synchronous motor (PSM): C00006 = "1: SC: Servo control PSM"
 - For the closed-loop control of an asynchronous motor (ASM): C00006 = "2: SC: Servo control ASM"
- 2. Set the motor selection/motor data
 - · When selecting and parameterising the motor, the motor nameplate data and the equivalent circuit diagram data are relevant. Detailed information can be found in the "Motor selection/Motor data" chapter. (1121)

Depending on the motor manufacturer, proceed as follows:

Selecting a motor from the motor catalogue in the »Engineer«

- or -

- 1. Set the motor nameplate data
- 2. Automatic motor data identification

Third party manufacturer's motor:

- 1. Set the motor nameplate data
- 2. Automatic motor data identification or set known equivalent circuit diagram data manually:

C00082: Motor rotor resistance*

C00084: Motor stator resistance

C00085: Motor stator leakage inductance C00092: Motor magnetising inductance*

C00095: Motor magnetising current*

* Setting only required for asynchronous motors.

3. Define the type of control:

bTorquemodeOn = FALSE: Speed control with torque limitation bTorquemodeOn = TRUE: Torque control with speed limitation

- 4. Parameterise the encoder/feedback system. ▶ Encoder/feedback system (□ 293)
- 5. Only with servo control for synchronous motors (PSM): Detect pole position of the motor. ▶ Pole position identification (PPI) (□ 139)

Note!

The Lenze settings of the controller are predefined for a power-adapted standard asynchronous motor. For an optimal drive behaviour, we recommend to adapt the controller settings.

Information on the optimisation of the control mode and the adaptation to the real application is provided in the chapter "Optimising the control mode". (223)

Parameterisable additional functions are described correspondingly in the chapter "Parameterisable additional functions". (240)

Optimising the control mode 5.10.4

The "optimisation steps" given in the table below serve to further optimise the control behaviour of the servo control and adjust it to the concrete application.

▶ Detailed information on the individual steps can be found in the following subchapters.

Generally, the following optimisation steps are recommended:

Optimisation steps

- 1. Optimise current controller. (224)
 - · The current controller should always be optimised if a motor of a third-party manufacturer with unknown motor data is used!
- 2. Optimise speed controller. (225)
 - The setting of the speed controller must be adapted depending on the mechanical path.
- 3. Optimise response to setpoint changes and determine mass inertia. (229)
 - · For an optimal reference behaviour, the total moment of inertia can be used to make a feedforward control of the speed setpoint.

Special cases may require further optimisation steps:

Optimisation steps

- 1. Setting the current setpoint filter (band-stop filter). (231)
 - In order to suppress or damp (mechanical) resonant frequencies, a current setpoint filter is integrated in the speed control loop which is switched off in the default setting but can be parameterised accordingly, if required.

Then readjust the speed controller: Optimise speed controller. (225)

- 2. Adapting the max. acceleration change (jerk limitation). (232)
- 3. Only with servo control for asynchronous motors (ASM): Optimising the behaviour of the asynchronous motor in the field weakening range. (235) (For synchronous motors, this function is in preparation)

In order to traverse a typical speed profile for optimisation of motor control, you can also use the basic function "Manual jog" with appropriately adapted manual jog parameters if this basic function is supported by the selected technology application. (22 533)

5.10.4.1 Optimise current controller

Note!

An optimisation of the current controller should generally be carried out unless a power-adapted standard asynchronous motor is used or the motor has been selected from the motor catalogue of the »Engineer«!

An optimisation of the current controller is sensible since the two control parameters gain ($\underline{\text{C00075}}$) and reset time ($\underline{\text{C00076}}$) depend on the required maximum current and the set switching frequency.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00075</u>	Vp current controller	7.00	V/A
<u>C00076</u>	Ti current controller	10.61	ms

► Gain and reset time can be calculated as per the following formulae:

$$\begin{split} V_p &= \frac{L_{ss}[H]}{T_E[s]} \\ T_i &= \frac{L_{ss}[H]}{R_s[\Omega]} \end{split} \qquad \begin{aligned} V_p &= \text{Current controller gain } \frac{(\text{C00075})}{\text{C00076}} \\ L_{ss} &= \text{Motor stator leakage inductance } \frac{(\text{C00085})}{\text{C00084}} \\ T_E &= \text{Equivalent time constant } (= 500 \, \mu \text{s}) \end{aligned}$$

5.10.4.2 Optimise speed controller

The speed controller is in the form of a PID controller with an additional differential speedsetpoint gain. For optimum behaviour, the PID speed controller has to be optimised and the overall mass inertia of the drive train has to be determined.

▶ In the Lenze setting, the configuration of the speed controller provides robustness and moderate dynamics.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00070/2</u>	SC: Vp speed controller	6.00	
C00071/2	SC: Ti speed controller	50.0	ms
C00072	SC: Tdn speed controller	0.00	ms

Speed controller gain Vp

The gain Vp (COOOTO/2) of the speed controller is defined in a scaled representation which enables a comparable parameterisation almost independent of the power of the motor or inverter. Here, the speed input difference of the controller is scaled to the rated motor speed whereas the output torque refers to the rated motor torque. A gain of 10 means that a speed difference of 1 % is gained through the P component with 10 % torque.

If the rated data of the motor and the mass inertia of the drive system are known, we recommend the following setting:

$$V_{p} \approx 1.5 \dots 3 \cdot \frac{T_{M}[s]}{0.01[s]}$$

$$T_{M}[s] = \frac{2 \cdot \pi \cdot n_{N}[rpm]}{M_{N}[Nm] \cdot 60} \cdot J_{Drive, total}[kgm^{2}]$$

$$M_{N}[Nm] = \frac{P_{N}[W] \cdot 60}{2 \cdot \pi \cdot n_{N}[rpm]}$$

 V_p = Gain of the speed controller (C00070/1)

 T_M = Time constant for the acceleration of the motor

 M_N = Rated motor torque

n_N = Rated motor speed

J_{drive, total} = Total moment of inertia of the drive

[5-16] Recommendation for the setting of the gain of the speed controller

Motor control (MCTRL) Servo control (SC)

If the mass inertia of the drive is unknown, the optimisation can be achieved as follows:

- 1. Specify speed setpoint.
- 2. Increase $Vp\left(\frac{C00070}{2}\right)$ until the drive is unstable (observe motor noise).
- 3. Reduce Vp (C00070/2) until the drive runs stable again.
- 4. Reduce Vp (C00070/2) to approx. half the value.

Values recommended by Lenze for the setting of the (proportional) gain:

- For drive systems without feedback: Vp = 6 ... 20
- For drive systems with a good disturbance behaviour: Vp > 12

Speed controller reset time Ti

Apart from setting the P component, $\underline{\text{C00071/2}}$ provides the possibility to take influence on the I component of the PI controller.

If the mass inertia of the drive is unknown, the optimisation can be achieved as follows:

- 1. Specify speed setpoint.
- 2. Reduce Ti (C00071/2) until the drive is unstable (observe motor noise).
- 3. Increase Ti (C00071/2) until the drive runs stable again.
- 4. Increase Ti (C00071/2) to approx. twice the value.

Value range recommended by Lenze for the setting of the reset time:

Ti = 20 ms ... 150 ms

Differential time constant Tdn (rate time)

The differential time constant Tdn of the speed controller can be set in C00072.

If the mass inertia of the drive is unknown, the optimisation can be achieved as follows:

► Increase Tdn (C00072) during operation until optimal control mode is reached.

Using the ramp response for setting the speed controller

If the mechanical components cannot be operated at the stability limit, the ramp response can also be used for setting the speed controller.

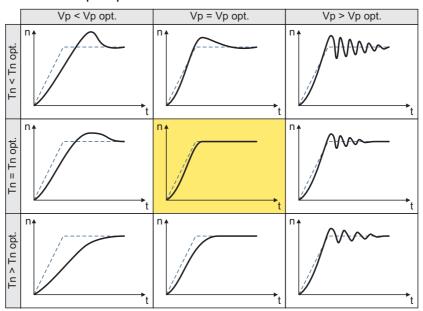
Stop!

If the controller parameters are preset unfavourably, the control can tend to heavy overshoots up to instability!

- Following and speed errors can adopt very high values.
- If the mechanics are sensitive, the corresponding monitoring functions are to be activated.

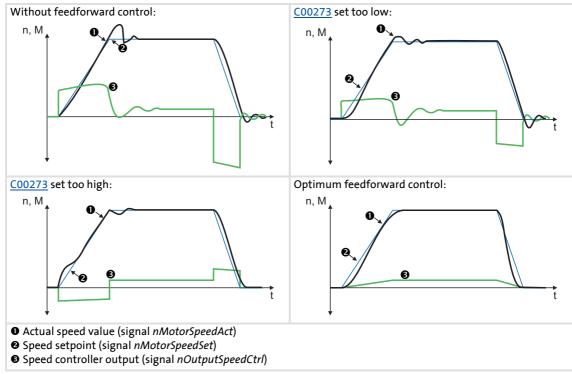
Note!

For an optimal setting, we recommend to determine the mass inertia (optimal response to setpoint changes) first.


▶ Optimise response to setpoint changes and determine mass inertia (△ 229)

How to optimise the speed controller setting by means of the ramp response:

- 1. Run a typical speed profile and record the ramp response of the speed using the data logger.
 - Motor control variables to be recorded: nSpeedSetValue_a (speed setpoint) nMotorSpeedAct_a (actual speed value)
- 2. Evaluate the ramp response:



- Solid line = ramp response (actual speed value)
- Dash line = speed setpoint
- 3. Change gain Vp in C00070/2 and reset time Tn in C00071/2.
- 4. Repeat steps 1 ... 3 until the optimum ramp response is reached.

5.10.4.3 Optimise response to setpoint changes and determine mass inertia

Setting the total moment of inertia under <u>C00273</u> provides the optimum torque feedforward control. Depending on the application, an adjustment of the setting under <u>C00273</u> may be necessary to optimise the response to position/speed setpoint changes by means of the torque feedforward control.

[5-17] Typical signal characteristics for different settings of the load moment of inertia

8400 TopLine C | Software Manual

Motor control (MCTRL) Servo control (SC)

How to optimise the torque feedforward control:

- 1. Run a typical speed profile and record the inputs and outputs of the speed controller with the data logger.
 - Motor control variables to be recorded: nSpeedSetValue a (speed setpoint) nMotorSpeedAct a (actual speed value) nOutputSpeedCtrl a (speed controller output)
- 2. Estimate the moment of inertia and set it in C00273 in relation to the motor end (i.e. with account being taken of the gearbox factors).
- 3. Repeat the data logger recording (see step 1).
 - Now the data logger should show that part of the required torque is generated by the feedforward control and the speed controller output signal (nOutputSpeedCtrl a) is correspondingly smaller. The resulting following error decreases.
- 4. Change the setting in C00273 and repeat the data logger recording until the intended response to setpoint changes is reached.
 - The optimisation could aim at the speed controller being completely relieved (see signal characteristics in Fig. [5-17]).
- 5. Save the parameter set (device command: C00002/11).

5.10.4.4 Setting the current setpoint filter (band-stop filter)

Due to the high dynamic performance/limit frequency of the closed current control loop, mechanical natural frequencies can be activated which may lead to an unstable speed control loop.

To mask out or at least damp these resonant frequencies, a so-called current setpoint filter is integrated into the speed control loop of the

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00270</u>	SC: Freq. current setpoint filter	200.0	Hz
<u>C00271</u>	SC: Current setpoint filter width	0.0	Hz
<u>C00272</u>	SC: Current setpoint filter depth	0	dB

▶ In the default setting of 0 db of the filter depth (C00272), the current setpoint filter is switched off.

Setting of the current setpoint filter

Since the frequency response of the speed controlled system is only rarely known to such an extent that the current setpoint filter can be adjusted to the controlled system in the run-up, the following example describes how to set the current setpoint filter.

How to set the current setpoint filter:

- 1. Optimise current controller (1224).
- 2. Optimise speed controller (225)
- 3. Measure the oscillation frequency (observe current or speed).
- 4. Set the measured oscillation frequency in C00270 as filter frequency.
- 5. Set "25%" of the filter frequency in C00271 as filter width.
 - Example: Filter frequency = 200 Hz → filter width = 50 Hz.
- 6. Set "40 dB" in C00272 as filter depth.
 - If the filter depth is set to "0 dB" (default setting), the filter is not active.

Note!

Readjust the speed controller after setting the current setpoint filter.

▶ Optimise speed controller. (☐ 225)

Motor control (MCTRL) Servo control (SC)

5.10.4.5 Adapting the max. acceleration change (jerk limitation)

Via the max. acceleration change that can be set in <u>C00274</u>, the change of the setpoint torque can be limited for jerk limitation. Hence, sudden torque step changes can be avoided. The entire speed characteristic is smoothed.

Parameter	Info	Lenze setting	
		Value	Unit
C00274	SC: Max. change in acceleration	400.0	%/ms

In the default setting of 400 %/ms of the max. acceleration change (C00274), jerk limitation is switched off.

The setting defines the permissible maximum torque change per ms (based on the rated motor torque).

Note!

Only activate this jerk limitation for speed-controlled applications!

If table positioning or a free function block interconnection with a positioning operating mode is selected, jerk limitation must be switched off.

• Here, jerk limitation is provided for in the travel profile generator. Setting this jerk limitation in the motor control would lead to following errors!

5.10.4.6 Slip calculation from motor equivalent circuit diagram data

This function extension is available from version 02.00.00!

In order to achieve a better speed stability and torque accuracy, the slip calculation can be either derived from the motor nameplate data (e.g. rated motor speed) or the motor equivalent circuit diagram data (stator resistance, rotor resistance etc.).

The data to be used for servo control (for asynchronous motors) is selected via bit 1 in C02879/1:

Setting		Info
Bit 0	SLVC	In case of sensorless vector control: • "0" ≡ Slip calculation from motor nameplate data (Lenze setting) • "1" ≡ Slip calculation from motor equivalent circuit diagram data
Bit 1	SC_ASM	In case of servo control for asynchronous motors: • "0" ≡ Slip calculation from motor nameplate data • "1" ≡ Slip calculation from motor equivalent circuit diagram data (Lenze setting)
Bit 2 7	Reserved	

Note!

In order that the slip can be calculated from the motor equivalent circuit diagram data, the equivalent circuit data (stator resistance, rotor resistance etc.) must be known as exactly as possible.

- Selecting a motor in the »Engineer« motor catalogue loads the exact motor equivalent circuit diagram data.
- When the motor nameplate data is entered manually and the motor equivalent circuit diagram data is then detected via the motor parameter identification, the "extended identification" (C02867/1 = 2) must be used.
 - ▶ Automatic motor data identification (☐ 126)

Motor control (MCTRL) Servo control (SC)

5.10.4.7 Temperature compensation within the motor control

This function extension is available from version 02.00.00!

A temperature compensation over the detected motor temperature (display in <u>C00063/1</u>) serves to compensate inaccuracies in the output torque within the motor control in case of temperature changes of the asynchronous or synchronous motor.

Note!

In the Lenze setting, the temperature compensation within the motor control is activated. The temperature compensation, however, is only active with speed encoder selection "3: Multi encoder" or "4: Resolver" in $\underline{\text{C00495}}$ as well as error-free KTY temperature detection (display in $\underline{\text{C00063/1}} \neq 255\,^{\circ}\text{C}$).

The temperature compensation is switched on/off bit-coded in C02878/1:

Setting		Info
Bit 0	SC_PSM	 KTY motor temperature compensation with servo control for synchronous motors: "0" ≡ Off "1" ≡ On (Lenze setting)
Bit 1	SC_ASM	KTY motor temperature compensation with servo control for asynchronous motors: • "0" ≡ Off • "1" ≡ On (Lenze setting)
Bit 2 7	Reserved	

General information on temperature behaviour of the asynchronous and synchronous motor

In case of the **asynchronous motor**, the nameplate data always refer to rated data, i.e. on the rated load and thus on the rated temperature of the motor. For the 8400 device series, the equivalent circuit data for stator resistance ($\underline{\text{C00084}}$) and rotor resistance ($\underline{\text{C00082}}$) are always given for a cold asynchronous motor (20 °C) and converted to star connection. In case of a cold motor (20 °C), the real slip frequency thus corresponds to the calculated setpoint slip. In case of a warm motor, the real slip frequency is higher. This becomes especially apparent at high torques as an inaccuracy of the torque over the motor temperature.

In case of the **synchronous motor**. the field strength generated by the permanent magnet in the rotor is temperature-dependent. With a rated motor temperature, a rated field strength is generated. A negative temperature coefficient of -0.11 %/°C means that with a cold motor at the same setpoint torque a higher output torque is output than with a warm motor.

These errors must be compensated by means of the temperature compensation for asynchronous and synchronous motors in order to have a constant output torque over the motor temperature independent of the motor temperature.

5.10.4.8 Optimising the behaviour of the asynchronous motor in the field weakening range

The behaviour of the asynchronous motor in the field weakening range is influenced by:

- ► the field controller
- ► the field weakening controller
- ▶ the field feedforward control unit
- ▶ adaptive adaptation of the P component of the field and speed controllers
- ► An additional limitation of the I component of the controller when the voltage limit is reached

Note!

In general, these settings are pre-optimised so that further optimisation is not required.

Optimisation for special motors (e.g. mid-frequency motors) or for standard asynchronous motors whose power is not adapted can be carried out according to the algorithms shown in the following sections.

Field controller

The field controller is designed as a PI controller.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00077</u>	SC: Vp field controller	12.80	
C00078	SC: Tn field controller	256.0	ms

The gain Vp (COOO77) of the field controller can be calculated using the motor rotor time constant and the equivalent time constant of the current-controlled motor:

$$V_{PFeld} = \frac{T_{R}[s]}{a^2 \cdot T_{Replacement}[ms]} \begin{subarray}{l} V_{PField} : Gain of the field controller ($\underline{C00077}$) \\ T_{R} : Motor rotor time constant ($\underline{C00083}$) \\ T_{Equivalent} : Motor equivalent time constant (approx. 2.5 ms) \\ a : Measure for damping (z. B. a = 2) \\ \end{subarray}$$

If the rated data of the motor and the mass inertia of the drive system are known, we recommend the following setting:

$$V_{PFeld} \approx \frac{T_{R}[s]}{4 \cdot T_{Replacement}[ms]} = \frac{T_{R}[s]}{0.01[s]}$$

$$V_{PField} \approx \frac{T_{R}[s]}{4 \cdot T_{Replacement}[ms]} = \frac{T_{R}[s]}{0.01[s]}$$

$$T_{R} \approx \frac{T_{R}[s]}{1 \cdot T_{R}[s]}$$

[5-18] Recommendation for the setting of the gain and the time constant of the field controller

The motor rotor time constant depends on the motor rotor resistance, the magnetising inductance, and the leakage inductance.

- For an optimal calculation, we recommend to select the motor from the motor catalogue of the »Engineer« first if a Lenze motor is used. ▶ <u>Selecting a motor</u> from the motor catalogue in the »Engineer« (□ 124)
- If a third party manufacturer's motor is used, motor parameter identification must be carried out previously. ➤ <u>Automatic motor data identification</u> (□ 126)

Field weakening controller

The field weakening controller serves to adapt the magnetising current when the maximum control voltage has been reached so that in steady operation approximately 95 % of the maximally possible control voltage is output. Thus, there is a voltage reserve for dynamic load or speed variations.

Parameter	Info	Lenze sett	ing
		Value	Unit
<u>C00577</u>	SC: Vp field weakening controller	0.0010	
C00578	SC: Tn field weakening controller	20.0	ms

$$\begin{split} V_{P,\,FS} &\approx \frac{2}{V_{Path,\,FS}} \\ V_{Path,\,FS} &= \frac{1-\sigma}{\sigma} \cdot \frac{p \cdot 2 \cdot \pi \cdot n_N}{60} \cdot \sigma \cdot \left(L_h + L_{ss}\right)^2 \\ \sigma &= 1 - \frac{\left(L_h\right)^2}{\left(L_h + L_{ss}\right)^2} \end{split}$$

 $V_{P,FW}$: Gain of the field weakening controller (C00577)

L_m: Mutual motor inductance (C00092)

L_{sl}: Motor stator leakage inductance (C00085)

p = number of pole pairs

[5-19] Recommendation for setting the gain of the field controller (for Tn ≈ 10 ... 30 ms)

If the field weakening controller is parameterised unfavourably, vibrations occur in the magnetising current, in the direct-axis current and in the cross current, in the torque and in the speed in the field weakening range. This is also audible by an increased motor noise (humming). The vibrations can be dampened by a decrease of the proportional gain of the field weakening controller.

Procedure:

- Operate the drive with max. required speed in the field weakening operation.
- Reduce Vp (C00577) of the field weakening controller until the vibration response cannot be detected anymore.

Motor control (MCTRL) Servo control (SC)

Field feedforward control

To have enough voltage reserve available for dynamic acceleration processes, a timely weakening of the field is required. The field weakening is controlled by the field feedforward control.

Parameter	Info	Lenze sett	ing
		Value	Unit
C00576	SC: Field feedforward control	200.0	%

The field feedforward control reciprocally reduces the magnetising current from the V/f base frequency (C00015) on. The starting point of the reduction can be shifted to low frequencies via the field feedforward control (C00576). Thus, more voltage reserve is available for acceleration processes.

The field feedforward control (C00576) must be specified in %, based on the rated slip of the machine.

Generally, the Lenze setting is sufficient for most applications.

- We recommend to increase the field feedforward control for applications with very dynamic acceleration processes in the field weakening range.
- Reduce the field feedforward control for very slow applications if necessary.

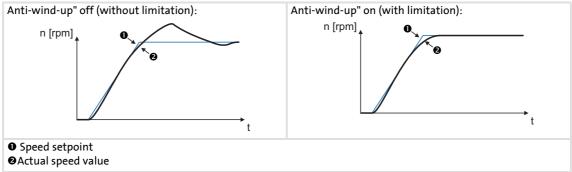
Adaptive adaptation of the P component of the field and speed controllers

In the field weakening range, the properties of the drive change due to the reduction of the magnetisation and the voltage limitation of the inverter. To be able to continue to provide a stable, well dampened drive behaviour, the servo control has an automatic adaptation of the P component of the field weakening controller and speed controller.

In the Lenze setting, this function is activated. Depending on the application, this function can be deactivated via C00079/2.

Parameter	Info	Lenze setting
<u>C00079/2</u>	SC: Adaptive field weakening controller	1: On

Lenze recommends to always activate the adaptation of the field weakening and speed controller.


Additional limitation of the I component of the speed controller when the voltage limit is reached (anti-wind-up)

In dynamic acceleration processes in the field weakening range, the acceleration torque is limited due to the limitation of the maximum output voltage of the inverter. Acceleration ramps that are set too high (C00012) may lead to undesired charging of the integrator of the speed controller, which result in very strong overshoots of the actual speed value when the setpoint is reached.

The so-called anti-wind-up function serves to intelligently limit the integrator part in dynamic acceleration processes in the field weakening range so that an overshoot of the actual speed value can be prevented when the setpoint speed is reached.

This function is deactivated in the Lenze setting because the robustness of the drive may decrease in the field weakening range. Possible consequences are slight speed variations. If required by the application, the function can be activated via C00079/3.

Parameter	Info	Lenze setting
<u>C00079/3</u>	SC: n-Ctrl Anti-Wind-Up	0: Off

[5-20] Typical signal characteristics for switched-on/off anti-wind-up function

Lenze recommends to activate the additional limitation of the speed controller's I component on reaching the voltage limit (C00079 = 1) if dynamic acceleration processes in the field weakening range are wanted.

The function should be deactivated again if slight speed variations occur in the field weakening range.

5.11 Parameterisable additional functions

5.11.1 Selection of switching frequency

The switching frequency of the inverter that can be selected in <u>C00018</u> influences the smooth running performance and the noise generation in the connected motor as well as the power losses in the controller.

The lower the switching frequency the higher the concentricity factor, the smaller the losses, and the higher the noise generation.

Stop!

If operated at a switching frequency of 16 kHz, the output current of the controller must not exceed the current limit values specified in the technical data!

▶ Defining current and speed limits (☐ 136)

Note!

- Operate mid-frequency motors only at a switching frequency of 8 kHz or 16 kHz (var./drive-opt.).
- If operated at a switching frequency of 16 kHz, the lxt evaluation (C00064) is considered including the required derating to 67 % of the rated device current at switching frequencies of 2.4 and 8 kHz.

Settable switching frequencies

Selecti	on in <u>C00018</u>		
1	4 kHz var./drive-optimised	21	8 kHz var./drive-opt./4 kHz min
2	8 kHz var./drive-optimised	22	16 kHz var./drive-opt./4 kHz min
3	16 kHz var./drive-optimised	23	16 kHz var./drive-opt./8 kHz min
5	2 kHz constant/drive-optimised	31	8 kHz var./min. Pv/4 kHz min
6	4 kHz constant/drive-optimised	32	16 kHz var./min. Pv/4 kHz min
7	8 kHz constant/drive-optimised	33	16 kHz var./min. Pv/8 kHz min
8	16 kHz constant/drive-optimised	Abbreviations used: • "var.": Adaptation of the switching frequency depending on the current • "drive-opt.": drive-optimised modulation ("sine/de modulation") • "fixed": fixed switching frequencies • "min. Pv": additional reduction of power loss	
11	4 kHz var./min. Pv		
12	8 kHz var./min. Pv		
13	16 kHz var./min. Pv		
15	2 kHz constant/min. Pv		
16	4 kHz constant/min. Pv		
17	8 kHz constant/min. Pv		
18	16 kHz constant/min. Pv		

The Lenze setting $\underline{\text{C00018}}$ = 2 (8 kHz var./drive-opt.) is the optimal value for standard applications.

Lowering the switching frequency due to high heatsink temperatures

Exceeding the maximally permissible heatsink temperature would lead to an inhibited drive due to the "Overtemperature" error and a torquelessly coasting motor. Therefore, if the Lenze setting is selected, the switching frequency is reduced to the next frequency below when the heatsink temperature has risen to 5 °C below the maximally permissible temperature. After the heatsink has cooled down, the controller automatically switches to the next frequency above until the set switching frequency is reached.

Switching frequency reduction due to high heatsink temperature can be deactivated via C00144. If the switching frequency reduction is deactivated, the "OH1: Heatsink overtemperature" error message will be issued when the maximally permissible heatsink temperature is reached. An "Error" response is the result and the motor is coasting.

Parameter	Info	Lenze setting
<u>C00144</u>	Switching frequency reduction (temp.)	1: On

Lowering of the switching frequency depending on the output current

"Variable" switching frequencies can be selected for the controller in <u>C00018</u>, where the controller automatically lowers the switching frequency depending on the controller output current. The modulation mode will not be changed.

The switching thresholds are given in the rated data in the **8400 hardware** manual.

• The hardware manual has been stored in electronic form on the data carrier supplied with the 8400 drive controller.

When a "fixed" switching frequency is selected, no switching frequency changeover takes place. In case of fixed frequencies, the controller output current is limited to the permissible value of the corresponding switching frequency. In case of larger load impulses, the overcurrent interruption may be activated, to which the controller responds with "Error".

Limiting the maximum output frequency

Note!

If the servo control mode (SC) is selected, the drive assumes the 'maximum current limitation' state if the maximum output frequency (C00910) has been reached.

▶ Defining current and speed limits (☐ 136)

The maximum output frequency (C00910) of the controller is not limited depending on the switching frequency. Therefore, adapt the maximum output frequency according to our recommendation:

Maximum output frequency
$$\leq \frac{1}{8}$$
 Switching frequency

► At a switching frequency of 4 kHz, for instance, 500 Hz for the maximum output frequency should not be exceeded.

Carry out further measures:

- ► If required, deactivate the switching frequency changeover by the heatsink temperature via C00144.
- ▶ If required, ensure that the changeover threshold of the controller output current to the next switching frequency below will not be exceeded. If required, select a constant switching frequency in C00018.

Display of the current switching frequency

The current switching frequency applied in the controller is displayed in C00725.

Operation at an ambient temperature of 45°C

The controller is designed so that operation at an ambient temperature of 45° C without derating is permissible at a switching frequency of 4 kHz.

5.11.2 Operation with increased rated power

Under the operating conditions described here and under continuous operation, the controller can be operated with a higher power motor (increased rated power). The remaining overload capacity of the drive system (for 60 s/3 s) is reduced accordingly to approx. 120 %/160 %.

Typical applications stand out due to low dynamic requirements, e.g. pumps and fans, general horizontal materials handling technology and line drives.

The controllers that can be operated at increased rated power are listed in the rated data in the **8400** hardware manual.

• The hardware manual has been stored in electronic form on the data carrier supplied with the 8400 drive controller.

Stop!

Operation at increased rated power is only permitted ...

- with the controllers listed in the **8400 hardware manual** for this type of operation in the stated mains voltage range.
- at switching frequencies of 2 kHz and 4 kHz.
- at a max. ambient temperature of 40 °C.
- with the types of installation stated in the 8400 hardware manual.
- with the fuses, cable cross-sections, mains chokes, and filters as required in the **8400** hardware manual for this operation.
- after parameterisation according to the specifications below.

Required parameterisation

Operation at increased rated power requires the following settings to be made particularly for the V/f characteristic control (VFCplus), but also for all other types of control:

Parameter	Info	Required setting
<u>C00016</u>	VFC: Vmin boost	adapt to motor (reduce)
C00018	Switching frequency	1: 4 kHz var./drive-opt.
C00021	Slip compensation	adapt to motor
C00120	Setting of motor overload (I²xt)	adapt to motor
C00123	Device utilisat. threshold (Ixt)	120 %
<u>C00173</u>	Mains voltage	see hardware manual → Rated data

8400 TopLine C | Software Manual

Motor control (MCTRL)
Parameterisable additional functions

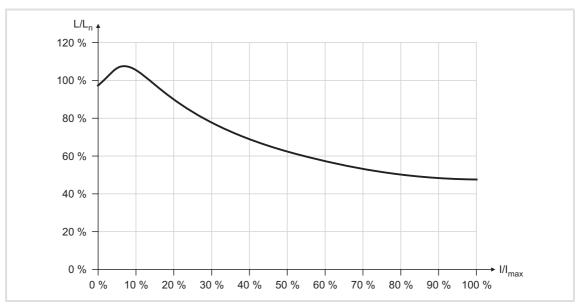
All other types of control require the following settings <u>in addition</u>:

Parameter	Info	Required setting
<u>C00022</u>	Imax in motor mode	higher than rated motor current (max. 160 % rated motor current)
C00081	Rated motor power	adapt motor data
C00087	Rated motor speed	(see motor nameplate), then carry out identification run
C00088	Rated motor current	▶ <u>Automatic motor data</u>
C00089	Rated motor frequency	identification (🕮 126)
C00090	Rated motor voltage	
C00091	Motor cos φ	

5.11.3 Correction of the stator leakage inductance...

...and the current controller parameters by means of the saturation characteristic

Note!


Function only possible with:

- Servo control (SC) for synchronous motors
- Sensorless control for synchronous motors (SLPSM)

The current controller must be adjusted to the electrical characteristics of the motor stator resistance (C00084) and stator leakage inductance (C00085). In case of modern motors, the stator leakage inductance changes with the height of the current so that a new current controller setting is required for each current height.

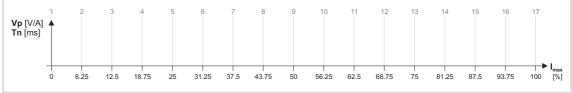
When the motor is operated with very low and very high currents (e.g. in *Pick and place* applications), it is not always possible to achieve a satisfactory current controller setting for all operating points. For this purpose, the correction of the stator leakage inductance and current controller parameters is now possible via an adjustable saturation characteristic that can be set in <u>C02853</u> (17 interpolation points).

The following picture shows a typical saturation characteristic of an MCS motor:

[5-21] Saturation characteristic: Inductance referring to the inductance for rated current

- ▶ When a Lenze motor is selected from the »Engineer« motor catalogue, the saturation characteristic will also be loaded and switched on if required.
- ► The correction by means of this saturation characteristic can be switched on/off via C02859.
- ▶ If instabilities of the current controller occur when a third-party motor is used at high currents, ask the motor manufacturer whether the stator leakage inductance changes with the current height. If required, the saturation characteristic of this motor must be set and switched on.

Note!


The saturation characteristic is not only used for the correction of the current controller but also influences the current controller feedforward control $(\underline{\text{C00079/1}})$.

Short overview of the relevant parameters:

Parameter	Info	Lenze setting	
		Value	Unit
C02853/117	Lss saturation characteristic	100	%
C02855 Imax Lss saturation characteristic		3000.0	Α
C02859	Activate Lss saturation charact.	0: Off	

Distribution of the interpolation points

- ► The saturation characteristic is defined by 17 interpolation points which are distributed linearly on the x axis.
- ► Interpolation point 17 represents 100 % of the maximum motor current in the process (C02855).

[5-22] Saturation characteristic: Distribution of the interpolation points

5.11.4 Flying restart function

The flying restart circuit for asynchronous motors uses a simple motor model which requires knowledge of the motor stator resistance RS and the rated motor current.

Note!

- Currently, the flying restart circuit is only available for asynchronous motors. (A flying restart circuit for synchronous motors is in preparation.)
- For a correct functioning of the flying restart circuit, we recommend to perform a parameter identification first. > Automatic motor data identification (1126)
- The flying restart function works safely and reliably for drives with great centrifugal masses.
- Do not use the flying restart function if several motors with different centrifugal masses are connected to a controller.
- After the controller is enabled, the motor can start for a short time or reverse when machines with low friction and low mass inertia are used.
- The flying restart function serves to identify max. field frequencies up to ±200 Hz.
- When power-adapted standard asynchronous motors are used (rated motor) power approximately corresponds to the rated inverter power), a motor parameter identification is not required.
- On drive systems with feedback, you do not need to use the flying restart function because the synchronisation to the speed detected by the feedback is always carried out in a jerk-free manner.

In association with the flying restart function, we recommend information provided in this documentation on the following topic:

▶ Automatic DC-injection braking (Auto-DCB) (□ 251)

General information

This function serves to activate a mode which is used to "catch" a coasting motor during operation without speed feedback. This means that the synchronicity between controller and motor is to be adjusted in such a way that a jerk-free transition to the rotating machines is achieved in the instant of connection.

The drive controller determines the synchronicity by identifying the synchronous field frequency.

Duration

The "catching" process is completed after approx. 0.5 ... 1.5 seconds. The duration is influenced by the starting value. If the field frequency is not known, we recommend a fixed starting value of 10 Hz (or -10 Hz with systems rotating in negative direction).

Short overview of the relevant parameters:

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00990</u>	Flying restart fct.: Activate	Off	
C00991	Flying restart fct.: Process	-n+n Start:	+10 Hz
C00992	Flying restart fct.: Start frequency	5	Hz
<u>C00993</u>	Flying restart fct: Int. time	300	ms
C00994	Flying restart fct.: Current	25.00	%

How to parameterise the flying restart function:

- 1. Activate the flying restart circuit by selecting "1: On" in C00990.
 - Every time the controller is enabled, a synchronisation to the rotating or standing drive is carried out.

When the Lenze setting is used, most applications do not require additional controller settings.

If additional settings are necessary, proceed as follows:

- 2. Define the process and hence the speed range/rotational frequency range in C00991 which is to be examined by the flying restart circuit:
 - positive speed range (n ≥ 0 rpm⁻)
 - negative speed range (n ≤ 0 rpm⁻)
 - total speed range
- 3. Define the starting frequency.

The starting frequency which defines the starting point of the flying restart function is 10 or -10 Hz for processes 0 ... 3 and has been pre-optimised for standard motors.

If process 4 is selected in C00991, an arbitrary starting frequency can be defined via C00992. This is especially recommended for motors with higher rated frequencies.

- We recommend to define a starting frequency of approximately 20 % of the rated motor frequency to enable a safe and fast connection to standing drive systems.
- For systems with a known search speed (e.g. torque-controlled drive systems which are to synchronise to a defined speed) the starting value can be adapted to reduce the flying restart time.

4. Set the flying restart current in C00994.

We recommend setting a flying restart current of 10 % ... 25 % of the rated motor current.

- During a flying restart process, a current is injected into the motor to identify the speed.
- Reducing the current causes a reduction of the motor torque during the flying restart process. A short-time starting action or reversing of the motor is prevented with low flying restart currents.
- An increase of the current improves the robustness of the flying restart function.

Use of motors with higher rated frequencies

For trouble-free operation, we recommend to manually enter a starting frequency of 20 % of the rated motor frequency in <a>CO0992 as well as to accelerate the flying restart process (see above) and to use a lower flying restart current (10 % of the rated motor current) if motors with higher rated frequencies are used.

Optimisation of the flying restart time

The duration of the flying restart process can be influenced via the setting of the integration time (C00993). A reduction of the integration time causes an accelerated flying restart function and thus a reduced flying restart time.

- We recommend not to change the Lenze setting of the integration time.
- When special motor are used (e.g. multi-pole motors or ASM servo motors), a reduced integration time may improve the flying restart behaviour.

Optimising the current controller if the behaviour is unstable

During the execution of flying restart function, peak currents/torques are avoided by controlling the current amplitude.

Gain (C00075) and reset time (C00076) of the current controller can be adapted to improve the jerk-free/torque-free connection of the inverter to the supply of the rotating motor.

- We recommend not to change the Lenze setting of the current controller.
- If the behaviour of the current controller is unstable, gain and reset time can be calculated as per the following formulae:

$$V_p = \frac{L_{ss}[H]}{T_E[s]}$$

$$T_i = \frac{L_{ss}[H]}{R_s[\Omega]}$$

 V_p = Current controller gain (C00075) $T_i' = Current controller reset time (C00076)$

 L_{ss} = Motor stator leakage inductance (C00085) $R_s = Motor stator resistance (C00084)$

 T_E = Equivalent time constant (= 500 μ s)

[5-23] Formulae for the calculation of the gain and reset time of the current controller

5.11.5 DC-injection braking

Danger!

The DC-injection braking or auto DC-injection braking function cannot be used with sensorless control for synchronous motors (SLPSM) and servo control (SC) mode.

Holding braking is not possible when this braking mode is used!

 For low-wear control of a holding brake, use the basic function "<u>Holding brake</u> control". (© 563)

DC-injection braking allows the drive to be quickly braked to a standstill without the need to use an external brake resistor.

- ► The braking current is set in <u>C00036</u>.
- ► The maximum braking torque to be generated by the DC braking current is approx. 20 ... 30 % of the rated motor torque. It is lower than that for braking in generator mode with an external brake resistor.
- ► Automatic DC-injection braking (auto DCB) improves the starting performance of the motor when operated without speed feedback.

DC-injection braking has the advantage that it is possible to influence the braking time by changing the motor current or the braking torque..

Short overview of the relevant parameters:

Parameter	Info	Lenze sett	ing
		Value	Unit
<u>C00019</u>	Auto DCB: ThresholdOperating threshold for activating DC-injection braking	3	rpm
<u>C00036</u>	DC braking: Current • Braking current in [%] based on rated device current (C00098)	50	%
C00106	Auto DCB: Hold time	0.500	s
C00107	DC braking: Hold time	999.000	s
C00701/4	LA_NCtrl: bSetDCBrake • Selection of the signal source for activating DC-injection braking	Dependent on the control mo	

Method

DC-injection braking can be carried out in two ways with different types of activation:

- ▶ Manual DC-injection braking (DCB) (□ 251)
- ▶ Automatic DC-injection braking (Auto-DCB) (□ 251)

5.11.5.1 Manual DC-injection braking (DCB)

DC-injection braking can be activated manually for the two technology applications "Actuating drive speed" and "Switch-off positioning" by connecting the *bSetDCBrake* input of the **LA_NCtrl** or **LA_SwitchPos** application block to a digital signal source (e.g. via the digital signal source *bCtrl1 B3* of the port block LP CANIn1).

- ► For HIGH-active inputs, DC-injection braking is active as long as the signal is at HIGH level.
- ▶ After the hold time (C00107) has expired, the controller sets the pulse inhibit (CINH).

5.11.5.2 Automatic DC-injection braking (Auto-DCB)

"Automatic DC-injection braking" (referred to in the following as "auto DCB") can be used if there is a requirement that the drive be isolated from the supply at $n \approx 0$.

Note!

Deactivate automatic DC-injection braking when a holding brake is used!

- For this purpose, go to C00019 and set the auto DCB threshold to "0".
- Background: Controller inhibit is already activated by the <u>Holding brake</u> control. (LLL 563)

Function

For understanding the auto DCB function, it is necessary to distinguish between three different types of operation:

- A. The drive has been enabled and, in the course of operation, the speed setpoint falls below the auto DCB threshold.
 - In case of operation <u>without</u> speed feedback, a braking current (<u>C00036</u>) is injected.
 After the auto DCB hold time (<u>C00106</u>) has expired, the motor is deenergised via the auto DCB function, i.e. a controller inhibit (CINH) is set.
 - In case of operation <u>with</u> speed feedback, the motor is deenergised via the auto DCB function after the auto DCB hold time (<u>C00106</u>) has expired, i.e. a controller inhibit (CINH) is set.
 - The braking current which can be parameterised in <u>C00036</u> does not have any effect during operation with speed feedback.
- B. When the controller is enabled, the drive is at standstill (n = 0). If the enabled drive is to start, the speed setpoint passed via the acceleration ramp must exceed the auto DCB threshold (C00019). Below this threshold, the motor will not be energised.

8400 TopLine C | Software Manual

Motor control (MCTRL)
Parameterisable additional functions

- C. When the controller is enabled, the motor (still) rotates at a speed which is above the auto DCB threshold. If the speed setpoint reached via the acceleration ramp exceeds the auto DCB threshold (C00019), the motor will be energised and the following action will take place:
 - During operation <u>without</u> speed feedback, the drive is "caught".
 - ▶ Flying restart function (☐ 247)
 - During operation <u>with</u> speed feedback, the drive synchronises to the current actual speed value.

We recommend to deactivate the auto DCB function during operation $\underline{\text{with}}$ speed feedback via a setting of $\underline{\text{C00019}} = 0$.

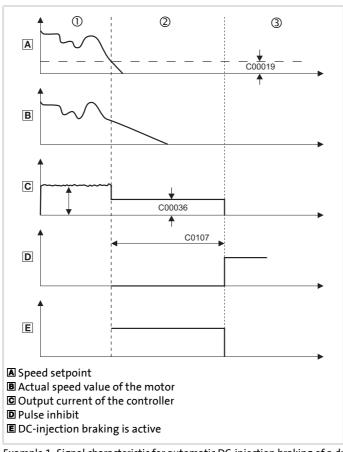
Auto DCB function during operation with speed feedback

Stop!

If the DC-injection braking operation is too long and the braking current or braking voltage is too high, the connected motor may overheat.

If you want to use the auto DCB function contrary to our recommendation (see above), the auto DCB threshold must not fall below the following values depending on the number of encoder increments (C00420):

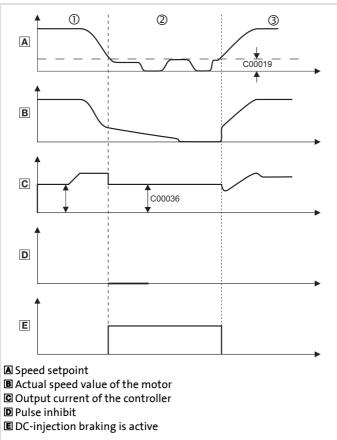
Number of encoder increments C00420	Auto DCB threshold C00019
8	16
16	8
32	4
64	2
> 128	No restrictions



How to set the automatic DC-injection braking

- 1. Set a hold time in C00106 > 0 s.
 - · Automatic DC-injection braking is active for the time set.
 - In case of operation without speed feedback, the braking current set in C00036 is injected.
 - After the set hold time has expired, the controller sets a pulse inhibit.
- 2. Set the operating threshold in C00019.
 - The operating threshold can serve to set a dead band in the setpoint. If DCinjection braking is not to be active then, <a>CO0106 must be set to a value of "0".

Explanation of the automatic DC-injection braking function by means of two examples



- ① The motor rotates at a specified speed. The current adjusts itself to the load, see C.
- ② The DC braking current set in C00036 is injected.
- 3 After the hold time (C00106) has expired, a pulse inhibit is set.

[5-24] Example 1: Signal characteristic for automatic DC-injection braking of a drive without speed feedback

Motor control (MCTRL)
Parameterisable additional functions

- ① The motor rotates at the selected speed. The resulting current depends on the load, see **[F]**.
- ② The DC braking current set in C00036 is injected.
- ③ The actual speed value of the motor follows the speed setpoint. The resulting current depends on the load.

[5-25] Example 2: Signal characteristic for automatic DC-injection braking of a drive with speed feedback

Slip compensation 5.11.6

Note!

Slip compensation is only active with the following motor control modes:

- V/f characteristic control (VFCplus) (147)
- Sensorless vector control (SLVC) (\$\subseteq\$ 182)

Under load, the speed of an asynchronous motor decreases. This load-dependent speed drop is called slip. The slip can partly be compensated for by the setting in C00021.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00021</u>	Slip compensation	2.11	%

- ▶ The setting of C00021 can be done automatically in the course of motor parameter identification. ▶ Automatic motor data identification (□ 126)
- ▶ The setting must be made manually if the motor parameter identification cannot be called up.

How to set the slip compensation manually:

- 1. Set rated motor current (C00088) and rated motor frequency (C00089).
- 2. Calculate the slip compensation according to motor nameplate data:

$$s = \frac{n_{rsyn} - n_r}{n_{rsyn}} \cdot 100\%$$

$$n_{rsyn} = \frac{f_r \cdot 60}{p}$$

- s Slip constant (C00021) [%]
- n_{rsvn} Synchronous motor speed [rpm]
 - n_r Rated motor speed according to the motor nameplate [rpm]
 - f_r Rated motor frequency according to the motor nameplate [Hz]
 - p Number of motor pole pairs (1, 2, 3 ...)
- 3. Transfer the calculated slip constant s to <a>C00021.
- 4. Correct the setting in C00021 while the drive is running until the load-dependent speed drop does not occur anymore between idling and maximum load of the motor in the desired speed range.

8400 TopLine C | Software Manual

Motor control (MCTRL)
Parameterisable additional functions

The following guide value applies to a correctly set slip compensation:

- Deviation from the rated motor speed ≤ 1% for the speed range of 10 % ... 100 % of the rated motor speed and loads ≤ rated motor torque.
- Greater deviations are possible in the field weakening range.
- If C00021 is set too high, the drive may get unstable.
- Negative slip (<u>C00021</u> < 0) with V/f characteristic control results in "smoother" drive behaviour at heavy load impulses or applications requiring a significant speed drop under load.

5.11.7 Oscillation damping

Mechanical oscillations are undesirable effects in every process and they may have an adverse effect on the single system components and/or the production output.

Mechanical oscillations in the form of speed oscillations are suppressed by the oscillation damping function.

Mechanical oscillations may occur:

- ▶ In the voltage range (output voltage is lower than max. voltage)
 - Here, the oscillations occur in no-load operation.
 - Here, speeds of 40 ... 80 % of the rated speed are typical.
 - See subchapter "Oscillation damping voltage range". (□ 257)
- ▶ In the field weakening range (output voltage has reached maximum voltage)
 - Here, the oscillations occur in no-load operation and with load.
 - Here, speeds higher than the rated speed are typical, especially when the output frequency is close to the mains frequency.
 - See subchapter "Oscillation damping in the field weakening range". (☐ 258)

Note!

With servo control (SC), the Oscillation damping voltage range has no influence.

Mechanical natural frequencies can be suppressed or at least dampened in the speed control loop of the servo control by means of a current setpoint filter. ▶ Setting the current setpoint filter (band-stop filter) (□ 231)

Oscillation dampening, especially in the field weakening range, is also possible by activating the current controller feedforward control (C00079/1).

5.11.7.1 Oscillation damping voltage range

The oscillation damping voltage range is successfully used with

- unloaded motors (no-load oscillations)
- ▶ motors whose rated power deviates from the rated power of the controller.
 - e.g. during operation at high switching frequency including the power derating involved.
- ▶ operation with higher-pole motors
- operation with special motors
- ► compensation of resonance in the drive
 - At an output frequency of approx. 20 ... 40 Hz, some asynchronous motors can show resonance which causes current and speed variations and thus destabilise the running operation.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00234</u>	Oscillation damping influence	5.00	%
C00235	Oscillation damping filter time	32	ms

Note!

Compensate the resonance during operation with feedback (closed loop, feedback of n_{act}) via the parameters of the slip regulator.

▶ Parameterising the slip regulator (□ 179)

How to eliminate speed oscillations in no-load operation at speeds with 40 ... 80 % of the rated speed:

- 1. Approach the area where the speed oscillations occur.
- 2. Reduce the speed oscillations by changing C00234 step by step (increment 1 %).
 - The filter time oscillation damping (C00235) should not be changed.
- 3. These can be indicators for smooth running:
 - · Constant motor current characteristic
 - · Reduction of the mechanical oscillations in the bearing seat

5.11.7.2 Oscillation damping in the field weakening range

When the max, possible output voltage (full modulation) has been reached, a voltage dip in the DC bus causes a voltage fluctuation in the motor. With load and during no-load operation this voltage fluctuation can cause mechanical oscillations.

The "oscillation damping field weakening" adjustable in C00236 serves to limit the maximum output voltage. This can be used to always compensate voltage dips in the DC bus to the output voltage (constant output voltage). This serves to prevent mechanical oscillations due to these voltage dips.

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00236</u>	Oscillation damping field weakening • Setting "0" ≡ 100 % output voltage can be reached	14	

- ▶ With the Lenze setting of C00236 the limitation of the output voltage is set so that voltage dips in the DC bus in the output voltage for the single-phase and three-phase devices can largely be compensated so that no speed oscillations may be expected. Thus, an adaptation of C00236 is not required in the majority of cases.
- ▶ Maximum output voltage to be reached with Lenze setting of C00236:
 - Single-phase devices: 98.2 %
 - Three-phase devices: 99.7 %

Note!

The limitation of the output voltage via C00236 in the extreme field weakening range (high speeds) causes a reduction of the max. possible output torque (stalling torque).

• If the output torque to be reached in the extreme field weakening range is not sufficient (motor is stalling too early), reduce the setting in C00236.

With servo control (SC), the Lenze setting of C00236 should not be reduced. Otherwise the field weakening control could not work optimally anymore (the behaviour at high speeds may get worse). When servo control (SC) has been selected, the oscillation damping in C00236 should never be set to "0".

How to eliminate speed oscillations in the field weakening range:

- 1. Approach the area where the speed oscillations occur.
- 2. Reduce the speed oscillations by changing C00236 step by step (increment 1).
- 3. These can be indicators for smooth running:
 - Constant motor current characteristic
 - Reduction of the mechanical oscillations in the bearing seat

Phase sequence reversal for correcting misconnected UVW motor phases 5.11.8

If the motor phases are misconnected at the inverter output (e.g. phase u takes the place of phase v), the motor will rotate in the wrong direction.

To correct such misconnected motor phases, the rotating field of the controller's output can be reversed by selecting "1: Inverted" in C00905. In this case, a phase will be reversed at the output of the inverter.

This function does not have any effect on setpoints and actual values, i.e. the polarity of the speed setpoint/actual speed value, actual torque, output frequency, and AngleOffset do not change.

Cases of application for this function:

- Phase sequence reversal in case of misconnected motor phases.
- Setting of the correctly signed direction of rotation for inversely mounted motors.

5.11.9 Field weakening for synchronous motors

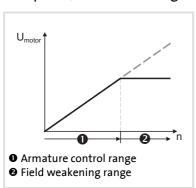
This function extension is available from version 02.00.00!

Note!

Function only possible with:

- · Servo control (SC)
- Sensorless control for synchronous motors (SLPSM) (from version 10.00.00)

The energy efficiency of a synchronous motor decreases with the field weakening operation. If a high energy efficiency is required, keep the field weakening switched off or restrict the field weakening operation via C00938.

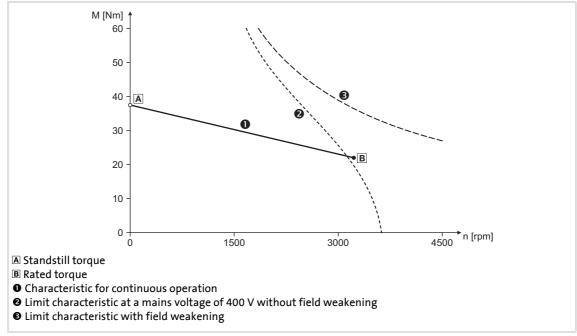

Stop!

In the field weakening operation, a current is injected into the synchronous motor even in idle state which can rise to maximum current (C00022).

Ensure that this no-load current does not cause the motor to be heated impermissibly!

 The use of a temperature feedback via KTY is recommended. ▶ Motor temperature monitoring (KTY) (□ 323)

If required, field weakening for synchronous motors can be switched on in C00079/4.



- When field weakening is switched on, the motor magnetising current is increased from 0 A to the maximally effective magnetising current via an internal control loop when the voltage limit is reached.
- ➤ As a result, a higher speed can be reached at the same motor voltage or DC-bus voltage.

[5-26] Voltage/speed characteristic with switched-on field weakening

$$n_{max} = n_{nenn_mot} \cdot \frac{800V}{\sqrt{2} \cdot U_{nenn_mot}}$$

[5-27] Calculation of the maximally reachable speed with switched-on field weakening

[5-28] Speed/torque characteristics of a synchronous servo motor with field weakening

Short overview of the relevant parameters:

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00079/4</u>	Field weakening	0: Off	
<u>C00938</u>	Limitation of maximally effective field-producing motor current • With regard to rated motor current (C00088)	100	%
C00937/1	Maximally effective field-producing motor current	-	Α
Highlighted in grey = display parameter			

- ► The maximally effective field-producing motor current is calculated based on the motor data set in C00089 and C00098. Then, the value is internally limited to 98 % of the set maximum current (C00022 or maximally permissible current for the permanent switching frequency set in C00018).
- ► C00938 serves to limit the maximally effective field-producing motor current as well.
 - In the Lenze setting, the field-producing motor current is limited to a rated motor current (<u>C00088</u>) of 100 %. Hence, the maximum speed in the field weakening operation is limited and at the same time heating of the motor in the field weakening operation and idle state is limited.
 - If a higher speed for the field weakening operation is required or the current in the field weakening operation is to be limited (e.g. since no motor temperature detection is available and/or heating in the field weakening operation is to be limited), the value must be increased or reduced accordingly in <u>C00938</u>.

8400 TopLine C | Software Manual

Motor control (MCTRL)
Parameterisable additional functions

- ▶ In <u>C000937/1</u>, the <u>actually used</u> maximally effective field-producing motor current is displayed.
 - With switched-on and active field weakening: 0.00 A ... -x.xx A
 - With sensorless control for synchronous motors (SLPSM), the injected current is displayed in open-loop controlled operation: 0.00 A ... +x.xx A
 - If neither field weakening nor open-loop controlled operation are active,e "0.00 A" is displayed.

Note!

If a Lenze motor is used:

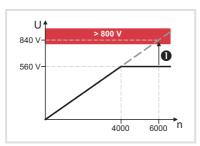
The controller is automatically parameterised so that field weakening operates optimally and the maximally permissible speed is monitored.

Stop!

If an OEM motor is used:

If pulse inhibit is set in the controller, the DC bus is loaded with the voltage that corresponds to the current speed of the machine.

Since with switched-on field weakening higher speeds can be achieved at a correspondingly higher rotor voltage of the motor, the DC bus can be loaded to a voltage higher than the set DC-bus voltage in case of pulse inhibit and a currently high motor speed and even exceed the maximally permissible voltage of 800 V!


For device protection, either use a brake chopper or parameterise the motor speed monitoring via <u>C00965</u> in such a way that only a maximum speed is possible which would be also reachable without field weakening with a DC-bus voltage of = 800 V. ► <u>Motor speed monitoring</u> (□ 284)

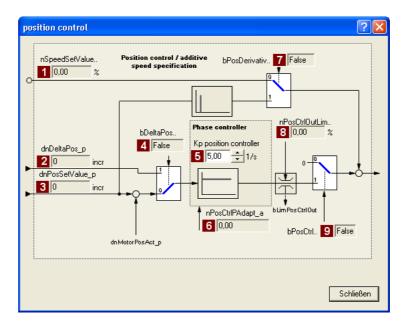
Example: Voltage increase in the DC bus when field weakening is switched off

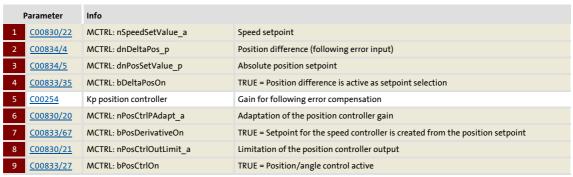
(For instance by an active setting of the controller inhibit or by tripping a fault or error at high motor speed.)

Field weakening	Speed n	Motor voltage peak value
Switched off	4000 rpm	560 V
	5700 rpm	800 V
	6000 rpm	840 V
Switched-on	6000 rpm	560 V

- ▶ If pulse inhibit occurs at 6000 rpm and switched-on field weakening, the DC bus is loaded to more than 800 V (●).
- ► A speed limitation to 5700 rpm is required since this speed causes a DC-bus voltage of 800 V if field weakening is switched off.

[5-29] Example: Possible DC-bus voltage > 800 V if field weakening gets lost


5.12 Position control/additive speed specification


In the Lenze setting, the position control is only active with TA "Table positioning".

Proceed as follows to open the dialog for parameterising the position control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the Overview dialog level and click the Motor control... button to change to the *Overview* → *motor control*... dialog level.
- 4. Click the **Position control** button in the displayed signal flow.

5.13 Braking operation/brake energy management

When electric motors are braked, the kinetic energy of the drive train is fed back into the DC circuit regeneratively. This energy leads to an increase in the DC bus voltage. In order to avoid overvoltage in the DC bus, several different strategies can be used:

- Use of a brake resistor
- ➤ Stopping of the ramp function generator if brake chopper threshold exceeded (RFG_Stop)
- ▶ Use of the "Inverter motor brake" function
- ► Combination of the above named options

In the case of inverters with a 3-phase supply, the following is also possible:

- ► Coupling of the inverters in a DC-bus connection
- ▶ Recovery of regenerative energy with a regenerative module

Stop!

If the connected brake resistor is smaller than required, the brake chopper can be destroyed!

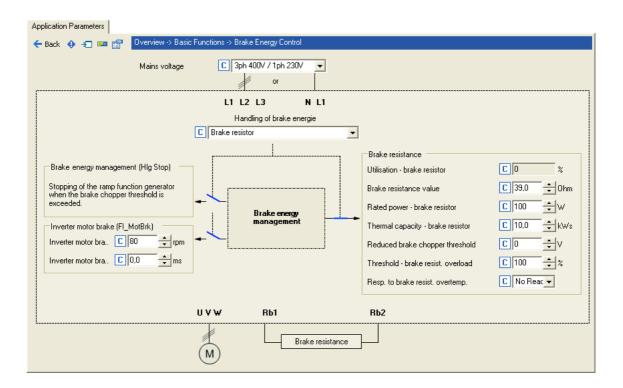
Appropriate protective measures are provided in the subchapter "Avoiding thermal overload of the brake resistor". (273)

Note!

- We recommend to use the brake chopper (brake transistor) which is integrated into the controller for the braking operation, regardless of the selected motor mode.
 - Connect the required brake resistor to the R_{B1} and R_{B2} terminals of the controller.
- For a DC-bus connection with other devices, we recommend to connect the regenerative power supply module to terminals +UG and –UG.
- If none of these measures is taken, e.g. the overvoltage deactivation ("OU")
 may respond in case of low deceleration times during regenerative operation.
 - ▶ Error messages of the operating system (☐ 602)

To install the regenerative module, follow the instructions in the **8400 hardware** manual.

 The hardware manual has been stored in electronic form on the data carrier supplied with the 8400 drive controller.


In <u>C00175</u>, a ramp function generator stop (FB <u>L NSet 1</u>) can be set for instances when the brake resistor is controlled. This prevents overvoltage deactivation in the case of short deceleration times.

▶ Selecting the response to an increase of the DC-bus voltage (☐ 268)

Proceed as follows to open the dialog for parameterising the brake energy management:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the *Overview* dialog level and click the "basic functions" button.
- 4. Go to the Overview → basic functions dialog box and click the Brake energy management button.

Short overview of the relevant parameters:

Parameter	Info	Lenze setting
		Value Unit
C00173	Mains voltage	3ph 400 V / 1ph 230 V
C00175	DO0175 Brake energy management R_Brake (brake resistance)	
Highlighted in grey = display parameter		

Parameter	Info Lenze setting		ing
		Value	Unit
Brake resistor			
<u>C00133</u>	Brake resistor utilisation	-	%
<u>C00129</u>	Brake resistance value	39.0	Ohm
<u>C00130</u>	Rated brake resistor power 100		W
<u>C00131</u>	Thermal capacity - brake resistor		kWs
C00174	Reduced brake chopper threshold		V
<u>C00572</u>	Brake resistor overload threshold 100		%
<u>C00574</u>	C00574 Resp. to overtemp. brake resistor No response		ise
Inverter motor brake			
<u>C00987</u>	Inverter motor brake: nAdd 80		rpm
C00988	Inverter motor brake: PT1 filter time	0.0	ms
Highlighted in grey = display parameter			

5.13.1 Setting the voltage source for braking operation

The voltage threshold for braking operation is set via the mains voltage ($\underline{\text{C00173}}$) and the reduced brake chopper threshold ($\underline{\text{C00174}}$). When this "brake chopper threshold" is exceeded, the response selected in $\underline{\text{C00175}}$ takes place in the DC bus. The selected function (e.g. use of a brake resistor) serves to dissipate energy in the DC bus and reduce the DC-bus voltage.

► The "brake chopper threshold" is preset as follows so that it is higher than the specified mains voltage (C00173):

Mains voltage		Brake chopper threshold		
C00173	1-phase	3-phase	1-phase	3-phase
0	1ph 230V	3ph 400V	DC380V	DC725V
1	1ph 230V	3ph 440V	DC380V	DC735V
2	1ph 230V	3ph 480V	DC380V	DC775V
3	1ph 230V	3ph 500V	DC380V	DC790V
4	1ph 115V	3ph 400V	DC205V	DC725V

▶ This brake chopper threshold can be reduced by 0 ... 150 V by means of C00174.

Stop!

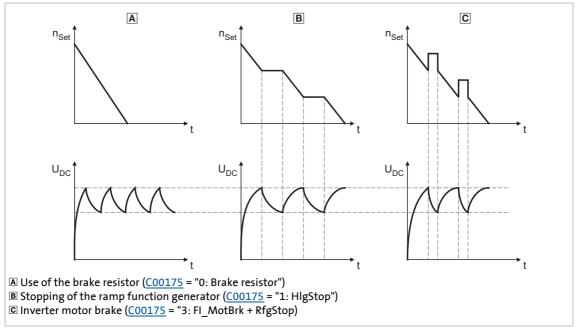
The brake chopper threshold resulting from $\underline{\text{C00173}}$ and $\underline{\text{C00174}}$ must not exceed the stabilised DC-bus voltage!

Example:

- ▶ A 400 V device has a maximum mains voltage of 420 V AC.
 - Maximum stationary DC-bus voltage: 420 V AC * 1.414 = 594 V DC
 - C00173 has been set with the selection "0" for 400 V AC mains.
- ▶ This means that C00174 can be set to a maximum of 131 V DC (725 V DC 594 V DC).

5.13.2 Selecting the response to an increase of the DC-bus voltage

If the brake chopper threshold resulting from $\underline{\text{C00173}}$ and $\underline{\text{C00174}}$ is exceeded in the DC bus, the reaction selected in $\underline{\text{C00175}}$ takes place (use of the brake resistor and/or stop of the ramp function generator and/or inverter motor brake).


- ▶ Optimum following of the actual speed value until the speed setpoint is reached (e.g. the motor is stopped rapidly) is always achieved with the help of a brake resistor.
- ▶ Stopping the ramp function generator enables smoother deceleration with lower torque oscillation..
- ► The inverter-motor brake is available for selection in <u>C00175</u>. This function enables rapid braking without a brake resistor. Torque oscillations can occur due to the traversing dynamics. ► Inverter motor brake (<u>Q</u> 270)

Stop!

- The two braking procedures "Stopping of the ramp function generator" and "Inverter motor brake" can only be used for speed-controlled applications without the influence of a position controller!
- When the "inverter motor brake" function is used, the <u>Motor load monitoring</u> (<u>12xt</u>) is not adapted. If it is braked too frequently, there is a risk of the motor being thermally overloaded or the motor overload monitoring does not work properly!
- The "inverter motor brake" function must not be used with vertical conveyors (hoists) or with active loads!

The way in which the different braking procedures work is demonstrated schematically in the following illustration:

[5-30] Graph of the effective speed setpoint and the DC bus voltage during braking

8400 TopLine C | Software Manual

Motor control (MCTRL)

Braking operation/brake energy management

Independent of the selected motor control, all procedures given in C00175 can be

The actual speed value can optimally follow the speed setpoint when a brake resistor is used.

If it is possible to dispense with exact adherence to the deceleration ramp in simple applications, selection of a braking method without an external brake resistor enables costs to be reduced due to the avoidance of having to use a brake resistor.

With the "inverter motor brake" function, an effective braking torque of 10 ... 20 % of the rated motor torque can be achieved.

A combination of all three braking procedures is also possible, e.g. for emergency braking if the brake resistor fails

(C00175 = "4: Brake resistor + FI MotBrk + RfgStop").

Motor control (MCTRL) Braking operation/brake energy management

5.13.2.1 Inverter motor brake

With this braking method, which can be selected as an alternative in C00175, the regenerative energy in the motor is converted as a result of dynamic acceleration/deceleration with down-ramping of the ramp function generator..

Stop!

- This braking method only works without intervention of a position controller in the case of speed-controlled applications!
- When the "inverter motor brake" function is used, the Motor load monitoring (12xt) is not adapted. If it is braked too frequently, there is a risk of the motor being thermally overloaded or the motor overload monitoring does not work properly!
- The "inverter motor brake" function must not be used with vertical conveyors (hoists) or with active loads!

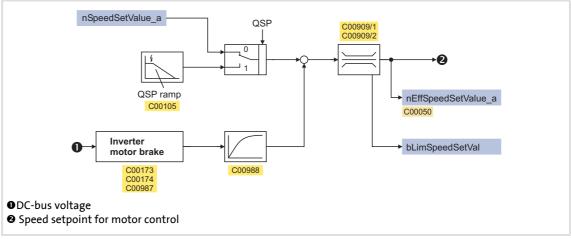
If no brake resistor is used, the DC injection brake can also be used for a braking process in addition to the "inverter motor brake" and "Stopping of the ramp function generator". ▶ DC-injection braking (□ 250)

In applications with high mass inertia and long braking times (> 2 s), we recommend the use of the DC injection brake.

• The DC injection brake provides for an oscillation-minimised braking. The braking process generally takes more time than the "inverter motor brake" function with an optimised setting. Moreover, the function is only recommended for braking to a standstill.

In the following cases we recommend the "inverter motor brake" function:

- With servo control (SC).
- For all applications that do not require braking to a standstill (e.g.braking to a lower speed setpoint) or the braking process can be interrupted by selecting a new speed setpoint.
- For applications with low mass inertias and a short braking time (< 1 s).
- For all applications where braking should be as quick as possible.



Operating mode of the inverter motor brake

The ramp function generator is stopped during acceleration. The speed set in <u>C00987</u> is added to the speed setpoint by means of a hysteresis-type 2-point DC bus voltage controller, whereby the sign of the current actual speed is taken into account. In addition, the ramp function generator is stopped during overvoltage.

If the DC bus voltage falls below a defined DC bus voltage potential of the hysteresis controller, the added speed is subtracted again and the ramp function generator is activated again.

The energy is converted into heat in the motor due to alternating instances of acceleration and deceleration as a result of this switching operation.

[5-31] Signal flow of the "Inverter motor brake" function

► In case of an asynchronous motor, the additive speed setpoint (C00987) should be 1 ... 4 times the slip of the machine:

$$C00987 \left[rpm\right] = 1 ... 4 \cdot (n_{Sync}[rpm] - n_{Rated}[rpm])$$

$$n_{Sync}[rpm] = \frac{f_{Rated}Hz \cdot 60}{p}$$

$$p = number of pole pairs$$

$$n_{Rat} = Rated speed of the motor$$

$$f_{Rat} = Rated frequency of the motor$$

$$n_{Sync} = Synchronous speed of the motor$$

[5-32] Formula for calculating the additive speed setpoint for an asynchronous motor

► In case of a synchronous motor, the additive speed setpoint (<u>C00987</u>) should be 5 ... 20 % of the rated machine speed.

Short overview of the relevant parameters:

Parameter	Info	Lenze setting
		Value Unit
<u>C00173</u>	Mains voltage	3ph 400V / 1ph 230V
<u>C00174</u>	Reduc. brake chopper threshold	0 V
<u>C00175</u>	Resp. to brake resistor control	Brake resistor
<u>C00987</u>	 Inverter motor brake: nAdd Speed lift which is connected in pulses to the brake rampe when the motor is braked. 	80 rpm
<u>C00988</u>	Inverter motor brake: PT1 filter time PT1 filter time for smoothing the speed lift which is added in pulses.	0.0 ms

When the "inverter motor brake" function is used, torque oscillations occur which have may have a negative effect on the service life of the components of the mechanical drive train (e.g. gearbox).

- The extent of the occurring oscillations depends on the drive train (mass inertia, natural frequencies, etc.) and the function setting.
- We recommend optimising the "inverter motor brake" function for an oscillation-free operation as described in the following. Usually, this setting does not cause any torque oscillations which affect the service life of the gearbox.
- The settings of implementing a maximum acceleration ramp are only recommended if the inverter motor brake is used infrequently (e.g. in case of quick stop).

How to set the "inverter motor brake" function for an oscillation-reduced operation:

For V/f characteristic open-loop control/closed-loop control (VFCplus):

- Set reduced brake chopper threshold (C00174) to approx. 70 V.
- Set additive speed (C00987) to rated slip speed.
- Adapt the deceleration ramp so that the deceleration time is slightly below (10 ... 30 %) the deceleration time that can be realised with the inverter motor brake

For sensorless vector control (SLVC) and servo control (SC):

- Set reduced brake chopper threshold (C00174) to approx. 50 V.
- Set additive speed (<u>C00987</u>) to 1 ... 2-fold rated slip speed.
- Adapt the deceleration ramp so that the deceleration time is slightly below (10 ... 30 %) the deceleration time that can be realised with the inverter motor brake.

8400 TopLine C | Software Manual

Motor control (MCTRL)

Braking operation/brake energy management

How to set the "inverter motor brake" function for a maximum acceleration ramp:

For V/f characteristic open-loop control/closed-loop control (VFCplus):

- Set reduced brake chopper threshold (C00174) to approx. 70 V.
- Set additive speed (C00987) to 1,5 ... 2,5-fold rated slip speed.
- Adapt the deceleration ramp so that the deceleration time is slightly below (10 ... 30 %) the deceleration time that can be realised with the inverter motor brake.

For sensorless vector control (SLVC) and servo control (SC):

- Set reduced brake chopper threshold (C00174) to approx. 70 V.
- Set additive speed (C00987) to 2 ... 4-fold rated slip speed.
- Adapt the deceleration ramp so that the deceleration time is slightly below (10 ... 30 %) the deceleration time that can be realised with the inverter motor brake.

5.13.3 Avoiding thermal overload of the brake resistor

- ▶ Parameterisation of an error response in C00574 and evaluation of the parameterised error message within the application or within the machine control system.
 - See chapter entitled "Brake resistor monitoring (I2xt)". (☐ 279)
- External interconnection using the thermal contact on the brake resistor (e.g. supply interruption via the mains contactor and activation of the mechanical brakes).

Motor control (MCTRL) Monitoring

5.14 Monitoring

Many monitoring functions that are integrated into the controller can detect errors and thus protect the device/motor from damage or overload.

▶ Detailed information on the individual monitoring functions can be found in the following subchapters.

Monitoring	Response		Error message	
	Lenze setting	Configuration	(with activated monitoring)	
Device overload monitoring (Ixt)	Warning	<u>C00604</u>	OC5	
Motor load monitoring (I2xt)	Warning	<u>C00606</u>	OC6	
Motor temperature monitoring (PTC)	Fault	<u>C00585</u>	OH3	
Brake resistor monitoring (I2xt)	No Reaction	<u>C00574</u>	<u>OC12</u>	
Motor phase failure monitoring	No Reaction	<u>C00597</u>	<u>LP1</u>	
Motor phse error monitoring before operation		<u>C02844/2</u>		
Mains phase failure monitoring	Warning	<u>C00565</u>	<u>Su02</u>	
Maximum current monitoring	No Reaction	<u>C00609</u>	<u>OC7</u>	
Maximum torque monitoring	No Reaction	<u>C00608</u>	<u>OT1</u>	
Motor speed monitoring	Fault	-	OS2	

Parameterisable responses

If a monitoring function trips, the response set via the corresponding parameter is carried out. The following responses can be selected:

- ▶ "No response": Response/monitoring is deactivated.
- ▶ "Fault": Change of the operating status by a pulse inhibit of the power output stage.
- ▶ "Warning": Operating status of the controller remains unchanged. Only a message is entered into the logbook of the controller.

Related topics:

- ▶ <u>Device state machine and device statuses</u> (☐ 101)
- ▶ Diagnostics & error management (☐ 581)
- ▶ Basics on error handling in the controller (☐ 581)
- ▶ Error messages of the operating system (☐ 602)

5.14.1 Device overload monitoring (Ixt)

C00064/1...3 displays the device utilisation (ixt) in [%] in different time intervals:

Parameter	Info	
<u>C00064/1</u>	 Device utilisation (Ixt) Maximum value of pulse utilisation (C00064/2) and permanent utilisation (C00064/3). 	
<u>C00064/2</u>	Device utilisation (Ixt) 15s • Pulse utilisation over the last 15 seconds (only for loads >160 %).	
<u>C00064/3</u>	Device utilisation (Ixt) 3 min Permanent utilisation over the last 3 minutes.	
Highlighted in grey = display parameter		

- ▶ If the device utilisation reaches the switch-off threshold set in C00123:
 - The error response set in <a>C00604 will be carried out (Lenze setting: "Warning").
 - The "OC5: Ixt overload" error message will be entered into the logbook.
 - The bMctrllxtOverload status output of the LS DeviceMonitor system block will be set to TRUE.
- ► A setting of <u>C00604</u> = "0: No Reaction" deactivates the monitoring.

5.14.2 Motor load monitoring (I2xt)

The Inverter Drives 8400 are provided with a simple, sensorless, thermal I²xt motor monitoring of self-ventilated standard motors which is based on a mathematical model.

- ► <u>C00066</u> displays the calculated motor load in [%].
- ▶ If the calculated motor load reaches the motor load setting (C00120):
 - The error response set in <u>C00606</u> will be carried out (Lenze setting: "Warning").
 - The "OC6: I2xt motor overload" error message will be entered into the logbook.
 - The bMctrll2xtOverload status output of the LS DeviceMonitor system block will be set to TRUE.
- ► A setting of <u>C00606</u> = "0: No Reaction" deactivates the monitoring.

Stop!

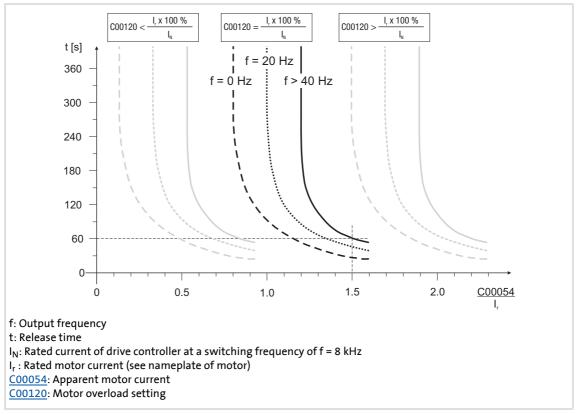
The I²xt motor monitoring does not present full motor protection! As the motor utilisation calculated in the thermal motor model is lost after mains switching, for instance the following operating states cannot be measured correctly:

- · Restarting (after mains switching) of a motor that is already very hot.
- Change of the cooling conditions (e.g. cooling air flow interrupted or too warm).

A full motor protection requires additional measures as e.g. the evaluation of temperature sensors that are located directly in the winding or the use of thermal contacts.

Adjustment of the motor utilisation meter

The motor utilisation meter for indicating the motor load in <u>C00066</u> begins to count when the apparent motor current (C00054) is greater than the motor overload setting (C00120).


C00120 is to be set as follows:

C00120 =
$$\frac{I_r}{I_N} \cdot 100\%$$
 $I_r : Ra$

 I_r : Rated motor current (see nameplate of motor) I_N : Rated controller current at a switching frequency of f = 8 kHz

- ▶ If you reduce C00120 starting from the calculated value, the motor utilisation meter will already be counted up before the rated overload threshold is reached.
- ▶ If you increase <u>C00120</u> starting from the calculated value, the motor utilisation meter will not be counted up until the rated overload threshold is reached.

[5-33] Tripping characteristic of the I²xt monitoring

Example:

 $C00120 = I_r/I_N \times 100 \%$

C00054 = 150 % rated motor current

- ► After approx. 60 seconds, <u>C00066</u> has reached the final value (100 %) at output frequencies f > 40 Hz.
- ► The controller outputs the "OC6: I2xt overload motor" error message and triggers the response set in C00606 (default setting: "Warning").

- If forced ventilated motors are used, a premature response of the overload threshold can be avoided by deactivating this function if necessary (C00606 = "0: No Reaction").
- The current limits set in <u>C00022</u> and <u>C00023</u> influence the l²xt calculation only in an indirect way. However, the operation of the motor at maximum possible load can be averted. ▶ Defining current and speed limits (□ 136)

Motor control (MCTRL) Monitoring

Motor temperature monitoring (PTC) 5.14.3

For detecting and monitoring of the motor temperature, a PTC thermistor (DIN 44081/DIN 44082) or a thermal contact (NC contact) can be connected to the terminals X106/T1 and X106/T2.

Stop!

- The controller can only evaluate one PTC thermistor! Do not connect several PTC thermistors in series or parallel.
- If several motors are operated on one controller, use thermal contacts (NC contacts) connected in series.
- To achieve full motor protection, an additional temperature monitoring with separate evaluation must be installed.

Note!

- In the Lenze setting (C00585 = "1: Fault"), motor temperature monitoring is activated!
- There is a wire jumper between the terminals X106/T1 and X106/T2 by default.
- Lenze three-phase AC motors are provided with a thermal contact on delivery.
- ▶ If 1.6 k Ω < R < 4 k Ω at the terminals X106/T1 and X106/T2, the monitoring will respond, see functional test below.
- ► If the monitoring responds:
 - The error response set in C00585 is activated (Lenze setting: "Fault").
 - The "OH3: Motor temperature (X106) tripped" error message is entered into the Logbook.
 - The bMctrlMotorPtc status output of the LS DeviceMonitor system block is set to TRUE.
- ► A setting of C00585 = "0: No Reaction" deactivates the monitoring.

We recommend to always activate the PTC input when using motors which are equipped with PTC thermistors or thermostats. This prevents the motor from being destroyed by overheating.

Functional test

Connect a fixed resistor to the PTC input:

- $ightharpoonup R > 4 k\Omega$: Fault message must be activated.
- ▶ $R < 1 \text{ k}\Omega$: Fault message must not be activated.

5.14.4 Brake resistor monitoring (I2xt)

Due to the converted braking power, the brake resistor is thermally stressed and can even be thermally destroyed by excessive braking power.

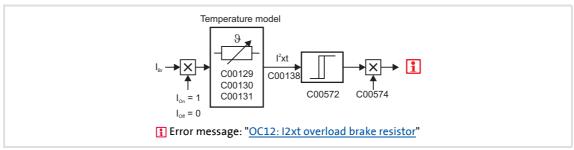
The monitoring of the I²xt utilisation of the controller serves to protect the brake resistor. It acts in proportion to the converted braking power.

Danger!

In the Lenze setting ($\underline{\text{C00574}}$ = "0: No Reaction") the response of the monitoring function does <u>not</u> stop the braking process!

In particular for applications such as hoists or applications with a DC-bus connection, it must be checked if a stopping of the braking process due to a setting of C00574 = "1: Fault" is permissible.

Stop!


Implement appropriate protective measures against thermal overload of the brake resistor!

Examples:

- Parameterisation of an error response in <u>C00574</u> and evaluation of the parameterised error message within the application or the machine control system.
- Interruption of the mains supply by means of the temperature contact at the brake resistor and a simultaneous activation of the mechanical brake.
- \blacktriangleright If the I²xt utilisation reaches the switch-off threshold set in C00572:
 - The error response set in C00574 will take place.
 - The "OC12: I2xt brake resistor overload" error message is entered into the logbook.
 - The bMctrlBrakeChopper status output of the LS <u>DeviceMonitor</u> system block will be set to TRUE.
- ▶ If the system is dimensioned correctly, the monitoring should not be activated. If individual pieces of rated data of the actually connected brake resistor are not known, they have to be identified.
- ▶ If the DC-bus voltage exceeds the overvoltage threshold due to a braking energy that is too high, the monitoring for overvoltage in the DC bus is activated ("OU: DC-bus overvoltage" error message).
- ▶ Apart from the threshold of the l²xt utilisation that can be set in <u>C00572</u>, there is the switching threshold of the brake transistor which results from the mains voltage (<u>C00173</u>) and the reduced brake chopper threshold (<u>C00174</u>).

Temperature model

[5-34] Signal flow for monitoring the brake resistor

The monitoring function calculates the braking current I_{Br} from the current DC-bus voltage U_{DC} act and the brake resistance parameterised in <u>C00129</u>:

$$I_{Br} = \frac{U_{DC_act}}{C00129}$$

i

Note!

The monitoring function can also be triggered due to a value entered in C00129 although a brake resistor is not even connected.

- ▶ During the calculation, the thermal utilisation of the brake resistor on the basis of the following parameters is taken into consideration:
 - Resistance value (C00129)
 - Continuous power (C00130)
 - Thermal capacity (C00131)
- ▶ In the Lenze setting these parameters are preset with the corresponding power-adapted Lenze brake resistor.
- ▶ C00133 indicates the calculated utilisation of the brake resistor in [%].
 - A utilisation of 100 % corresponds to the continuous power of the brake resistor depending on the maximally permissible temperature limit.

Related topics:

▶ Braking operation/brake energy management (□ 265)

5.14.5 Motor phase failure monitoring

Note!

In the Lenze setting ($\underline{\text{C00597}}$ = "0: No response"), the motor phase failure monitoring is not activated!

In order to safely detect the failure of a motor phase, a certain motor current must flow for the current sensor system. Thus, the response set in <u>C00597</u> (Lenze setting: "No Reaction") is caused after a delay time of maximally 2 s after controller enable if a current-carrying motor phase U, V, W fails or if motor connection is missing. If the current threshold value set in <u>C00599</u> is already exceeded within the delay time, the motor phase failure monitoring starts from this point in time.

The monitoring mode checks the current flow for each motor phase as a function of the commutation angle. Monitoring is activated if a commutation angle of approx. 140° is covered without the current set in C00599 being exceeded. Monitoring is activated at an output frequency of 0 Hz if none of the three motor phases reaches the threshold value set in C00599.

- ▶ If the motor phase failure monitoring is tripped:
 - The response set in C00597 will take place.
 - The error message "LP1: Motor phase failure" is entered into the logbook.
 - The bMctrlMotorPhaseFault status output of the LS <u>DeviceMonitor</u> system block is set to TRUE.
- ► The motor phase failure monitoring is <u>inactive</u> if
 - a controller inhibit is set,
 - connection to a rotating machine is carried out (flying restart circuit or connection to actual speed value),
 - an error is pending due to a DC-bus overvoltage ("OU"),
 - motor parameter identification is carried out,
 - DC-injection braking is active.

5.14.6 Motor phse error monitoring before operation

This function extension is available from version 02.00.00!

This extended motor phase failure monitoring can both detect a phase failure on the basis of test signals and check for the existence of the motor.

- ► The "motor phase error monitoring before operation" is <u>only directly active after</u> controller enable if
 - an error response is set in C00597 AND
 - the motor phase error monitoring is switched on (C2866/2 = "1: Yes").

Motor control (MCTRL) Monitoring

▶ The following parameters show the cause of the motor phase failure:

<u>C00561/3</u>: Motor phase U
 <u>C00561/4</u>: Motor phase V
 <u>C00561/5</u>: Motor phase W

Note!

The motor phase error monitoring before operation must not be connected to a rotating or coasting machine (high compensation currents and effect of the DC injection braking).

- In case of motor control with feedback, no motor phase error monitoring is executed if the actual speed value is > 10 rpm.
- In case of motor control without feedback, the user must ensure that the motor phase error monitoring will only be executed if the speed is 0.

If the motor is at quick stop and the brake is applied, no motor phase error monitoring is executed when quick stop is deactivated (same with "0" speed and applied brake).

If the rated current of the connected motor is lower than 10 % of the rated device current, the motor phase error monitoring can be activated although no motor phase error has occurred. In this case, the motor phase error monitoring must be switched off before operation (C2866/2 = 0: No").

With automatic brake control:

In case of automatic brake control, the brake will only be released if no motor phase failure exists and the magnetisation of the field-oriented control types is completed.

With manual brake control:

In case of manual brake control and forced release of the brake, the brake will be controlled directly as before.

The user himself must ensure that the brake will only be opened if all of the following conditions are met:

- Motor phase failure monitoring (<u>C00597</u>) and motor phase error monitoring before operation (<u>C2866/2</u>) are active.
- The controller is enabled (controller enable).
- The *bMctrlMotorPhaseFault* status output of the SB <u>LS_DeviceMonitor</u> is set to FALSE.
- A delay of the pulse enable in the device after controller enable for releasing the brake has been considered (opening the brake after controller enable must be executed with a delay).

5.14.7 Mains phase failure monitoring

Stop!

Under load, the mains input of a three-phase controller can be destroyed if the device is only supplied by two phases (e.g. if a mains phase fails).

The drive controller has a simple mains-phase failure detection function with which a mains phase failure can be detected under load.

- ▶ In the case of power-adapted machines, approx. 50 % of the rated motor power must be exceeded so that a main-phase failure can be detected.
- ▶ If the mains phase failure monitoring is tripped:
 - The error response set in <a>Coopsize will be carried out (Lenze setting: "Warning").
 - The "<u>Su02: One mains phase is missing</u>" error message will be entered into the logbook.
 - The bMctrlMainsFault status output of the LS DeviceMonitor system block will be set to TRUE.

5.14.8 Maximum current monitoring

The ultimate motor current to be parameterised in <u>C00939</u> is a limit value to protect the motor from destruction, influence of the rated data and demagnetisation.

- ▶ This limit value must not be travelled cyclically in the drive process.
- ► If the instantaneous value of the motor current exceeds the limit value set in C00939, the error response "Fault" occurs to protect the motor and the error message "OC7: Motor overcurrent" is entered into the logbook.
- ► The maximum currents to be parameterised in C00023 should have a sufficient distance to this limit value.

Note!

If a Lenze motor is selected from the catalogue whose plant parameters are transferred into the controller, the settings in $\underline{\text{C00022}}$ and $\underline{\text{C00023}}$ will automatically be adapted to the selected motor.

5.14.9 Maximum torque monitoring

Note!

In the Lenze setting ($\underline{\text{C00608}}$ = "0: No response"), the maximum torque monitoring is <u>not</u> activated!

If the maximum possible torque <u>C00057</u> is reached at the motor shaft, the response set in <u>C00608</u> will be carried out (Lenze setting: "0: No response").

If the activated monitoring is tripped:

- ▶ The "OT1: Maximum torque reached" error message is entered into the logbook.
- ► The bMctrlTorqueMax status output of the LS DeviceMonitor system block will be set to TRUE.

5.14.10 Motor speed monitoring

This function extension is available from version 02.00.00!

If the drive reaches the maximally permissible motor speed (C00965):

- ▶ The "Fault" error response takes place, i.e. the motor is shut down immediately.
- ▶ The error message "OS2: Max. motor speed reached" is entered into the logbook.

5.15 Internal interfaces | system block "LS_MotorInterface"

The **LS_MotorInterface** system block provides the internal interfaces to the driving machine in the function block editor.

Inputs

Identifier DIS code data type	Information/possible settings		
nPosCtrlOutLimit_a <u>C00830/21</u> INT	Limitation of the position controller output • Scaling: 16384 ≡ 100 % reference speed (C00011)		
nPosCtrlPAdapt_a C00830/20 INT	Adaptation of the position controller gain • Scaling: 16384 ≡ 100 % Vp (C00254)		
nSpeedHighLimit_a C00830/88 INT	Upper speed limit for the speed limitation • During torque-controlled operation only (bTorquemodeOn = TRUE) • Scaling: 16384 ≡ 100 % reference speed (C00011)		
nSpeedLowLimit_a C00830/23 INT	Lower speed limit for speed limitation • During torque-controlled operation only (bTorquemodeOn = TRUE) • Scaling: 16384 ≡ 100 % reference speed (C00011)		
bSpeedCtrlPAdaptOn	Adaptive adjustment of the speed controller gain		
<u>C00833/69</u> BOOL	FALSE Deactivate adaptive adaptation.		
	TRUE Activate adaptive adaptation.		
nSpeedCtrlPAdapt_a <u>C00830/25</u> INT	Adaptive adjustment of the speed controller gain • Scaling: 16384 ≡ 100 % Vp (C00070)		
bSpeedInterpolatorOn	Speed setpoint interpolation		
<u>C00833/28</u> BOOL	FALSE Deactivate interpolation		
	TRUE Activate interpolation		
nTorqueMotLimit_a C00830/29 INT nTorqueGenLimit_a C00830/28 INT	 Torque limitation in motor mode and in generator mode The drive cannot output a higher torque in motor/generator mode than set here. The applied values (any polarity) are internally interpreted as absolute values. If V/f characteristic control (VFCplus) is selected, limitation is indirectly performed via a so-called I_{max} controller. If sensorless vector control (SLVC) or servo control (SC) is selected, limitation has a direct effect on the torque-producing current component. Scaling: 16384 ≡ 100 % M_{max} (C00057) 		
	Torque limits in motor and generator mode:		
	TorqueGenLim M TorqueMotLim -N _N TorqueMotLim TorqueGenLim		
bTorqueInterpolatorOn <u>C00833/29</u> BOOL	Torque setpoint interpolation		
<u> </u>	FALSE Deactivate interpolation		
	TRUE Activate interpolation		

Identifier	Information/nossible settings
DIS code data type	Information/possible settings
nVoltageAdd_a C00830/31 INT	 Additive voltage impression An additional setpoint for the motor voltage can be specified via this process input. If there are, for instance, different loads at the motor output end, it is possible to apply a voltage boost at the starting time. If the value is negative, the voltage is reduced. Scaling: 16384 = 1000 V
	Values selected too high may cause the motor to heat up due to the resulting current!
bAutoBoostOn C00833/32 BOOL	AutoBoost function Motor voltage boost during the starting torque, controlled by process signals from the function block interconnection.
	FALSE Deactivate function
	TRUE Activate function
nBoost_a <u>C00830/26</u> INT	 Additional setpoint for the motor voltage at speed = 0 The entire voltage-frequency characteristic is provided with an offset. Scaling: 16384 ≡ 1000 V
	Stop! Values selected too high may cause the motor to heat up due to the resulting
	current!
bPosCtrlOn	Position/angle control
<u>C00833/27</u> BOOL	FALSE Deactivate position/angle control.
	TRUE Activate position/angle control.
bDeltaPosOn <u>C00833/35</u> BOOL	 Activate position difference as setpoint selection In order to position the motor shaft, the <u>position control</u> function can work within the motor control function with the absolute position setpoint <i>dnPosSetValue_p</i> or alternatively with the speed setpoint <i>nSpeedSetValue_a</i> and the position difference <i>dnDeltaPos_p</i>.
	FALSE Positioning with position setpoint dnPosSetValue_p.
	TRUE Positioning with speed setpoint nSpeedSetValue_a and position difference dnDeltaPos_p.
dnDeltaPos_p C00834/4 DINT	Position difference (following error input) • Difference between setpoint position and actual position in [increments] • Is used for <u>position control</u> if <u>bDeltaPosOn</u> = TRUE. • Scaling: 65535 ≡ 1 revolution
dnPosSetValue_p C00834/5 DINT	Absolute position setpoint in [increments] • Is used for <u>position control</u> if <i>bDeltaPosOn</i> = FALSE. • Scaling: 65535 ≡ 1 revolution
bPosDerivativeOn C00833/67 BOOL	 Create a setpoint for the speed controller from the position setpoint For highly dynamic control systems, the setpoint for the speed controller can be created from the absolute position setpoint dnPosSetValue_p instead of the speed setpoint nSpeedSetValue_a ➤ Position control/additive speed specification
	 TRUE Create a speed setpoint from the position setpoint. The absolute position setpoint dnPosSetValue_p is differentiated and a speed value is created which is the setpoint for the speed controller. Internal limitation of 65536 increments/ms.
bMotorRefOffsetOn <u>C00833/68</u> BOOL	Set home position ("referencing on the fly")
	TRUE Set home position to value dnMotorRefOffset_p.
dnMotorRefOffset_p <u>C00834/6</u> DINT	Home position in [increments] • Scaling: 65535 ≡ 1 revolution

Motor control (MCTRL)
Internal interfaces | system block "LS_MotorInterface"

Identifier DIS code data type	Information/possible settings	
bQspOn <u>C00833/33</u> BOOL	Quick stop	
	FALSE Deactivate quick stop	
	TRUE Activate quick stop	
nPWMAngleOffset_a <u>C00830/32</u> INT	Angle step change of output voltage phasor • Scaling: 65535 ≡ 1 revolution	
bSpeedCtrlIOn <u>C00833/31</u> BOOL	Directly set the I-component of speed controller In order to statically specify a minimum torque, e.g. when a load is being lifted.	
	TRUE Se the I-component of the speed controller to the value nSpeedCtrII_a.	
nSpeedCtrlI_a C00830/24 INT	Value of the speed controller integrator • Scaling depends on the selected motor control: -V/f control (VFCplus + encoder): 16384 = 100 % reference speed (C00011) -Servo control (SC) or vector control (SLVC): 16384 = 100 % M _{max} (C00057)	
nSpeedSetValue_a C00830/22 INT	Speed setpoint • Scaling: 16384 ≡ 100 % reference speed (C00011)	
bTorquemodeOn C00833/30 BOOL	Selection: Speed/Torque control	
	FALSE Speed control with torque limitation	
	TRUE Torque control with speed limitation	
nTorqueSetValue_a <u>C00830/27</u> INT	Torque setpoint / additive torque • Scaling: 16384 = 100 % M _{max} (C00057)	
bDcBrakeOn <u>C00833/34</u> BOOL	Activate DC injection brake	
	FALSE Deactivate DC-injection braking	
	TRUE Activate DC-injection braking	
bTorqueLimitAdaptOn <u>C00833/98</u> BOOL	Adaptation of torque limitation	
	TRUE Activate adaptation of torque limitation.	
nTorqueLimitAdapt_a <u>C00830/70</u> INT	Value for adaptation of torque limitation • Scaling: 16384 ≡ 100 % nTorqueMotLimit_a and. nTorqueGenLimit_a	

Outputs

Identifier DIS code dat	a type	Value/meaning	
bLimPosCtrlOut BOO		"Position controller output inside the limitation" status signal	
	BOOL	TRUE The position controller output is internally limited	
nOutputPosCtrl_a	INT	Position controller output • Scaling: 16384 ≡ 100 % reference speed (C00011)	
dnMotorPosAct_p	DINT	Current position of the motor shaft in [increments]	
dnMotorDeltaPosAct_p	DINT	Current following error in [increments] • Following error = Difference between set position and actual position	
bLimSpeedCtrlOut BC	BOOL	"Speed controller or manipulating variable of the slip regulator inside the limitation" status signal $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} $	
		TRUE The speed controller output is internally limited	
bLimSpeedSetVal		"Reduction or increase of the setpoint speed active" status signal	
	BOOL	TRUE Reduction or increase of the setpoint speed by the $I_{\mbox{\scriptsize max}}$ controller is active	
wMaxMotorSpeed	BOOL	Reference speed (C00011)	

Identifier DIS code	data tvpe	Value/meaning
nOutputSpeedCtrl_a		Speed or slip controller output • Scaling: 16384 ≡ 100 % reference speed (C00011)
nSpeedCtrllAct_a	INT	Current value of speed controller integrator • Scaling depends on the selected motor control: -V/f control (VFCplus + encoder): 16384 = 100 % reference speed (C00011) -Servo control (SC) or vector control (SLVC): 16384 = 100 % M _{max} (C00057)
nEffSpeedSetValue_a	INT	Effective speed setpoint • Scaling: 16384 ≡ 100 % reference speed (C00011)
nMotorSpeedAct_a 	051 INT	Actual speed value • Scaling: 16384 ≡ 100 % reference speed (C00011)
nMotorSpeedAct_v	INT	Actual speed value • Scaling: 65535 ≡ 1 revolution
nMotorFreqAct_a	058 INT	Current field frequency
bLimTorqueSetVal	BOOL	"Setpoint torque inside the limitation" status signal TRUE The setpoint torque is internally limited
wMaxMotorTorque	<u>C00057</u>	Maximum motor torque • wMaxMotorTorque = 10 * M _{max} (C00057)
nInputTorqueCtrl_a	INT	Input value of the torque control (torque setpoint) • Scaling: $16384 \equiv 100 \% M_{max} (\underline{C00057})$
nMotorTorqueAct_a C0005	56/2 INT	 Actual torque In the "VFC (+encoder)" motor control mode, this value is determined from the current motor current and only approximately corresponds to the actual torque value Scaling: 16384 = 100 % M_{max} (C00057)
nInputJerkCtrl_a	INT	Input value of the jerk limitation • Scaling: 16384 ≡ 100 % M _{max} (C00057)
bLimCurrentSetVal	BOOL	"Current setpoint inside the limitation" status signal TRUE The current setpoint is internally limited
nStatorCurrentIS_a	INT	Current stator current/effective motor current • Scaling: 16384 ≡ 100 % I _{max mot} (C00022)
nEffCurrentIq_a	INT	Current torque-producing cross current • Scaling: 16384 ≡ 100 % I _{max mot} (C00022)
nReaktCurrentId_a	INT	Current field-producing direct-axis current • Scaling: 16384 ≡ 100 % I _{max_mot} (C00022)
nActualFluxx_a	INT	Current magnetising current • Scaling: 16384 ≡ 100 % I _{max_mot} (C00022)
nDCVoltage_a	INT	Actual DC-bus voltage • Scaling: 16384 ≡ 1000 V
nMotorVoltage_a	INT	Current motor voltage/inverter output voltage • Scaling: 16384 ≡ 1000 V
bQspActive	BOOL	"Quick stop active" status signal TRUE Quick stop is active
bAutoDCBActive	BOOL	"Automatic DC-injection braking active" status signal ▶ DC-injection braking (□ 250)
bldentificationActive	BOOL	TRUE Automatic DC-injection braking is active "Motor parameter identification active" status signal ▶ Automatic motor data identification (□ 126)
		TRUE Motor parameter identification is active

8400 TopLine C | Software ManualMotor control (MCTRL)
Internal interfaces | system block "LS_MotorInterface"

Identifier DIS code data typ	Value/meaning			
bFlyingSyncActive	"Flying restart function active" status signal ▶ Flying restart function (□ 247)			
	TRUE Flying restart function is active			
bHlgLoad BOC	 Control signal for an additional loading function of the ramp function generator → L NSet 1.bExternalCINH To enable the ramp function generator to follow automatically when the controller is inhibited, for jerk-free setpoint connection. 			
	TRUE Set the ramp function generator to a setpoint of <i>nHlgSetValue_a</i>			
nHlgSetValue_a	 Setpoint for an additional loading function of the ramp function generator → L NSet 1.nClnhVal_a For speed-controlled drive tasks, the current actual speed value (e.g. in case of an active pulse inhibit, flying restart function, controller inhibit) is provided at this output. Scaling: 16384 = 100 % reference speed (C00011) 			
bHlgStop	Control signal for stopping the ramp function generator (L_NSet_1)			
BOC	TRUE Stop the ramp function generator			

5.16 Internal status signals | system block "LS_DeviceMonitor"

The **LS_DeviceMonitor** system block provides the status signals of the motor control in the function block editor.

Note!

The **LS_DeviceMonitor** system block can only be inserted on the application level.

If status signals of the motor control function are to be output via digital outputs or example, you can use the free *bFreeOut1* ... *bFreeOut8* outputs of the application block to transfer the desired status signals from the application level to the I/O level. On the I/O level, you can then establish the logical link to the digital output terminals.

Outputs

Identifier Data typ	Value/meanin	g	
bMctrlImpActive	_	Pulse inhibit is active	
bMctrlClampActive		Clamp current limitation is active	
bMctrlMotorPhaseFault BOO	TRUE L	Motor phase fault has been detected	
bMctrlEncoderComFault BOO	_	Encoder error has been detected	
bMctrlNmax BOO		Max. speed limitation is active	
bMctrlTorqueMax		Max. torque limitation is active	
bMctrlFChopReduced		PWM frequency reduction is active	
bMctrllxtOverload		Device utilisation (Ixt) ≥ device utilisation threshold (C00123) • Lenze setting: C00123 = 100 %	
nMctrllxtRate_a		e utilisation (Ixt) 384 = 100 %	
bMctrll2xtOverload		Thermal motor overload (I^2xt) \geq motor overload setting (C00120) • Lenze setting: C00120 = 100 %.	
nMctrll2xtRate_a		al motor load (I2xt) 384 ≡ 100 %	
bMctrlMotorPTC BOO		Temperature monitoring: An error has been detected	
bMctrlMotorTemp		Thermal motor overload	
bMctrlHeatSinkTemp	_	Thermal inverter overload	
bMctrlMainsFault	TRUE	Mains phase failure/Mains failure	
bMctrlFanFault BOC		Fan monitoring: An error has been detected	
bMctrlNmaxForFChop BOC		The maximum field frequency for the respective switching frequency has been exceeded.	
bMctrlShortCircuit	_	Motor short circuit has been detected	
bMctrlEarthFault BOC		Earth fault has been detected	
bMctrlUVDetected		An undervoltage has been detected	
bMctrlOVDetected BOO	TRUE	RUE An overvoltage has been detected	
bMctrlBrakeChopper	TRUE	Brake chopper error	

6 Encoder/feedback system

The 8400 TopLine uses various encoder/feedback systems for the motor controls with speed feedback and the position control:

- ▶ Resolver at X7
- ► TTL encoder at X8
- ▶ HTL encoder at the digital DI1/DI2 or DI6/DI7 input terminals

Danger!

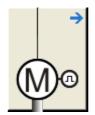
- If the encoder/resolver is used as motor encoder: Safe operation of the motor is no longer ensured in the event of an error!
- If servo control (SC) or V/f control (VFCplus + encoder) are used: For safety reasons, always select "Fault" as a response for the (open-circuit) monitoring of the encoder!
 - C00586: Resp. open circuit HTL encoder
 - C00603/1: Resp. open circuit MultiEncoder
 - C00603/2: Resp. open circuit resolver
- If an HTL encoder is used at the digital input terminals:

 Observe the maximum input frequencies of the digital inputs!
 - DI1/DI2: max. 200 kHz
 - DI6/DI7: max. 10 kHz
- To avoid interference when using an encoder, only use shielded motor and encoder cables!

Note!

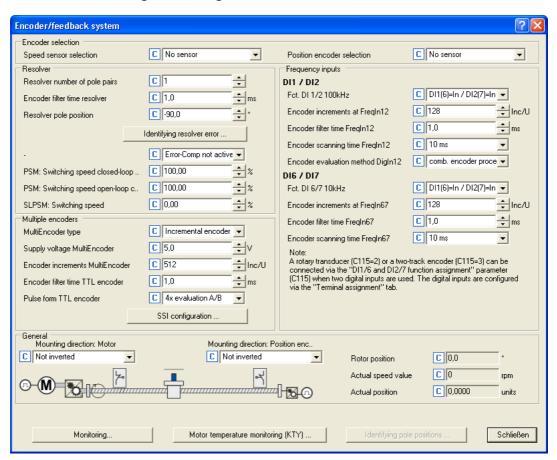
Speed feedback is essential for the following motor control modes with feedback:

- Servo control (SC)
- V/f control (VFCplus + encoder)



Encoder/feedback system
Parameterisation dialog/signal flow

6.1 Parameterisation dialog/signal flow


How to get to the parameterisation dialog of the encoder/feedback system:

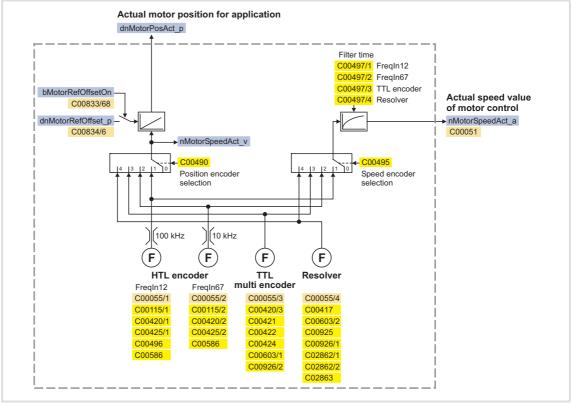
- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the *Overview* dialog level and click the following button:

 Go to the Overview → Motor data dialog level and click the Encoder/Feedback system... button.

Parameterisation dialog in the »Engineer«

Short overview of the relevant parameters:

Parameter	Info	Lenze sett	Ŭ
Encoder selection	/ General settings	value	Onit
<u>C00495</u>	Speed sensor selection • Source of feedback signal for speed control.	No senso	r
<u>C00490</u>	Position encoder selection • Source of feedback signal for position control.	No senso	r
<u>C00254</u>	Kp position controller	5.00	1/s
<u>C01206/1</u>	Mounting direction: Motor	not invert	ed
C01206/2	Mounting direction: Position encoder	not invert	ed
C00927	Rotor position	-	o
<u>C00051</u>	MCTRL: Actual speed value	-	rpm
<u>C01210/3</u>	MCK: Actual position	-	units
Resolver settings			
<u>C00925</u>	Resolver - number of pole pairs	1	
<u>C00497/4</u>	Encoder filter time resolver	2.0	ms
C00926/1	Resolver pole position	-90.0	0
C00002/25	Identify resolver error	0: Off / rea	ıdy
<u>C00417</u>	Activate resolver error comp.	0: Activate resolver error compensation	
C02862/1	Resolver: Cos gain	100.00	%
<u>C02862/2</u>	Resolver: Sin gain	100.00	%
<u>C02863</u>	Resolver: Phase error	0.00	%
C00055/4	Actual value - resolver	-	rpm
TTL Multi-Encode	r settings		
<u>C00422</u>	Encoder type	0: Incremental en	coder (TTL)
<u>C00421</u>	Encoder voltage	5.0	V
<u>C00420/3</u>	TTL encoder	512	Incr./rev.
<u>C00497/3</u>	Encoder filter time TTL encoder	1.0	ms
<u>C00424</u>	Pulse form TTL encoder	0: 4x evaluation	on A/B
<u>C00926/2</u>	Encoder pole position	0.0	0
C00055/3	Actual value - TTL-Multi-Encoder	-	rpm
Settings for HTL e	ncoder at DI1/DI2		
<u>C00115/1</u>	Fct. DI 1/2 100kHz • Function of the digital inputs DI1 and DI2	DI1(6)=In / DI2	2(7)=In
<u>C00420/1</u>	Encoder increments at FreqIn12If the digital inputs DI1 and DI2 are used as encoder inputs.	128	Incr./rev.
<u>C00497/1</u>	 Encoder filter time FreqIn12 If the digital inputs DI1 and DI2 are used as encoder inputs. 	1.0	ms
<u>C00425/1</u>	Encoder scanning time FreqIn12If the digital inputs DI1 and DI2 are used as encoder inputs.	10	ms
<u>C00496</u>	► Encoder evaluation method (☐ 316)	Combined encode	er method
C00055/1	Actual value - HTL encoder FreqIn12	-	rpm
Highlighted in grey = d	isplay parameter		



8400 TopLine C | Software Manual Encoder/feedback system Parameterisation dialog/signal flow

Parameter	Info	Lenze sett	ng	
		Value	Unit	
Settings for HTL enco	der at DI6/DI7			
<u>C00115/2</u>	Fct. DI 6/7 10kHz • Function of the digital inputs DI6 and DI7	DI1(6)=In / DI2	2(7)=In	
<u>C00420/2</u>	 Encoder increments at FreqIn67 If the digital inputs DI6 and DI7 are used as encoder inputs. 	128	Incr./rev.	
<u>C00497/2</u>	Encoder filter time FreqIn67If the digital inputs DI6 and DI7 are used as encoder inputs.	1.0	ms	
<u>C00425/2</u>	Encoder sample time FreqIn67If the digital inputs DI6 and DI7 are used as encoder inputs.	10	ms	
<u>C00055/2</u>	Actual value - HTL encoder FreqIn67	-	rpm	
Monitoring				
<u>C00498</u>	Open-circuit monitoring	0: Speed encoder a encoder		
C00586	Resp. open circuit HTL encoder	1: Fault		
C00603/1	Resp. to MultiEncoder open circuit	0: No React	ion	
C00603/2	Resp. to resolver open circuit	0: No Reaction		
C00603/3	Resp. to encoder angular drift monitoring	0: No Reaction		
C00603/4	Resp. to MultiEncoder comm. error	1: Fault		
C00579	Resp. max. speed/output freq. reached	0: No Reaction		
C00607	Resp. to max. freq. feedb. DIG12/67	1: Fault		
Highlighted in grey = display parameter				

Signal flow

[6-1] Signal flow - encoder interface

Generation of the actual speed value

...depending on the encoder selection and mounting direction:

Speed sensor (C00495)	Position encoder (<u>C00490</u>)	Motor mounting direction (C01206/1)	Direction of rotation of motor shaft (at setpoint = Cw)	Actual speed value (nAct_v)
		not inverted	Cw	$\Delta SetPos$
		inverted	Ccw	
×		not inverted	Cw	<u>C00495</u>
		inverted	Ccw	
×	×	not inverted	Cw	
		inverted	Ccw	
	×	not inverted	Cw	C00490 → ∆ActPos
		inverted	Ccw	
□ no encoder ☑ Encoder set				

6.2 Resolver at X7

Danger!

- If the resolver is used as motor encoder:

 Safe operation of the motor is no longer ensured in the event of an error!
- If servo control (SC) or V/f control (VFCplus + encoder) are used: For safety reasons, always select "Fault" in <u>C00603/2</u> as a response for the (open-circuit) monitoring of the encoder!

6.2.1 Parameterising the resolver

Note!

If a Lenze motor with resolver is used, the resolver is the only item that can be selected as speed sensor in <u>C00495</u>. Further resolver parameter setting is not required.

Moreover, Lenze synchronous machines do not require rotor position adjustment because the resolvers of the Lenze synchronous motors are preadjusted.

The following steps are required for commissioning a resolver:

- 1. If number of resolver pole pairs ≠ 1: Set number of pole pairs (C00925).
- 2. Select resolver as speed sensor (C00495) or/and as position encoder (C00490).
- 3. Adjust filter time of the actual speed value (C00497/4) if necessary.
 - Lenze setting: 2 ms
 - Lenze recommend a filter time between 1 ... 2 ms.
- 4. If the resolver is used as motor encoder and synchronous machine: Perform rotor position adjustment.
- 5. For the detection and monitoring of the motor temperature via the resolver cable:
 - Select the thermal sensor of the resolver in C01190/1.
 - Parameterise the monitoring:
 - ▶ Motor temperature monitoring (KTY) (☐ 323)
- 6. Parameterise open-circuit monitoring.
 - ▶ Resolver/multi-encoder open-circuit monitoring (☐ 320)

6.2.2 Optimising resolver behaviour

Due to mounting and production tolerances as well as resolver material property leakage, errors may occur which, among other things, result in speed-dependent vibration of the actual speed. These errors are called resolver errors. Resolver errors typically occur in the form of the 1st and 2nd harmonic. They have two different causes:

- 1. The inductances of the sine and cosine track of the resolver have slightly different values.
- 2. Sine and cosine track do not magnetise orthogonally to each other.

Resolver errors due to cause 1 can be corrected by adjusting the gains of the digital/analog converters which feed the resolver tracks. In the Lenze setting, the gains of both resolver tracks are preset with identical values.

Resolver errors due to cause 2 can be compensated for by a slight correction of the angle via which both resolver tracks are fed relative to one another.

When the "Resolver error identification" device command (C00002/25) is executed, the gain of the resolver signals and the angular drift of both resolver tracks is corrected to minimise the resolver error.

- ▶ Select a speed-controlled operating mode (e.g. servo control) for your machine while you perform a resolver error identification run. During the identification run, speed must be constant and greater than 500 rpm.
- ▶ After a successful resolver error identification run, the resolver automatically uses the following resolver error parameters which have been identified during the procedure:

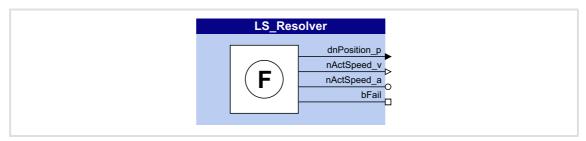
Parameter	Info	Lenze setting	
		Value	Unit
C02862/1	Resolver: Cos gain	100.00	%
C02862/2	Resolver: Sin gain	100.00	%
C02863	Resolver: Phase error	0.00	%

- ► The detected gain can have values from 80 ... 120 %. It makes sense to adjust only one of the two gains during a resolver error compensation. The other one remains at 100 % (Lenze setting).
- ➤ Save the parameter set afterwards to accept the identified resolver error parameters permanently (device command C00002/11).
- ▶ If the resolver error compensation is deactivated (<u>C00417</u> = "1: Resolver error comp. deact."), the resolver will resume work with the Lenze setting. However, the identified resolver error parameters remain saved.

How to perform a resolver error identification run:

- 1. Select a motor control mode with speed feedback in C00006 and commission it.
 - ▶ Selecting the control mode
 - Avoid a speed controller setting that is too tight (motor humming).
 - Set the speed ramps as well as the speed setpoint (> 500 rpm).
- 2. Inhibit the controller, e.g. via the C00002/16 device command or via a LOW signal at terminal X5/RFR.
 - The controller must be in the "SwitchedOn" status for the resolver error identification run to be performed.
- 3. Activate resolver error identification via the C00002/25 device command = "1: On / start".
- 4. Enable the controller again.
 - The controller changes to the "MotorIdent" device status.
 - The resolver error identification run starts.
 - The progress of the identification run can be seen in C00002/25.
 - During the resolver error identification run, the direction of rotation of the motor is not important.
 - We recommend to traverse at constant setpoint speed (|nset| > 500 rpm) until resolver error identification has finished.
 - If the application offers only limited space for traversing, reversing is also possible during active resolver error identification. In this case, ensure that the controller is not inhibited and that the speed profile is traversed for at least 1 second at constant setpoint speed (|nset| > 500 rpm).
 - The identification is completed if the "0: Off / ready" message is displayed in C00002/25.
 - After successful identification, it changes back to the "SwitchedOn" device status.
- 5. After the resolver identification run has been completed successfully:
 - It is possible to inhibit the controller again.
 - Resolver error compensation is activated (C00417 = "0: Resolver error comp. act.").
- 6. In order to accept the identified resolver error parameters:
 - 📅 Save parameter set.

Resolver error identification can be aborted any time by setting a controller inhibit.



Possible causes for resolver error identification failure:

- ► A controller inhibit was set during resolver error identification.
- ▶ A time-out occurred while the algorithm was processed.
 - This error may occur if more than 60 seconds pass by between the setting of the "Resolver error identification" device command and the enable of the controller.
- ► The setpoint speed was too small (|nset| < 500 rpm).
- ▶ The setpoint speed was not traversed for at least 1 second.

6.2.3 Internal interfaces | "LS_Resolver" system block

The **LS_Resolver** system block provides the application with speed, position and error information from the resolver in the form of process signals.

Outputs

Identifier	Data type	Value/meaning	
dnPosition_p	DINT	Actual encoder position in [increments]	
nActSpeed_v	INT	Actual speed in [increments/ms]	
nActSpeed_a	INT	Actual speed in [%] • Scaling: 16384 ≡ 100 % reference speed (<u>C00011</u>)	
bFail BOOL		"Error" status	
		TRUE Encoder error (e.g. open circuit)	

Encoder/feedback system Multi-Encoder at X8

6.3 Multi-Encoder at X8

Danger!

- If the resolver is used as motor encoder: Safe operation of the motor is no longer ensured in the event of an error!
- If servo control (SC) or V/f control (VFCplus + encoder) are used: For safety reasons, always select "Fault" (Lenze setting) in <u>C00603 1</u> as a response for the (open-circuit) monitoring of the encoder!

Stop!

<u>Before connecting</u> an encoder, ensure that the encoder supply voltage has the correct setting in <u>C00421</u>:

Lenze setting: 5 V (setting range: 5 ... 12 V)

If the set supply voltage exceeds the permissible supply voltage of the connected encoder, the encoder may be destroyed!

Note!

The encoder position can be saved safe against mains failure in the controller.

- For this purpose, bit 0 must be set in <u>C02652</u>. The actual position of the motor control is then saved in the controller (<u>not</u> in the memory module) and thus remains known to the drive control after mains switching.
- In case of a device replacement, this information gets lost and the home
 position might be approached or set again once. A device replacement can be
 recognised by using the SB <u>LS RetainData</u> and a suitable function block
 interconnection.

Regarding the position resolution, higher-level applications refer to the resolution of the encoder that is activated for position control.

The interface of the Multi-Encoder offers various ways in which the encoders can be used / evaluated:

- ► TTL incremental encoder
- ► Sin/cos encoder
- ► Absolute value encoder (sin/cos encoder with hiperface)
- ▶ SSI encoder
- ▶ Digital frequency coupling (in preparation)

Required settings

The table below lists the required settings for the various encoder types as a function of the cable length.

- ▶ The given values apply when Lenze system cables are used under typical ambient temperatures.
- ▶ Other cables and cable cross-sections or extreme ambient temperatures may require metrologically detected adaptations.
- ▶ In case of a higher supply power of encoders, e.g. with laser-based length measuring systems, an external supply of the encoders must be provided.

Encoder type Product key	Rated voltage	Encoder number of		Voltage setti with a cabl	ng in <u>C00421</u> e length of	
	V _{rated}	increments C00420/3	0 - 30 m	30 - 70 m	70 - 100 m	100 - 150 m
TTL incremental encod	ler					
<u>C00422</u> ="0: Incremen	tal encoder (TTI	_)"				
IG2048-5V-T	5 V ±5 %	2048	5.0 V	5.1 V	5.2 V	5.3 V
IG4096-5V-T		4096				
IK2048-5V-T		2048				
IK4096-5V-T		4096				
Sin/cos encoder						
<u>C00422</u> ="1: Sine/cosi	ne encoder"					
IG1024-5V-V	5 V ±5 %	1024	5.0 V	5.1 V	5.2 V	5.3 V
IG2048-5V-S		2048				
Absolute value encoder (sin/cos encoder with hiperface)						
C00422 ="2: Absolute value encoder (hiperface)"						
AM1024-8V-H	8 V (7 12 V)	1024	8.0 V			
SSI encoder						

C00422 ="4: Absolute value encoder (SSI)"

- All SSI encoders which use the Stegmann SSI protocol are supported.
- For configuration, see subchapter "SSI encoder". (307)

Encoder/feedback system Multi-Encoder at X8

6.3.1 Parameterising Multi-Encoders

The following steps are required for commissioning an encoder:

- 1. Select encoder type (C00422).
- 2. Set encoder voltage (C00421).
- 3. Set number of encoder increments (C00420/3).
- 4. Adjust filter time of the actual speed value (C00497/3) if necessary.
 - Lenze setting: 1 ms
 - Lenze recommend a filter time between 1 ... 2 ms.
- 5. If the encoder is used as motor encoder and synchronous machine: Perform rotor position adjustment.
- 6. For the detection and monitoring of the motor temperature via the encoder cable:
 - Select the thermal sensor of the encoder in C01190/2.
 - Parameterise the monitoring:
 - ▶ Motor temperature monitoring (KTY) via encoder (△ 325)
- 7. Parameterise open-circuit monitoring.
 - ▶ Resolver/multi-encoder open-circuit monitoring (□ 320)
- 8. When a TTL-incremental encoder is used: No further settings required. The TTL incremental encoder is now ready for operation.
- 9. When another encoder is used:
 Perfom the commissioning steps specified in the subchapter for the respective encoder.

6.3.1.1 TTL incremental encoder

For operating TTL incremental encoders, only observe the information on parameter setting and commissioning in chapter [6.3.1].

6.3.1.2 Sin/cos encoder

The use of sin/cos encoders enables a fine interpolation of the position within one encoder increment due to the analog representation of the track signals A and B. This serves to considerably increase the resolution of the position information of a sin/cos encoder compared to a conventional TTL incremental encoder.

6.3.1.3 Absolute value encoder (sin/cos encoder with hiperface)

Absolute value encoders are especially suited for synchronous motors or positioning modes where only a one-time homing is to be executed. The analog evaluation of the sin/cos tracks enables a high resolution.

- ▶ With regard to the saving of the position information, it is distinguished between singleturn and multiturn encoders:
 - Singleturn: Saving within one revolution
 - Multiturn: Saving within a number of revolutions

Note!

The selection of an error response in <u>C00603/4</u> serves to optionally monitor the communication between absolute value encoder and controller.

If the monitoring is tripped:

- The error response set in C00603/4 is triggered.
- The "SD7: Encoder communication error" error message is entered into the logbook.

Short overview of the relevant parameters:

Parameter	Info	Lenze setting	
		Value Unit	
<u>C00492</u>	Hiperface: Detected TypCode	-	
<u>C00493</u>	Hiperface: TypCode	0	
C00494/1	Hiperface: Number of revolutions	0	
C00494/2	Hiperface: Steps per revolution	0	
Highlighted in grey = display parameter			

Encoder/feedback system Multi-Encoder at X8

How to parameterise the absolute value encoder:

- 1. As encoder type (C00422), select "2: Absolute value encoder (hiperface)".
- 2. Automatic detection/manual setting of encoder type:

Automatic readout of the type code

If the encoder has already been connected and read out, the type code is displayed in C00492.

- Automatic readout takes place if C00494/1..2 or C00422 change (change to selection "2: Absolute value encoder (hiperface)") and if the device is switched on after a waiting time of approx. 1 s has expired.
- An overview of encoder types that are detected and set automatically by the controller can be found in the table below.
- If the value 0xFF is read out as type code, it is about an encoder with extended nameplate (ET). This will be set automatically as well.
- The values read out of the encoder are displayed in C00494/1..2 and cannot be overwritten.

Encoders not detected automatically

If the used encoder is not included in the table (unknown type code), the value 0x00 is displayed in C00492.

- In this case, the number of steps per revolution must be set in C00494/1 and the number of revolutions in C00494/2 for a multiturn encoder.
- 3. Set the number of sine/cosine periods per revolutions as "increment" of the encoder in C00420/3.
 - This value can be obtained from the encoder data sheet.
 - This point must be executed last since it initiates a renewed readout of the encoder.

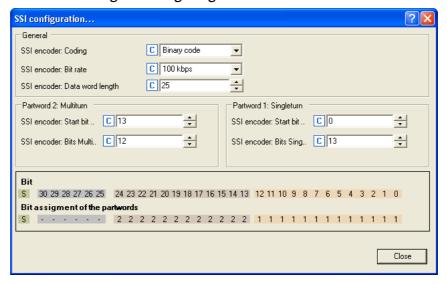
Encoders detected automatically

Type code	Bits Singleturn	Bits Multiturn
0x02	14	0
0x07	14	11
0x22	15	0
0x27	15	12
0x32	12	0
0x37	12	9
0x42	9	0
0x47	9	6

6.3.1.4 SSI encoder

All SSI encoders which use the Stegmann SSI protocol are supported.

- ► Supported bit rates for SSI communication: 100 ... 1000 kbps
- ► Supported data word widths: 1 ... 31 bits (effective)
- ► Supported output code of the SSI encoder: Gray or binary
- ► The SSI encoder can be used as position encoder or master encoder with a minimum cycle time of 1 ms.
- ► The SSI encoder can be supplied via X8 up to a maximum voltage of 12 V and a maximum current of 0.25 A.
- ► The received SSI data words are provided to the application via the <u>LS MultiEncoder</u> system block for further processing in the function block editor.



Note!

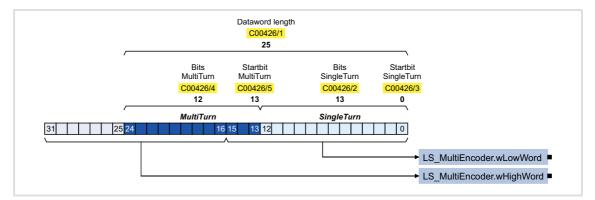
For some SSi encoder types it is common that despite a high data transfer rate an slow position detection (e.g. every 5, 10 or 20 ms) takes place. In this case, the position control, working in a 1-ms cycle, only functions with low gain and thus low dynamics since the values of the SSI encoder are only updated every x ms.

Parameterisation dialog in the »Engineer«

Confirm the **SSI configuration...** button in the *Encoder/Feedback system* dialog box to go to the parameterisation dialog for configuring the SSI encoder:

Short overview of the relevant parameters:

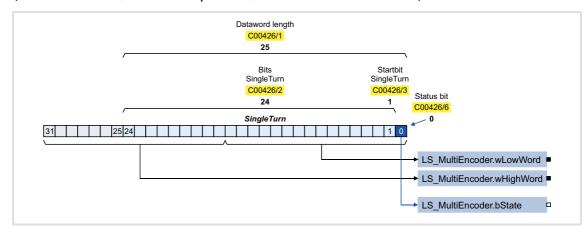
Parameter	Info	Lenze setting Value Unit
General		Talue Cili
C00428	SSI encoder: Coding	0: Binary code
C00427	SSI encoder: Bit rate	1: 100 kbps
C01110	LS_MultiEncoder: Solid measure	0: rotatively unipolar
C01119/1	LS_MultiEncoder: Current position	- units
C01119/2	LS_MultiEncoder: Maximum travel distance	- units
Data word struct	ure	
C00426/1	SSI encoder: Data word length	25
C00426/2	SSI encoder: Bits SingleTurn	13
C00426/3	SSI encoder: Start bit Singleturn	0
C00426/4	SSI encoder: Bits Multiturn	12
C00426/5	SSI encoder: Start bit Multiturn	13
C00426/6	SSI encoder: Status bit	0
C00426/7	SSI encoder: Left shift of raw value	0
Further settings		
C01111/1	LS_MultiEncoder: Difference - traverse path	1
C01111/2	LS_MultiEncoder: Difference - encoder path	1
C01112/1	LS_MultiEncoder: Position offset	0.0000
C01112/2	LS_MultiEncoder: Data area min	-214748.3647
C01112/3	LS_MultiEncoder: Data area max	214748.3647
Highlighted in grey = d	lisplay parameter	


How to parameterise the SSI encoder:

- 1. Set the encoder voltage (C00421) of the used SSI encoder.
- 2. As encoder type (C00422), select "4: Absolute value encoder (SSI)".
- 3. Set the bit rate (C00427) for SSI communication.
 - For SSI protocols, the permissible baud rate is reduced if the cable length is increased. A safe bit rate must be set, depending on the length of the used encoder cable and the electromagnetic interference level.
- 4. Set the partitioning of the SSI data word according to the used SSI encoder in C00426/1...5 (see example below).
- 5. If an SSI encoder with Gray coding is used: Select "1: Gray code" in C00428 to convert from Gray to binary.
 - In the Lenze setting, "0: Binary code", conversion is not performed, i.e. an SSI encoder with binary coding is expected.
- 6. If a linear SSI encoder is used instead of a rotative encoder or the encoder value is to be interpreted with or without sign: Set the corresponding setting in C01110.

Configuration example 1: Rotative encoder "BaumerIVO G0M2H Z04"

Coding: 8192x4096 Gray code


Parameter	Info	Setting for example 1
<u>C00426/1</u>	SSI encoder: Data word length	25
<u>C00426/2</u>	SSI encoder: Bits SingleTurn	13
C00426/3	SSI encoder: Start bit Singleturn	0
C00426/4	SSI encoder: Bits Multiturn	12
C00426/5	SSI encoder: Start bit Multiturn	13
C00426/6	SSI encoder: Status bit	0
C00428	SSI encoder: Coding	1: Gray code
C01110	LS_MultiEncoder: Solid measure	0: rotatively unipolar

- ► In "Machine parameters", the feed constant and the gearbox factors for motor and position encoder must be set correctly. (498)
- ▶ One encoder revolution is displayed with 65536 increments.

Configuration example 2: Linear encoder "Sick DME 5000-111"

Coding: Gray code with 25 bits of data word length (Bit 0 = status bit, bit 1 ...24 = position, resolution 1 bit = 0.1 mm)

Parameter	Info	Setting for example 2
C00426/1	SSI encoder: Data word length	25
C00426/2	SSI encoder: Bits SingleTurn	24
C00426/3	SSI encoder: Start bit Singleturn	1
C00426/4	SSI encoder: Bits Multiturn	0
C00426/5	SSI encoder: Start bit Multiturn	0
C00426/6	SSI encoder: Status bit	0
C00428	SSI encoder: Coding	1: Gray code
C01110	LS_MultiEncoder: Solid measure	1: linearly unipolar

In "Machine parameters", the feed constant and the gearbox factors for motors and position encoders must be set as follows:

- ▶ The position encoder gearbox factor must be set to 1:1.
- ▶ When the motor gearbox factor is set to 1:1, the path covered at one motor revolution has to be entered as feed constant in C01204 in [units].
- ► In case of a different motor gearbox factor, the path covered at one defined "drive roll" revolution has to be entered as feed constant in C01204 in [units].
- ▶ The feed of the mechanics entered in C01204 is displayed with 65536 increments.

Scaling of the position value

In order to scale the position change provided by the position encoder at this feed to 65536 as well, enter the traverse path in [units] in $\underline{\text{C1111/1}}$ and the corresponding difference of the raw value provided by the encoder in $\underline{\text{C1111/2}}$.

▶ Only the bits that contain the position data may be taken from the data word for the raw value. If e.g. the bit 0 contains status information, the raw value must be shifted to the right by this bit since only then the SLB of the position value is positioned correctly.

Scaling example:

1 [unit] = 1 mm

Feed constant (C01204) = 4 mm/revolution

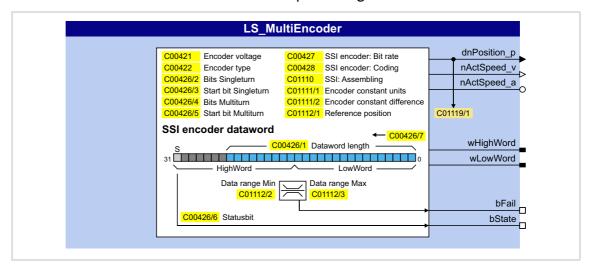
Encoder resolution = 50 μ m \rightarrow raw value difference = 20 [digit]/1 [unit]

- → Difference traverse path (C1111/1) = 1 [unit]
- → Difference encoder value (C1111/2) = 20 [digit]

Thus, at a feed of the mechanics of 4 mm, the encoder provides a position difference of 65536 increments.

```
Position = Raw value \cdot \frac{\text{Encoder feed constant}}{65536} with encoder feed constant = \frac{\text{C01111/1} \cdot 65536}{\text{C01111/2} \cdot \text{C01204}} Position = Raw value \cdot \frac{\text{C01111/1} \cdot 65536}{\text{C01111/2} \cdot \text{C01204}}
```

Left shift of raw value


The data read-in by the encoder is processed via the settings of the start bits for singleturn and multiturn and the number of bits in such a way that a position signal suitable for the controller is created that can be fed into the function block interconnection.

For evaluating status information that is transmitted by the encoders as well, it is sometimes required to adjust the output at the "raw value" outputs (wHighWord and wLowWord). For this purpose, a left shift can be set in C00426/7.

6.3.2 Internal interfaces | "LS_MultiEncoder" system block

The **LS_MultiEncoder** system block provides the application with speed, position and error information from the encoder in the form of process signals.

Outputs

Identifier	Data type	Value/meaning		
dnPosition_p	DINT	ctual position value of the encoder in [increments]		
nActSpeed_v	INT	Actual speed of the encoder in [increments/ms]		
nActSpeed_a	INT	Actual speed of the encoder in [%] • 100 % ≡ reference speed (<u>C00011</u>)		
wHighWord wLowWord	WORD	32-Bit data telegram of the encoder (raw data) ▶ <u>SSI encoder</u> (□ 307)		
bFail		Configurable status signal "invalid encoder value"		
	BOOL	TRUE The encoder value is outside the value range set in C01112/2 and C01112/3. ▶ Recognition of invalid encoder values		
bState (from version 02.00.00)	BOOL	tatus bit of the encoder The bit position of the status bit within the 32-bit data telegram can be set in C00426/6.		

6.3.2.1 Recognition of invalid encoder values

For detecting invalid encoder values, a value range can be defined via the parameters $\underline{\text{C01112/2}}$ and $\underline{\text{C01112/3}}$. When the encoder signal leaves the set value range, the *bFail* status signal is set to TRUE. Monitoring is only active if the *bSetRef* input is set to TRUE.

► Example 1: SSI laser distance meter

The *bFail* status signal can be used to detect an interruption of the laser beam or a dirty mirror.

► Example 2: SSI bar code scanner

In an application, an SSI bar code scanner is used to detect the workpiece ID and the workpiece position. A setting of sensible limit values serves to use the *bFail* status signal to determine whether the ID or the position of the SSI bar code scanner has been detected.

6.3.2.2 Setting of a static position offset

If, for example, the encoder cannot be mounted mechanically in order that the supplied position matches the mechanics or if for other reasons, a static position offset is required, this value can be set in C01112/1.

6.4 HTL encoder at DI1/DI2 or DI6/DI7

6.4.1 Parameterising digital inputs as encoder inputs

The function of the digital inputs DI1/DI2 and DI6/DI7 is defined via C00115/1...2.

To be able to use the digital inputs as encoder inputs, select 2, 3, or 4 (Lenze recommendation: 2) in C00115/1 or C00115/2, depending on the input terminals used.

Selection in <u>C00115/12</u>	Function
2: DI1(6)&DI2(7)=FreqIn (2-track)	 DI1/6 and DI2/7 = 2-track frequency input Permits a two-track evaluation of the encoder including correct detection of the direction of rotation.
3: DI1(6)=FreqIn / DI2(7)=Direction	DI1/6 = 1-track frequency input DI2/7 = specification of direction
4: DI1(6)=Countin / DI2(7)=In	DI1/6 = counter input DI2/7 = digital input

Danger!

- For single-track evaluation, make sure that the sign is correctly specified. Otherwise, the motor may overspeed.
- If an HTL encoder is used at the digital input terminals:
 Observe the maximum input frequencies of the digital inputs!
 - DI1/DI2: max. 200 kHz
 - DI6/DI7: max. 10 kHz

Note!

If the digital inputs are parameterised as encoder inputs, the corresponding output signals (bln1/bln2 and bln6/bln7) at the LS <u>DigitalInput</u> system block are automatically set to FALSE.

Wiring diagram, assignment and electrical data of the digital input terminals can be found in the **8400 hardware manual** in the chapter "Technical data".

• The hardware manual has been stored in electronic form on the data carrier supplied with the 8400 drive controller.

8400 TopLine C | Software Manual

Encoder/feedback system HTL encoder at DI1/DI2 or DI6/DI7

General procedure

(if the encoder is connected to the digital inputs DI1 and DI2)

- 1. Define the function of the digital inputs DI1 and DI2 in C00115/1.
- 2. Set the encoder increments in C00420/1.
- 3. Select "1: Encoder signal FreqIn12" in C00495/1.
- 4. Adapt the filter time of the speed measurement in C00497/1.
- 5. In the case of encoders with a very low resolution (number of increments < 120 increments):
 - Change the encoder evaluation procedure in **C00496** if necessary.

Related topics:

- ▶ <u>Digital input terminals</u> (☐ 329)
- ▶ <u>Using DI1(6) and DI2(7) as frequency inputs</u> (☐ 333)

6.4.2 **Encoder evaluation method**

Depending on the encoder used, the following table specifies which evaluation method should be selected in C00496:

Selection in C00496	Encoder evaluation method
0: High-resolution encoder	 High-precision procedure for high-resolution encoders (>=512 increments) Method for speed measurement with automatic scan time setting (0.5 500 ms). Evaluation with automatic scan time minimisation for an optimum dynamic performance. Particularly suited for high-resolution encoders (≥ 1024 inc) with good signal quality, i.e. -good scanning ratio 1:1 -exactly 90°-phase offset between track A and B (error ≤ ± 10°) Not suited for encoders with poor signal quality. Wiring according to EMC (e.g. motor and encoder cable shielding) is required!
1: Low-resolution encoder (StateLine)	 High-precision procedure for low-resolution encoders (<=128 increments) Exact method for speed measurement with automatic scan time setting (0.5 500 ms) for low-resolution encoders in the range of 4 128 increments. Evaluation with automatic scan time minimisation for an optimum dynamic performance. Method is also suited for encoders with poor signal quality, e.g. for encoders with high error rate in scanning ratio and phase offset. This method requires an equidistant period length per encoder increment. Wiring according to EMC (e.g. motor and encoder cable shielding) is required!
2: Comb. encoder method (Lenze setting)	Combination of the first two procedures as a function of the speed (recommended procedure) • For a high-precision speed measurement suited for encoders with an arbitrary number of increments (4 1024 increments). • Low input frequencies at the encoder inputs: The method is used for low-resolution encoders. • High input frequencies at the encoder inputs: The method is used for high-resolution encoders. • This method is suited for encoders with average to good signal quality. • Evaluation with automatic scan time minimisation for an optimum dynamic performance. • This method requires an equidistant period length per encoder increment. • Wiring according to EMC (e.g. motor and encoder cable shielding) is required!
3: Edge-counting procedure	 Simple edge counting procedure with adjustable scanning time (C00425) Speed measurement by means of the edges of tracks A and B measured per scanning interval. Integrated correction algorithm for EMC interference. Limited suitability for systems with unshielded encoder and/or motor cable. Limited suitability for encoders with poor signal quality, i.e. high error rate in scanning ratio and phase offset.

- We recommend to use the preset combined encoder method ($\underline{\text{C00496}} = 2$).
- Use one of the first three procedures (C00496 = 0, 1, or 2) for dynamic applications (e.g. operating mode: servo control).
- For dynamic speed control or positioning processes, use an HTL encoder with 1024 increments.

6.4.3 HTL encoder at DI1/DI2

Note!

At the digital terminals DI1 and DI2, only encoders with HTL level can be used.

In spite of the selected operating mode <u>without</u> encoder feedback, the actual speed value (<u>C00051</u>) is calculated if an encoder is connected and "1: Encoder signal FrqIn12" is selected in <u>C00495</u>.

Low speeds (except for edge counting)

For the first three methods ($\underline{\text{C00496}} = 0, 1, \text{ or 2}$), the minimum speed that can be measured depends on the encoder resolution.

The quantisation error

- ▶ is independent of the encoder resolution,
- exclusively depends on the encoder quality (encoder errors).
- ▶ at least amounts to 0.5 rpm.

Internal arithmetic operations automatically maintain the minimally required value of the scanning time in order to achieve maximum dynamics.

Encoder resolution (Number of increments)	Min. measurable speed in [rpm]
8	16
16	8
32	4
64	2
128	1
256	0.5
≥ 512	0.25

8400 TopLine C | Software Manual

Encoder/feedback system
HTL encoder at DI1/DI2 or DI6/DI7

Low speeds with edge counting

The minimum speed that can be measured <u>and</u> the quantisation error of speed measurement in the edge-counting procedure ($\underline{C00496} = 3$) depend on the scanning time that can be set in $\underline{C00425/1}$ and the encoder resolution.

Depending on accuracy and the requirements with regard to the dynamic performance, the respective scanning time must be selected and set in C00425/1:

Encoder					Scanning	time [ms]				
resolution (Number of	1	2	5	10	20	50	100	200	500	1000
increments)				Min. n	neasurabl	e speed in	[rpm]			
8	1875	938	375	188	93.8	37.5	18.8	9.4	3.8	1.9
16	938	469	188	94	46.9	18.8	9.4	4.7	1.9	0.9
32	469	234	94	46.9	23.4	9.4	4.7	2.3	0.9	0.5
64	234	117	46.9	23.4	11.7	4.7	2.3	1.2	0.5	0.2
128	117	58.6	23.4	11.7	5.9	2.3	1.2	0.6	0.2	0.12
256	58.6	29.3	11.7	5.9	2.9	1.2	0.6	0.3	0.12	0.06
512	29.3	14.6	5.9	2.9	1.5	0.6	0.3	0.15	0.06	0.03
1024	14.6	7.3	2.9	1.5	0.7	0.3	0.15	0.07	0.03	0.01

6.4.4 HTL encoder at DI6/DI7

Note!

Single-track evaluation of the digital DI6/DI7 terminals as speed feedback (CO115/2 = 1 or 3) is not possible. Hence, a single-track encoder cannot be used for speed control at the digital DI6 terminal!

Low speeds with edge counting

The speed measurement is evaluated at the digital terminals DI6/DI7 with the edge-counting procedure and a fixed scanning time that can be set in $\frac{\text{C00425}}{2}$.

The minimum speed that can be measured <u>and</u> the quantisation error of speed measurement in the edge-counting procedure depend on the scanning time that can be set in C00425/2 and the encoder resolution.

Depending on accuracy and the requirements with regard to the dynamic performance, the respective scanning time must be selected and set in $\underline{\text{C00425/2}}$:

Encoder					Scanning	time [ms]				
resolution (Number of	1	2	5	10	20	50	100	200	500	1000
increments)				Min. n	neasurabl	e speed in	[rpm]			
8	1875	938	375	188	93.8	37.5	18.8	9.4	3.8	1.9
16	938	469	188	94	46.9	18.8	9.4	4.7	1.9	0.9
32	469	234	94	46.9	23.4	9.4	4.7	2.3	0.9	0.5
64	234	117	46.9	23.4	11.7	4.7	2.3	1.2	0.5	0.2
128	117	58.6	23.4	11.7	5.9	2.3	1.2	0.6	0.2	0.12
256	58.6	29.3	11.7	5.9	2.9	1.2	0.6	0.3	0.12	0.06
512	29.3	14.6	5.9	2.9	1.5	0.6	0.3	0.15	0.06	0.03
1024	14.6	7.3	2.9	1.5	0.7	0.3	0.15	0.07	0.03	0.01

Maximum speeds with edge counting

Due to the lower input frequency (max. 10 kHz) compared to the terminals DI1/DI2, operation with maximum speed at the terminals DI6/DI7 is limited. ▶ Digital input terminals (□ 329)

Encoder resolution (Number of increments)	Max. measurable speed in [rpm]
8	No restrictions
16	37500
32	18750
64	9375
128	4688
256	2344
512	1172
1024	586

6.5 Monitoring

6.5.1 Resolver/multi-encoder open-circuit monitoring

Open-circuit monitoring is available for the resolver cable and the encoder cable.

Danger!

- For safety reasons, always select "Fault" as a response for the (open-circuit) monitoring of the resolver/encoder!
- · To avoid interference when using an encoder, only use shielded motor and encoder cables!

The encoders to be monitored are selected in C00498:

Selection	Function
0: Speed encoder and position encoder	 Open-circuit monitoring is active for the speed encoder selected in <u>C00495</u> and the position encoder selected in <u>C00490</u>. Depending on whether a speed encoder or position encoder has been selected, the monitoring mode for the resolver and/or encoder is activated. If no speed encoder and position encoder have been selected, open-circuit monitoring is deactivated.
1: Resolver only	Open-circuit monitoring is only active for the resolver, independent on the selection of the speed encoder and position encoder. Open-circuit monitoring for the encoder is deactivated.
2: Encoder only	Open-circuit monitoring is only active for the encoder, independent on the selection of the speed encoder and position encoder. Open-circuit monitoring for the resolver is deactivated.
3: Resolver and encoder	Open-circuit monitoring is active for the resolver and encoder, independent on the selection of the speed encoder and position encoder.

We recommend the Lenze setting, "0: Speed sensor and position encoder". Further possible settings make sense if the respective encoder is not used as speed sensor or position encoder but for other tasks in the application. Moreover, a selective switch-off of the monitoring is possible if other settings are made.

When does the open-circuit monitoring system respond?

Resolver	Multi encoder
 In case of open circuit in the encoder cable. If the resolver impedance is too high. In case of EMC interferences. 	In case of open circuit in the encoder cable.

Response to open circuit

Resolver	Multi encoder
The error response set in <u>C00603/2</u> is triggered (Lenze setting: "0: No Reaction"). Logbook entry: " <u>SD2: Open circuit - resolver</u> "	The error response set in <u>C00603/1</u> is triggered (Lenze setting: "0: No Reaction"). Logbook entry: " <u>SD4: Open circuit - MultiEncoder</u> "

6.5.2 Open-circuit monitoring HTL encoder

Open-circuit monitoring is available for the HTL encoder cable.

Danger!

For safety reasons, always select "Fault" (Lenze setting) as a response for the (open-circuit) monitoring of the HTL encoder!

Note!

If you do not use an HTL encoder, deactivate the monitoring ($\underline{\text{C00586}}$ = "0: No Reaction").

When does the open-circuit monitoring system respond?

The open-circuit monitoring will trigger if

- ▶ an open circuit occurs in the encoder cable.
- extreme overload (e.g. a blocked motor shaft) occurs in the starting phase of the motor.
- ▶ highly dynamic reversion of the motor occurs.

Which measured values lead to an actuation of the open-circuit monitoring system?

The following measured values checked for plausibility lead to an actuation of the open-circuit monitoring system:

- 1. If the total deviation between actual speed and setpoint speed is higher than f = 40 Hz for a time > 0.1 s .
- 2. If the actual speed detected is f = 0 Hz or n = 0 rpm and the I_{max} controller or the torque limitation for servo control (SC) is active for $t \ge 0.1$ s.
- 3. If the sign of the injected frequency and the actual speed is not the same, the I_{max} controller is active and this status is active for 0.1 s. Usually this is the case when A/B tracks are reversed.

Response to open circuit

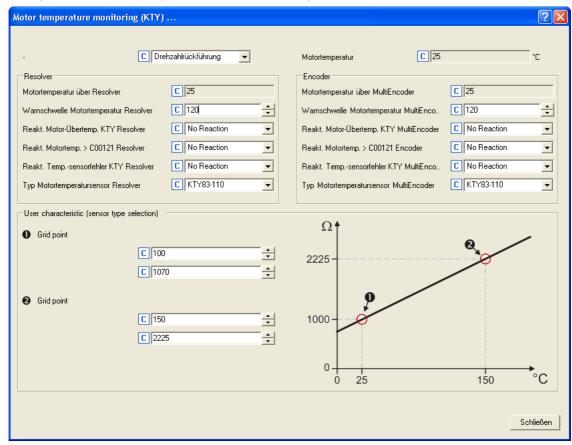
- ▶ If the open-circuit monitoring is tripped:
 - The error response set in C00586 is activated (Lenze setting: "Fault").
 - The "SD3: Open circuit feedback system" is entered into the Logbook.
 - The bMctrlEncoderComFault status output of the LS DeviceMonitor SB is set to TRUE.
- ▶ A setting of C00586 = "0: No Reaction" deactivates the monitoring.

6.5.3 Motor temperature monitoring (KTY)

The motor temperature can also be detected and monitored via the resolver cable and/or the encoder cable.

- ▶ The feedback system to be used for the motor temperature is selected in C01193.
- ► The respective motor temperature monitoring includes an early warning stage as well as an open-circuit monitoring for the thermal sensor.

i


Note!

In the Lenze setting of <u>C00583/1...6</u>, the motor temperature monitoring functions are switched on! These monitoring functions are only active with speed encoder selection "3: Multi encoder" or "4: Resolver" in <u>C00495</u>.

From version V11.00.00, the servo control (SC) the temperature compensation within the motor control is activated in the Lenze setting of $\underline{C02878/1}$. However, temperature compensation is only active with speed sensor selection "3: Multi encoder" or "4: Resolver" in $\underline{C00495}$ as well as error-free KTY temperature detection (display in $\underline{C00063/1} \neq 255$ °C).

Parameterisation dialog in the »Engineer«

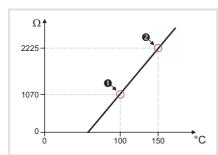
Click the **Motor temperature monitoring (KTY)** ... button in the *Encoder/feedback system* dialog box to access the parameterisation dialog:

Short overview of the relevant parameters:

Parameter	Info	Lenze setting
		Value Unit
<u>C01193</u>	Feedback system motor temperature	0: Speed feedback
C00063/1	Motor temperature	- °C
Resolver		
<u>C00063/2</u>	Motor temperature via resolver	- °C
C00121/1	Warning threshold motor temp. to resolver	120 °C
C00583/1	Motor overtemperature KTY resolver	1: Fault
<u>C00583/3</u>	Motor temp. > C00121 resolver	5: Warning
<u>C00583/5</u>	Thermal sensor motor KTY resolver	1: Fault
C01190/1	Thermal motor sensor to resolver	0: KTY83-110 °C
Encoder		
<u>C00063/2</u>	Motor temperature via encoder	- °C
C00121/2	Warning threshold motor temp. to encoder	120 °C
<u>C00583/2</u>	Motor overtemperature KTY encoder	1: Fault
<u>C00583/4</u>	Motor temp. > C00121 encoder	5: Warning
<u>C00583/6</u>	Thermal sensor motor KTY encoder	1: Fault
<u>C01190/2</u>	Thermal motor sensor to encoder	0: KTY83-110 °C
User characteristic		
<u>C01191/1</u>	PTC characteristic: Temperature 1	100 °C
<u>C01191/2</u>	PTC characteristic: Temperature 2	150 °C
<u>C01192/1</u>	PTC characteristic: Resistance 1	1070 Ohm
C01192/2	PTC characteristic: Resistance 2	2225 Ohm
Highlighted in grey = display parameter		

Motor temperature monitoring (KTY) via resolver

- ▶ If the winding temperature detected via the motor temperature sensor exceeds the limit value set in C00121/1 (Lenze setting: 120°):
 - An advance warning in the form of the error response set in <a>C00583/3 is issued.
 - The "OH7: Motor temperature resolver > C121" error message is entered into the logbook.
- ▶ If the fixed limit value of 150 °C is exceeded:
 - The error response set in <a>C00583/1 is triggered.
 - The "OH9: Motor temperature resolver" error message is entered into the logbook.
 - The bFail status output of the LS Resolver SB is set to TRUE.
- ▶ If open circuit is detected for the motor temperature sensor:
 - The error response set in C00583/5 is triggered.
 - The "<u>SD6: Thermal detector error resolver</u>" error message is entered into the logbook.
 - The bFail status output of the <u>LS_Resolver</u> SB is set to TRUE.


Motor temperature monitoring (KTY) via encoder

- ► If the winding temperature detected via the motor temperature sensor exceeds the limit value set in C00121/2 (Lenze setting: 120°):
 - An advance warning in the form of the error response set in C00583/4 is issued.
 - The "OH6: Motor temperature MultiEncoder > C121" error message is entered into the logbook.
- ▶ If the fixed limit value of 150 °C is exceeded:
 - The error response set in C00583/2 is triggered.
 - The "OH12: Motor overtemperature MultiEncoder" error message is entered into the logbook.
 - The bFail status output of the LS MultiEncoder SB is set to TRUE.
- ▶ If open circuit is detected for the motor temperature sensor:
 - The error response set in C00583/6 is triggered.
 - The "SD12: Thermal detector error MultiEncoder" error message is entered into the logbook.
 - The bFail status output of the LS MultiEncoder SB is set to TRUE.

Specific characteristic for the motor temperature sensor

A specific characteristic can be defined and activated for the motor temperature sensor if required.

- ► The specific characteristic is defined on the basis of two grid points which must be set in C01191 and C01192. Those two points define a line which is extrapolated to the right and to the left.
- ► The specific characteristic can be activated by selecting "1: Spec. characteristic" in C01190/1 for the resolver and in C01190/2 for the encoder.
- ▶ In the Lenze setting, the specific characteristic is defined as follows:

- ► Grid point **①**
 - C01191/1 = 100 °C
 - C01192/1 = 1070 Ω
- ► Grid point ❷
 - C01191/2 = 150 °C
 - C01192/2 = 2225 Ω

[6-2] Lenze setting of the specific characteristic

Note!

If a motor is selected from the motor catalogue, parameters <u>C01190</u>, <u>C01191</u>, and <u>C01192</u> are overwritten!

6.5.4 **Encoder - angular drift monitoring**

This function extension is available from version 02.00.00!

Note!

In the Lenze setting (C00603/3) = 0: No response), the angular drift monitoring of the encoder is not activated!

The encoder angular drift monitoring monitors a possible deviation of the real encoder angle from the angle calculated by counting increments in the encoder evaluation.

- ▶ If a deviation higher than 45° (electrical) is recognised when monitoring is activated:
 - The error response set in <u>C00603/3</u> is triggered.
 - The "SD8: Encoder angular drift monit." error message is entered into the logbook.
 - The "Reference known" status of the "Homing" basic drive function is reset (if this status was set before)

A deviation may occur, for instance, by incorrect parameter setting of the encoder increments, by lines in the form of interferences caused by EMC or loss of lines caused by EMC.

The encoder angular drift monitoring for encoders with and without absolute information is implemented by two different principles which are explained in detail in the following subchapters.

6.5.4.1 Angular drift monitoring for encoders without absolute information

For an encoder without absolute information, the number of incoming encoder lines between two zero pulses (one revolution) is monitored. This value must equal the encoder increments set in C00420.

Note!

After mains switching, monitoring is only active after second incoming zero pulse since the first line difference to be used can only be calculated with the second and first zero pulse.

When the motor (and thus the encoder) is replaced, it is very likely that a angular drift error occurs within the first revolution after acknowledging the encoder error since the monitoring function cannot recognise that the encoder has been replaced.

6.5.4.2 Angular drift monitoring for encoders with absolute information

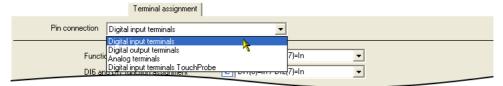
For an encoder with absolute information, cyclical communication with the encoder takes place and the angle is read out digitally. This angle is compared to the angle from the encoder evaluation.

Note!

If monitoring is deactivated ($\frac{\text{C00603/3}}{\text{C00603/3}}$ ="0: No Reaction"), no cyclical communication with the encoder takes place and thus no communication errors with the encoder can occur.

If monitoring is activated, it is only executed for speeds lower than 100 rpm due to runtimes for communication.

• If increments get lost at higher speeds, this deviation can only be recognised when the speed falls below 100 rpm for at least 80 ms.


After each detected encoder angular drift error, a renewed read-out of the position is tripped automatically and this angle is written into the encoder evaluation. This makes it possible to acknowledge the error. In case of synchronous machines, the pole position is corrected simultaneously.

7 I/O terminals

This chapter provides information on the function, possible parameter settings, and technical data of the input/output terminals of the controller.

In the »Engineer«, the input and output terminals are parameterised on the Terminal assignment tab. To do this, go to the Control terminals list field and select the terminals that you wish to parameterise:

You can find further information in the respective subchapter:

- ▶ Digital input terminals (☐ 329)
- ▶ <u>Digital output terminals</u> (☐ 349)
- ▶ Analog terminals (☐ 352)
- ▶ Touch probe detection (☐ 362)

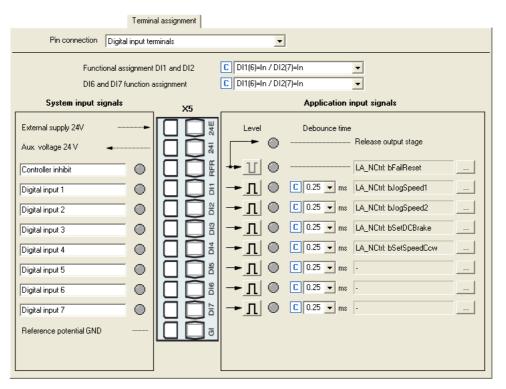
Note!

The input and output terminals of the drive controller have already been functionally assigned in the default setting ("Lenze setting"). The preconfigured assignment depends on the technology application selected in C00005 and the control mode selected in C00007:

- TA "Actuating drive speed": Terminal assignment of the control modes (394)
- TA "Table positioning": Terminal assignment of the control modes (424)
- TA "Switch-off positioning": Terminal assignment of the control modes (451)

Wiring diagram, assignment and electrical data of the input and output terminals can be found in the 8400 hardware manual in the chapter "Technical data".

• The hardware manual has been stored in electronic form on the data carrier supplied with the 8400 drive controller.


How you can alter the preconfigured assignment of the input and output terminals is described in the chapter entitled "<u>User-defined terminal assignment</u>". (<u>U 370</u>)

7.1 Digital input terminals

The drive controller has 7 parameterisable input terminals (DI1 ... DI7) for detecting digital signals. The RFR control input for enabling the controller is permanently connected to the device control unit.

Parameterisation dialog in the »Engineer«:

Button	Function
Л	Indicates the polarity of the input is HIGH active. The polarity can be changed from HIGH active to LOW active by clicking this button.
Т	Indicates that the polarity of the input is LOW active. The polarity can be changed from LOW active to HIGH active by clicking this button.
	Open the parameterising dialog for assigning application inputs to the digital input. ▶ Changing the terminal assignment with the »Engineer« (□ 374)

Short overview of parameters for the digital input terminals:

Parameter	Info	Lenze setting		
		Value Unit		
<u>C00115/1</u>	Fct. DI 1/2 200kHz ▶ Change function assignment (☐ 331)	0: DI1(6)=In / DI2(7)=In		
<u>C00115/2</u>	Fct. DI 6/7 10kHz ► Change function assignment (□ 331)	0: Dl1(6)=In / Dl2(7)=In		
Digital inputs DI1 DI7				
C00114	DigInX: Inversion	Bit coded		
C02830/17	DI1DI7: Debounce time	1: 0.25		
C00443/1	Dlx: Terminal level	-		
<u>C00443/2</u>	DIx: Output level	-		
Highlighted in grey = display	Highlighted in grey = display parameter			

Related topics:

- ► Touch probe detection (🕮 362)
- ▶ <u>User-defined terminal assignment</u> (☐ 370)

7.1.1 Change function assignment

The internal processing function of the digital input terminals DI1/DI2 und DI6/DI7 can be reconfigured in C00115 if necessary. In this way, these input terminals can alternatively be used as frequency or counting inputs in order to implement the following functions:

- ▶ Detection of the input frequency
- ▶ Detection and processing of two unipolar input frequencies to one bipolar frequency
- Counting of input pulses
- ► Evaluation of the speed feedback (HTL encoder) for the motor control (speed-controlled operation)

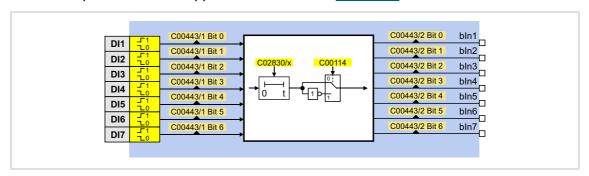
C00115/1: Function assignment of DI1 and DI2		Function assignment		
C00115/2: Function assignment of DI6 and DI7		DI1 / DI6	DI2 / DI7	
0	DI1(6)=In / DI2(7)=In	Digital input	Digital input	
1	DI1(6)=FreqIn / DI2(7)=In	Frequency input	Digital input	
2	DI1(6)&DI2(7)=FreqIn (2-track)	Frequency in	put (2-track)	
3	DI1(6)=FreqIn / DI2(7)=direction	Frequency input (speed)	Frequency input (direction)	
4	DI1(6)=Countin / DI2(7)=In	Count input	Digital input	

Note!

- In the Lenze setting of <u>C00115</u>, the digital input terminals DI1/DI2 and DI6/DI7 have been configured as "normal" digital inputs.
- The digital input terminals DI3 ... DI5 are basically designed as "normal" digital inputs.
- Very high pulse frequencies can be measured at the DI1/DI2 and DI6/DI7 input terminals if the latter have been configured as frequency or counting inputs in $\underline{\text{C00115}}$. Scanning is then carried out within less than μ s instead of the otherwise usual scanning rate of 1 kHz (1 ms).

You can find detailed information on the respective function assignment in the following subchapters:

- ▶ Using DI1(6) and DI2(7) as digital inputs (☐ 332)
- ▶ Using DI1(6) and DI2(7) as frequency inputs (☐ 333)
- ▶ <u>Using DI1(6) as counting input</u> (☐ 338)



7.1.1.1 Using DI1(6) and DI2(7) as digital inputs

Function assignment 0: DI1(6)=In / DI2(7)=In

With this setting in $\underline{\text{C00115}}$, the digital input terminals have been configured as "normal" digital inputs.

- ► For each digital input, the debounce time (C02830/1...7) and the terminal polarity (C00114) can be set individually.
- ► The current terminal level at the input of the internal processing function is shown in C00443/1 in bit-coded form.
- ▶ The output level for the application is shown in C00443/2 in bit-coded form.

Internal interfaces to the application

▶ Relevant outputs at the LS DigitalInput system block:

Output	DIS code data type	Value/meaning
bin1 bin7	<u>C00443/2</u> BOOL	Digital input DI1 DI7

Related topics:

- ▶ Using DI1(6) and DI2(7) as frequency inputs (☐ 333)
- ▶ Using DI1(6) as counting input (☐ 338)
- ▶ <u>Internal interfaces | System block "LS DigitalInput"</u> (💷 342)

7.1.1.2 Using DI1(6) and DI2(7) as frequency inputs

General information on using the input terminals as frequency inputs

The frequency inputs serve to detect HTL encoders with any number of increments and single-track and two-track signals. Single-track signals can be evaluated with or without rotation signal.

Note!

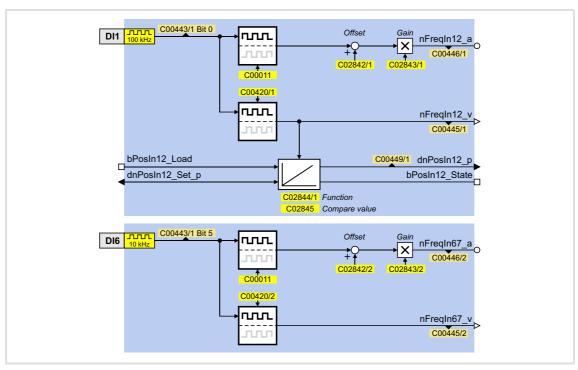
- Make sure that, when motor control with speed feedback is in use, the maximum input frequency of the respective input terminal is not exceeded.
 - DI1/DI2: $f_{max} = 100 \text{ kHz}$ (from version 02.00.00: $f_{max} = 200 \text{ kHz}$)
 - $DI6/DI7: f_{max} = 10 \text{ kHz}$
- If the encoder signal is used as an actual speed value: Number of encoder pulses / revolution \leq **8192!**

Example of DI6/DI7 (in accordance with the preceding note):

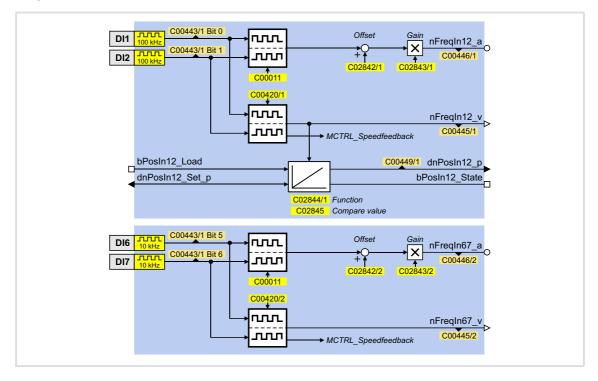
- ▶ Number of encoder increments: 512 pulses / motor revolution
- ▶ Reference speed (C00011): 1500 rpm
- ► Speed setpoint: 100 %

Input frequency =
$$\frac{1500 \text{ rpm}}{60 \text{ s}} \times 512 \text{ pulse} = 12800 \text{ pulse/s} = 12.8 \text{ kHz}$$

<u>Result:</u> The speed or the number of increments is too high!

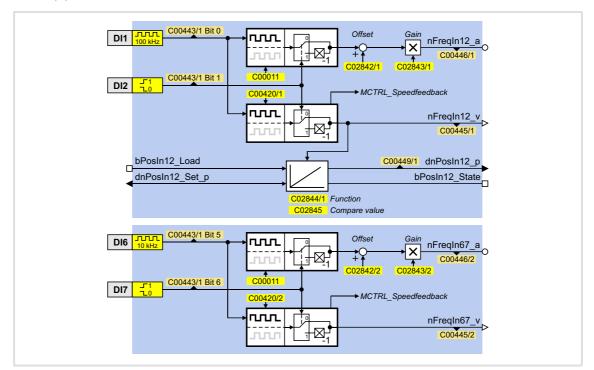


The LS DigitalInput system block can also provide the encoder position. Detailed information on this topic is provided in chapter "Output of the encoder position of the DI1/DI2 frequency input". (345)


Function assignment 1: DI1(6)=FreqIn / DI2(7)=In

This setting in <u>C00115</u> configures the input terminal DI1 or DI6 as frequency input. The input terminal DI2 or DI7 remains configured as "normal" digital input..

Function assignment 2: DI1(6)&DI2(7)=FreqIn (2-track)


This setting in C00115 can be used to connect a two-track encoder to the DI1/DI2 or DI6/DI7 terminals.

Function assignment 3: DI1(6)=FreqIn / DI2(7)=Direction

This setting in $\underline{\text{C00115}}$ can be used to connect a single-track encoder to terminals DI1/DI2 or DI6/DI7. For this purpose, the rotation speed is evaluated via terminal DI1(6) and the direction of rotation of the encoder (LOW level \equiv CW direction of rotation) is evaluated via the DI(7) terminal.

Short overview of the parameters for the frequency inputs:

Parameter	Info	Lenze setting	
		Value	Unit
C00011	Appl.: Reference speed	1500	rpm
Frequency input DI1	/DI2		
C00115/1	Fct. DI 1/2 200kHz	0: DI1(6)=In	/ DI2(7)=In
C00420/1	Encoder increments at FreqIn12	128	Incr./rev.
<u>C02842/1</u>	FreqIn12: Offset	0.00	%
<u>C02843/1</u>	FreqIn12: Gain	100.00	%
<u>C02844/1</u>	PosIn12: Function	Loading with level	
<u>C02845</u>	PosIn12: Comparison value	0	
<u>C00443/1</u>	DIx: Terminal level	-	
<u>C00445/1</u>	FreqIn12_nOut_v	-	Incr/ms
<u>C00446/1</u>	FreqIn12_nOut_a	-	%
C00449/1	FreqIn12_dnOut_p	-	Incr
Frequency input DI6/DI7			
<u>C00115/2</u>	Fct. DI 6/7 10kHz	0: DI1(6)=In	/ DI2(7)=In
<u>C00420/2</u>	Encoder increments at FreqIn67	128	Incr./rev.
<u>C02842/2</u>	FreqIn67: Offset	0.00	%
<u>C02843/2</u>	FreqIn67: Gain	100.00	%
<u>C00443/1</u>	Dlx: Terminal level	-	
<u>C00445/2</u>	FreqIn67_nOut_v	-	Incr/ms
<u>C00446/2</u>	FreqIn67_nOut_a	-	%
Highlighted in grey = display parameter			

Internal interfaces to the application

► Relevant inputs at LS <u>DigitalInput</u> system block:

Input	Data type	Information/possible settings	
Frequency input DI1	/DI2		
bPosIn12_Load		Load angle integrator with starting value and reset status signal	
	BOOL	TRUE Angle integrator is loaded with the value at <i>dnPosIn12_Set_p</i> and <i>bPosIn12_State</i> is reset to FALSE.	
dnPosIn12_Set_p	DINT	Starting value for angle integrator	

► Relevant outputs at the <u>LS DigitalInput</u> system block:

Output	Data type	Value/meaning	
Frequency input DI1/D	12		
nFreqIn12_a	<u> 6/1</u> INT	Output frequency as scaled analog signal in [%]	
nFreqIn12_v	1 <u>5/1</u> INT	Output frequency as speed signal in [inc/ms]	
dnPosIn12_p	DINT	 Angle output signal 65536 [incr.] = 1 encoder revolution Overflow is possible (display via bPosln12_State) 	
bPosIn12_State	BOOL	Status signal "Overflow occurred/distance processed" • Status signal can be reset via bPosIn12_Load.	
		TRUE Overflow has occurred or distance is processed.	
Frequency input DI6/DI7			
nFreqIn67_a	<u> 6/2</u> INT	Output frequency as scaled analog signal in [%]	
nFreqIn67_v C0044	1 <u>5/2</u> INT	Output frequency as speed signal in [inc/ms]	

Related topics:

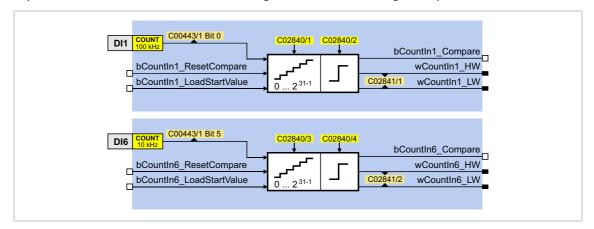
- ▶ Output of the encoder position of the DI1/DI2 frequency input (☐ 345)
- ▶ <u>Using DI1(6) and DI2(7) as digital inputs</u> (☐ 332)
- ► <u>Using DI1(6) as counting input</u> (338)
- ▶ Internal interfaces | System block "LS DigitalInput" (□ 342)

7.1.1.3 Using DI1(6) as counting input

General information on use as a counting input

The counting input is used for counting fast edges. A 32-bit counter counts from a parameterisable starting value up to a parameterisable comparison value and then outputs a corresponding status signal.

▶ Possible counting range: 0 ... 2³¹ - 1 (0 ... 2147483647)



Note!

- The starting value must be have been set so that it is smaller than the comparison value. Otherwise, the counter will be kept at the starting value because the condition "Count value ≥ Comparison value" has been satisfied.
- Note the maximum input frequency of the respective input terminal:
 - DI1: $f_{max} = 200 \text{ kHz}$
 - DI6: $f_{max} = 10 \text{ kHz}$

Function assignment 4: DI1(6)=CountIn / DI2(7)=In

This setting in C00115 configures the input terminal DI1 or DI6 as counting input. The input terminal DI2 or DI7 remains configured as "normal" digital input..

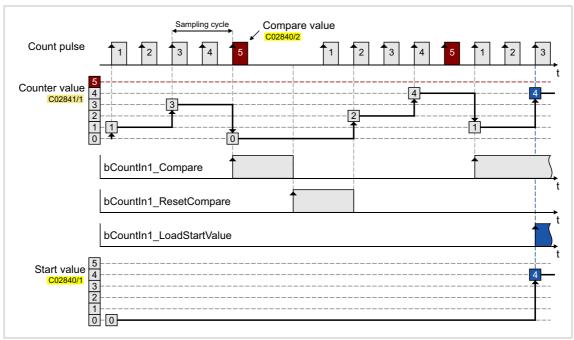
Short overview of parameters for the counting inputs:

Parameter	Info	Lenze so	etting
		Value	Unit
Counting input DI1			
C00115/1	Fct. DI 1/2 200kHz	0: DI1(6)=In	/ DI2(7)=In
C00621/3	LS_DigitalInput: bCountIn1_Reset	0: Not co	nnected
C00621/4	LS_DigitalInput: bCountIn1_LoadStartValue	0: Not co	nnected
C02840/1	CountIn1: Starting value	0	incr
<u>C02840/2</u>	CountIn1: Comparison value	65535	incr
C02841/1	CountIn1: Counter content	-	incr
<u>C00443/1</u>	DIx: Terminal level	-	
Counting input DI6			
C00115/2	Fct. DI 6/7 10kHz	0: DI1(6)=In	/ DI2(7)=In
C00621/97	LS_DigitalInput: bCountIn6_Reset	0: Not co	nnected
C00621/98	LS_DigitalInput: bCountIn6_LoadStartValue	0: Not connected	
C02840/3	CountIn6: Starting value	0	incr
<u>C02840/4</u>	CountIn6: Comparison value	65535	incr
C02841/2	CountIn6: Counter content	-	incr
C00443/1	Dlx: Terminal level	-	
Highlighted in grey = display parameter			

Internal interfaces to the application

► Relevant inputs at the <u>LS DigitalInput</u> system block:

Identifier DIS code data type	Information/possible settings	
Counting input DI1		
bCountIn1_ResetCompare	Reset status signal "Comparison value reached"	
BOOL	FALSE TRUE The output bCountIn1_Compare is reset to FALSE.	
bCountIn1_LoadStartValue	Load starting value into counter	
BOOL	FALSE TRUE The starting value set in C02840/1 is accepted as the current count value.	
Counting input DI6		
bCountIn6_ResetCompare	Reset status signal "Comparison value reached"	
BOOL	FALSE TRUE The output bCountIn6_Compare is reset to FALSE.	
bCountIn6_LoadStartValue BOOL	Load starting value into counter	
	FALSE TRUE The starting value set in C02840/3 is accepted as the current count value.	


► Relevant outputs at the <u>LS DigitalInput</u> system block:

Identifier DIS code data type	Value/meaning	
Counting input DI1		
bCountIn1_Compare	Status signal "Comparison value reached"	
BOOL	FALSE Current count value < comparison value (C02840/2)	
	TRUE Current count value ≥ comparison value (C02840/2)	
wCountIn1_HW wCountIn1_LW C02841/1 WORD	 Current count value Output as High and Low word (without sign) Possible counting range: 0 2³¹ - 1 	
Counting input DI6		
bCountIn6_Compare	Status signal "Comparison value reached"	
BOOL	FALSE Current count value < comparison value (C02840/4)	
	TRUE Current count value ≥ comparison value (C02840/4)	
wCountIn6_HW wCountIn6_LW C02841/2 WORD	 Current count value Output as High and Low word (without sign) Possible counting range: 0 2³¹ - 1 	

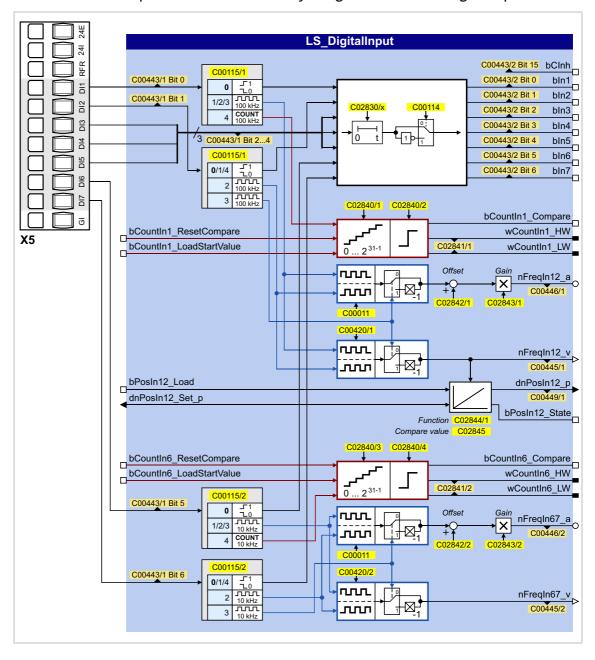
Counting behaviour

The following temporal characteristic shows the counting process depending on the signals of the interfaces described before:

[7-1] Transient characteristic of a quick counter block, sampling cycle = 1 ms

- ▶ The counter starts with the parameterised starting value.
- ▶ If the comparison value is reached or exceeded:
 - The counter jumps back to its starting value.
 - The output bCount1(6) Compare is set to TRUE.
- ▶ If there is a FALSE-TRUE edge is at the input bCountIn1(6)_ResetCompare, the output bCountIn1(6)_Compare can be reset to FALSE.
- ▶ If there is a FALSE-TRUE edge at the input bCountIn1(6)_LoadStartValue, the current counter content can be reset to the parameterised starting value.

Related topics:


- ▶ Using DI1(6) and DI2(7) as digital inputs (☐ 332)
- ▶ Using DI1(6) and DI2(7) as frequency inputs (☐ 333)
- ▶ <u>Internal interfaces | System block "LS DigitalInput"</u> (💷 342)

7.1.2 Internal interfaces | System block "LS_DigitalInput"

The system block LS DigitalInput maps the digital input terminals in the FB editor.

- ▶ The internal processing function of the digital DI1/2 and DI6/7 input terminals can be reconfigured inn C00115 if necessary. These input terminals can then be alternatively used as frequency inputs or counting inputs.
- ▶ The DI3 ... DI5 input terminals are basically designed as "normal" digital inputs.

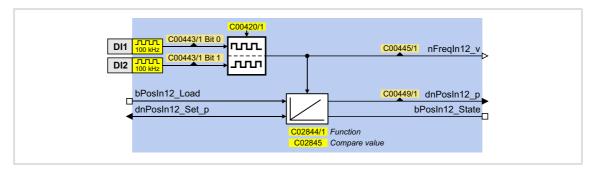
Inputs

Identifier DIS code data type	Information/possible settings		
Counting input DI1	▶ <u>Using DI1(6)</u> as counting input		
bCountIn1_ResetCompare	Reset status signal "Comparison value reached"		
BOOL	FALSE TRUE The output bCountIn1_Compare is reset to FALSE.		
bCountIn1_LoadStartValue	Load starting value into counter		
BOOL	FALSE TRUE The starting value set in C02840/1 is accepted as the current count value.		
Frequency input DI1/DI2	▶ Output of the encoder position of the DI1/DI2 frequency input		
bPosIn12_Load	Load angle integrator with starting value and reset status signal		
BOOL	TRUE Angle integrator is loaded with the value at <i>dnPosIn12_Set_p</i> and <i>bPosIn12_State</i> is reset to FALSE.		
dnPosIn12_Set_p	Starting value for angle integrator		
Counting input DI6	▶ <u>Using DI1(6)</u> as counting input		
bCountIn6_ResetCompare	Reset status signal "Comparison value reached"		
BOOL	FALSE TRUE The output bCountIn6_Compare is reset to FALSE.		
bCountIn6_LoadStartValue	Load starting value into counter		
BOOL	FALSE TRUE The starting value set in C02840/3 is accepted as the current count value.		

Outputs

Identifier DIS code data type	Value/meaning	
bCInh <u>C00443/2</u> BOOL	RFR digital input (controller enable)	
Digital inputs DI1 DI7	▶ Using DI1(6) and DI2(7) as digital inputs	
bln1 bln7 <u>C00443/2</u> BOOL	Digital input DI1 DI7	
Counting input DI1	▶ <u>Using DI1(6)</u> as counting input	
bCountIn1_Compare	Status signal "Comparison value reached"	
BOOL	FALSE Current count value < comparison value (C02840/2)	
	TRUE Current count value ≥ comparison value (C02840/2)	
wCountIn1_HW wCountIn1_LW WORD	 Current count value Output as High and Low word (without sign) Possible counting range: 0 2³¹ - 1 	
Frequency input DI1/DI2	▶ Using DI1(6) and DI2(7) as frequency inputs	
nFreqIn12_a <u>C00446/1</u> INT	Output frequency as scaled analog signal in [%]	
nFreqIn12_v 	Output frequency as speed signal in [inc/ms]	
dnPosIn12_p	 Angle output signal 65536 [incr.] = 1 encoder revolution Overflow is possible (display via bPosIn12_State) 	
bPosIn12_State	Status signal "Overflow occurred/distance processed" • Status signal can be reset via bPosIn12_Load.	
	TRUE Overflow has occurred or distance is processed.	

8400 TopLine C | Software Manual I/O terminals Digital input terminals


Identifier DIS code data type	Value/meaning	
Counting input DI6	▶ <u>Using DI1(6)</u> as counting input	
bCountIn1_Compare	Status signal "Comparison value reached"	
BOOL	FALSE Current count value < comparison value (C02840/4)	
	TRUE Current count value \geq comparison value (C02840/4)	
wCountIn6_HW wCountIn6_LW WORD	 Current count value Output as High and Low word (without sign) Possible counting range: 0 2³¹ - 1 	
Frequency input DI6/DI7	▶ Using DI1(6) and DI2(7) as frequency inputs	
nFreqIn67_a <u>C00446/2</u> INT	Output frequency as scaled analog signal in [%]	
nFreqIn67_v 	Output frequency as speed signal in [inc/ms]	

7.1.2.1 Output of the encoder position of the DI1/DI2 frequency input

The LS DigitalInput system block includes an integrator for providing the encoder position.

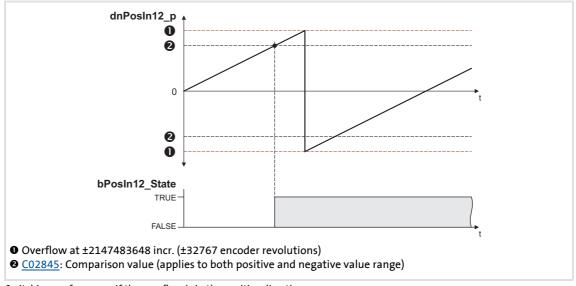
- ▶ The integrator can take max. ±32000 encoder revolutions.
- ▶ The starting position can be loaded via inputs.
- ▶ The internal function can be set via parameters.
- ► In addition to the encoder position, the "Overflow occurred/distance processed" status signal is provided.

Inputs

Identifier DIS code data type	Information/possible settings	
bPosIn12_Load	Load angle integrator with starting value and reset status signal	
BOOL	TRUE Angle integrator is loaded with the value at dnPosIn12_Set_p and bPosIn12_State is reset to FALSE.	
dnPosIn12_Set_p	Starting value for angle integrator	

Outputs

Identifier DIS code data type	Value/meaning
dnPosIn12_p	 Angle output signal 65536 [incr.] = 1 encoder revolution Overflow is possible (display via bPosIn12_State)
bPosIn12_State	Status signal "Overflow occurred/distance processed" Status signal can be reset via bPosIn12_Load. TRUE Overflow has occurred or distance is processed.



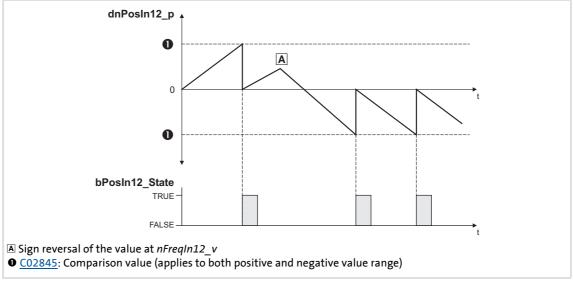
Parameter

Parameter	Possible settings			Info
C02844/1				Function
	0 Load	0 Loading with level		Load integrator with TRUE level at the <i>bPosIn12_Load</i> input (Lenze setting).
	1 Load	Loading with edge		Load integrator with FALSE/TRUE edge at the bPosIn12_Load input.
	2 Load	ing with level +	reset	Load integrator when reaching the comparison value or with TRUE level at the <i>bPosIn12_Load</i> input.
<u>C02845</u>	0		2000000000	Comparison value Is valid for both the positive and the negative value range. Lenze setting: 0

Function at constant input value

Selection: C02844/1 = "0: Loading with level" or "1: Loading with edge"

 $\hbox{\cite{1.5ex} [7-2]} \quad \hbox{Switching performance if the overflow is in the positive direction}$


- ▶ If "0: Loading with level" is selected in <u>C02844/1</u>, the *bPosIn12_Load* input is status-controlled: In case of a TRUE signal, the integrator is loaded with the value at *dnPosIn12_Set_p* and the *bPosIn12_State* output is set to FALSE.
- ▶ If "1: Loading with edge" is selected in C02844/1, the bPosIn12_Load input is edge-controlled: In case of a FALSE/TRUE edge, the integrator is loaded with the value at dnPosIn12_Set_p and then immediately continues to integrate, the bPosIn12_State output is set to FALSE.
- ► A positive *nFreqIn12_v* signal is incremented (the counter content is increased with every cycle).
- ▶ A negative *nFreqIn12_v* signal is decremented (the counter content is reduced with every cycle).

- ▶ *dnPosIn12 p* provides the counter content of the bipolar integrator.
 - If the counter content exceeds a value of +32767 encoder revolutions (corresponds to +2147483647 incr.), an overflow occurs and the counting process continues at a value of -32768 encoder revolutions.
 - If the counter content falls below a value of -32768 encoder revolutions (corresponds to -2147483648 incr.), an overflow occurs and the counting process starts at a value of +32767 encoder revolutions.
- ▶ bPosIn12_State is set to TRUE if the comparison value set in C02845 has been reached.

Function at input value with sign reversal

Selection: <u>C02844/1</u> = "2: Loading with level + reset"

- [7-3] Switching performance if the input signal changes signs
 - ▶ If "2: Loading with level + reset" is selected in <u>C02844/1</u>, the *bPosIn12_Load* input is status-controlled: In case of a TRUE signal, the integrator is loaded with the value at *dnPosIn12 Set p* and the *bPosIn12 State* output is set to FALSE.
 - ► A positive *nFreqIn12_v* signal is incremented (the counter content is increased with every cycle).
 - ▶ A negative *nFreqIn12_v* signal is decremented (the counter content is reduced with every cycle).
 - ▶ *dnPosIn12_p* provides the counter content of the bipolar integrator.
 - If the positive counter content is higher than the comparison value set in <u>C02845</u>, the comparison value will be subtracted from the counter content, and <u>bPosIn12_State</u> will be set to TRUE for one task cycle.
 - If the negative counter content is lower than the comparison value set in <u>C02845</u>, the comparison value will be added to the counter content, and <u>bPosIn12_State</u> will be set to TRUE for one task cycle.

Calculation of the output signal

The output value at *dnPosIn12_p* is calculated as per the formula below:

$$dnPosIn12_p \ [incr.] = nFreqIn12_v \ [rpm] \cdot t \ [s] \cdot 65535 \ [incr./rev.]$$

$$t = integration \ time$$

$$16384 \equiv 15000 \ rpm$$

$$1 \equiv 1 \ incr.$$

Example

You want to determine the counter content of the integrator at a certain speed at the input and a certain integration time **t**.

Given values:

- ► *nFreqIn12* $v = 1000 \text{ rpm} \approx \text{integer value } 1092$
- ► Integration time t = 10 s
- ► Starting value of the integrator = 0

Solution:

► Conversion of the *nFreqIn12 v* input signal:

1000 rpm =
$$\frac{1000 \text{ rev.}}{60 \text{ s}}$$

► Calculation of the output value:

dnPosIn12_p =
$$\frac{1000 \text{ rev.}}{60 \text{ s}} \cdot 10 \text{ s} \cdot \frac{65535 \text{ incr.}}{\text{Rev.}} = 10922666 \text{ incr.}$$

7.2 Digital output terminals

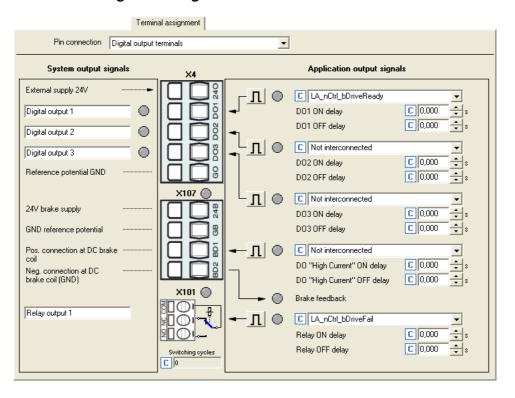
The drive controller has

- ▶ three parameterisable output terminals (DO1 ... DO3) for outputting digital signals
- ► a relay output (terminal strip X101),
- ▶ a (high-current) output for controlling a brake (terminal strip X107).

Note!

Initialisation behaviour:

• After mains switching up to the start of the application, the digital outputs remain set to FALSE.


Exception handling:

• In case of a critical exception in the application (e.g. reset), the digital outputs are set to FALSE considering the terminal polarity parameterised in C00118.

Switching cycle diagnostics of the relay:

• A reference for evaluating the wear limit can be obtained via the number of switching cycles of the relay displayed in C00177/2.

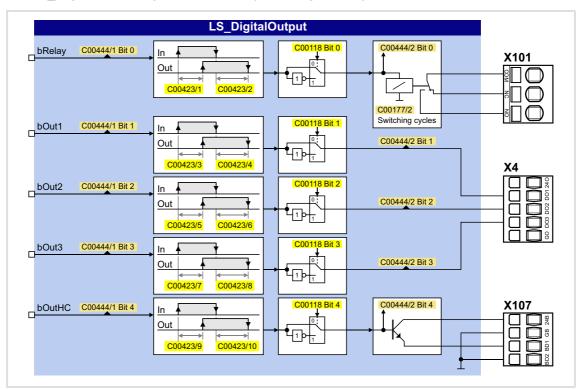
Parameterisation dialog in the »Engineer«:

I/O terminals
Digital output terminals

Button	Function
Л	Indicates that the polarity of the output is HIGH active. The polarity can be changed from HIGH active to LOW active by clicking this button.
П	Indicates that the polarity of the output is LOW active. The polarity can be changed from LOW active to HIGH active by clicking this button.

Short overview of parameters for the digital output terminals:

Parameter	Info Lenze setting		etting
		Value	Unit
Digital outputs DO1/[002		
C00118	DigOutX: Inversion	Bit co	ded
C00423/3	DO1 ON delay	0.000	S
C00423/4	DO1 OFF delay	0.000	S
C00423/5	DO2 ON delay	0.000	S
C00423/6	DO2 OFF delay	0.000	S
C00423/7	DO3 ON delay	0.000	S
C00423/8	DO3 OFF delay	0.000	S
C00444/1	DOx: Input level	-	
C00444/2	DOx: Terminal level	-	
High current output			
C00423/9	DO "High Current" ON delay	0.000	S
C00423/10	DO "High Current" OFF delay	0.000	S
<u>C00117</u>	Status of brake output BD	-	
Relay output			
C00423/1	Relay ON delay	0.000	S
C00423/2	Relay OFF delay	0.000	S
Digital outputs - term	inal configuration		
C00621/1	LS_DigitalOutput:bRelay	1001: LA_nCtr	l_bDriveFail
C00621/2	LS_DigitalOutput:bOut1	1000: LA_nCtrl	_bDriveReady
C00621/99	LS_DigitalOutput: bOut2	0: Not connected	
C00621/100	LS_DigitalOutput: bOut3	0: Not connected	
C00621/101	LS_DigitalOutput: bOut HighCurrent	0: Not connected	
Highlighted in grey = display parameter			


Related topics:

- ▶ Configuring exception handling of the output terminals (☐ 369)
- ▶ <u>User-defined terminal assignment</u> (☐ 370)

7.2.1 Internal interfaces | System block "LS_DigitalOutput"

The **LS_DigitalOutput** system block maps the digital output terminals in the FB editor.

Input DIS code data type	Information/possible settings
bRelay <u>C00444/1</u> BOOL	Relay output, potential-free two-way switch
bOut1 bOut3 BOOL	Digital output DO1 DO3
bOutHC <u>C00444/1</u> BOOL	Output for brake control

I/O terminals

Analog terminals

7.3 Analog terminals

The analog input terminals together with the analog output terminals are located on the X3 plug connector.

Analog input terminals

The drive controller has four analog input terminals for detecting two current signals and two voltage signals:

- ► Voltage signals in the ± 10 V range The voltage signal can be e.g. an analog speed setpoint or the signal of an external sensor (temperature, pressure, etc.).
- ► Current signals in the 0/+ 4 ... + 20 mA range For open-circuit monitoring, the current signal can be evaluated with regard to "Life Zero" or "Dead Zero":
 - 0 ... 20 mA, without open-circuit monitoring
 - 4 ... 20 mA, with open-circuit monitoring

Note!

To avoid undefined states, free input terminals of the controller must be assigned as well, e.g. by applying 0 V to the terminal.

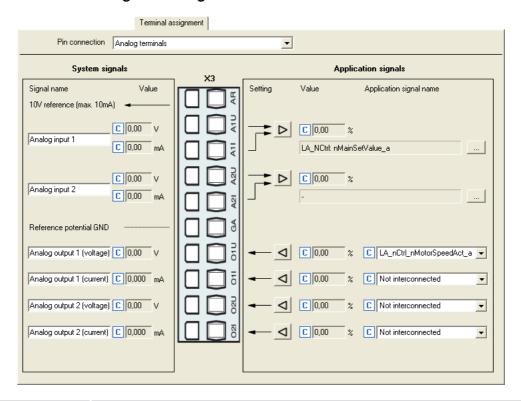
Analog output terminals

The drive controller has four analog output terminals.

- ▶ Two output terminals output an analog current signal (O1I, O2I)
- ► Two output terminals output an analog voltage signal (O1U, O2U)

Note!

Initialisation behaviour:


• After mains switching up to the start of the application, the analog outputs remain set to 0 V.

Exception handling:

• In case of a critical exception in the application (e.g. reset), the analog outputs are set to 0 V.

Parameterisation dialog in the »Engineer«:

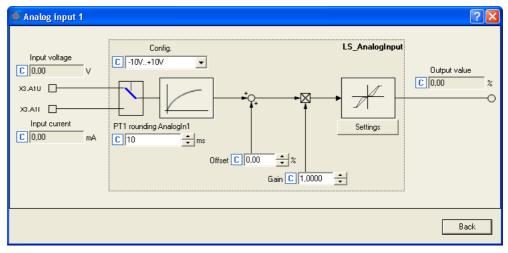
Button	Function
\triangleright	Parameterising analog input (12) 355)
4	Parameterising analog output (12 359)
	Open the parameterising dialog for assigning application inputs to the analog input. • Changing the terminal assignment with the »Engineer« (\$\subset\$ 374)

Short overview of parameters for the analog terminals:

Parameter	Info	Lenze setting	
		Value	Unit
Analog input 1			
C00028/1	AIN1: Input voltage	-	V
C00029/1	AIN1: Input current	-	mA
C00033/1	AIN1: Output value (to application)	-	%
Analog input 2			
C00028/2	AIN2: Input voltage	-	V
C00029/2	AIN2: Input current	-	mA
C00033/2	AIN2: Output value (to application)	-	%
Highlighted in grey = display parameter			

I/O terminals Analog terminals

Parameter	Info	Lenze setting	
		Value	Unit
Analog output 1			
C00439/1	O1U: Input value (from application)	-	%
C00439/3	O1I: Input value (from application)	-	%
C00436/1	O1U: Voltage	-	V
C00437/1	O1I: Current	-	mA
Analog output 2			
C00439/2	O2U: Input value (from application)	-	%
C00439/4	O2I: Input value (from application)	-	%
C00436/2	O2U: Voltage	-	V
<u>C00437/2</u>	O2I: Current	-	mA
Analog outputs - term	ninal assignment		
C00620/1	LS_AnalogOutput: nOut1_a (V)	1003: LA_nCtrl_nMotorSpeedAct_a	
C00620/39	LS_AnalogOutput: nOut1_a (I)	0: Not connected	
C00620/38	LS_AnalogOutput: nOut2_a (V)	0: Not connected	
C00620/40	LS_AnalogOutput: nOut2_a (I)	0: Not connected	
Highlighted in grey = display parameter			


Related topics:

- ▶ Configuring exception handling of the output terminals (□ 369)
- ▶ <u>User-defined terminal assignment</u> (☐ 370)

7.3.1 Parameterising analog input

By clicking on the button on the **Terminal assignment** tab, you reach the parameterising dialog for the corresponding analog input:

Short overview of parameters for the analog inputs:

Parameter	Info	Lenze setting		
		Value	Unit	
Analog input 1				
<u>C00034/1</u>	AIN1: Config.	0: -10V.	.+10V	
<u>C00026/1</u>	AIN1: Offset	0.00	%	
<u>C00027/1</u>	AIN1: Gain	1.0000		
C00028/1	AIN1: Input voltage	-	V	
<u>C00029/1</u>	AIN1: Input current	-	mA	
<u>C00033/1</u>	AIN1: Output value (to application)	-	%	
<u>C00440/1</u>	PT1 rounding AnalogIn1	10	ms	
C00598/1	Resp. to open circuit AIN1	3: TroubleQuickStop		
Analog input 2	Analog input 2			
<u>C00034/2</u>	AIN2: Config.	0: -10V.	.+10V	
<u>C00026/2</u>	AIN2: Offset	0.00	%	
<u>C00027/2</u>	AIN2: Gain	1.0000		
<u>C00028/2</u>	AIN2: Input voltage	-	V	
<u>C00029/2</u>	AIN2: Input current	-	mA	
<u>C00033/2</u>	AIN2: Output value (to application)	-	%	
<u>C00440/2</u>	PT1 rounding AnalogIn2	10	ms	
C00598/2	Resp. to open circuit AIN2	3: TroubleQ	QuickStop	
Highlighted in grey = display parameter				

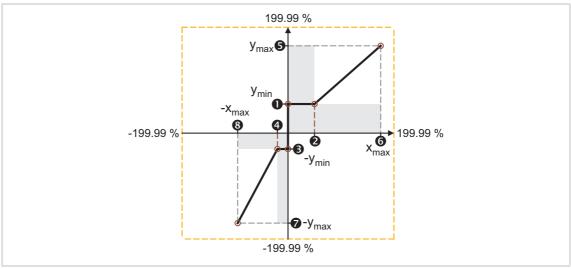
8400 TopLine C | Software Manual

I/O terminals
Analog terminals

Using current input A1I/A2I

In the Lenze setting, voltage signals in the range of \pm 10 V are evaluated via the A1U and A2U input terminals. If current signals are detected via the A1I or A2I input terminals instead, the selection "1: 0...20mA" or "2: 4...20mA" is to be set in C00034.

By selecting "2: 4...20mA", you can implement a 4 ...20 mA current loop, e.g. for stipulation of the speed setpoint.


Open-circuit monitoring

In the case of configuration as a 4 ... 20 mA current loop, the fault response set in <u>C00598</u> takes place in the event of a wire breakage (Lenze setting: "TroubleQuickStop").

7.3.1.1 Signal adaptation by means of characteristic

According to the illustration below, an individual characteristic can be parameterised for the analog inputs via the subcodes of $\underline{\text{C00010}}$ and $\underline{\text{C00020}}$ to provide different slopes and a dead band. Here, the input signal corresponds to the X axis and the output signal corresponds to the Y axis:

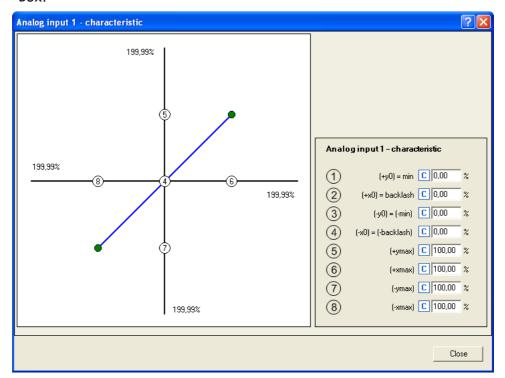
[7-4] Characteristic for analog inputs

Parameter	Info	Lenze se	Lenze setting	
		Value	Unit	
C00010/1	• AIN1: (+y0) = min	0.00	%	
C00010/2	② AIN1: (+x0) = Dead band	1.00	%	
C00010/3	❸ AIN1: (-y0) = (-min)	0.00	%	
C00010/4	4 AIN1: (-x0) = (-Dead band)	1.00	%	
C00010/5	⑤ AIN1: (+ymax)	199.99	%	
C00010/6	⊙ AIN1: (+xmax)	199.99	%	
C00010/7	∂ AIN1: (-ymax)	199.99	%	
C00010/8	3 AIN1: (-xmax)	199.99	%	
C00020/1	● AIN2: (+y0) = min	0.00	%	
C00020/2	② AIN2: (+x0) = Dead band	1.00	%	
C00020/3	❸ AIN2: (-y0) = (-min)	0.00	%	
C00020/4	4 AIN2: (-x0) = (-Dead band)	1.00	%	
C00020/5	⑤ AIN2: (+ymax)	199.99	%	
C00020/6	⊙ AIN2: (+xmax)	199.99	%	
C00020/7	AIN2: (-ymax)	199.99	%	
C00020/8	AIN2: (-xmax)	199.99	%	

In the »Engineer«, there is a parameterising dialog for entering the characteristic. This dialog also displays the set characteristic graphically.

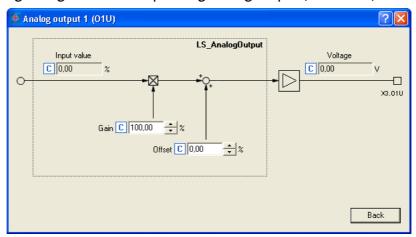


I/O terminals **Analog terminals**



Proceed as follows to open the dialog for parameterising the characteristic:

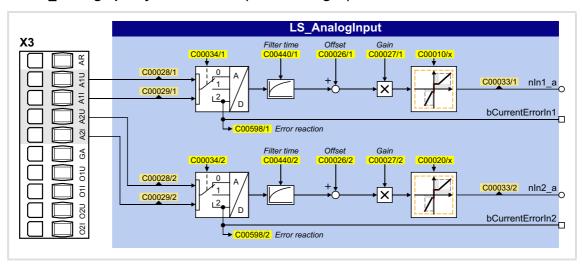
- 1. Go to the Terminal assignment tab and select the "Analog terminals" entry in the Control connections list field.
- 2. Click on the button for the analog input in order to open the *Analog input*



3. Click on the **Settings** button in order to open the *Analog input - Characteristic* dialog box:

7.3.2 Parameterising analog output

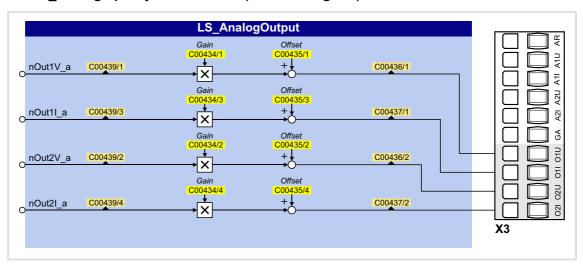
By clicking on the **d** button on the **Terminal assignment** tab, you can open the parameterising dialog for the corresponding analog output (here: O1U):


Short overview of parameters for the analog outputs:

Parameter	Info	Lenze setting	
		Value	Unit
Analog output 1			
<u>C00434/1</u>	O1U: Gain	100.00	%
C00435/1	O1U: Offset	0.00	%
<u>C00439/1</u>	O1U: Input value (from application)	-	%
<u>C00439/3</u>	O1I: Input value (from application)	-	%
C00436/1	O1U: Voltage	-	V
<u>C00437/1</u>	O1I: Current	-	mA
Analog output 2			
C00434/2	O2U: Gain	100.00	%
C00435/2	O2U: Offset	0.00	%
C00439/2	O2U: Input value (from application)	-	%
C00439/4	O2I: Input value (from application)	-	%
C00436/2	O2U: Voltage	-	V
C00437/2	O2I: Current	-	mA
Highlighted in grey = display parameter			

7.3.3 Internal interfaces | System block "LS_AnalogInput"

The LS_AnalogInput system block maps the analog inputs in the FB editor.



Output DIS code data type	Value/meaning
nln1_a <u>C00033/1</u> INT	Analog input 1 • Scaling: ±2 ¹⁴ ≡ ±10 V for use as voltage input +2 ¹⁴ ≡ +20 mA for use as current input
bCurrentErrorIn1 BOOL	 Status signal "Current input error" Only when analog input 1 is used as current input. Application: Cable-breakage monitoring of the 4 20 mA circuit.
	TRUE I _{AIN1} < 4 mA
nln2_a <u>C00033/2</u> INT	Analog input 2 • Scaling: $\pm 2^{14} \equiv \pm 10 \text{ V}$ for use as voltage input $\pm 2^{14} \equiv \pm 20 \text{ mA}$ for use as current input
bCurrentErrorIn2	 Status signal "Current input error" Only when analog input 2 is used as current input. Application: Cable-breakage monitoring of the 420 mA circuit.
	TRUE I _{AIN2} < 4 mA

7.3.4 Internal interfaces | System block "LS_AnalogOutput"

The LS_AnalogInput system block maps the analog outputs in the FB editor.

Input	DIS code data type	Information/possible settings
nOut1V_a	<u>C00439/1</u> INT	Analog output 1 (voltage) • Scaling: $2^{14} \equiv 16384 \equiv 10 \text{ V}$
nOut1I_a	<u>C00439/3</u> INT	Analog output 1 (current) • Scaling: $2^{14} \equiv 16384 \equiv 20 \text{ mA}$
nOut2V_a	<u>C00439/2</u> INT	Analog output 2 (voltage) • Scaling: $2^{14} \equiv 16384 \equiv 10 \text{ V}$
nOut2I_a	<u>C00439/4</u> INT	Analog output 2 (current) • Scaling: $2^{14} \equiv 16384 \equiv 20 \text{ mA}$

I/O terminals
Touch probe detection

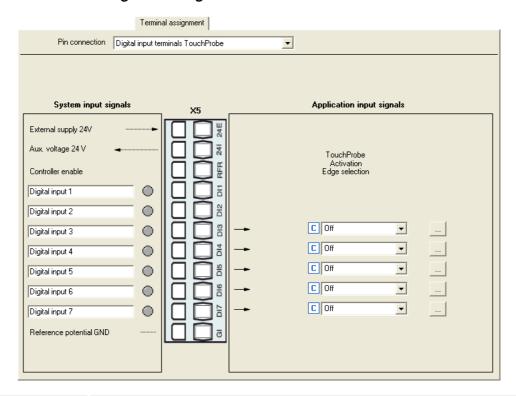
7.4 Touch probe detection

"Touch probe" (TP) in general means quick detection of a position by a quick sensor if the pulse duration of the sensor signal is too short to be detected by a "normal" digital input (scanning time: 1 ms).

Moreover, touch probe requires exact detection of the position. Here, the difference in position between the 1 ms position detection and the touch probe signal is considered as correction value.

Applications:

- ▶ Precise approach of a position at a previously detected signal mark
- ▶ High-precision traversing of a section starting at a previously detected signal mark
- ► Safe detection of signal marks with very short signal edges
- ▶ Measurement of a high-precision position at a previously detected signal mark
- ► Homing to touch probe (homing signal)
- ► Relative residual path positioning (traversing of a section starting at signal mark)
- ▶ Absolute positioning to target position, activated by a safely detected signal mark
- ▶ Position measurement of a distance between 2 signal marks


Overview of touch probe signal sources

The 8400 TopLine provides the following signal sources for touch probe detection which can be configured independently:

Signal source	Edge sensitivity	Applications	
Digital input DI3 Digital input DI7	Rising edge, falling edge, rising and falling edge (parameterisable)	Homing Residual path positioning Position measurement Freely interconnectable	
Zero pulse - resolver*	Rising edge	Homing	
Zero pulse - Multi-Encoder*	Rising edge	Homing	
* in preparation			

Parameterisation dialog in the »Engineer«:

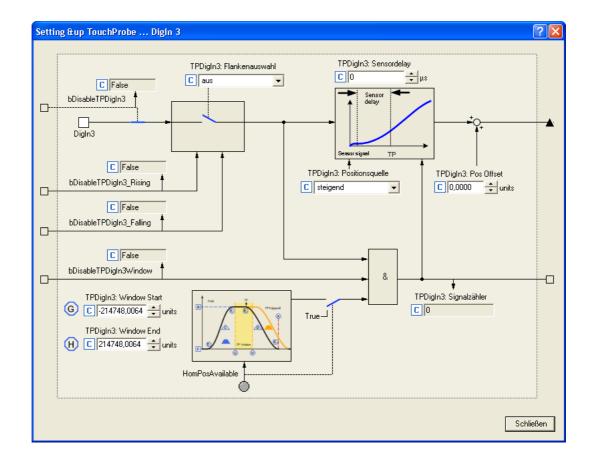
Button	Function
	Open the parameterisation dialog for the selected TP source. ▶ Parameter setting (□ 364)

Parameter	Info	Lenze setting	
		Value	Unit
C02810/37	TPDigIn3 TPDigIn7: Edge selection	0: O	ff

I/O terminals Touch probe detection

7.4.1 **Parameter setting**

Proceed as follows to open the parameterisation dialog for setting a TP signal source:


1. Go to the Terminal Assignment tab and select "Digital input terminals TouchProbe" in the Control connections list field:

2. Click the ____ button for the digital input that is to be set for the touch probe detection.

If the "Table positioning" technology application is used, the following parameterisation dialog can be opened for the selected TP source in the parameterisation dialogs for the Profile entry and the basic "Homing" function via the **Set up touch probe...** button:

Short overview of the relevant parameters:

Parameter	Info	Lenze setting	
		Value	Unit
<u>C02810/37</u>	TPDigIn3 TPDigIn7: Edge selection	0: C	ff
C02811/37	TPDigIn3 TPDigIn7: Sensor delay	0	μs
C02812/37	TPDigIn3 TPDigIn7: Pos Offset	0.0000	units
C02813/13	TPDigIn3 TPDigIn5: Window start	0.0000	units
C02814/13	TPDigIn3 TPDigIn5: Window end	0.0000	units
C02815/37	TPDigIn3 TPDigIn7: Position source	0: Position encod	er actual value
C02816/37	TPDigIn3 TPDigIn7: Signal counter	-	
Highlighted in grey = display parameter			

Edge selection

Select which edge the corresponding input is to respond to.

► In the case of signal sources DI3 ... DI5, the edge sensitivity can also be dynamically changed via inputs at the <u>LS TouchProbe</u> SB.

Sensor delay

This setting serves to compensate for a sensor delay of the touch probe sensor, if any.

- Typical values for laser photoelectric barriers are e.g. 300 μs.
- ▶ Delay of the digital inputs for the 8400 device series:
 - 5 μs for a rising edge
 - 25 μs for a falling edge
- ► Internal automatic compensation for device-internal signal delay due to encoder zero pulse.

Pos Offset

Use this setting to add an offset to the position value measured by touch probe. This may be required if the touch probe sensor has assumed a disadvantageous position on the machine. By adding an offset the touch probe sensor can be moved to a position which is more convenient to the application.

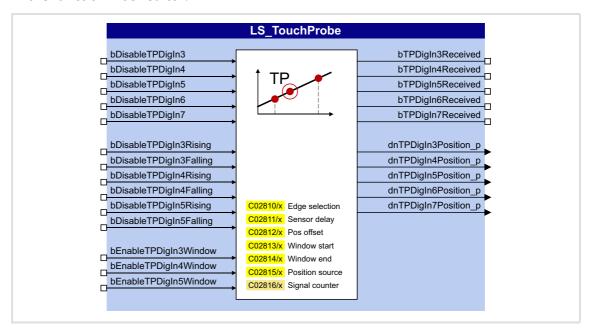
8400 TopLine C | Software Manual

I/O terminals
Touch probe detection

Window start / end

Via the two parameters Window start ($\underline{\text{CO2813/x}}$) and Window end ($\underline{\text{CO2814/x}}$), acceptance windows can be set for the DI3 ... DI5 signal sources in which the touch probe signal is accepted.

- ► The acceptance windows can be dynamically activated via the inputs at the LS TouchProbe SB.
- ▶ If the actual position is outside the acceptance window, touch probe is automatically deactivated.
- ▶ If both window limits are set to "0", the acceptance window does not have any effect.
- ➤ To properly use this function, the drive needs to know the home position (zero position).


Position source

Selection of the position signal source to be measured with touch probe. This usually is the actual position of the motor / encoder position encoder.

7.4.2 Internal interfaces | System block "LS_TouchProbe"

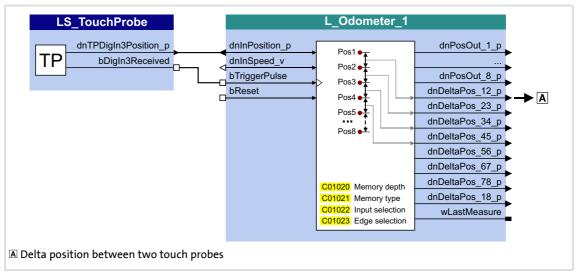
The **LS_TouchProbe** system block provides the internal interfaces for touch probe detection in the function block editor:

Inputs

Input Data type	Information/possible settings		
bDisableTPDigIn37	DI3 DI7: Dynamically deactivate TP function		
BOOL	TRUE TP function is deactivated.		
bDisableTPDigIn35Rising	DI3 DI5: Dynamically deactivate detection of rising edges		
BOOL	TRUE Detection of rising edges is deactivated.		
bDisableTPDigIn35Falling	DI3 DI5: Dynamically deactivate detection of falling edges		
BOOL	TRUE Detection of falling edges is deactivated.		
bEnableTPDigIn35Window	DI3 DI5: Activate acceptance window		
BOOL	 Acceptance window function is active: If the actual position is outside the acceptance window, whose starting position is set in C02813/x and whose end position is set in C02814/x, touch probe is automatically deactivated. 		

Outputs

Output Data type	/alue/meaning	
bTPDigIn37Received	TRUE DI3 DI7: To • The signa	uch probe received. I is only pending for one task cycle (1 ms).
dnTPDigIn37Position_p	DI3 DI7: Position measure	d by touch probe in [units]



I/O terminals
Touch probe detection

7.4.2.1 Application example: "Position measurement"

The touch probe function can be combined with the <u>L Odometer</u> FB for a position measurement. This FB is able to save position signals to a ring buffer and detect differences between two position signals.

In the wiring below, digital input DI3 is used to connect the touch probe sensor. For the sake of clarity, irrelevant inputs and outputs of the LS TouchProbe SB are masked out.

[7-5] Wiring for position measurement

7.5 Configuring exception handling of the output terminals

Exception handling for the analog and digital output terminals in the event of an error can be set via decoupling configuration and decoupling values.

- ▶ Bit coded selection is carried out in <u>C00441</u> for the analog output terminals, defining the events that will trigger decoupling.
- ▶ Bit coded selection is carried out in <u>C00447</u> for the digital output terminals, defining the events that will trigger decoupling.

Bit	Event
Bit 0 □	SafeTorqueOff
Bit 1 □	ReadyToSwitchOn
Bit 2 □	SwitchedOn
Bit 3 □	Reserved
Bit 4 □	Trouble
Bit 5 □	Fault
Bit 6 □	Reserved
Bit 7 □	Reserved
Bit 8 □	Reserved
Bit 9 □	Fail CAN_Management
Bit 10 □	Reserved
Bit 11 □	Reserved
Bit 12 □	Reserved
Bit 13 □	Reserved
Bit 14 □	Reserved
Bit 15 □	Reserved

Finally, the following parameters define the value/status that the output terminals are to have when they are decoupled:

Parameter	Info	Lenze setting	
		Value	Unit
C00442/1	AOut1_U: Decoupling value	0.00	%
C00442/2	AOut2_U: Decoupling value	0.00	%
C00442/3	AOut1_I: Decoupling value	0.00	%
C00442/4	AOut2_I: Decoupling value	0.00	%
<u>C00448</u>	DigOut decoupling value	Bit co	ded

Related topics:

▶ Configuring exception handling of the CAN PDOs (666)

8400 TopLine C | Software Manual

I/O terminals User-defined terminal assignment

7.6 User-defined terminal assignment

In order to individually adapt the preconfigured assignment of the input/output terminals to your application, you can choose one of the following procedures:

A. In the »Engineer«:

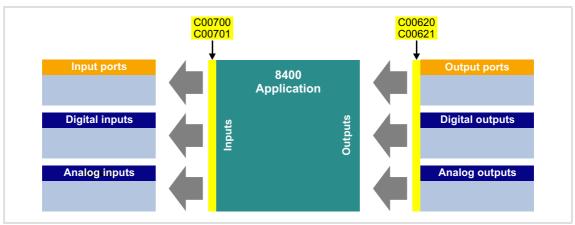
- Change the terminal assignment on the **Terminal assignment** tab.
- Change the signal assignment on the Application Parameters tab, on the dialog level Overview \rightarrow Signal flow.
- Change the interconnections in the FB editor (on the I/O level).
- B. In the »Engineer« or with the keypad:
 - Change the parameters for signal configuration in the parameters list.

Note!

If you change the preconfigured assignment of the input/output terminals, the terminal assignment will be a user-defined one. In C00007, control mode "0: Interconnection changed" will be shown.

First of all, select a Lenze configuration useful for the purpose at hand by going to C00005 and selecting a technology application that matches your drive task and then going to C00007 and selecting an appropriate control mode. You will then have an application for which there is a signal flow, logical block links and terminal assignment.

We recommend using the »Engineer« for the implementation of comprehensive user-defined drive solutions.



7.6.1 Source-destination principle

The I/O configuration of the input and output signals is carried out according to the source/destination principle:

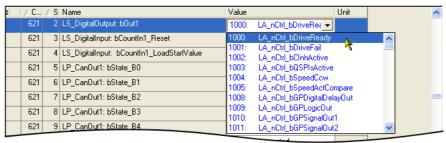
- ▶ A connection always has a direction and therefore always has a source and a target.
- ► The inputs signals of the technology application are logically linked to the outputs of system blocks which represent the device input terminals.
- ► The inputs of system blocks that represent the device output terminals are logically linked to output signals of the technology application.

The following graphic illustrates the source/destination principle:

[7-6] Source-destination principle

Note the following:

- ► An equipment input terminal can be logically linked to several inputs of the application block.
- ▶ Every input of the application block can only be logically linked to one input signal.
- ► An output of the application block can be logically linked to several device output terminals.


I/O terminals
User-defined terminal assignment

7.6.2 Changing the terminal assignment with the keypad

You can reconfigure the preconfigured terminal assignment with the keypad (and with the »Engineer«) by means of so-called configuration parameters.

- ► Each configuration parameter represents a signal input of a system block or application block.
- ► Each configuration parameter contains a selection list with output signals of the same type of data.
- ► Logical linking is thus carried out by selecting the output signal for the corresponding signal input.

In the following example, digital output 1 (**LS_DigitalOutput**.bOut1 input) is logically linked to the status signal "Drive ready" (*LA_nCtrl_bDriveReady* output signal):

Configuration parameters for the analog and digital output terminals

The preconfigured assignment of the analog and digital output terminals can be altered by means of the subcodes of C00620 and C00621:

Parameter	Info Lenze setting		
Analog outputs - term	inal assignment	value Utilit	
<u>C00620/1</u>	LS_AnalogOutput: nOut1_a (V)	1003: LA_nCtrl_nMotorSpeedAct_a	
C00620/39	LS_AnalogOutput: nOut1_a (I)	0: Not connected	
C00620/38	LS_AnalogOutput: nOut2_a (V)	0: Not connected	
C00620/40	LS_AnalogOutput: nOut2_a (I)	0: Not connected	
Digital outputs - terminal assignment			
<u>C00621/1</u>	LS_DigitalOutput:bRelay	1001: LA_nCtrl_bDriveFail	
C00621/2	LS_DigitalOutput:bOut1	1000: LA_nCtrl_bDriveReady	
C00621/99	LS_DigitalOutput: bOut2	0: Not connected	
C00621/100	LS_DigitalOutput: bOut3	0: Not connected	
C00621/101	LS_DigitalOutput: bOut HighCurrent	0: Not connected	

Other subcodes (not shown here) allow the configuration of input signals of different system blocks and port blocks.

Configuration parameters for the inputs of the technology application

The following parameters can be used to change the preconfigured assignment of the application inputs:

Parameter	Info		
TA "Actuating drive sp	peed": Configuration parameters (407)		
<u>C00700/x</u>	Analog connection list		
<u>C00701/x</u>	Digital connection list		
TA "Table positioning": Configuration parameters (\$\subset\$ 436)			
C00710/x	Analog connection list		
<u>C00711/x</u>	Digital connection list		
TA "Switch-off positioning": Configuration parameters (464)			
C00760/x	Analog connection list		
C00761/x	Digital connection list		

Example

Task: Starting from the preset technology application "Actuating drive speed" and the "Terminals 0" control mode, the DI2 digital input is to be used for choosing an alternative acceleration/deceleration time for the main setpoint instead of for choosing the fixed setpoint 2/3. To do this, the DI2 digital input is not to be linked to the blogSpeed2 input but to the bJogRamp1 input of the application module.

Procedure:

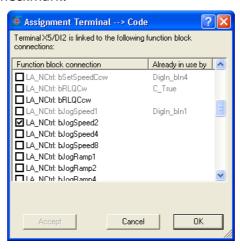
- Use the keypad to go to the menu level Applications → Actuating drive speed (conf.). This menu level contains all the configuration parameters of the "Actuating drive speed" technology application". → Configuration parameters (□ 407)
- 2. Navigate to the configuration parameter LA NCtrl: bJogSpeed2 (C00701/10) which represents the logical signal link of the application input blogSpeed2.
- 3. Change the setting of C00701/10: Change selection "16001: DigIn bln2" in selection "0: Not interconnected".
- 4. Navigate to the configuration parameter LA NCtrl: bJogRamp1 (C00701/13) which represents the logical signal link of the application input blogRamp1.
- 5. Change the setting of C00701/13: Change selection "0: Not interconnected" in selection "16001: DigIn bln2".

The example shows that, for each input of the application block, the associated configuration parameter (C00700/x or C00701/x) is only allowed to contain one source that you enter.

I/O terminals
User-defined terminal assignment

7.6.3 Changing the terminal assignment with the »Engineer«

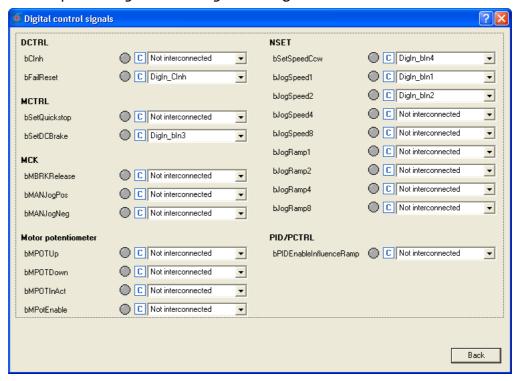
Whereas the configuration parameters referred to have to be parameterised with the keypad, implementation in the »Engineer« is much easier due to the availability of the corresponding dialogs. The following task illustrates the respective procedure.


<u>Task:</u> Starting from the preset technology application "Actuating drive speed" and the "Terminals 0" control mode, the DI2 digital input is to be used for choosing an alternative acceleration/deceleration time for the main setpoint instead of for choosing the fixed setpoint 2/3. To do this, the DI2 digital input is not to be linked to the *bJogSpeed2* input but to the *bJogRamp1* input of the application module.

Possibility 1: Change terminal assignment by means of the Terminal Assignment tabProcedure:

1. Go to the **Terminal Assignment** tab and select "Digital input terminals" in the **Control connections** list field:

- 2. Click on the ____ button for the DI2 terminal in order to open the dialog box Assignment Terminal --> Function block.
 - In the list field, all block inputs that are currently logically linked to digital input DI2 are marked with a checkmark:

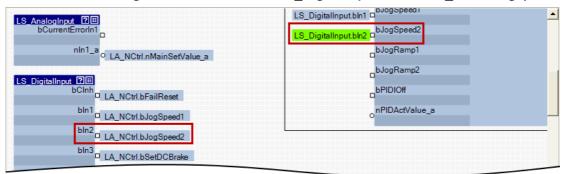

- 3. Remove checkmark for the connection **LA_NCtrl: bJogSpeed2** in order to cancel the existing logical link.
- 4. Set checkmark for connection **LA_NCtrl: bJogRamp1** in order to logically link this application input to digital input DI2.

Possibility 2: Change terminal assignment by means of the signal flow shown

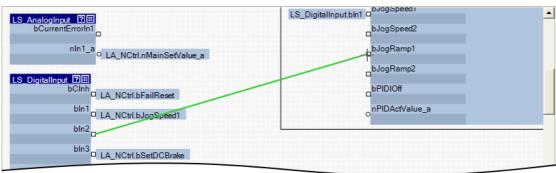
Procedure:

- 1. Go to the **Application parameters** tab.
- 2. Go to the **Application Parameters** tab and click on the **Signal flow** button in order to change to the dialog level *Overview* → *Signal flow*.
- 3. On the dialog level *Overview* → *Signal flow*, click on the **Digital control signals** button in order to open the *Digital control signals* dialog box:

- 4. In the **bJogSpeed2** list field, set the selection "0: Not interconnected".
- 5. In the blogRamp1 list field, set the selection "16001: DigIn_bln2".
- 6. Click on the **Back** button in order to close the dialog box again.



I/O terminals
User-defined terminal assignment


Possibility 3: Change terminal assignment with the FB editor

Procedure:

- 1. Go to the FB Editor tab.
- 2. Delete the existing interconnection from **LS_DigitalInput**.bln2 to **LA_NCtrl**.blogSpeed2:

3. Establish a new interconnection from **LS_DigitalInput**.bln2 to **LA_NCtrl**.blogRamp1:

You can find detailed information on how to use the FB editor of the »Engineer« in the main chapter entitled "Working with the FB Editor". (🖂 1058)

8 Technology applications

A technology application is a drive solution equipped with Lenze's experience and knowhow in which function and system blocks interconnected to a signal flow clearly show the basis for implementing typical drive tasks.

This chapter describes the handling and the functional range of the technology applications available for the 8400 HighLine drive controller.

Note!

Please note that the StateLine and HighLine device types differ with regard to the number, functional range, and flexibility of the technology applications offered.

8.1 General information

8.1.1 Purpose of the technology applications

The stepped Inverter Drives 8400 series provides solutions for simple to complex applications – depending on the user's experience and knowledge about the handling of drives and drive tasks.

Some drive tasks are similar in practice so that a few modifications of the corresponding technology applications can provide the required result very quickly.

On the one hand a great scope of standard drive tasks for frequency inverters is covered by the technology applications offered by Lenze, and on the other hand, the user is relieved from time-consuming programming activities.

Other important features of technology applications are:

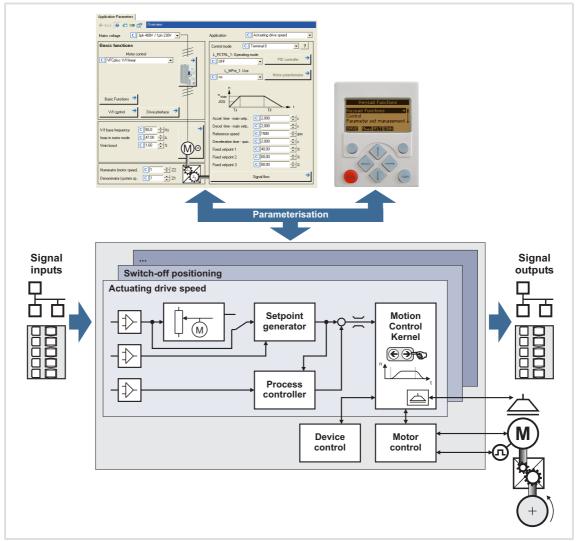
- ▶ Direct implementation of drive tasks without recreating a function block interconnection inside the device
- ► Operation via keypad and/or operation via convenient operator dialogs in the «Engineer»
- ► Commissioning via few operating and diagnosing parameters (local keypad operation)
- ► Achieving a transparency as high as possible via the integrated functionality of the device by representing signal flow diagrams
- ▶ Provision of a basic functionality suitable and often sufficient for many applications

Technology applications General information

8.1.2 Application cases for a technology application

You should use a technology application if

- ▶ the task can be solved completely or to a great extent by the basic functionality of the technology application.
- ▶ the end customer does not want to create the comprehensive core functions of the corresponding technology on his own.
- ► the creation time for a project is to be reduced by using the ready-made technology application
- ▶ the end customer wants to build upon the know-how of Lenze.



If the end customer of the machine does not want to use ready-made Lenze functions, it is also possible to implement individual drive solutions with the HighLine version in the form of "free interconnections". In this case, the technology applications integrated in the device can be used as a basis to be adapted to the requirements by changes or extensions by means of the function block editor.

Detailed information on the creation or change of interconnections by means of the function block editor can be found in the main chapter "Working with the FB Editor". (© 1058)

8.1.3 Basic software structure

[8-1] Software structure of the application function

The technology applications integrated in the drive controller provide the main signal flow for the implementation of a general or a special drive task.

Every technology application features an input interface for the connection of the signal sources (e.g. main setpoint) as well as an output interface for the control of output terminals and output ports.

Technology applications General information

I/O level & application level

The interconnection of the interfaces is shown in the I/O level of the function block editor according to the control mode set in C00007. In the "deeper" application level, the main signal flow is realised in the form of an interconnection of various function and system blocks.

Every application block features so-called "free inputs and outputs" which you can use to transfer signals from the I/O level to the application level and vice versa.

- In the Lenze setting, these connectors are hidden in the function block editor.
- These connections can be shown via the Connector visibilities command in the Context menu of the application block.

Motion Control Kernel

Important basic (drive) functions as well as further basic functionalities are implemented in the firmware of the drive controller in the so-called Motion Control Kernel (MCK) which can be accessed by the active technology application via defined internal interfaces. By this means the expensive creation of single function block interconnections is omitted so that the expenditure and the complexity for the realisation of standard functions is minimised.

The Motion Control Kernel is integrated in the main setpoint path and, depending on the set operating mode, it creates the required control and setpoint signals for the motor control and the drive interface.

A detailed description of the basic functions implemented in the Motion Control Kernel can be found in the main chapter "Basic drive functions (MCK)". (473)

Parameter

The setting/parameterisation of internal functions, the selection of setpoints and the display of actual values is executed via parameters. A re-configuration of the TA interfaces is also possible via the corresponding configuration parameters.

The access to parameters can either be executed with the keypad, the L-force »Engineer« or a master control per field bus communication.

8.2 Overview of available technology applications

Technology application "Actuating drive speed"

This technology application serves to solve speed-controlled drive tasks, e.g. conveyor drives (interconnected), extruders, test benches, vibrators, travelling drives, presses, machining systems, metering units.

► TA "Actuating drive speed" (□ 383)

Technology application "Table positioning"

This technology application serves to solve position-controlled drive tasks which are normally controlled by a higher-level control via a fieldbus, e.g. transport facilities, rotary tables, storage and retrieval units, feed drives, metering units, hoists.

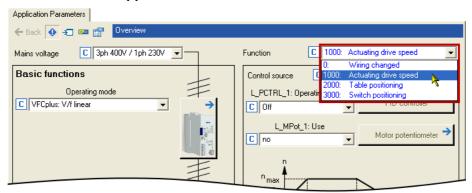
Note: An external sequence control is required for this TA!

▶ TA "Table positioning" (☐ 410)

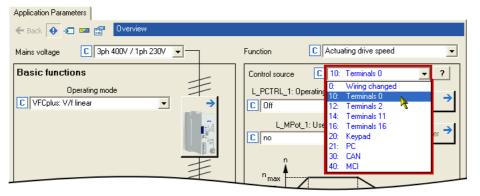
"Switch-off positioning" technology application

This technology application is used to solve speed-controlled drive tasks which require a pre-switch off or stopping at certain positions, e.g. roller conveyors and conveying belts. The pre-switch off is implemented by connecting switch-off sensors.

▶ TA "Switch-off positioning" (☐ 440)


Further technology applications are in preparation.

8.3 Selection of the technology application and the control mode


The technology application to be used is selected in C00005.

▶ You can select the technology application in the »Engineer« on the Application parameter tab via the Application list field:

Different control modes can be selected for every application in C00007. By selecting the control mode you set the way by which the technology application should be controlled, e.g. via terminals or via a fieldbus. The interconnection of the input/output terminals and ports shown in the FB editor in the I/O level changes accordingly.

▶ You can select the control mode in the »Engineer« on the Application parameter tab via the **Control mode** list field:

You can infer the pre-configured assignment of the input/output terminals and ports for each control mode from the description of the corresponding technology application:

TA "Actuating drive speed": Terminal assignment of the control modes (394)

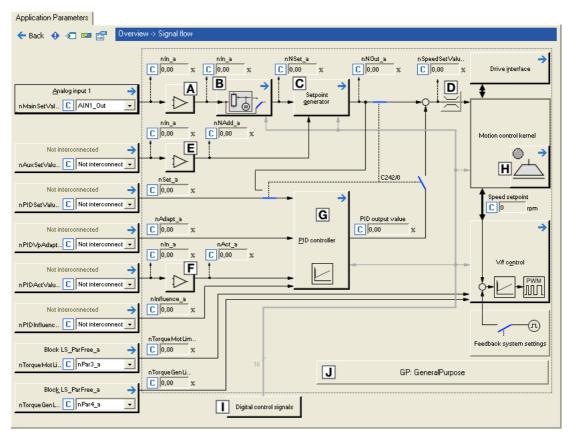
TA "Table positioning": Terminal assignment of the control modes (424)

TA "Switch-off positioning": Terminal assignment of the control modes (451)

Detailed information on the individual configuration of the input/output terminals can be found in the description of the I/O terminals in the subchapter "User-defined terminal assignment". (4 370)

8.4 TA "Actuating drive speed"

Features


- ▶ Pre-configured control modes for terminals and bus control (with predefined process data connection to the fieldbus)
- ▶ Free configuration of input and output signals
- ► Offset, gain, and negation of main setpoint, additional setpoint, actual process controller value
- ▶ Up to 15 fixed setpoints for speed and ramp time
- ► Adjustable setpoint ramp times
- ► Freely selectable, variable ramp shape
- ► Automatic holding brake control
- ▶ Quick stop (QSP) with adjustable ramp time
- ► Motor potentiometer function
- ► Process controller
- ► Load monitoring (in preparation)
- ► Integrated disposable "GeneralPurpose" functions: Analog switch, arithmetic, multiplication/division, binary delay element, binary logic, analog comparison, D-flipflop
- ► Interface to the safety module (optional)
- ► Integration of encoder feedback

Related topics:

▶ Commissioning of the "Actuating drive speed" technology application (□ 49)

8.4.1 Basic signal flow

- [8-2] Signal flow of the technology application "Actuating drive speed"
 - Main speed setpoint offset and gain (<u>L_OffsetGainP_1</u>)
 - Motor potentiometer function (<u>L_MPot_1</u>)
 - Setpoint generator (L_NSet_1)
 - Speed setpoint input limitation
 - E Additional speed setpoint offset and gain (L OffsetGainP 2)
 - F Actual speed/sensor value offset and gain (L OffsetGainP 3)
 - G Process controller (L PCTRL 1)
 - **H** Holding brake control
 - □ Terminal assignment & display of digital control signals
 - Integrated disposable "GeneralPurpose" functions:
 Analog switch, arithmetic, multiplication/division, binary delay element, binary logic, analog comparison, D-flipflop

Selection of the main speed setpoint

The main speed setpoint is selected in the Lenze setting via the analog input 1.

- ▶ Offset and gain of this input signal can be adjusted in C00696 and C00670 for a simple adjustment of a setpoint encoder.
- \blacktriangleright Scaling: 16384 \equiv 100 % reference speed (C00011)
- ▶ The main setpoint is transformed to a speed setpoint in the setpoint encoder via a ramp function generator with linear or S-shaped ramps.
- Upstream to the ramp function generator, a blocking speed masking function and a setpoint MinMax limitation are effective.
- ► For a detailed functional description see FB L NSet.

Motor potentiometer function

Alternatively, the main speed setpoint can be generated via a motor potentiometer function.

- ▶ In the Lenze setting, the motor potentiometer function is deactivated.
- ► Activation is possible via C00806 or via the bMPotEnable input.
- ▶ The behaviour of the motor potentiometer during switch-on of the drive system can be selected in C00805.
- ► For a detailed functional description see FB L MPot.

Optional selection of an additional speed setpoint

You can optionally select an additional speed setpoint (e.g. as a correcting signal).

- ▶ The additional speed setpoint can be linked arithmetically with the main speed setpoint behind the ramp function generator.
- ➤ You must set the setpoint arithmetic to "1: NOut = NSet + NAdd" in C00190 in order to activate the additional speed setpoint.
- ▶ Offset and gain of this input signal can be set in C00697 and C00671 for a simple signal adjustment of a setpoint encoder.
- ► Scaling: $16384 \equiv 100 \%$ reference speed (C00011)
- ▶ The acceleration and deceleration time for the additional speed setpoint can be set in C00220 and C00221.
- ► For a detailed functional description see FB L NSet.

In the case of a grinding machine, the additional speed setpoint can, for instance, be used to control a constant circumferential speed while the grinding disk diameter is reduced.

8.4.2 Internal interfaces | application block "LA_NCtrl"

Note!

The connectors grayed out in the following table are hidden in the function block editor in the Lenze setting.

• These connections can be shown via the **Connector visibilities** command in the *Context menu* of the application block.

Inputs

Identifier	Data type	Information/possible settings		
wCANDriveControl	WORD	Control word via system bus (CAN) to device control • See the "wCANControl/wMCIControl control words" subchapter of the chapter on device control for a detailed description of the individual control bits.		
wMCIDriveControl	WORD	Control word via communication module (e.g. PROFIBUS) to device control • See the "wCANControl/wMCIControl control words" subchapter of the chapter on device control for a detailed description of the individual control bits.		
wSMControl	WORD	Interface to the optional safety system. • Setting control bit 0 ("SafeStop1") in this control word causes e.g. the automatic deceleration of the drive to standstill within this application (in the Motion Control Kernel). • See the "Interface to safety system" subchapter of the chapter on basic drive functions for a detailed description of the control bits.		
bCInh		Enable/Inhibit	<u>controller</u>	
	BOOL	FALSE	Enable controller: The controller switches to the "OperationEnabled" device status if no other source of a controller inhibit is active. • C00158 provides a bit coded representation of all active sources/triggers of a controller inhibit.	
		TRUE	Inhibit controller (controller inhibit): The controller switches to the " <u>SwitchedOn</u> " device status.	
bFailReset	BOOL	that a possibly	ssages tting this input is connected to the digital input controller enable so existing error message is reset together with the controller enable (if he fault is eliminated).	
		TRUE	The current fault is reset, if the cause for the fault is eliminated. • If the fault still exists, the error status remains unchanged.	
bSetQuickstop	BOOL	• Also see dev	top (QSP) vice command " <u>Activate/Deactivate quick stop</u> ".	
		TRUE	 Activate quick stop Motor control is decoupled from the setpoint selection and, within the deceleration time parameterised in C00105, the motor is brought to a standstill (n_{act} = 0). The motor is kept at a standstill during closed-loop operation. A pulse inhibit (CINH) is set if the auto DCB function has been activated via C00019. 	
		FALSE	Deactivate quick stop The quick stop is deactivated if no other source for the quick stop is active. C00159 provides a bit-coded representation of active sources/causes for the quick stop.	

Identifier	Data type	Information/possible settings		
bSetDCBrake	BOOL	Manual DC-injection braking (DCB) Detailed information on DC-injection braking is provided in the motor control chapter, subchapter "DC-injection braking".		
		Note!		
		Holding braking is not possible when this braking mode is used! For controlling a holding brake with low rate of wear, use the basic function "Holding brake control".		
		FALSE Deactivate DC-injection braking.		
		 Activate DC-injection braking, i.e. the drive is brought to a standstill by means of DC-injection braking. The braking effect stops when the rotor is at standstill. After the hold time (C00107) has expired, the controller sets the pulse inhibit (CINH). 		
bRFG_Stop	2001	Ramp function generator: Maintain the current value of the main setpoint		
В	BOOL	 The speed, for instance, of a running ramp process is immediately kept constant when <i>bRFG_Stop</i> is activated. At the same time, the acceleration/deceleration jumps to the value "0". For a detailed functional description see the <u>L_NSet</u> FB. 		
		TRUE The current value of the main setpoint integrator is held.		
bRFG_0		Ramp function generator: Lead the main setpoint integrator to "0" within the current Ti times • For a detailed functional description see the L_NSet FB.		
		TRUE The current value of the main setpoint integrator is led to "0" within the Ti time set.		
nVoltageAdd_a	INT	 Additive voltage impression An additional setpoint for the motor voltage can be specified via this process input. 		
			 If there are, for instance, different loads at the motor output end, it is possible to apply a voltage boost at the starting time. If the value is negative, the voltage is reduced. Scaling: 16384 = 1000 V 	
		(STOP) Stop!		
		Values selected too high may cause the motor to heat up due to the resulting current!		
nBoost_a	INT	Additional setpoint for the motor voltage at speed = 0 • The entire voltage-frequency characteristic is provided with an offset. • Scaling: 16384 ≡ 1000 V		
		STOP Stop!		
		Values selected too high may cause the motor to heat up due to the resulting current!		
nPWMAngleOffset	INT	 Additional offset for the electrical angle of rotation If a torque is connected, e.g. dynamic acceleration processes can be generated. Scaling: ±32767 = ±180 ° angle of rotation 		

Identifier	Data type	Information/possible settings		
nTorqueMotLim_a nTorqueGenLim_a	INT	Torque limitation in motor mode and in generator mode • These input signals are directly transferred to the motor control to limit the controller's maximum torque in motor and generator mode. • The drive cannot output a higher torque in motor/generator mode than set here. • The applied values (any polarity) are internally interpreted as absolute values. • If V/f characteristic control (VFCplus) is selected, limitation is indirectly performed via a so-called I _{max} controller. • If sensorless vector control (SLVC) or servo control (SC) is selected, limitation has a direct effect on the torque-producing current component. • Scaling: 16384 ≡ 100 % M _{max} (C00057)		
		Torque limits in motor and generator mode: TorqueGenLim M TorqueMotLim MN TorqueMotLim TorqueGenLim TorqueGenLim		
bSetSpeedCcw BOOL		Change of direction of rotation • For instance if a motor or gearbox is fixed laterally reversed to a machine part, but the setpoint selection should still be executed for the positive direction of rotation.		
		FALSE Direction of rotation to the right (Cw)		
		TRUE Direction of rotation to the left (Ccw)		
bRLQCw		Activate clockwise rotation (fail-safe)		
-	BOOL	For a detailed functional description see FB <u>L_RLO</u> .		
		FALSE Quick stop		
		TRUE Clockwise rotation		
bRLQCcw	BOOL	Activate counter-clockwise rotation (fail-safe) • For a detailed functional description see the <u>L_RLQ</u> FB.		
		FALSE Quick stop		
		TRUE Counter-clockwise rotation		
nMainSetValue_a	INT	 Main speed setpoint Offset and gain of this input signal can be set in <u>C00696</u> and <u>C00670</u> for a simple signal adjustment of a setpoint encoder. Scaling: 16384 ≡ 100 % reference speed (<u>C00011</u>) The main setpoint is transformed to a speed setpoint in the setpoint encoder via a ramp function generator with linear or S-shaped ramps. Upstream to the ramp function generator, a blocking speed masking function and a setpoint MinMax limitation are effective. For a detailed functional description see the <u>L NSet</u> FB. 		

Identifier	Data type	Information/possible settings
nAuxSetValue_a	INT	 Additional speed setpoint The additional speed setpoint can be linked arithmetically with the main speed setpoint behind the ramp function generator. You must set the setpoint arithmetic to "1: NOut = NSet + NAdd" in C00190 in order to activate the additional speed setpoint. Offset and gain of this input signal can be set in C00697 and C00671 for a simple signal adjustment of a setpoint encoder. Scaling: 16384 = 100 % reference speed (C00011) The acceleration and deceleration time for the additional speed setpoint can be set in C00220 and C00221. For a detailed functional description see the L NSet FB.
bJogSpeed1 bJogSpeed2	BOOL	 Selection inputs for fixed changeover setpoints (JOG setpoints) for the main setpoint A fixed setpoint for the setpoint generator can be activated instead of the main setpoint via these selection inputs.
bJogSpeed4 bJogSpeed8	BOOL	 The four selection inputs are binary coded, therefore 15 fixed setpoints can be selected. In the case of binary coded selection "0" (all inputs = FALSE or not assigned), main setpoint nMainSetValue_a is active. The selection of the fixed setpoints is carried out in C00039/115 in [%] based on the reference speed (C00011). For a detailed functional description see the L NSet FB.
bJogRamp1 bJogRamp2	BOOL	Selection inputs for alternative acceleration/deceleration times for the main setpoint • The four selection inputs are binary coded, therefore 15 alternative
bJogRamp4 bJogRamp8	BOOL	 acceleration/deceleration times can be selected. For main setpoint nMainSetValue_a, the set acceleration time (C00012) and deceleration time (C00013) are active in the case of the binary coded selection "0" (all inputs = FALSE or not assigned). Alternative acceleration times are selected in C00101/115. The selection of the alternative deceleration times is carried out in C00103/115. For a detailed functional description see the L NSet FB.

Motor potentiometer

Alternatively to the input signal *nMainSetValue_a*, the main setpoint can also be generated by a motor potentiometer function.

- In the Lenze setting, the motor potentiometer function is deactivated.
- Activation is possible via <u>C00806</u> or via the *bMPotEnable* input.
- The behaviour of the motor potentiometer during switch-on of the drive system can be selected in <u>C00805</u>.
- For a detailed functional description see the L MPot FB.

bMPotEnable	BOOL	Activating the motor potentiometer function • This input and C00806 are OR'd.				
		TRUE	The motor potentiometer function is active; the speed setpoint can be changed via the <i>bMPotUp</i> and <i>bMPotDown</i> control inputs.			
bMPotUp		Increasing the	Increasing the speed setpoint			
	BOOL	TRUE	Approach the upper speed limit value set in <u>C00800</u> with the acceleration time set in <u>C00802</u> .			
bMPotInAct	BOOL	Activating the inactive function				
		TRUE	The speed setpoint behaves according to the inactive function set in C00804 . • In the Lenze setting, the speed setpoint is maintained.			
bMPotDown	BOOL	Decreasing the speed setpoint				
		TRUE	Approach the lower speed limit value set In <u>C00801</u> with the deceleration time set in <u>C00803</u> .			

Identifier Data typ	Information/possible settings			
Process controller In the Lenze setting, the process controller is deactivated. The activation is executed by selecting the operating mode in C00242. For a detailed functional description see FB L PCTRL.				
bPIDEnableInfluenceRamp	Activate ramp for influencing factor			
BOO	FALSE Influencing factor of the PID controller is ramped down to "0".			
	TRUE Influencing factor of the PID controller is ramped up to the value nPIDInfluence_a.			
bPIDIOff BOO	Switch off I-component of process controller In conjunction with the operating mode set in C00242 (Lenze setting: "Off").			
	TRUE I-component of the process controller is switched off.			
nPIDVpAdapt_a	 Adaptation of gain Vp set in C00222 in percent Scaling: 16384 ≡ 100 % Internal limitation to ± 199.99 % Changes can be done online. 			
nPIDSetValue_a	 Sensor and process setpoint for operating modes 2, 4 and 5 Scaling: 16384 ≡ 100 % Internal limitation to ± 199.99 % 			
nPIDActValue_a	 Speed or actual sensor value (actual process value) Offset and gain for this input signal can be set in C00698 and C00672. Scaling: 16384 = 100 % Internal limitation to ± 199.99 % 			
nPIDInfluence_a	Limitation of the influencing factor in percent The influence factor of the PID controller can be limited to a certain value (-199.99% + 199.99%) via nPIDInfluence_a. Scaling: 16384 ≡ 100 % Internal limitation to ± 199.99 %			
MCK basic functions				
bMBRKRelease BOO	 Holding brake control: Release/apply brake In conjunction with the operating mode selected in C02580 (Lenze setting: "Brake control off"). 			
	 FALSE Apply brake. During automatic operation, the internal brake logic controls of the brake. 			
	 TRUE Release brake manually (forced release). Note! The brake can also be released when the controller is inhibited! During automatic operation, the internal brake logic is deactivated and the brake is released (supervisor operation). If the brake control has inhibited the controller, this inhibit is deactivated again. In semi-automatic operation, the brake is released including feedforward control. 			
bManJogPos bManJogNeg	reserved (inputs are not interconnected on the application level)			
GP: GeneralPurpose The following inputs are interconnected with logic/arithmetic functions on application level for free usage. • "GeneralPurpose" functions				
nGPAnalogSwitchIn1_a nGPAnalogSwitchIn2_a	 Analog switch: Input signals The input signal selected via the selection input bGPAnalogSwitchSet is output a output nGPAnalogSwitchOut_a. 			

Identifier	Data type	Information/possible settings
bGPAnalogSwitchSet		Analog switch: Selection input
	BOOL	FALSE nGPAnalogSwitchOut_a = nGPAnalogSwitchIn1_a
		TRUE nGPAnalogSwitchOut_a = nGPAnalogSwitchIn2_a
nGPArithmetikIn1_a nGPArithmetikIn2_a	INT	Arithmetic: Input signals The arithmetic function is selected in C00338 . The result is output at output nGPArithmetikOut_a.
nGPMulDivIn_a	INT	 Multiplication/Division: Input signal The factor for the multiplication can be set in <u>C00699/1</u> (numerator) and <u>C00699/2</u> (denominator). The result is output at output nGPMulDivOut_a.
bGPDigitalDelayIn	BOOL	 Binary delay element: Input signal The on-delay can be set in C00720/1. The off-delay can be set in C00720/2. The time-delayed input signal is output at output bGPDigitalDelayOut.
bGPLogicIn1 bGPLogicIn2 bGPLogicIn3	BOOL	 Binary logic: Input signals The logic operation is selected in <u>C00820</u>. The result is output at output bGPLogicOut.
nGPCompareIn1_a nGPCompareIn2_a	INT	 Analog comparison: Input signals The comparison operation is selected in <u>C00680</u>. Hysteresis and window size can be set in <u>C00680</u> and <u>C00682</u>. If the comparison statement is true, the output <i>bGPCompareOut</i> will be set to TRUE.
bGPDFlipFlop_InD bGPDFlipFlop_InClk bGPDFlipFlop_InClr	BOOL	D-FlipFlop: Input signals • Data, clock and reset input
	-	y be interconnected on the application level. from the I/O level to the application level via these inputs.
bFreeIn1 bFreeIn8	BOOL	Free inputs for digital signals
wFreeIn1 wFreeIn4	WORD	Free inputs for 16-bit signals

Outputs

Identifier Data type	Value/meaning			
wDriveControlStatus WORD	 Status word of the controller (based on DSP-402) The status word contains information on the currents status of the drive controller. See the "wDeviceStatusWord status word" subchapter of the chapter on device control for a detailed description of the bit assignment. 			
wStateDetermFailNoLow word	Display of the status determining error (LOW word)			
wStateDetermFailNoHigh word	Display of the status determining error (HIGH word)			
bDriveFail BOOL	TRUE Drive controller in error status. • "Fault" device status is active.			
bDriveReady BOOL	 TRUE Controller is ready for operation. "SwitchedOn" device status is active. The drive is in this device status if the DC bus voltage is applied and the controller is still inhibited by the user (controller inhibit). 			

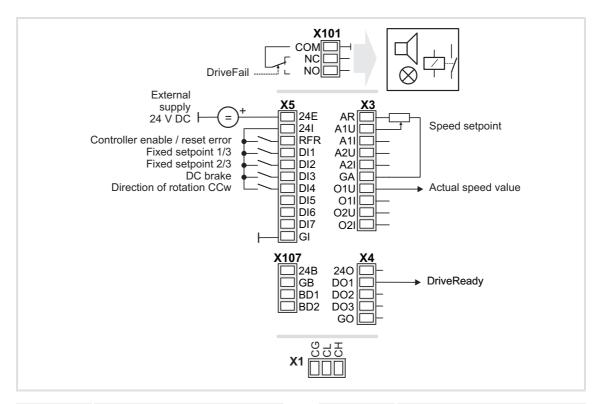
Identifier	Data type	Value/meaning	B	
bCInhActive	BOOL	TRUE	Controller inhibit is active.	
bQSPIsActive	BOOL	TRUE	Quick stop is active.	
bSpeedCcw		Current direction	on of rotation	
	BOOL	FALSE	Direction of rotation to the right (Cw)	
		TRUE	Direction of rotation to the left (Ccw)	
${\sf bSpeedActCompare}$		Result of the sp	peed comparison	
	BOOL	TRUE	During open-loop operation: Speed setpoint < Comparison value (C00024)	
			During closed-loop operation: Actual speed value < Comparison value (C00024)	
bOverLoadActive	BOOL	In preparation	(output is not interconnected on the application level)	
bUnderLoadActive	BOOL	In preparation	(output is not interconnected on the application level)	
bImaxActive		"Current setpo	int inside the limitation" status signal	
	BOOL	TRUE	The current setpoint is internally limited (the drive controller operates at the maximum current limit).	
${\sf bSpeedSetReached}$		Status signal "s	setpoint = 0"	
	BOOL	TRUE	Speed setpoint from the ramp function generator = 0	
bSpeedActEqSet	BOOL	TRUE Actual speed value = speed setpoint		
nMotorCurrent_a	INT	Current stator current/effective motor current • Scaling: 16384 ≡ 100 % I _{max mot} (C00022)		
nMotorSpeedSet_a	INT	Speed setpoint • Scaling: 16384 ≡ 100 % reference speed (C00011)		
nMotorSpeedAct_a	INT	Actual speed value • Scaling: 16384 ≡ 100 % reference speed (C00011)		
nMotorTorqueAct_a	INT	 Actual torque In the "VFC (+encoder)" operating mode of the motor control, this value is determined from the current motor current and corresponds to the actual torque only by approximation. Scaling: 16384 = 100 % M_{max} (C00057) 		
nDCVoltage_a	INT	Actual DC-bus • Scaling: 163	<u> </u>	
nMotorVoltage_a	INT	Current motor voltage/inverter output voltage • Scaling: 16384 ≡ 1000 V		
MCK basic functions				
bBrakeReleaseOut	BOOL	Holding brake control: Trigger signal for the holding brake control switching element via a digital output Use bit 0 in C02582 to activate inverted switching element triggering.		
		FALSE	Apply brake.	
		TRUE	Release brake.	
bBrakeReleased	BOOL	 Holding brake control: "Brake released" considering the brake release time When the holding brake is triggered to close, bBrakeReleased is immediately set to FALSE even if the brake closing time has not yet elapsed! 		
		TRUE	Brake released (when the brake release time has elapsed).	
GP: GeneralPurpose				

The following outputs are interconnected with logic/arithmetic functions on application level for free usage.

• "GeneralPurpose" functions

Identifier	ata type	Value/meaning
nGPAnalogSwitchInOu	t_a INT	Analog switch: Output signal
nGPArithmetikOut_a	INT	Arithmetic: Output signal
nGPMulDivOut_a	INT	<u>Multiplication/Division</u> : Output signal
bGPDigitalDelayOut	BOOL	Binary delay element: Output signal
bGPLogicOut	BOOL	Binary logic: Output signal
bGPCompareOut	BOOL	Analog comparison: Output signal
bGPSignalOut1 bGPSignalOut4	BOOL	 Binary signal monitor: Output signals The signal sources to be output are selected in <u>C00411/14</u>. A bit coded inversion of the output signals can be parameterised in <u>C00412</u>.
nGPSignalOut1_a nGPSignalOut4_a	BOOL	 Analog signal monitor: Output signals The signal sources to be output are selected in <u>C00410/14</u>. Gain and offset for each output signal can be parameterised in <u>C00413/18</u>.
bGPDFlipFlop_Out	BOOL	<u>D-FlipFlop</u> : Output signal
bGPDFlipFlop_NegOut	BOOL	<u>D-FlipFlop</u> : Negated output signal
0 .		ely be interconnected on the application level. on level can be transferred to the I/O level via these outputs.
bFreeOut1 bFreeOut	8 BOOL	Free outputs for digital signals
wFreeOut1 wFreeOu	t4 WORD	Free outputs for 16-bit signals

8.4.3 Terminal assignment of the control modes

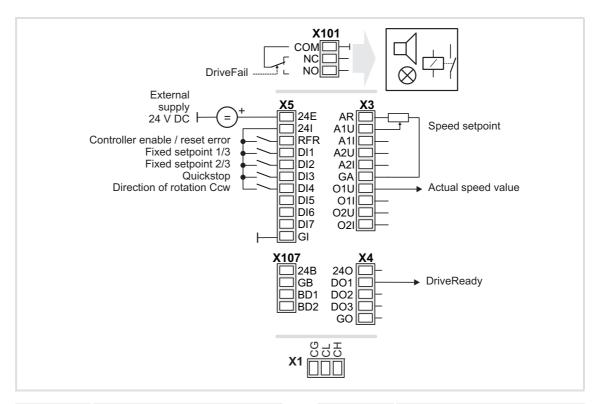

The following comparison provides information about which inputs/outputs of the application block **LA_NCtrl** are interconnected to the digital and analog input/output terminals of the drive controller in the different control modes.

Technology applications
TA "Actuating drive speed"

8400 TopLine C | Software Manual

				Control mod	de (C00007)			
	10: Terminals 0	12: Terminals 2	14: Terminals 11	16: Terminal 16	20: <u>Keypad</u>	21: <u>PC</u>	30: CAN	40: <u>MCI</u>
Digital input terr								
X5/RFR				Controller enable / Robriller				
X5/DI1	Fixed setpoint 1/3 blogSpeed1		Change of direction of rotation bSetSpeedCcw	Fixed setpoint 1/3 bJogSpeed1	-		Quick stop bSetQuickstop	
X5/DI2	Fixed setp bJogSp		Activate manual DC- injection braking (DCB) bSetDCBrake	Fixed setpoint 2/3 bJogSpeed2	-		-	-
	Activate manual DC- injection braking (DCB) bSetDCBrake	Quick stop bSetQuickstop	Motor potentiometer: Increase speed bMPotUp	CW rotation quick stop bRLQCw	-	•	•	-
X5/DI4	Change of direct bSetSpe		Motor potentiometer: Decrease speed bMPotDown	CCW rotation quick stop bRLQCcw	-	•	•	
X5/DI5 DI7	-	-	-	-	-	-	-	-
Analog input ter	minals							
X3/A1U, A1I	Main speed setpoint nMainSetValue_a 10 V ≡ 100 % reference speed (C00011)				-	-	Additional sp nAuxSet 10 V ≡ 100 % refere	peed setpoint tValue_a ence speed (<u>C00011</u>)
X3/A2U, A2I	-	-	-	-	-		-	-
Digital output te	erminals							
X4/DO1	Status "Drive is ready" bDriveReady							
X4/DO2 DO3	-	-	-	-	-	-	-	-
X107/BD1, BD2	-	-	-	-	-	-	-	-
X101/COM, NO	Status "Error is pending" bDriveFail							
Analog output te	erminals							
X3/01U	Actual speed value $nMotor Speed Act_a \\ 10 \ V \equiv 100 \ \% \ reference speed \ \frac{(C00011)}{}$							
X3/01I	-	-	-	-	-	-	-	-
X3/O2U								
X3/O2I								

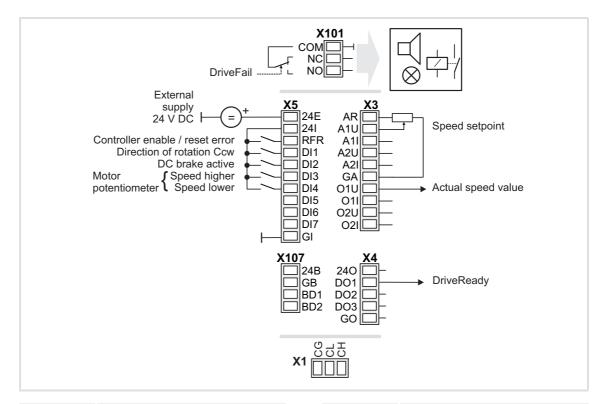
8.4.3.1 Terminals 0



Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	LA_NCtrl.bJogSpeed1
X5/DI2	LA_NCtrl.bJogSpeed2
X5/DI3	LA_NCtrl.bSetDCBrake
X5/DI4	LA_NCtrl.bSetSpeedCcw
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	-
X107/BD2	-

Connection	Assignment
X3/A1U	LA_NCtrl.nMainSetValue_a *
X3/A1I	-
X3/A2U	-
X3/A2I	
X3/01U	LA_NCtrl.nMotorSpeedAct_a *
X3/01I	-
X3/O2U	
X3/O2I	
	* 10 V \equiv 100 % reference speed ($\underline{\text{C00011}}$)
X4/DO1	LA_NCtrl.bDriveReady
X4/DO2	-
X4/DO3	-

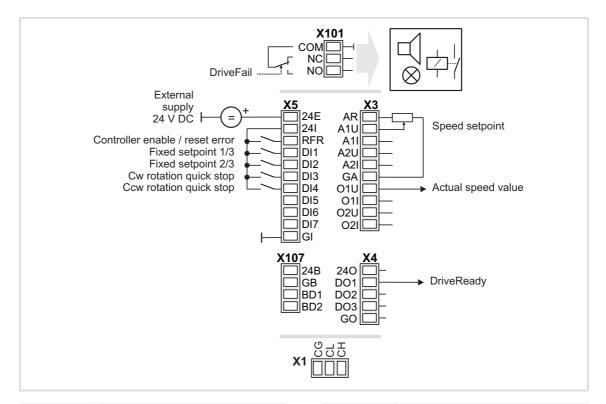
8.4.3.2 Terminals 2



Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	LA_NCtrl.bJogSpeed1
X5/DI2	LA_NCtrl.bJogSpeed2
X5/DI3	LA_NCtrl.bSetQuickstop
X5/DI4	LA_NCtrl.bSetSpeedCcw
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	-
X107/BD2	-

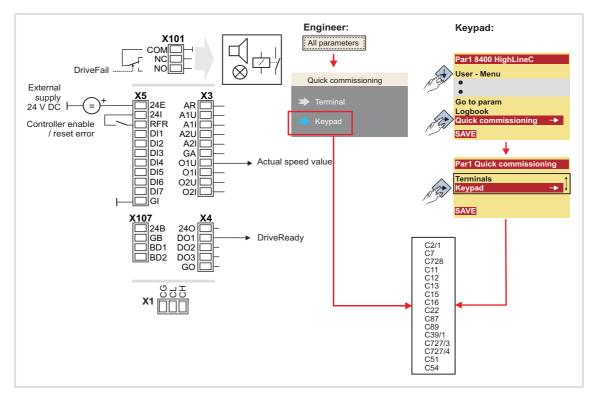
Connection	Assignment
X3/A1U	LA_NCtrl.nMainSetValue_a *
X3/A1I	-
X3/A2U	-
X3/A2I	-
X3/01U	LA_NCtrl.nMotorSpeedAct_a *
X3/01I	-
X3/O2U	-
X3/O2I	-
* 10 V = 100 % reference speed (<u>C00011</u>)	
X4/D01	LA_NCtrl.bDriveReady
X4/DO2	-
X4/DO3	-

8.4.3.3 Terminals 11



Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	LA_NCtrl.bSetSpeedCcw
X5/DI2	LA_NCtrl.bSetDCBrake
X5/DI3	LA_NCtrl.bMPotUp
X5/DI4	LA_NCtrl.bMPotDown
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	-
X107/BD2	-

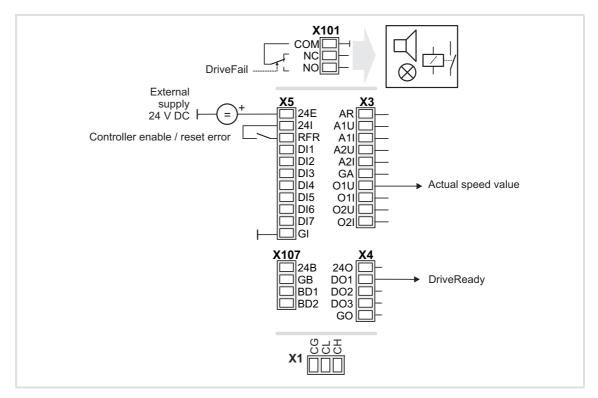
Connection	Assignment
X3/A1U	LA_NCtrl.nMainSetValue_a *
X3/A1I	-
X3/A2U	-
X3/A2I	-
X3/01U	LA_NCtrl.nMotorSpeedAct_a *
X3/01I	-
X3/O2U	-
X3/O2I	-
* 10 V = 100 % reference speed (<u>C00011</u>)	
X4/D01	LA_NCtrl.bDriveReady
X4/DO2	-
X4/DO3	-


8.4.3.4 Terminal 16

Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	LA_NCtrl.bJogSpeed1
X5/DI2	LA_NCtrl.bJogSpeed2
X5/DI3	LA_NCtrl. bRLQCw
X5/DI4	LA_NCtrl. bRLQCcw
X5/DI5	
X5/DI6	-
X5/DI7	
X107/BD1	-
X107/BD2	

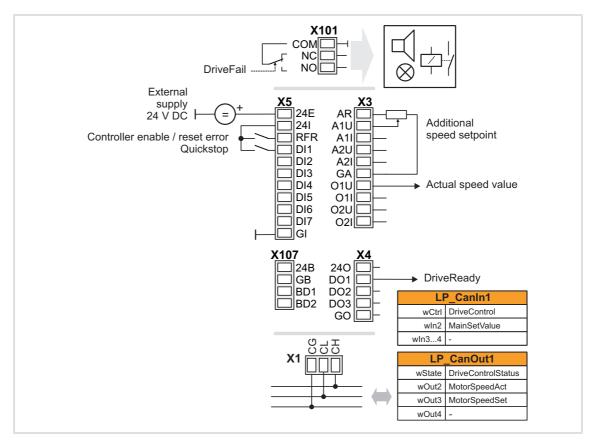
Connection	Assignment
X3/A1U	LA_NCtrl.nMainSetValue_a *
X3/A1I	-
X3/A2U	-
X3/A2I	-
X3/01U	LA_NCtrl.nMotorSpeedAct_a *
X3/01I	-
X3/O2U	-
X3/O2I	-
* 10 V = 100 % reference speed (<u>C00011</u>)	
X4/D01	LA_NCtrl.bDriveReady
X4/DO2	-
X4/DO3	-

8.4.3.5 Keypad



Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	-
X5/DI4	-
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	-
X107/BD2	-

Connection	Assignment
X3/A1U	LA_NCtrl.nMainSetValue_a *
X3/A1I	-
X3/A2U	-
X3/A2I	-
X3/01U	LA_NCtrl.nMotorSpeedAct_a *
X3/01I	-
X3/O2U	-
X3/O2I	-
* 10 V = 100 % reference speed (<u>C00011</u>)	
X4/D01	LA_NCtrl.bDriveReady
X4/DO2	-
X4/DO3	-


8.4.3.6 PC

Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	-
X5/DI4	-
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	-
X107/BD2	-

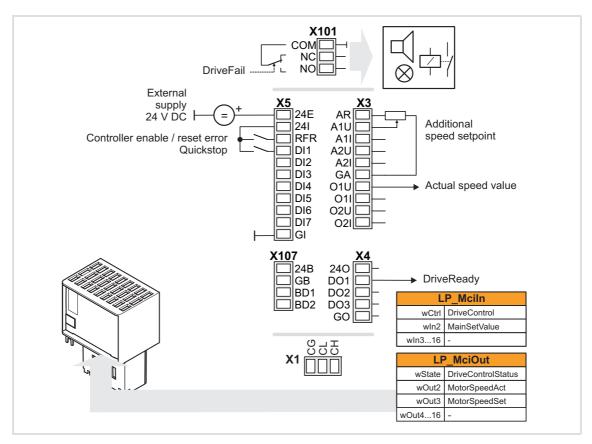
Connection	Assignment	
X3/A1U	-	
X3/A1I	-	
X3/A2U	-	
X3/A2I	-	
X3/01U	LA_NCtrl.nMotorSpeedAct_a *	
X3/01I	-	
X3/O2U	-	
X3/O2I	-	
	* 10 V = 100 % reference speed (<u>C00011</u>)	
X4/D01	LA_NCtrl.bDriveReady	
X4/DO2	-	
X4/DO3	-	

8.4.3.7 CAN

Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	LA_NCtrl.bSetQuickStop
X5/DI2	-
X5/DI3	-
X5/DI4	-
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	-
X107/BD2	-

Connection	Assignment	
X3/A1U	LA_NCtrl.nAuxSetValue_a *	
X3/A1I	-	
X3/A2U	-	
X3/A2I	-	
X3/O1U	LA_NCtrl.NMotorSpeedAct_a *	
X3/O1I	-	
X3/O2U	-	
X3/O2I	-	
	* 10 V = 100 % reference speed (C00011)	
X4/DO1	LA_NCtrl.bDriveReady	
X4/DO2	-	
X4/DO3	-	

▶ Process data assignment for fieldbus communication (□ 403)



Note!

- You must set the setpoint arithmetic in <u>C00190</u> to "1: NOut = NSet + NAdd" so that the additional speed setpoint selected via the analog input A1U has an additive effect.
- The "manual jog" function via digital terminals is being prepared!

8.4.3.8 MCI

Connection	Assignment
X101/NC-NO	LA_NCtrl.bDriveFail
X5/RFR	LA_NCtrl.bFailReset
X5/DI1	LA_NCtrl.bSetQuickStop
X5/DI2	-
X5/DI3	-
X5/DI4	-
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	-
X107/BD2	-

Connection	Assignment
X3/A1U	LA_NCtrl.nAuxSetValue_a *
X3/A1I	-
X3/A2U	-
X3/A2I	-
X3/01U	LA_NCtrl.NMotorSpeedAct_a *
X3/01I	
X3/O2U	
X3/O2I	-
	* 10 V \equiv 100 % reference speed ($\underline{\text{C00011}}$)
X4/D01	LA_NCtrl.bDriveReady
X4/DO2	
X4/DO3	-

▶ Process data assignment for fieldbus communication (☐ 403)

Note!

- You must set the setpoint arithmetic in <u>C00190</u> to "1: NOut = NSet + NAdd" so that the additional speed setpoint selected via the analog input A1U has an additive effect.
- The "manual jog" function via digital terminals is being prepared!

8.4.4 Process data assignment for fieldbus communication

The fieldbus communication is connected (preconfigured) to the previously selected technology application by selecting the corresponding control mode in <u>C00007</u>:

- ► "30: CAN" for the connection to the system bus (CAN)
- ▶ "40: MCI" for the connection to a plugged-on communication module (e.g. PROFIBUS)

The assignment of the process data words does not depend on the applied bus system but exclusively on the application:

Input words	Name	Assignment
Word 1	DriveControl	Control word • See table below for bit assignment.
Word 2	MainSetValue	Speed setpoint • Scaling: 16384 ≡ 100 % reference speed (C00011)
Word 3	-	Not preconfigured
Word 4	-	Not preconfigured
Word 5 16	-	Not preconfigured Only available for control mode "40: MCI".

Control word	Name	Function
Bit 0	SwitchOn	 1 ≡ Change to the "SwitchedOn" device status This bit must be set in the CAN/MCI control word to ensure that the device changes to the "SwitchedOn" device status after mains connection without the need for a master control specifying this bit via fieldbus. If control via a bus system is not wanted (e.g. in the case of control via terminals), the wDriveCtrl output signal of the LS ParFix system block can be connected to the control word inputs.
Bit 1	DisableVoltage	1 ≡ Inhibit inverter control (IMP - pulse inhibit)
Bit 2	SetQuickStop	1 = Activate quick stop (QSP). ▶ Activate/Deactivate quick stop (□ 98)
Bit 3	EnableOperation	 1 ≡ Enable controller (RFR) If control via terminals is performed, this bit must be set both in the CAN control word and in the MCI control word. Otherwise, the controller is inhibited. ▶ Enable/Inhibit controller (□ 97)
Bit 4	ModeSpecific_1	Reserved (currently not assigned)
Bit 5	ModeSpecific_2	
Bit 6	ModeSpecific_3	
Bit 7	ResetFault	 1 = Reset fault (trip reset) Acknowledge fault message (if the error cause has been eliminated). ▶ Reset error (□ 99)
Bit 8	SetHalt	1 = Activate stop functionStop drive via stopping ramp (in preparation).
Bit 9	reserved_1	Reserved (currently not assigned)
Bit 10	reserved_2	1
Bit 11	SetDCBrake	1 = Activate DC-injection braking ► Manual DC-injection braking (DCB) (□ 251)
Bit 12	JogSpeed1	Activation of fixed speed 1 3
Bit 13	JogSpeed2	

8400 TopLine C | Software Manual Technology applications TA "Actuating drive speed"

Control word Name		Function
Bit 14	SetFail	$1 \equiv Set error (trip set)$
· · · · · · · · · · · · · · · · · · ·		0 ≡ Direction of rotation to the right (Cw) 1 ≡ Direction of rotation to the left (Ccw)

Output words	Name	Assignment	
Word 1	DriveControlStatus	Status word • See table below for bit assignment.	
Word 2	MotorSpeedAct	Actual speed value • Scaling: 16384 ≡ 100 % reference speed (C00011)	
Word 3	MotorSpeedSet	Resulting overall setpoint • Scaling: 16384 ≡ 100 % reference speed (C00011)	
Word 4	-	Not preconfigured	
Word 5 16	-	Not preconfigured Only available for control mode "40: MCI".	

Status word	Name	Status	
Bit 0	FreeStatusBit0	Free status bit 0 (not assigned, freely assignable)	
Bit 1	PowerDisabled	1 ≡ Inverter control inhibited (pulse inhibit is active)	
Bit 2	FreeStatusBit2	Free status bit 2 (not assigned, freely assignable)	
Bit 3	FreeStatusBit3	Free status bit 3 (not assigned, freely assignable)	
Bit 4	FreeStatusBit4	Free status bit 4 (not assigned, freely assignable)	
Bit 5	FreeStatusBit5	Free status bit 5 (not assigned, freely assignable)	
Bit 6	ActSpeedIsZero	During open-loop operation: 1 ≡ Speed setpoint < Comparison value (C00024)	
		During closed-loop operation: 1 ≡ Actual speed value < Comparison value (C00024)	
Bit 7	ControllerInhibit	1 ≡ Controller inhibited (controller inhibit is active)	
Bit 8	StatusCodeBit0	Bit coded display of the active device status	
Bit 9	StatusCodeBit1	Device state machine and device statuses (see table [4-1])	
Bit 10	StatusCodeBit2		
Bit 11	StatusCodeBit3		
Bit 12	Warning	1 ≡ A warning is indicated	
Bit 13	Trouble	1 = Controller is in the "Trouble" device statusE.g. if an overvoltage has occurred.	
Bit 14	FreeStatusBit14	Free status bit 14 (not assigned, freely assignable)	
Bit 15	FreeStatusBit15	Free status bit 15 (not assigned, freely assignable)	

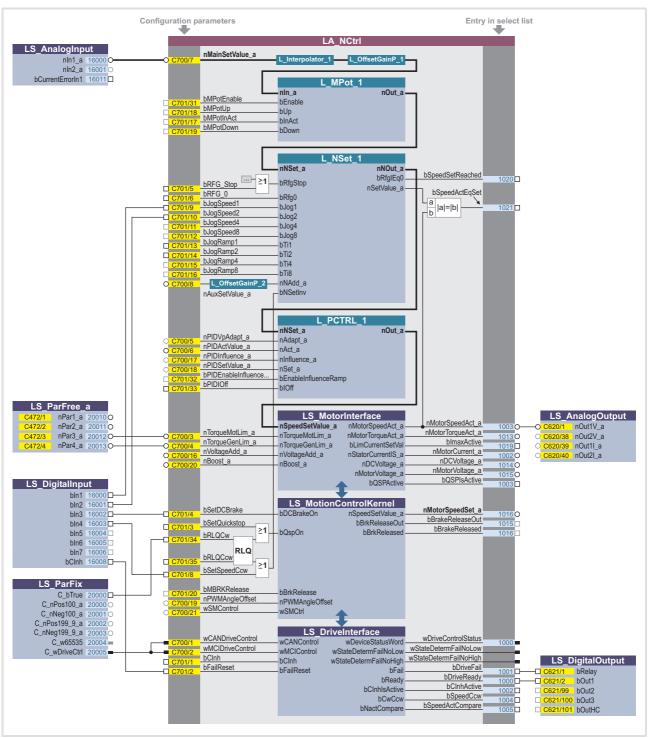
8.4.5 Setting parameters (short overview)

Parameter	Info Lenze setting		etting
		Value	Unit
C00012	Accel. time - main setpoint	2.000	S
C00013	Decel. time - main setpoint	2.000	S
C00019	Auto DCB: Threshold	3	rpm
<u>C00024</u>	Comparison value N_Act	0.00	%
<u>C00036</u>	DCB: Current	50.00	%
C00039/1	Fixed setpoint 1	40.00	%
<u>C00039/2</u>	Fixed setpoint 2	60.00	%
<u>C00039/3</u>	Fixed setpoint 3	80.00	%
C00039/415	Fixed setpoint 4 15	0.00	%
C00101/115	Add. accel. time 1 15	0.000	s
C00103/115	Add. decel. time 1 15	0.000	s
C00105	Decel. time - quick stop	2.000	s
C00106	Auto DCB: Hold time	0.500	S
C00107	DCB: Hold time	999.000	S
C00134	Ramp rounding - main setpoint	0: C	off
C00182	S-ramp time PT1	20.00	S
C00190	Setpoint arithmetic 0: NOut = NSet		= NSet
C00220	Accel. time - add. setpoint	0.000	S
C00221	Decel. time - add. setpoint	0.000	S
C00222	L_PCTRL_1: Vp	1.0	
<u>C00223</u>	L_PCTRL_1: Tn	400	ms
C00224	L_PCTRL_1: Kd 0.0		
C00225	L_PCTRL_1: MaxLimit	199.99	%
<u>C00226</u>	L_PCTRL_1: MinLimit -199.99 %		%
C00227	L_PCTRL_1: Accel. time	0.010	S
C00228	L_PCTRL_1: Decel. time		s
C00233	L_PCTRL_1: Root function 0: C		off
C00241	L_NSet_1: Hyst. NSet reached		%
C00242	L_PCTRL_1: Operating mode	0: C	off
C00243	L_PCTRL_1: Accel. time influence	5.000	S
C00244	L_PCTRL_1: Decel. time influence	5.000	S
C00632/1	L_NSet_1: Blocking speed 1 max	0.00	%
C00632/2	L_NSet_1: Blocking speed 2 max	0.00	%
C00632/3	L_NSet_1: Blocking speed 3 max	0.00	%
C00633/1	L_NSet_1: Blocking speed 1 min 0.00 %		%
C00633/2	L_NSet_1: Blocking speed 2 min	0.00	%
C00633/3	L_NSet_1: Blocking speed 3 min	0.00	%
C00635	L_NSet_1: nMaxLimit	199.99	%
C00636	L_NSet_1: nMinLimit	-199.99	%
C00670	L_OffsetGainP_1: Gain	1.0000	
C00671	L_OffsetGainP_2: Gain 1.0000		
C00672	L_OffsetGainP_3: Gain	1.0000	

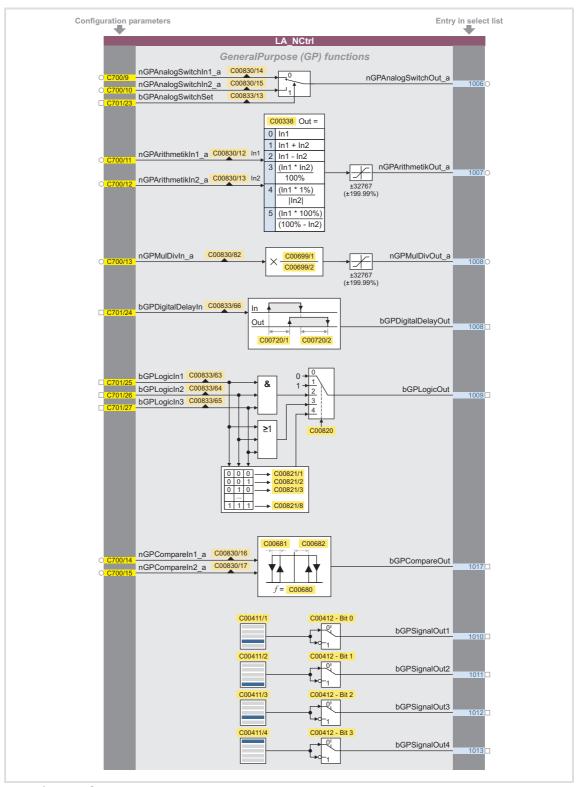
8400 TopLine C | Software Manual

Technology applications
TA "Actuating drive speed"

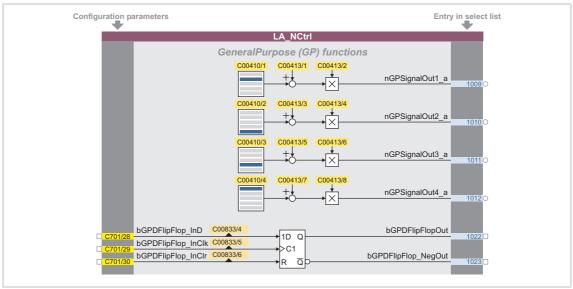
Parameter	Info	Lenze setting		
		Value	Unit	
<u>C00696</u>	L_OffsetGainP_1: Offset	0.00	%	
C00697	L_OffsetGainP_2: Offset	0.00	%	
C00698	L_OffsetGainP_3: Offset	0.00	%	
C00800	L_MPot_1: Upper limit	100.00	%	
C00801	L_MPot_1: Lower limit	-100.00	%	
C00802	L_MPot_1: Accel. time	S		
C00803	L_MPot_1: Decel. time	10.0	s	
C00804	L_MPot_1: Inactive fct. 0: Retain value		ı value	
C00805	L_MPot_1: Init fct.	0: Load last value		
C00806	L_MPot_1: Use	0: No		


Related topics:

▶ <u>"GeneralPurpose" functions</u> (🕮 467)

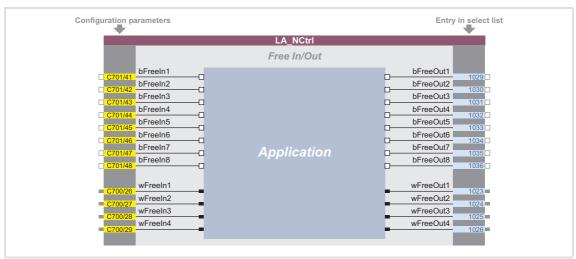

8.4.6 Configuration parameters

If required, the subcodes of <u>C00700</u> and <u>C00701</u> serve to change the pre-configured assignment of the application inputs:



[8-1] Pre-assignment of the "Actuating drive speed" application in the "Terminals 0" control mode

Configuration parameters for "GeneralPurpose" functions


[8-2] "GeneralPurpose" functions

[8-3] "GeneralPurpose" functions (continuation)

Free inputs and outputs

These inputs can be freely interconnected in the application level. They can be used to transfer signals from the I/O level to the application level and vice versa.

[8-4] Free inputs/outputs

Related topics:

- ▶ <u>User-defined terminal assignment</u> (☐ 370)
- ▶ <u>"GeneralPurpose" functions</u> (☐ 467)

Technology applications TA "Table positioning"

8.5 TA "Table positioning"

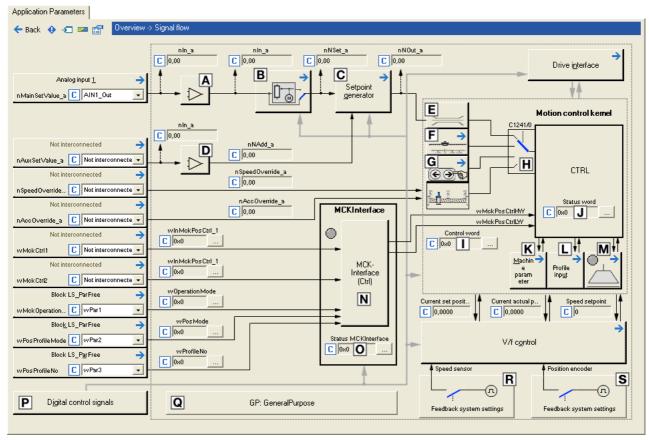
Numerous functions for the motion control of a single axis can be executed with the "Table positioning" technology application. For this, the technology application accesses the basic functions implemented in the **Motion Control Kernel** which are described in detail in the main chapter "Basic drive functions (MCK)". (473)

- ► Manual jog
- ► Retracting from limit switches
- ▶ Reference setting/homing in 18 different modes (in preparation)
- Positioning (absolute, relative)
- ► Continuous travel (speed mode)
- ► Speed override
- ► Acceleration override
- ► Profile sequence block control
- ► Travel block restart within the profile (online profile start)
- ► Specification of target position via process signal interface (e.g. via fieldbus)

Further functions

- ▶ Up to 15 travel sets can be set via parameters
- Parameterisation of the profile data in physical units or relative values
- ► Adjustable torque limitation
- ► Freely selectable, variable ramp shape
- ► Motor potentiometer function
- ► Software limit position monitoring
- ► Following error monitoring (with static limits)
- Automatic holding brake control
- Quick stop (QSP) with adjustable ramp time
- ▶ Enable of individual functions via control word
- ► Status and diagnostic displays
- ▶ Operating mode changeover (manual jog, homing, speed follower, positioning)
- ► Integrated disposable "GeneralPurpose" functions: Analog switch, arithmetic, multiplication/division, binary delay element, binary logic, analog comparison, D-FlipFlop, counter

Related topics:


▶ Commissioning of the "Table positioning" technology application (☐ 57)

8.5.1 Basic signal flow

The main element of the technology application is the Motion Control Kernel.

- ► The **Motion Control Kernel** is controlled via a 32-bit double control word. All motion profiles in the different operating modes can be controlled with this interface.
- ▶ Upstream to the Motion Control Kernel there is a so-called <u>MCKInterface</u> called which provides additional process inputs for the application in order to control the Motion Control Kernel.

[8-5] Signal flow of the table positioning

- A Offset and gain (L OffsetGainP 1)
- Motor potentiometer function (<u>L_MPot_1</u>)
- Setpoint generator (L NSet 1)
- Offset and gain (L_OffsetGainP_2)
- **E** Speed setpoint input limitation
- **E** Basic function "Homing"
- G Basic function "Manual jog"
- Operating mode changeover (is executed by the <u>MCKInterface</u>)

- MCK control word
- MCK status word
- **K** Selection of the machine parameters
- M Holding brake control
- **N** MCKInterface
- Status word of the <u>MCKInterface</u>
- P Terminal assignment & display of digital control signals

Integrated disposable "GeneralPurpose" functions:
 Analog switch, arithmetic, multiplication/division, binary delay element, binary logic, analog comparison, D-flipflop

8.5.1.1 Possibilities for the position selection

The following options are available for the selection of different positions:

- 1. Changeover of profiles
- 2. Changing the profile position via parameter data (SDO)
- 3. Changing the profile position via process data (PDO)
 - The profile position is defined in [increments] or in the application unit [units].

	Changeover of profiles	Changing the profile position via SDO		the profile via PDO
Number of positions	max. 15	n > 15	n >	15
Position selection	Parameterisation in the profile	Selection via SDO	Selection	ı via PDO
Unit	units	units	Increments units	
Remainder allowance	in the drive	in the drive	in the PLC	in the drive

Note!

Setting the machine parameters is a basic prerequisite for the operating modes "Homing", "Manual jog" and "Positioning".

The more precisely the machine parameters are set, the better the results of positioning!

► Machine parameters (498)

Possibility 1: Changeover of profiles

A total of 15 profiles is available in the 8400 TopLine.

- ► A profile describes a motion task that can be converted into a rotary motion by the **Motion Control Kernel** in the "Positioning" operating mode.
- ► A detailed explanation of all profile parameters can be found in the subchapter "Profile entry". (☐ 545) of the description of the "Positioning" basic drive function.
- ► The selection of the profile to be executed can either be executed as a data word via the input wPosProfileNo or binary coded via the inputs bPosProfileNo_1 ... bPosProfileNo_4.
- ► The chosen profile is started via the process input bPosExecute of the FB L MckCtrlInterface or the control bit "PosExecute" in the MCK control word.

Possibility 2: Changing the profile position via parameter data (SDO)

The parameter data channel of a fieldbus can also be used to change the position in a profile.

- ► The position of the profiles 1 ... 15 are stored in the subcodes 1 ... 15 of the code C01301.
- ► More than 15 positions are available via the profile changeover (as described under possibility 1).

Possibility 3: Changing the profile position via process data (PDO)

For selecting the position in [increments], the *dnPosProfilePosition_p* input at the application block is available.

Note!

For selecting the position in [units], the two inputs wPosProfileUnitsLW and wPosProfileUnitsHW at the application block are available.

- In the application level, the position in the FB <u>L_MckCtrlInterface</u> is converted from [units] to [increments] again and output to *dnPosSetOut_p*. For this purpose, the respective mode for position calculation must be selected in C01296/1.
- Since the conversion is not executed within one controller cycle, the data at the <code>dnPosSetOut_p</code> output can be out-of-date. The <code>bPosSetDataValid</code> output is set to TRUE when the conversion is completed and the position in increments is valid. Then, the position can be transmitted to the profile (see the following section).

The acceptance of the position into the currently selected profile is executed with a FALSE-TRUE edge at the *bPosSetProfilePosition* input.

- ▶ If bit 2 is set in C01297, the applied setpoint position is accepted into the currently selected profile and the profile is started directly when setting the process input bPosExecute to TRUE or setting the control bit "PosExecute" in the MCK control word.
- ▶ If bit 3 is set in <u>C01297</u>, the setpoint positions at the MCKInterface are automatically accepted into the profile with the applied profile number if a change of data is detected at the corresponding input for the setpoint position.
- ► The accepted position is stored in the code C01301/x in the application unit [units]. By reading out the code, you can check if the position was correctly accepted into the profile.

Note!

How to store changed profile parameters safely against mains failure in the memory module: Set $\frac{\text{C00002/11}}{\text{C00002/11}} = \text{"1: On / Start"}$.

8.5.2 Internal interfaces | Application block "LA_TabPos"

Note!

The connectors grayed out in the following table are hidden in the function block editor in the Lenze setting.

• These connections can be shown via the **Connector visibilities** command in the *Context menu* of the application block.

Inputs

Identifier	Data type	Information/p	ossible settings
wCANDriveControl	WORD	Control word via system bus (CAN) to device control • See the "wCANControl/wMCIControl control words" subchapter of the chapter on device control for a detailed description of the individual control bits.	
wMCIDriveControl	WORD	Control word via communication module (e.g. PROFIBUS) to device control • See the "wCANControl/wMCIControl control words" subchapter of the chapter on device control for a detailed description of the individual control bits.	
wSMControl	WORD	Interface to the optional safety system. • Setting control bit 0 ("SafeStop1") in this control word causes e.g. the automatic deceleration of the drive to standstill within this application (in the Motion Control Kernel). • See the "Interface to safety system" subchapter of the chapter on basic drive functions for a detailed description of the control bits.	
bCInh		Enable/Inhibit	<u>controller</u>
	BOOL	FALSE	Enable controller: The controller switches to the "OperationEnabled" device status if no other source of a controller inhibit is active. • C00158 provides a bit coded representation of all active sources/triggers of a controller inhibit.
		TRUE Inhibit controller (controller inhibit): The controller switches to t "SwitchedOn" device status.	
bFailReset BOOL		Reset error messages In the Lenze setting this input is connected to the digital input controller enable so that a possibly existing error message is reset together with the controller enable (if the cause for the fault is eliminated).	
		TRUE	The current fault is reset, if the cause for the fault is eliminated. • If the fault still exists, the error status remains unchanged.
bSetQuickstop	BOOL	Enable quick stAlso see dev	op (QSP) vice command " <u>Activate/Deactivate quick stop</u> ".
		TRUE	 Activate quick stop Motor control is decoupled from the setpoint selection and, within the deceleration time parameterised in C00105, the motor is brought to a standstill (n_{act} = 0). The motor is kept at a standstill during closed-loop operation. A pulse inhibit (CINH) is set if the auto DCB function has been activated via C00019.
		FALSE	Deactivate quick stop The quick stop is deactivated if no other source for the quick stop is active. C00159 provides a bit-coded representation of active sources/causes for the quick stop.

Identifier	Data type	Information/possible settings	
nTorqueMotLim_a nTorqueGenLim_a		 Torque limitation in motor mode and in generator mode These input signals are directly transferred to the motor control to limit the controller's maximum torque in motor and generator mode. The drive cannot output a higher torque in motor/generator mode than set here. The applied values (any polarity) are internally interpreted as absolute values. If V/f characteristic control (VFCplus) is selected, limitation is indirectly performed via a so-called I_{max} controller. If sensorless vector control (SLVC) or servo control (SC) is selected, limitation has a direct effect on the torque-producing current component. Scaling: 16384 ≡ 100 % M_{max} (C00057) Note: Setting this input is ineffective in the reference modes 14 and 15 ("Homing to positive stop"). 	
		Torque limits in motor and generator mode: TorqueGenLim M TorqueMotLim N N TorqueMotLim TorqueMotLim TorqueGenLim TorqueGenLim	
bSetSpeedCcw BOOL		Change of direction of rotation For instance if a motor or gearbox is fixed laterally reversed to a machine part, but the setpoint selection should still be executed for the positive direction of rotation.	
		FALSE Direction of rotation to the right (Cw) TRUE Direction of rotation to the left (Ccw)	
nMainSetValue_a	INT	Main speed setpoint	
nAuxSetValue_a	INT	 Additional speed setpoint Offset and gain of this input signal can be set in C00697 and C00671 for a simple signal adjustment of a setpoint encoder. Scaling: 16384 ≡ 100 % reference speed (C00011) The additional speed setpoint can be linked arithmetically with the main speed setpoint behind the ramp function generator. The additional speed setpoint can be shown via ramp times of a second ramp function generator. For a detailed functional description see the L NSet FB. 	
bJogSpeed1 bJogSpeed2	BOOL	Selection inputs for fixed changeover setpoints (JOG setpoints) for the main setpoint • Selection inputs are binary coded.	

Technology applications TA "Table positioning"

Identifier Data type	Information/possible settings
bJogSpeed1 bJogSpeed2 BOO	 Selection inputs for fixed changeover setpoints (JOG setpoints) for the main setpoint A fixed setpoint for the setpoint generator can be activated instead of the main setpoint via these selection inputs. The two selection inputs are binary coded, therefore you can select 3 fixed setpoints. In the case of binary coded selection "0" (all inputs = FALSE or not assigned), main setpoint nMainSetValue_a is active. The selection of the fixed setpoints is carried out in C00039/13 in [%] based on the reference speed (C00011). For a detailed functional description see the L NSet FB.

Motor potentiometer

Alternatively to the input signal $nMainSetValue_a$, the main setpoint can also be generated by a motor potentiometer function.

- In the Lenze setting, the motor potentiometer function is deactivated.
- Activation is possible via <u>C00806</u> or via the *bMPotEnable* input.
- The behaviour of the motor potentiometer during switch-on of the drive system can be selected in C00805.
- For a detailed functional description see the <u>L_MPot</u> FB.

bMPotEnable	BOOL	Activating the moto This input and Co	r potentiometer function 20806 are OR'd.
		TRUE The motor potentiometer function is active; the speed setpoint c be changed via the bMPotUp and bMPotDown control inputs.	
bMPotUp		Increasing the speed	d setpoint
	BOOL		roach the upper speed limit value set in <u>C00800</u> with the leration time set in <u>C00802</u> .
bMPotDown		Decreasing the spee	d setpoint
	BOOL		roach the lower speed limit value set In <u>C00801</u> with the eleration time set in <u>C00803</u> .
MCK basic functions			
bMBrakeRelease	BOOL	 Holding brake control: Release/apply brake In conjunction with the operating mode selected in C02580 (Lenze setting: "Brake control off"). 	
			y brake. uring automatic operation, the internal brake logic controls of ne brake.
		• N T • D d tl d	ase brake manually (forced release). lote! the brake can also be released when the controller is inhibited! suring automatic operation, the internal brake logic is eactivated and the brake is released (supervisor operation). If the brake control has inhibited the controller, this inhibit is eactivated again. In semi-automatic operation, the brake is released including eedforward control.
wMckCtrl1 wMckCtrl2	WORD	 <u>Direct</u> selection of MCK control words E.g. via a master control which has been connected to the fieldbus, too. For this purpose, the control word inputs can directly be connected to the LP_Mciln or LP_CanIn fieldbus interface. See the "MCK control word" chapter for a detailed description of the individual control bits. 	

Identifier	a type	Information/possible settings				
wMckOperationMode	WORD	 Only bit 0 If an invalid activated (L 	e operating mode of the Motion Control Kernel bit 3 of <i>wMckOperationMode</i> is evaluated. operating mode is selected, the response set in <u>C00595/11</u> is enze setting: "Warning"). operating mode is displayed in <u>C01243</u> .			
		0	Speed follower			
		1	Homing			
		2	Manual jog			
		3	Positioning			
		4	Stop			
		5	Position follower			
		6 15	Reserved for future extensions			
bMckOperationMode_1 bMckOperationMode_8 BOO	LBOOL	 See the "MC control bits If an invalid activated (L 	election of the operating mode of the Motion Control Kernel CK control word" chapter for a detailed description of the individual operating mode is selected, the response set in C00595/11 is enze setting: "Warning"). Operating mode is displayed in C01243.			
bPosCtrlOn	BOOL		Position control/Angle control • Pre-configured assignment: TRUE (position control active)			
		FALSE	Deactivate position control/angle control			
		TRUE	Activate position control/angle control			
nPosCtrlOutLimit_a	INT	Limitation of the position controller output • Scaling: 16384 ≡ 100 % reference speed (C00011) • Pre-configured assignment: 100 %				
nPosCtrlPAdapt_a	INT	Adaptation of the position controller gain • Scaling: 16384 ≡ 100 % Vp (C00254) • Pre-configured assignment: 100 %				
bLimitSwitchPos bLimitSwitchNeg	BOOL	Limit position	monitoring: Inputs for positive/negative limit switch			
bReleaseLimitSwitch		Manual jog: Re	tract operated limit switch			
	BOOL	TRUE	Retract operated limit switch (in opposite direction)			
bManJogPos bManJogNeg	BOOL	Manual jog: bManJogPos = bManJogNeg = Both inputs = 1	TRUE: Manual jog right TRUE: Manual jog left 'RUE: No change compared to previous state 'ALSE: Stop manual jog			
bManJogExecute2ndVel		Manual jog: Ch	nangeover to speed 2			
	BOOL	FALSE	Speed 1 (<u>C01231/1</u>) active			
		TRUE	Speed 2 (<u>C01231/2</u>) active			
bEnableSpeedOverride		Speed override				
	BOOL	TRUE	Activate speed override			
nSpeedOverride_a	INT	Value for <u>Speed override</u>				
		Acceleration ov	verride			
bEnableAccOverride		Acceleration	vernae			

Identifier D	ata type	Information/possible settings			
nAccOverride_a	INT	 Value for Acceleration override Percentage multiplier for the currently active acceleration. 16384 ≡ 100 % of the parameterised acceleration of the corresponding operating mode. Values > 16384 are ignored. If the override value is 0 %, acceleration ceases. 			
bHomeStartStop		Homing: Start/stop homing			
	BOOL	TRUE Start homing			
		TRUE VFALSE Stop homing			
bHomeSetPosition		Homing: Set home position			
	BOOL	TRUE Set home position			
bHomeResetPosition		Homing: Reset home position			
	BOOL	TRUE Reset the "Reference known" status			
bHomeMark	BOOL	 Homing: Input for reference switch (pre-switch off mark) This input responds to the FALSE status (fail-safe) and is to be connected to the corresponding digital input to which the reference switch is connected. 			
bPosSetProfilePosition	BOOL	Position teaching: MCK setpoint position			
		TRUE Teach MCK setpoint position into the selected profile.			
bPosSetActualPosition		Position teaching: Current position			
	BOOL	TRUE Teach current position into the selected profile.			
bPosExecute		Positioning: Start travelling			
	BOOL	FALSE TRUE Execute selected profile			
bPosFinishTarget		<u>Positioning</u> : Complete cancelled profile			
	BOOL	FALSE TRUE A positioning process previously cancelled, e.g. by bPosStop or due to a device error, is resumed by travelling to the original target.			
bPosDisableFollowProf		<u>Positioning</u> : Do not execute sequence profile (switch-off profile linkage)			
	BOOL	TRUE Evaluation of the sequence profile number parameterised in C01307/115 for the selected profile is suppressed.			
bPosStop		Positioning: Cancel travelling			
	BOOL	TRUE Stop positioning From version 02.00.00, more travel requests will be inhibited ("PosExecute" will be blocked).			

Identifier	ata type	Information/possible settings				
wPosProfileMode WORD		 Override of the positioning mode set in the profile data Via this input, an override of the positioning mode parameterised in C01300/115 for the selected profile is possible. The value set in C01300/115 is not overwritten in this case. Only bit 0 bit 3 of wPosMode are evaluated. If wPosMode = 0 is selected, the positioning mode set in C01300/115 is used. 				
		0 Positioning mode = setting in <u>C01300/115</u>				
		1 Absolute (shortest path)				
		2 Continuous				
		3 Relative				
		4 Absolute (Cw)				
		5 Absolute (Ccw)				
		8 Absolute (shortest path) to TP				
		9 Continuous to TP				
		10 Relative to TP				
		11 Absolute (Cw) on TP				
		12 Absolute (Ccw) on TP				
		All other possible settings are reserved for future extensions!				
wPosProfileNo	WORD	Stipulation of the profile to be executed • Optionally as a data word or binary coded.				
bPosProfileNo_1						
 bPosProfileNo_8	BOOL					
dnPosProfilePosition_p	DINT	 Selection of the target position in [increments] The mode for calculating the position is selected in <u>C01296/1</u>. 				
wPosProfileUnitsLW wPosProfileUnitsHW	WORD	 Selection of the target position in [units] wPosProfileUnitsLW = Low word, wPosProfileUnitsHW = High word The mode for calculating the position is selected in C01296/1. 				
▶ <u>"GeneralPurpose" fu</u>	nctions					
nGPAnalogSwitchIn1_a nGPAnalogSwitchIn2_a		 Analog switch: Input signals The input signal selected via the selection input bGPAnalogSwitchSet is output at output nGPAnalogSwitchOut_a. 				
bGPAnalogSwitchSet	POOL	Analog switch: Selection input				
	BOOL	FALSE nGPAnalogSwitchOut_a = nGPAnalogSwitchIn1_a				
		TRUE nGPAnalogSwitchOut_a = nGPAnalogSwitchIn2_a				
nGPArithmetikIn1_a nGPArithmetikIn2_a	INT	Arithmetic: Input signals The arithmetic function is selected in C00338. The result is output at output nGPArithmetikOut_a.				
nGPMulDivIn_a	INT	 Multiplication/Division: Input signal The factor for the multiplication can be set in <u>C00699/1</u> (numerator) and <u>C00699/2</u> (denominator). The result is output at output nGPMulDivOut_a. 				
bGPDigitalDelayIn	BOOL	Binary delay element: Input signal The on-delay can be set in C00720/1. The off-delay can be set in C00720/2. The time-delayed input signal is output at output bGPDigitalDelayOut.				

Identifier	Data type	Information/possible settings
bGPLogicIn1 bGPLogicIn2 bGPLogicIn3	BOOL	 Binary logic: Input signals The logic operation is selected in <u>C00820</u>. The result is output at output bGPLogicOut.
nGPCompareIn1_a nGPCompareIn2_a	INT	 Analog comparison: Input signals The comparison operation is selected in <u>C00680</u>. Hysteresis and window size can be set in <u>C00680</u> and <u>C00682</u>. If the comparison statement is true, the output <i>bGPCompareOut</i> will be set to TRUE.
bGPDFlipFlop_InD bGPDFlipFlop_InClk bGPDFlipFlop_InClr	BOOL	D-FlipFlop: Input signals • Data, clock and reset input
bGPCounter1ClkUp	BOOL	 Numerator: Clock input With each edge, the module counts up by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input.
bGPCounter1ClkDown		 Numerator: Clock input With each edge, the module counts down by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input.
bGPCounter1Load	BOOL	 Numerator: Loading input The input has the highest priority. TRUE Accept the starting value wGPCounter1LdVal.
wGPCounter1LdVal	WORD	Numerator: Starting value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), i.e. the most significant bit determines the sign.
wGPCounter1CmpVal	WORD	Numerator: Comparison value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), i.e. the most significant bit determines the sign.
		y be interconnected on the application level. from the I/O level to the application level via these inputs.
bFreeIn1 bFreeIn8	BOOL	Free inputs for digital signals
wFreeIn1 wFreeIn4	WORD	Free inputs for 16-bit signals
dnFreeIn1_p dnFree	ln2_p DINT	Free inputs for 32-bit signals

Outputs

Identifier Data type	Value/meaning				
wDriveControlStatus wORD	 Status word of the controller (based on DSP-402) The status word contains information on the currents status of the drive controller. See the "wDeviceStatusWord status word" subchapter of the chapter on device control for a detailed description of the bit assignment. 				
wStateDetermFailNoLow word	Display of the status determining error (LOW word)				
wStateDetermFailNoHigh word	Display of the status determining error (HIGH word)				
bDriveFail BOOL	TRUE Drive controller in error status. • "Fault" device status is active.				

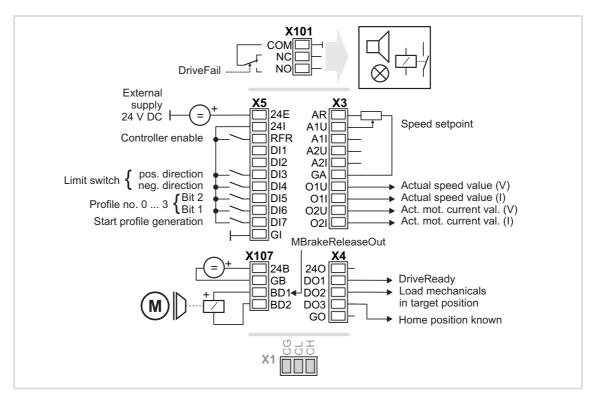
Identifier	Data type	Value/meanin	g			
bDriveReady	BOOL	TRUE	 Controller is ready for operation. "SwitchedOn" device status is active. The drive is in this device status if the DC bus voltage is applied and the controller is still inhibited by the user (controller inhibit). 			
bCInhActive	BOOL	TRUE	Controller inhibit is active.			
bQSPIsActive	BOOL	TRUE	Quick stop is active.			
bSpeedCcw		Current directi	on of rotation			
	BOOL	FALSE	FALSE Direction of rotation to the right (Cw)			
		TRUE	Direction of rotation to the left (Ccw)			
bSpeedActCompare		Result of the s	peed comparison			
	BOOL	TRUE	During open-loop operation: Speed setpoint < Comparison value (C00024)			
			During closed-loop operation: Actual speed value < Comparison value (C00024)			
blmaxActive		"Current setpo	int inside the limitation" status signal			
	BOOL	TRUE	The current setpoint is internally limited (the drive controller operates at the maximum current limit).			
bSpeedSetReached		Status signal ":	setpoint = 0"			
	BOOL	TRUE	Speed setpoint from the ramp function generator = 0			
nMotorCurrent_a	INT	Current stator current/effective motor current • Scaling: 16384 ≡ 100 % I _{max mot} (C00022)				
nMotorSpeedSet_a	INT		Speed setpoint • Scaling: 16384 = 100 % reference speed (C00011)			
nMotorSpeedAct_a	INT	Actual speed value • Scaling: 16384 ≡ 100 % reference speed (C00011)				
nMotorTorqueAct_a	INT	 Actual torque In the "VFC (+encoder)" operating mode of the motor control, this value is determined from the current motor current and corresponds to the actual torque only by approximation. Scaling: 16384 = 100 % M_{max} (C00057) 				
nDCVoltage_a	INT	Actual DC-bus • Scaling: 163				
nMotorVoltage_a	INT	Current motor • Scaling: 163	voltage/inverter output voltage 884 = 1000 V			
MCK basic functions						
bMBrakeReleaseOut	BOOL	element via a	<u>control</u> : Trigger signal for the holding brake control switching digital output <u>C02582</u> to activate inverted switching element triggering.			
		FALSE	Apply brake.			
		TRUE	Release brake.			
bMBrakeReleased	BOOL	Holding brake control: "Brake released" considering the brake release time When the holding brake is triggered to close, bMBrakeReleased is immediately set to FALSE even if the brake closing time has not yet elapsed!				
		TRUE	Brake released (when the brake release time has elapsed).			
wMckState1 wMckState2	WORD	Output of the MCK status words • For a detailed description of each status bit see chapter "MCK status word".				
wMckActOperation/	Node WORD	• Bit B0 B3	t-generating state of the MCK. contain the information of the <u>MCK status word</u> . L5 are fixed at "0".			

Identifier	Data type	Value/meaning			
bHomeDone	BOOL	TRUE	Homing has been executed.		
bHomePosAvailable	BOOL	TRUE Home position is known.			
bProfileDone	BOOL	TRUE	Target position from the profile has been approached.		
bProfileBusy	BOOL	TRUE	Profile positioning is active.		
bAccelerating	BOOL	TRUE	Acceleration phase active.		
bConstantDuty	BOOL	TRUE	Constant phase active.		
bDecelerating	BOOL	TRUE	Braking phase active.		
bDwellTime	BOOL	TRUE	Settling in target position is active		
bInTarget	BOOL		Target position (actual value) is in the target window.		
wActProfileNo	WORD		number contain the information of the <u>MCK status word</u> . L5 are fixed at "0".		
wActPosMode	WORD	Current positioning mode Bit B0 B3 contain the information of the MCK status word. Bits B4 B15 are fixed at "0".			
dnTargetPos_p	DINT	Target position in [increments] • 65535 ≡ 1 revolution of the motor shaft			
dnSetPos_p	DINT	Absolute position setpoint			
dnPosAct_p	DINT	Current position of the motor shaft in [increments]			
dnDeltaPosAct_p	DINT		ing error in [increments] rror = Difference between set position and actual position		
wPosOutUnitsLW wPosOutUnitsHW	WORD	 wPosOutUn 	target position in [units] hitsLW = Low-Word, wPosOutUnitsHW = High-Word or calculating the position is selected in <u>C01296/2</u> .		
GP: GeneralPurpose The following outputs ▶ "GeneralPurpose" for	are inte	rconnected wit	h logic/arithmetic functions on application level for free usage.		
nGPAnalogSwitchInO	ut_a INT	Analog switch: Output signal			
nGPArithmetikOut_a	INT	Arithmetic: Ou	tput signal		
nGPMulDivOut_a	INT	Multiplication	<u>/Division</u> : Output signal		
bGPDigitalDelayOut	BOOL	Binary delay element: Output signal			
bGPLogicOut	BOOL	Binary logic: O	utput signal		
bGPCompareOut	BOOL	Analog compa	rison: Output signal		
bGPSignalOut1 bGPSignalOut4	BOOL	 Binary signal monitor: Output signals The signal sources to be output are selected in <u>C00411/14</u>. A bit coded inversion of the output signals can be parameterised in <u>C00412</u>. 			

Identifier	Data type	Value/meaning			
nGPSignalOut1_a		Analog signal monitor: Output signals			
 nGPSignalOut4_a	BOOL	 The signal sources to be output are selected in <u>C00410/14</u>. Gain and offset for each output signal can be parameterised in <u>C00413/18</u>. 			
bGPDFlipFlop_Out	BOOL	<u>D-FlipFlop</u> : Output signal			
bGPDFlipFlop_NegOu	t BOOL	D-FlipFlop: Negated output signal			
bGPCounter1Equal		Numerator: Status signal "Comparison value reached"			
	BOOL	TRUE Comparison value wGPCounter1CmpVal reached.			
wGPCounter1Out	wonn	Numerator: Counter content			
	WORD	 Internal limitation to ± 32767 The most significant bit determines the sign! 			
		ely be interconnected on the application level. on level can be transferred to the I/O level via these outputs.			
bFreeOut1 bFreeOut8		Free outputs for digital signals			
wFreeOut1 wFreeOut4 WORD		Free outputs for 16-bit signals			
dnFreeOut1_p dnFreeOut2_p		Free outputs for 32-bit signals			

8.5.3 Terminal assignment of the control modes

The following comparison provides information about which inputs/outputs of the application block **LA_TabPos** are interconnected to the digital and analog input/output terminals of the drive controller in the different control modes.

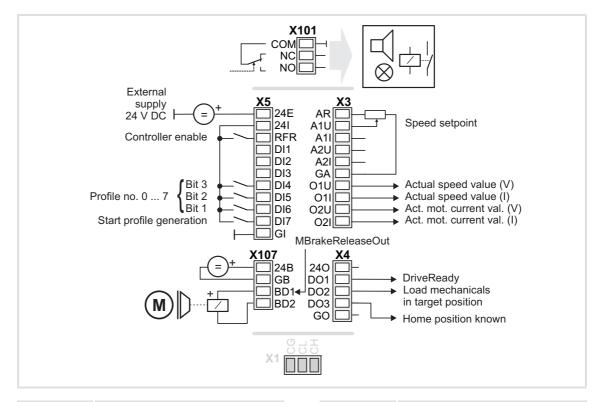

Technology applications TA "Table positioning"

8400 TopLine C | Software Manual

				Cambrolina	d- (C00007)			
				Control mo				
	10: <u>Terminals 0</u>	12: <u>Terminals 2</u>	14: <u>Terminals 11</u>	16: <u>Terminal 16</u>	20: <u>Keypad</u>	21: <u>PC</u>	30: <u>CAN</u>	40: <u>MCI</u>
Digital input to	erminals							
X5/RFR					eset of error message Reset			
X5/DI1	-	-	Positive limit switch bLimitSwitchPos	-	-	-	-	-
X5/DI2	-	-	Negative limit switch bLimitSwitchNeg	-	-	·	•	·
X5/DI3	bLimitSwitchPos in positive			Manual jog in positive direction bManJogPos	-	-	Positive limit switch bLimitSwitchPos	
X5/DI4	Negative limit switch bLimitSwitchNeg Positioning profile, array bit (valency 4) bPosProfileNo_4			Manual jog in negative direction bManJogNeg	-	-	Negative limit switch bLimitSwitchNeg	
X5/DI5			array bit (valency 2) fileNo_2		-	-	Home position bHomeMark	
X5/DI6		Positioning profile, bPosPro	array bit (valency 1) fileNo_1		-	-	Quick stop bSetQuickstop	
X5/DI7			l le generation xecute		-	-	Status word - bit 7 LP_CanOut1: bState_B7	Status word - bit 7 LP_MciOut: bState_B7
Analog input t	erminals							
X3/A1U	Main speed setpoint nMainSetValue a Main speed setpoint nMainSetValue a							
X3/A1I		nMainSe 10 V ≡ 100 % refere					nMainSe 10 V ≡ 100 % refere	tvalue_a nce speed (<u>C00011</u>)
X3/A2U	-	-	<u>-</u>	-	-	-	-	-
X3/A2I								
Digital output	terminals							
X4/DO1	Status "Drive is ready" bDriveReady							
X4/DO2		Status "Target position (actual value) is in the target window" blnTarget						
X4/DO3	Status "Home position known" bHomePosAvailable Status "Maximum current limit" blmaxActive							
X107/BD1, BD2		Control of the holding brake bMBrakeReleaseOut						
X101/COM, NO	Status "Error is pending" bDriveFail							

	Control mode (C00007)							
	10: <u>Terminals 0</u>	12: Terminals 2	14: <u>Terminals 11</u>	16: <u>Terminal 16</u>	20: <u>Keypad</u>	21: <u>PC</u>	30: <u>CAN</u>	40: <u>MCI</u>
Analog output	terminals							
X3/01U	Actual speed value							
X3/01I	nMotorSpeedAct_a 10 V = 100 % reference speed (C00011)							
X3/O2U	Current motor current							
X3/O2I	$nMotorCurrent_a$ $10V \equiv 100\% \text{ of } I_{max_mot} (\underline{c00022})$							

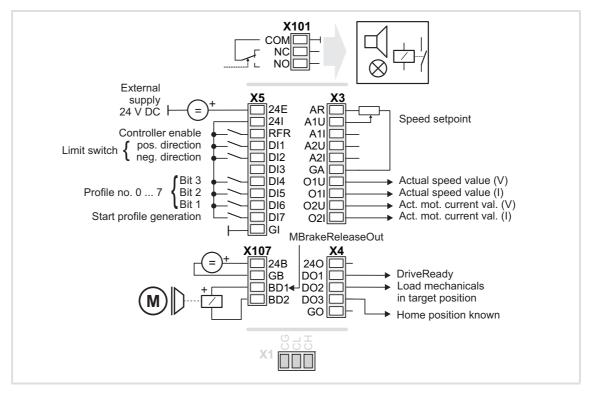
8.5.3.1 Terminals 0


Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	LA_TabPos.bLimitSwitchPos
X5/DI4	LA_TabPos.bLimitSwitchNeg
X5/DI5	LA_TabPos.bPosProfileNo_2
X5/DI6	LA_TabPos.bPosProfileNo_1
X5/DI7	LA_TabPos.bPosExecute
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-

Connection	Assignment
X3/A1U	LA_TabPos.nMainSetValue_a
X3/A1I	$10 \text{ V} \equiv 100 \%$ reference speed (C00011)
X3/A2U	-
X3/A2I	-
X3/01U	LA_TabPos.nMotorSpeedAct_a
X3/01I	10 V = 100 % reference speed (<u>C00011</u>)
X3/O2U	LA_TabPos.nMotorCurrent_a
X3/O2I	$10\overline{V} \equiv 100\% \text{ of } I_{\text{max}_\text{mot}} \left(\underline{C00022}\right)$
X4/D01	LA_TabPos.bDriveReady
X4/DO2	LA_TabPos.bInTarget
X4/DO3	LA_TabPos.bHomePosAvailable

bPosProfileNo_2 (DI5)	bPosProfileNo_1 (DI6)	Selected profile	Activation of operating mode
FALSE	FALSE	0	Speed follower
FALSE	TRUE	1	Homing
TRUE	FALSE	2	Manual jog
TRUE	TRUE	3	Positioning

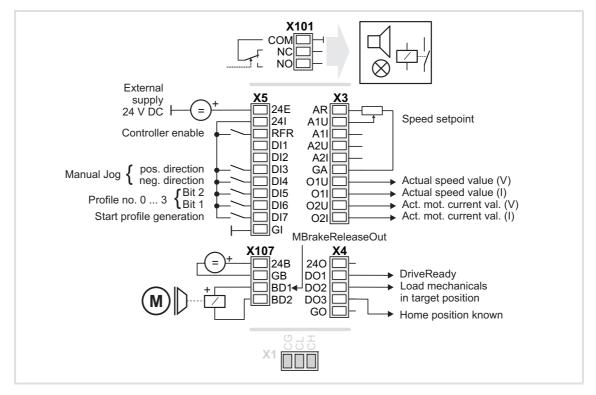
8.5.3.2 Terminals 2


Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	-
X5/DI4	LA_TabPos.bPosProfileNo_4
X5/DI5	LA_TabPos.bPosProfileNo_2
X5/DI6	LA_TabPos.bPosProfileNo_1
X5/DI7	LA_TabPos.bPosExecute
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-
	-

Connection	Assignment	
X3/A1U	LA_TabPos.nMainSetValue_a	
X3/A1I	10 V ≡ 100 % reference speed (<u>C00011</u>)	
X3/A2U	-	
X3/A2I	-	
X3/01U	LA_TabPos.nMotorSpeedAct_a	
X3/01I	10 V = 100 % reference speed (<u>C00011</u>)	
X3/O2U	LA_TabPos.nMotorCurrent_a	
X3/O2I	$10V \equiv 100\% \text{ of } I_{\text{max}_{mot}} (\underline{\text{C00022}})$	
X4/D01	LA_TabPos.bDriveReady	
X4/DO2	LA_TabPos.bInTarget	
X4/DO3	LA_TabPos.bHomePosAvailable	

bPosProfileNo_4 (DI4)	bPosProfileNo_2 (DI5)	bPosProfileNo_1 (DI6)	Selected profile	Activation of operating mode
FALSE	FALSE	FALSE	0	Speed follower
FALSE	FALSE	TRUE	1	Homing
FALSE	TRUE	FALSE	2	Manual jog
FALSE	TRUE	TRUE	3	Positioning
TRUE	TRUE	TRUE	7	

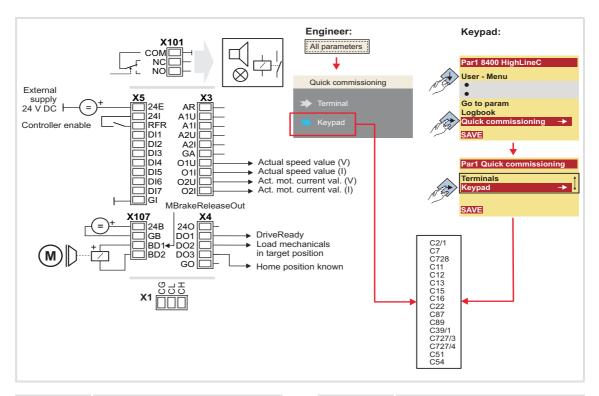
8.5.3.3 Terminals 11


Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	LA_TabPos.bLimitSwitchPos
X5/DI2	LA_TabPos.bLimitSwitchNeg
X5/DI3	-
X5/DI4	LA_TabPos.bPosProfileNo_4
X5/DI5	LA_TabPos.bPosProfileNo_2
X5/DI6	LA_TabPos.bPosProfileNo_1
X5/DI7	LA_TabPos.bPosExecute
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-

Connection	Assignment
X3/A1U	LA_TabPos.nMainSetValue_a
X3/A1I	$10 \text{ V} \equiv 100 \% \text{ reference speed (}\frac{\text{C00011}}{\text{C00011}}$
X3/A2U	-
X3/A2I	-
X3/01U	LA_TabPos.nMotorSpeedAct_a
X3/01I	10 V = 100 % reference speed (<u>C00011</u>)
X3/O2U	LA_TabPos.nMotorCurrent_a
X3/O2I	$10V \equiv 100\% \text{ of } I_{\text{max}} \text{mot} (\underline{\text{C00022}})$
X4/DO1	LA_TabPos.bDriveReady
X4/DO2	LA_TabPos.bInTarget
X4/DO3	LA_TabPos.bHomePosAvailable

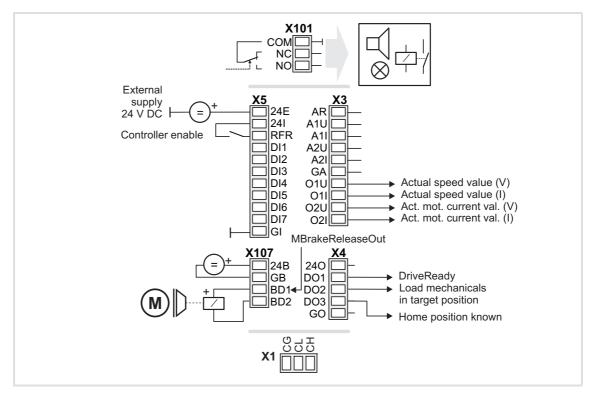
bPosProfileNo_4 (DI4)	bPosProfileNo_2 (DI5)	bPosProfileNo_1 (DI6)	Selected profile	Activation of operating mode
FALSE	FALSE	FALSE	0	Speed follower
FALSE	FALSE	TRUE	1	Homing
FALSE	TRUE	FALSE	2	Manual jog
FALSE	TRUE	TRUE	3	Positioning
TRUE	TRUE	TRUE	7	

8.5.3.4 Terminal 16


Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	LA_TabPos.bManJogPos
X5/DI4	LA_TabPos.bManJogNeg
X5/DI5	LA_TabPos.bPosProfileNo_2
X5/DI6	LA_TabPos.bPosProfileNo_1
X5/DI7	LA_TabPos.bPosExecute
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-

Connection	Assignment	
X3/A1U	LA_TabPos.nMainSetValue_a	
X3/A1I	$10 \text{ V} \equiv 100 \%$ reference speed (C00011)	
X3/A2U	-	
X3/A2I	-	
X3/01U	LA_TabPos.nMotorSpeedAct_a	
X3/01I	10 V = 100 % reference speed (<u>C00011</u>)	
X3/O2U	LA_TabPos.nMotorCurrent_a	
X3/O2I	$10\overline{V} \equiv 100\% \text{ of } I_{\text{max}_\text{mot}} \left(\underline{C00022}\right)$	
X4/D01	LA_TabPos.bDriveReady	
X4/DO2	LA_TabPos.bInTarget	
X4/DO3	LA_TabPos.bHomePosAvailable	

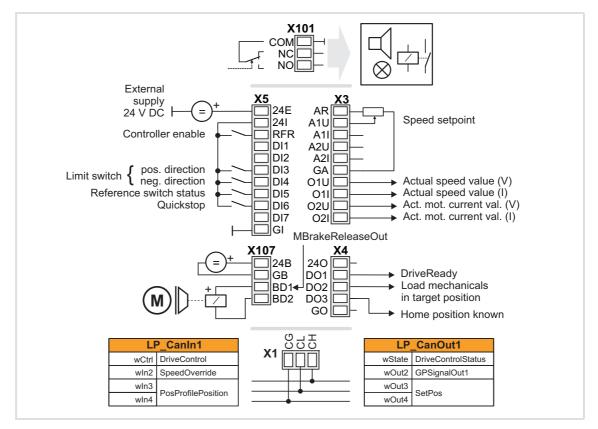
bPosProfileNo_2 (DI5)	bPosProfileNo_1 (DI6)	Selected profile	Activation of operating mode
FALSE	FALSE	0	Speed follower
FALSE	TRUE	1	Homing
TRUE	FALSE	2	Manual jog
TRUE	TRUE	3	Positioning


8.5.3.5 Keypad

Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	-
X5/DI4	-
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-

Connection	Assignment
X3/A1U	LA_TabPos.nMainSetValue_a
X3/A1I	10 V = 100 % reference speed (<u>C00011</u>)
X3/A2U	-
X3/A2I	-
X3/01U	LA_TabPos.nMotorSpeedAct_a
X3/01I	$10 \text{ V} \equiv 100 \% \text{ reference speed (} \underline{\text{C00011}}\text{)}$
X3/O2U	LA_TabPos.nMotorCurrent_a
X3/O2I	$10\overline{V} \equiv 100\% \text{ of } I_{\text{max}_\text{mot}} (\underline{C00022})$
X4/DO1	LA_TabPos.bDriveReady
X4/DO2	LA_TabPos.bInTarget
X4/DO3	LA_TabPos.bHomePosAvailable

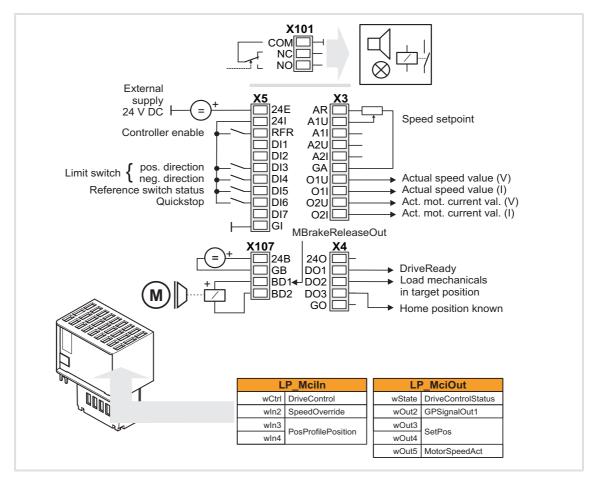
8.5.3.6 PC



Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	-
X5/DI4	-
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-

Connection	Assignment	
X3/A1U	-	
X3/A1I	-	
X3/A2U	-	
X3/A2I	-	
X3/01U	LA_TabPos.nMotorSpeedAct_a 10 V ≡ 100 % reference speed (C00011)	
X3/01I		
X3/O2U	LA_TabPos.nMotorCurrent_a $10V = 100\%$ of $I_{max_mot}(\underline{c000022})$	
X3/O2I		
X4/DO1	LA_TabPos.bDriveReady	
X4/DO2	LA_TabPos.bInTarget	
X4/DO3	LA_TabPos.bHomePosAvailable	

8.5.3.7 CAN



Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	LA_TabPos.bLimitSwitchPos
X5/DI4	LA_TabPos.bLimitSwitchNeg
X5/DI5	LA_TabPos.bHomeMark
X5/DI6	LA_TabPos.bSetQuickstop
X5/DI7	LP_CanOut1: bState_B7
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-

Connection	Assignment
X3/A1U	LA_TabPos.nMainSetValue_a 10 V = 100 % reference speed (<u>C00011</u>)
X3/A1I	
X3/A2U	-
X3/A2I	-
X3/01U	LA_TabPos.nMotorSpeedAct_a 10 V ≡ 100 % reference speed (C00011)
X3/01I	
X3/O2U	LA_TabPos.nMotorCurrent_a $10V \equiv 100\% \text{ of } I_{max_mot} (\underline{c00022})$
X3/O2I	
X4/D01	LA_TabPos.bDriveReady
X4/DO2	LA_TabPos.bInTarget
X4/DO3	LA_TabPos.blmaxActive

▶ <u>Process data assignment for fieldbus communication</u> (☐ 434)

8.5.3.8 MCI

Connection	Assignment
X101/NC-NO	LA_TabPos.bDriveFail
X5/RFR	LA_TabPos.bFailReset
X5/DI1	-
X5/DI2	-
X5/DI3	LA_TabPos.bLimitSwitchPos
X5/DI4	LA_TabPos.bLimitSwitchNeg
X5/DI5	LA_TabPos.bHomeMark
X5/DI6	LA_TabPos.bSetQuickstop
X5/DI7	LP_MciOut: bState_B7
X107/BD1	LA_TabPos.bMBrakeReleaseOut
X107/BD2	-

Connection	Assignment
X3/A1U	LA_TabPos.nMainSetValue_a
X3/A1I	$10 \text{ V} \equiv 100 \%$ reference speed (C00011)
X3/A2U	-
X3/A2I	-
X3/01U	LA_TabPos.nMotorSpeedAct_a
X3/01I	10 V ≡ 100 % reference speed (<u>C00011</u>)
X3/O2U	LA_TabPos.nMotorCurrent_a
X3/O2I	$10V \equiv 100\% \text{ of } I_{\text{max}_{\text{mot}}} (\underline{\text{C00022}})$
X4/DO1	LA_TabPos.bDriveReady
X4/DO2	LA_TabPos.bInTarget
X4/DO3	LA_TabPos.bImaxActive

▶ Process data assignment for fieldbus communication (□ 434)

8.5.4 Process data assignment for fieldbus communication

The fieldbus communication is connected (preconfigured) to the previously selected technology application by selecting the corresponding control mode in <u>C00007</u>:

- ► "30: CAN" for the connection to the system bus (CAN)
- ▶ "40: MCI" for the connection to a plugged-on communication module (e.g. PROFIBUS)

The assignment of the process data words does not depend on the applied bus system but exclusively on the application:

Input words	Name	Assignment
Word 1	DriveControl	Control word • See table below for bit assignment.
Word 2	SpeedOverride	 Value for speed override Percentage multiplier for the currently active speed. 16384 ≡ 100 % of the maximum traversing speed (display in C01211/1). Values > 16384 are ignored. If the override value is 0 %, the drive is brought to a standstill. Speed override (□ 560)
Word 3 and 4	PosProfilePosition	 Selection of the target position in [increments] The mode for calculating the position is selected in C01296/1. 65535 [Increments] ≡ 1 motor revolution The position resolution, i.e. how many increments form one unit, is displayed in C01205.
Word 5 16	-	Not preconfigured Only available for control mode "40: MCI".

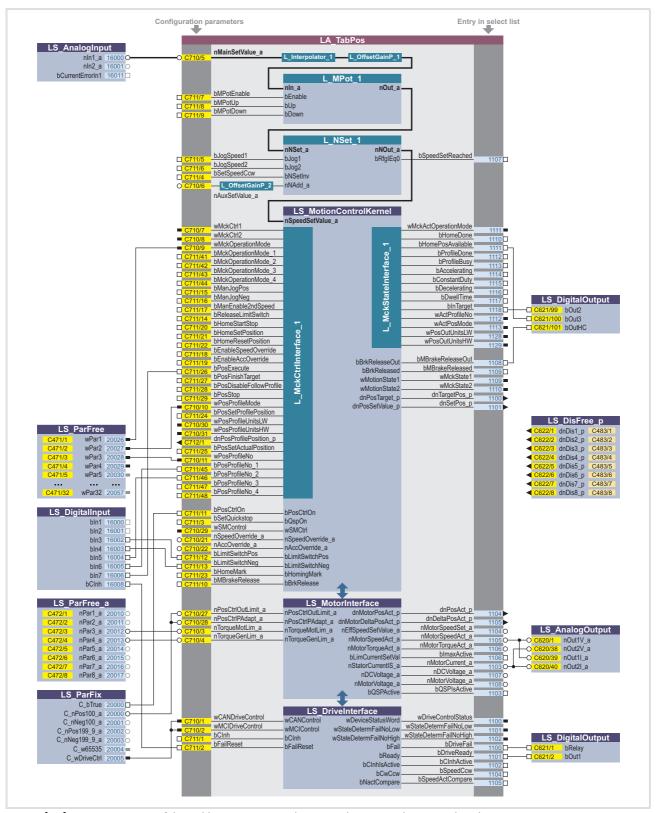
Control word	Name	Function	
Bit 0	MckOperationMode_1	Binary-coded selection of the operating mode of the Motion	
Bit 1	MckOperationMode_2	Control Kernel For a detailed description of the individual control bits, see	
Bit 2	MckOperationMode_4	chapter "MCK control word". (481)	
Bit 3	CINH	1 ≡ Inhibit drive controller (controller inhibit): The drive controller changes to the device state "SwitchedOn". ▶ Enable/Inhibit controller (□ 97)	
Bit 4	PosProfileNo_1	Selection of the profile number	
Bit 5	PosProfileNo_2	► <u>Stipulation of the profile to be executed</u> (☐ 552)	
Bit 6	PosProfileNo_4		
Bit 7	PosProfileNo_8		
Bit 8	PosExecute	1 ≡ Start travel job Positioning (□ 541)	
Bit 9	EnableSpeedOverride	1 ≡ Activate speed override ▶ Speed override (□ 560)	
Bit 10	HomeSetPosition	1 ≡ Set home position ► Homing (□ 517)	
Bit 11	FailReset	1 = Reset error message ▶ Reset error messages (□ 606)	
Bit 12	ManJogNeg	Manual jog in positive/negative direction	
Bit 13	ManJogPos	<u>Manual jog</u> (☐ 533)	
Bit 14	-	Free control bit 14 (not assigned, freely assignable)	
Bit 15	-	Free control bit 15 (not assigned, freely assignable)	

Output words	Name	Assignment
Word 1	DriveControlStatus	Status word • See table below for bit assignment.
Word 2	GPSignalOut1	 Analog signal monitor: Output signal 1 The selection of the signal source to output is executed in C00410/1. Gain and offset for the output signal can be parameterised in C00413/1 and C00413/2. For a detailed functional description see the L SignalMonitor a FB.
Word 3 and 4	SetPos	 Absolute position setpoint in [increments] 65535 [Increments] = 1 motor revolution The position resolution, i.e. how many increments form one unit, is displayed in C01205.
Word 5	MotorSpeedAct	Actual speed value • Scaling: 16384 ≡ 100 % reference speed (C00011) • Only available for control mode "40: MCI".
Word 6 16	-	Not preconfigured Only available for control mode "40: MCI".

Status word	Name	Status
Bit 0	DriveFail	1 = Drive controller in error status"<u>Fault</u>" device status is active.
Bit 1	GPSignalOut1	Binary signal monitor: Output signals 1 & 2
Bit 2	GPSignalOut2	 The signal sources to be output are selected in <u>C00411/12</u>. A bit coded inversion of the output signals can be parameterised in <u>C00412</u>. For a detailed functional description see FB <u>L SignalMonitor b</u>.
Bit 3	CInhActive	1 ≡ Controller inhibit is active
Bit 4	DriveReady	 1 = Drive controller is ready for operation "SwitchedOn" device status is active. The drive is in this device status if the DC bus voltage is applied and the controller is still inhibited by the user (controller inhibit).
Bit 5	DigitalInput5	Signal from the digital input DI5
Bit 6	DigitalInput6	Signal from the digital input DI6
Bit 7	DigitalInput7	Signal from the digital input DI7
Bit 8	InTarget	1 ≡ Target position (actual value) is in the target window
Bit 9	ProfileBusy	1 ≡ Profile positioning is active
Bit 10	HomePosAvailable	1 ≡ Home position is known
Bit 11	SpeedActCompare	Result of the speed comparison • In case of the "Open loop" operation: 1 ≡ Speed setpoint < comparison value (C00024) • For "Closed loop" operation: 1 ≡ actual speed value < comparison value (C00024)
Bit 12	DigitalInput4	Signal from the digital input DI4
Bit 13	DigitalInput3	Signal from the digital input DI3
Bit 14	QsplsActive	$1 \equiv Quick stop is active$
Bit 15	-	Free status bit 15 (not assigned, freely assignable)

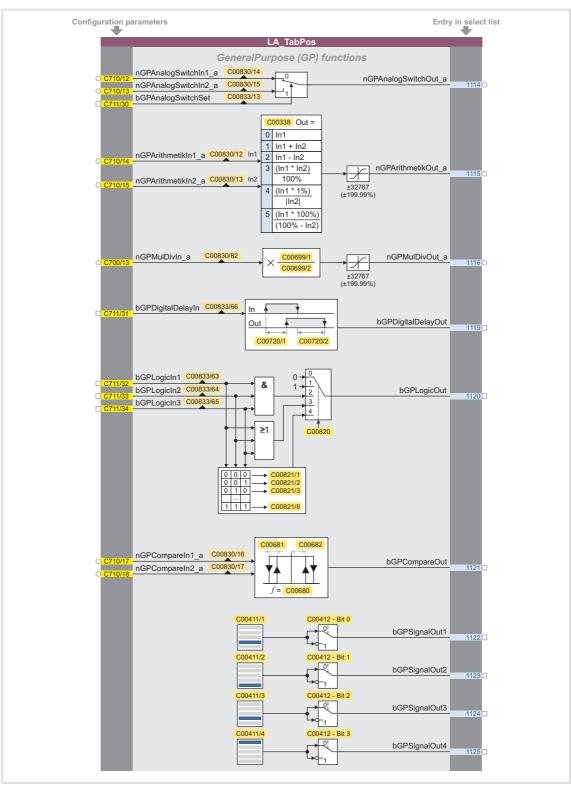
8.5.5 Setting parameters (short overview)

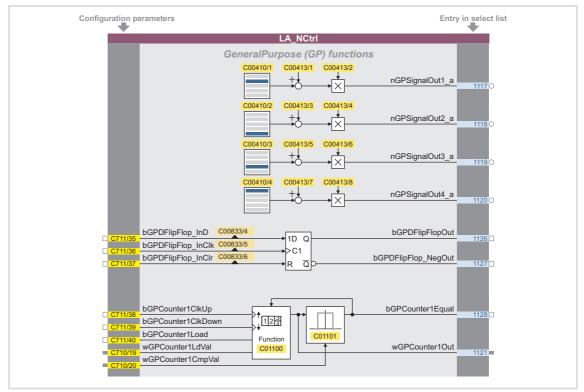
Parameter	Info	Lenze setting		
		Value	Unit	
C00012	Accel. time - main setpoint	2.000	s	
C00013	Decel. time - main setpoint	2.000	s	
C00024	Comparison value N_Act	0.00	%	
C00039/1	Fixed setpoint 1	40.00	%	
C00039/2	Fixed setpoint 2	60.00	%	
C00182	S-ramp time PT1	20.00	S	
C00190	Setpoint arithmetic	0: NOut	= NSet	
C00220	Accel. time - add. setpoint	0.000	S	
C00221	Decel. time - add. setpoint	0.000	S	
C00632/1	L_NSet_1: Blocking speed 1 max	0.00	%	
C00632/2	L_NSet_1: Blocking speed 2 max	0.00	%	
C00632/3	L_NSet_1: Blocking speed 3 max	0.00	%	
C00633/1	L_NSet_1: Blocking speed 1 min	0.00	%	
C00633/2	L_NSet_1: Blocking speed 2 min	0.00	%	
C00633/3	L_NSet_1: Blocking speed 3 min	0.00	%	
C00635	L_NSet_1: nMaxLimit	199.99	%	
C00636	L_NSet_1: nMinLimit	-199.99	%	
C00670	L_OffsetGainP_1: Gain	1.0000		
C00671	L_OffsetGainP_2: Gain	1.0000		
C00696	L_OffsetGainP_1: Offset	0.00	%	
C00697	L_OffsetGainP_2: Offset	0.00	%	
C00800	L_MPot_1: Upper limit	100.00	%	
C00801	L_MPot_1: Lower limit	-100.00	%	
C00802	L_MPot_1: Accel. time	10.0	S	
C00803	L_MPot_1: Decel. time	10.0	s	
C00804	L_MPot_1: Inactive fct.	0: Retair	n value	
C00805	L_MPot_1: Init fct.	0: Load la	st value	
C00806	L_MPot_1: Use	0: N	lo	
C01297	Alternative function	Bit coded		
C01298/1	MCK operating mode at profile no. 0	1: Follower		
C01298/2	MCK operating mode at profile no. 1	2: Hor	ning	
C01298/3	MCK operating mode at profile no. 2	3: ManualJog		
C01298/4	MCK operating mode at profile no. 315	4: Positioning		
C01299	MCKI: Status MCKInterface	-		


Related topics:

▶ <u>"GeneralPurpose" functions</u> (🕮 467)

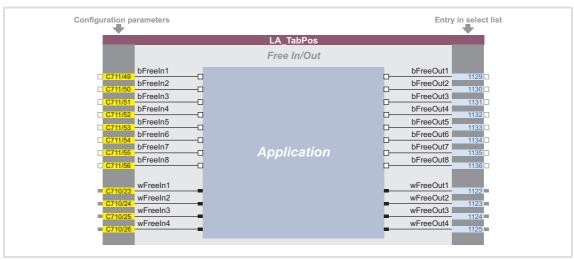
8.5.6 Configuration parameters


If required, the subcodes of $\underline{\text{C00710}}$, $\underline{\text{C00711}}$ and $\underline{\text{C00712}}$ serve to change the preconfigured assignment of the application inputs:



[8-1] Pre-assignment of the "Table positioning" application in the "Terminals 0" control mode

Configuration parameters for "GeneralPurpose" functions


[8-2] "GeneralPurpose" functions

[8-3] "GeneralPurpose" functions (continuation)

Free inputs and outputs

These inputs can be freely interconnected in the application level. They can be used to transfer signals from the I/O level to the application level and vice versa.

[8-4] Free inputs/outputs

Related topics:

- ▶ User-defined terminal assignment (☐ 370)
- ▶ "GeneralPurpose" functions (□ 467)

8.6 TA "Switch-off positioning"

The basic principle of this technology application is to travel to a switch-off sensor (e.g. a limit switch) in a speed-controlled manner and to stop as close as possible at this position. Unlike other positioning controls, the switch-off positioning neither has a position feedback nor calculates the path in advance. Thus, the accuracy that can be achieved depends on various factors such as the speed at which the switch-off sensor is advanced.

In addition, a pre-switch off can be implemented which requires a sufficient number of unassigned digital inputs on the controller which can be used to connect other sensors for the additional stop positions. These sensors effect a reduction in speed before the last switch-off sensor is reached.

Features

- ► Pre-configured control modes for terminals and bus control (with predefined process data connection to the fieldbus)
- ► Free configuration of input and output signals
- ▶ Offset, gain, and negation of main setpoint & additional setpoint
- ▶ Up to 15 fixed setpoints for speed and ramp time
- ► Adjustable setpoint ramp times
- ► Freely selectable, variable ramp shape
- Automatic holding brake control
- ▶ Quick stop (QSP) with adjustable ramp time
- ► Integrated disposable "GeneralPurpose" functions: Analog switch, arithmetic, multiplication/division, binary delay element, binary logic, analog comparison, D-flipflop
- ► Interface to the safety module (optional)
- ► Integration of encoder feedback
- ▶ Switch-off sensor management for the implementation of a pre-switch off

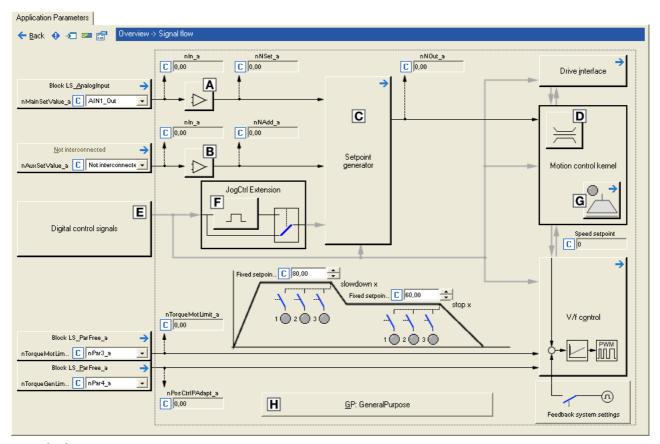
Decision criteria

Criteria	Switch-off positioning with constant load	Switch-off positioning with variable load
Operating mode	V/f characteristic without speed sensor. Alternatively for large breakaway torques: Use of a sensorless vector contro (only applicable for horizontal movements).	
Limit switch evaluation	One limit switch is required per direction of movement. When the limit switch is reached, the drive is brought to a standstill leaded by the deceleration ramp or the QSP ramp.	Per direction of movement, one limit switch and one initiator is required for fast/slow changeover. When this initiator is reached, the speed of the drive is reduced to a creeping speed (selected jog value). When the limit switch is reached, the drive is brought to a standstill leaded by the deceleration ramp or the QSP ramp.

Criteria	Switch-off positioning with constant load	Switch-off positioning with variable load
Positioning accuracy at the motor shaft The positioning accuracy of the load depends e.g. on the selected mechanics by clearance and friction and must be determined individually.	The ideal case is 5-10° at the motor shaft. Consider the influence of the motor temperature. In the case of a constant load, you can assume a good repeat accuracy during positioning. In the case of variable loads, you must take significant deviations into account.	5-10° at the motor shaft. As the positioning is executed in a creeping speed, a good repeat accuracy is reached even for variable loads.
Speed setting range	1 : 50, based on 50Hz and M _n	1:50, based on 50Hz and M _n
Typical applications	Switch-off positioning with constant load, e.g. travelling drive, roll-up door.	Switch-off positioning with variable load, e.g. travelling drive, conveying belt, hoists approaching a stop position

System limits and exclusion criteria

They result from the non-compliance with the decision criteria.


- ► Compared to systems with speed feedback, the positioning and repeat accuracy is reduced.
- ▶ Due to the mechanical hardware limit switches, this concept is only applicable for systems with only a few fixed positions. Changing the target position during the operation or the teaching is not possible.
- ► If necessary, additional functions like manual jog or homing must be realised externally, e.g. via a control.
- ➤ As the 8400 TopLine controller does not meet safety-related functions except STO (Safe Torque Off), you must observe that all safety-related aspects are realised by the plant instructor.
- ► Especially in the case of an outdoor use or in wet areas, you must consider the corresponding discharge currents when operated with a fault current circuit breaker.
- ▶ A table positioning or sequential positioning control is required for highly dynamic applications and jerk-free traversing profiles which is available with the "HighLine" device version.

Related topics:

▶ Commissioning of the "Switch-off positioning" technology application (☐ 72)

8.6.1 Basic signal flow

[8-5] Signal flow of the switch-off positioning

- A Main speed setpoint offset and gain (L OffsetGainP 1)
- Additional speed setpoint offset and gain (<u>L_OffsetGainP_2</u>)
- © Setpoint generator (L NSet 1)
- Speed setpoint input limitation
- **E** Terminal assignment & display of digital control signals
- Selection of edge/level for tripping the ramp down and stop functions (L JogCtrlExtension 1)
- **G** Holding brake control
- Integrated disposable "GeneralPurpose" functions: Analog switch, arithmetic, multiplication/division, binary delay element, binary logic, analog comparison, D-flipflop

8.6.2 Internal interfaces | application block "LA_SwitchPos"

Note!

The connectors grayed out in the following table are hidden in the function block editor in the Lenze setting.

• These connections can be shown via the **Connector visibilities** command in the *Context menu* of the application block.

Inputs

Identifier	Data type	Information/p	ossible settings	
wCANDriveControl	WORD	Control word via system bus (CAN) to device control • See the "wCANControl/wMCIControl control words" subchapter of the chapter on device control for a detailed description of the individual control bits.		
wMCIDriveControl	WORD	• See the "wo	 Control word via communication module (e.g. PROFIBUS) to device control See the "wCANControl/wMCIControl control words" subchapter of the chapter on device control for a detailed description of the individual control bits. 	
wSMControl	WORD	Interface to the optional safety system. • Setting control bit 0 ("SafeStop1") in this control word causes e.g. the automatic deceleration of the drive to standstill within this application (in the Motion Control Kernel). • See the "Interface to safety system" subchapter of the chapter on basic drive functions for a detailed description of the control bits.		
bCInh		Enable/Inhibit	<u>controller</u>	
	BOOL	FALSE	Enable controller: The controller switches to the "OperationEnabled" device status if no other source of a controller inhibit is active. • C00158 provides a bit coded representation of all active sources/triggers of a controller inhibit.	
		TRUE	Inhibit controller (controller inhibit): The controller switches to the "SwitchedOn" device status.	
bFailReset		Reset error me	ssages	
	BOOL	that a possibly	tting this input is connected to the digital input controller enable so existing error message is reset together with the controller enable (if he fault is eliminated).	
		TRUE	The current fault is reset, if the cause for the fault is eliminated. • If the fault still exists, the error status remains unchanged.	
bSetQuickstop		Enable quick st	top (QSP)	
	BOOL	Also see dev	vice command " <u>Activate/Deactivate quick stop</u> ".	
		TRUE	 Activate quick stop Motor control is decoupled from the setpoint selection and, within the deceleration time parameterised in C00105, the motor is brought to a standstill (n_{act} = 0). The motor is kept at a standstill during closed-loop operation. A pulse inhibit (CINH) is set if the auto DCB function has been activated via C00019. 	
		FALSE	 Deactivate quick stop The quick stop is deactivated if no other source for the quick stop is active. C00159 provides a bit-coded representation of active sources/causes for the quick stop. 	

8400 TopLine C | Software Manual Technology applications TA "Switch-off positioning"

Identifier	Data type	Information/possible settings		
bSetDCBrake BOOL		Manual DC-injection braking (DCB) Detailed information on DC-injection braking is provided in the motor control chapter, subchapter "DC-injection braking".		
		Note!		
		Holding braking is not possible when this braking mode is used! For controlling a holding brake with low rate of wear, use the basic function "Holding brake control".		
		FALSE Deactivate DC-injection braking.		
		 Activate DC-injection braking, i.e. the drive is brought to a standstill by means of DC-injection braking. The braking effect stops when the rotor is at standstill. After the hold time (C00107) has expired, the controller sets the pulse inhibit (CINH). 		
bRFG_Stop	BOOL	 Ramp function generator: Maintain the current value of the main setpoint integrator The speed, for instance, of a running ramp process is immediately kept constant when <i>bRFG_Stop</i> is activated. At the same time, the acceleration/deceleration jumps to the value "0". For a detailed functional description see the <u>L_NSet</u> FB. 		
		TRUE The current value of the main setpoint integrator is held.		
nVoltageAdd_a	Additive voltage impression An additional setpoint for the motor voltage can be specified via this input. If there are, for instance, different loads at the motor output end, it is apply a voltage boost at the starting time. If the value is negative, the voltage is reduced. Scaling: 16384 = 1000 V			
STOP) Stop!		STOP Stop!		
		Values selected too high may cause the motor to heat up due to the resulting current!		
nBoost_a	INT	 Additional setpoint for the motor voltage at speed = 0 The entire voltage-frequency characteristic is provided with an offset. Scaling: 16384 = 1000 V 		
		STOP Stop!		
		Values selected too high may cause the motor to heat up due to the resulting current!		
nPWMAngleOffset	INT	 Additional offset for the electrical angle of rotation If a torque is connected, e.g. dynamic acceleration processes can be generated. Scaling: ±32767 ≡ ±180 ° angle of rotation 		

Identifier		Information/possible settings	
nTorqueMotLim_a nTorqueGenLim_a	Data type	Information/possible settings Torque limitation in motor mode and in generator mode • These input signals are directly transferred to the motor control to limit the controller's maximum torque in motor and generator mode. • The drive cannot output a higher torque in motor/generator mode than set here. • The applied values (any polarity) are internally interpreted as absolute values. • If V/f characteristic control (VFCplus) is selected, limitation is indirectly performed via a so-called I _{max} controller. • If sensorless vector control (SLVC) or servo control (SC) is selected, limitation has a direct effect on the torque-producing current component. • Scaling: 16384 = 100 % M _{max} (C00057) Torque limits in motor and generator mode:	
bSetSpeedCcw	BOOL	Change of direction of rotation For inchange if a motor or genthon is fixed laterally reversed to a machine part, but	
	BOOL	For instance if a motor or gearbox is fixed laterally reversed to a machine part, but the setpoint selection should still be executed for the positive direction of rotation. FALSE Direction of rotation to the right (Cw)	
		TRUE Direction of rotation to the left (Ccw)	
bRLQCw	BOOL	Activate clockwise rotation (fail-safe) • For a detailed functional description see the <u>L_RLO</u> FB.	
		FALSE Quick stop	
		TRUE Clockwise rotation	
bRLQCcw	BOOL	Activate counter-clockwise rotation (fail-safe) • For a detailed functional description see the <u>L_RLO</u> FB.	
		FALSE Quick stop	
		TRUE Counter-clockwise rotation	
nMainSetValue_a	INT	 Main speed setpoint Offset and gain of this input signal can be set in <u>C00696</u> and <u>C00670</u> for a simple signal adjustment of a setpoint encoder. Scaling: 16384 ≡ 100 % reference speed (<u>C00011</u>) The main setpoint is transformed to a speed setpoint in the setpoint encoder via a ramp function generator with linear or S-shaped ramps. Upstream to the ramp function generator, a blocking speed masking function and a setpoint MinMax limitation are effective. For a detailed functional description see the <u>L NSet</u> FB. 	
nAuxSetValue_a	INT	 Additional speed setpoint Offset and gain of this input signal can be set in C00697 and C00671 for a simple signal adjustment of a setpoint encoder. Scaling: 16384 ≡ 100 % reference speed (C00011) The additional speed setpoint can be linked arithmetically with the main speed setpoint behind the ramp function generator. The additional speed setpoint can be shown via ramp times of a second ramp function generator. For a detailed functional description see the L NSet FB. 	

Identifier Date	ta type	Information/possible settings		
Switch-off positioning	ia type			
bJogCtrlInputSel1 bJogCtrlInputSel2	BOOL	 Selection inputs for a binary coded selection of the switch-off position 1 3 Activation of the signal pairs bJogCtrlSlowDown1/bJogCtrlStop1, bJogCtrlSlowDown2/bJogCtrlStop2 or bJogCtrlSlowDown3/bJogCtrlStop3 according to the Truth table for activating the pre-switch off. 		
bJogCtrlRfgIn	BOOL	Ramping down of the setpoint generator in the downstream $\underline{L-NSet}$ FB according to the $\underline{Truth\ table\ for\ activating\ the\ pre-switch\ off}$		
bJogCtrlJog1 bJogCtrlJog2	BOOL	 Selection inputs for fixed changeover setpoints (JOG setpoints) for the main setpoint If the pre-switch off is inactive (bJogCtrlInputSel1 and bJogCtrlInputSel2 are both set to FALSE), the two control signals are passed through 1:1 to the downstream FB L NSet. To achieve the desired behaviour (starting at high speed, pre-switch off at low speed), both inputs must be set to TRUE. Fixed setpoint 2 must be less than fixed setpoint 3! Otherwise, the drive will start at a low speed and accelerate after the pre-switch off. If in additional to the inputs bJogCtrlJog1 and bJogCtrlJog2 the selection inputs bJogSpeed4 and bJogSpeed8 are assigned, different fixed setpoints can result from this and the drive may travel with different speeds than selected via bJogCtrlJog1 and bJogCtrlJog2. 		
bJogCtrlSlowDown1 bJogCtrlSlowDown2 bJogCtrlSlowDown3	BOOL	Activation of fixed setpoint 2 in the downstream <u>L_NSet</u> FB • These inputs do only have a function if they were previously activated via blogCtrlInputSel1 and blogCtrlInputSel2 (see <u>Truth table for activating the preswitch off</u>).		
bJogCtrlStop1 bJogCtrlStop2 bJogCtrlStop3	BOOL	Ramping down of the ramp function generator in the downstream <u>L_NSet</u> FB • These inputs do only have a function if they were previously activated via blogCtrlInputSel1 and blogCtrlInputSel2 (see <u>Truth table for activating the preswitch off</u>).		
bJogSpeed4 bJogSpeed8	BOOL	 Selection inputs for fixed changeover setpoints (JOG setpoints) for the main setpoint A fixed setpoint for the setpoint generator can be activated instead of the main setpoint via these selection inputs. The selection inputs are binary coded. For a detailed functional description see the L NSet FB. 		
bJogRamp1 bJogRamp8 BOOL		 Selection inputs for alternative acceleration/deceleration times for the main setpoint The four selection inputs are binary coded, therefore 15 alternative acceleration/deceleration times can be selected. For main setpoint nMainSetValue_a, the set acceleration time (C00012) and deceleration time (C00013) are active in the case of the binary coded selection "0" (all inputs = FALSE or not assigned). Alternative acceleration times are selected in C00101/115. The selection of the alternative deceleration times is carried out in C00103/115. For a detailed functional description see the L NSet FB. 		
MCK basic functions				
bMBRKRelease	BOOL	(Lenze setting: "Brake control off").		
		FALSE Apply brake. • During automatic operation, the internal brake logic controls of the brake.		
		 TRUE Release brake manually (forced release). Note! The brake can also be released when the controller is inhibited! During automatic operation, the internal brake logic is deactivated and the brake is released (supervisor operation). If the brake control has inhibited the controller, this inhibit is deactivated again. In semi-automatic operation, the brake is released including feedforward control. 		

Identifier Data type		Information/possible settings	
GP: GeneralPurpose The following inputs are ▶ "GeneralPurpose" func		connected with logic/arithmetic functions on application level for free usage.	
nGPAnalogSwitchIn1_a nGPAnalogSwitchIn2_a	INT	 Analog switch: Input signals The input signal selected via the selection input bGPAnalogSwitchSet is output at output nGPAnalogSwitchOut_a. 	
bGPAnalogSwitchSet	DOOL	Analog switch: Selection input	
	BOOL	FALSE nGPAnalogSwitchOut_a = nGPAnalogSwitchIn1_a	
		TRUE nGPAnalogSwitchOut_a = nGPAnalogSwitchIn2_a	
nGPArithmetikIn1_a nGPArithmetikIn2_a	INT	 Arithmetic: Input signals The arithmetic function is selected in <u>C00338</u>. The result is output at output nGPArithmetikOut_a. 	
nGPMulDivIn_a	INT	 Multiplication/Division: Input signal The factor for the multiplication can be set in C00699/1 (numerator) and C00699/2 (denominator). The result is output at output nGPMulDivOut_a. 	
bGPDigitalDelayIn	BOOL	Binary delay element: Input signal The on-delay can be set in C00720/1. The off-delay can be set in C00720/2. The time-delayed input signal is output at output bGPDigitalDelayOut.	
bGPLogicIn1 bGPLogicIn2 bGPLogicIn3	BOOL	 Binary logic: Input signals The logic operation is selected in <u>C00820</u>. The result is output at output bGPLogicOut. 	
nGPCompareIn1_a nGPCompareIn2_a	INT	 Analog comparison: Input signals The comparison operation is selected in <u>C00680</u>. Hysteresis and window size can be set in <u>C00680</u> and <u>C00682</u>. If the comparison statement is true, the output <i>bGPCompareOut</i> will be set to TRUE. 	
bGPDFlipFlop_InD bGPDFlipFlop_InClk bGPDFlipFlop_InClr	BOOL	D-FlipFlop: Input signals Data, clock and reset input	
Free inputs The following inputs can freely be interconnected on the application level. The signals can be transferred from the I/O level to the application level via these inputs.			
bFreeIn1 bFreeIn8	BOOL	Free inputs for digital signals	
wFreeIn1 wFreeIn4	WORD	Free inputs for 16-bit signals	
dnFreeIn1_p dnFreeIn2	2_p DINT	Free inputs for 32-bit signals	

Outputs

Identifier Data type	Value/meaning
wDriveControlStatus word	 Status word of the controller (based on DSP-402) The status word contains information on the currents status of the drive controller. See the "wDeviceStatusWord status word" subchapter of the chapter on device control for a detailed description of the bit assignment.
wStateDetermFailNoLow word	Display of the status determining error (LOW word)

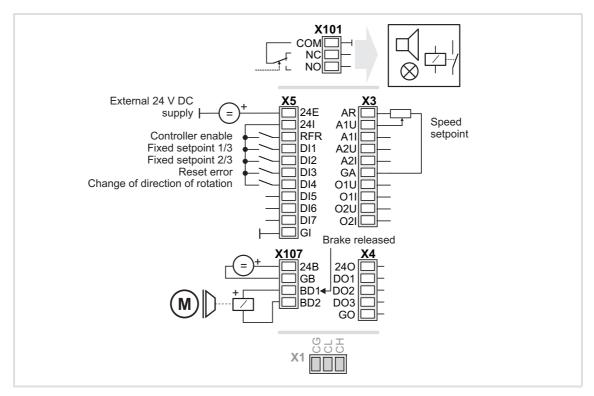
Identifier	ata type	Value/meanin	ning		
wStateDetermFailNoH	, ,	Display of the status determining error (HIGH word)			
bDriveFail	BOOL	TRUE Drive controller in error status. • "Fault" device status is active.			
bWarningActive	BOOL	TRUE	A monitoring in the drive controller, for which the error response "Warning" or "WarningLocked" has been parameterised, responded.		
bSafeTorqueOff	BOOL	TRUE	Safe torque off. • "SafeTorqueOff" device status is active.		
bDriveReady	BOOL	TRUE	 Controller is ready for operation. "SwitchedOn" device status is active. The drive is in this device status if the DC bus voltage is applied and the controller is still inhibited by the user (controller inhibit). 		
bCInhActive	BOOL	TRUE	Controller inhibit is active.		
bImplsActive	BOOL	TRUE	Pulse inhibit is active.		
bQSPIsActive	BOOL	TRUE	Quick stop is active.		
bSpeedCcw		Current directi	on of rotation		
	BOOL	FALSE	Direction of rotation to the right (Cw)		
		TRUE	Direction of rotation to the left (Ccw)		
bSpeedActCompare		Result of the speed comparison			
	BOOL	TRUE	During open-loop operation: Speed setpoint < Comparison value (C00024)		
			During closed-loop operation: Actual speed value < Comparison value (C00024)		
blmaxActive		"Current setpoint inside the limitation" status signal			
	BOOL	TRUE	The current setpoint is internally limited (the drive controller operates at the maximum current limit).		
bSpeedSetReached		Status signal "	setpoint = 0"		
	BOOL	TRUE	Speed setpoint from the ramp function generator = 0		
bSpeedActEqSet	BOOL	TRUE	Actual speed value = speed setpoint		
nMotorCurrent_a	INT	Current stator current/effective motor current • Scaling: 16384 ≡ 100 % I _{max mot} (C00022)			
nMotorSpeedSet_a	INT	Speed setpoint • Scaling: 163	t 384 = 100 % reference speed (<u>C00011</u>)		
nMotorSpeedAct_a	INT	Actual speed value • Scaling: 16384 ≡ 100 % reference speed (C00011)			
nMotorTorqueAct_a	INT	 Actual torque In the "VFC (+encoder)" operating mode of the motor control, this value is determined from the current motor current and corresponds to the actual torque only by approximation. Scaling: 16384 ≡ 100 % M_{max} (C00057) 			
nDCVoltage_a	INT	Actual DC-bus voltage • Scaling: 16384 ≡ 1000 V			
nMotorVoltage_a	INT	Current motor voltage/inverter output voltage • Scaling: 16384 ≡ 1000 V			

Identifier Data type		Value/meaning		
MCK basic functions				
bBrakeReleaseOut	BOOL	Holding brake control: Trigger signal for the holding brake control switching element via a digital output • Use bit 0 in C02582 to activate inverted switching element triggering. FALSE Apply brake. TRUE Release brake.		
bBrakeReleased	BOOL	 Holding brake control: "Brake released" considering the brake release time When the holding brake is triggered to close, bBrakeReleased is immediately set to FALSE even if the brake closing time has not yet elapsed! 		
		TRUE Brake released (when the brake release time has elapsed).		
GP: GeneralPurpose The following outputs ar ▶ "GeneralPurpose" func		rconnected with logic/arithmetic functions on application level for free usage.		
nGPAnalogSwitchInOut_	_a INT	Analog switch: Output signal		
nGPArithmetikOut_a	INT	Arithmetic: Output signal		
nGPMulDivOut_a	INT	<u>Multiplication/Division</u> : Output signal		
bGPDigitalDelayOut	BOOL	Binary delay element: Output signal		
bGPLogicOut	BOOL	Binary logic: Output signal		
bGPCompareOut	BOOL	Analog comparison: Output signal		
bGPSignalOut1 bGPSignalOut4	BOOL	 Binary signal monitor: Output signals The signal sources to be output are selected in <u>C00411/14</u>. A bit coded inversion of the output signals can be parameterised in <u>C00412</u>. 		
nGPSignalOut1_a nGPSignalOut4_a	BOOL	 Analog signal monitor: Output signals The signal sources to be output are selected in <u>C00410/14</u>. Gain and offset for each output signal can be parameterised in <u>C00413/18</u>. 		
bGPDFlipFlop_Out	BOOL	<u>D-FlipFlop</u> : Output signal		
bGPDFlipFlop_NegOut	BOOL	<u>D-FlipFlop</u> : Negated output signal		
Free outputs The following outputs can freely be interconnected on the application level. The signals from the application level can be transferred to the I/O level via these outputs.				
bFreeOut1 bFreeOut8	BOOL	Free outputs for digital signals		
wFreeOut1 wFreeOut4	I WORD	Free outputs for 16-bit signals		
dnFreeOut1_p dnFreeOut2_p	WORD	Free outputs for 32-bit signals		

8.6.2.1 Truth table for activating the pre-switch off

Input		Function	Response in the setpoint generator		
bJogCtrl InputSel1	bJogCtrl InputSel2		(FB L_NSet)		
FALSE	FALSE	Pre-switch off inactive	 No response The input signal blogCtrlRfgIn is output directly at output bRfgOut. The input signals blogCtrllog1 and blogCtrllog2 are passed through 1:1 to the downstream FB L NSet for the selection of fixed setpoints. 		
TRUE	FALSE	The bJogCtrlSlowDown1 and bJogCtrlStop1 inputs are evaluated.	Pre-switch off can be activatedIf the slowdown function is activated via		
FALSE	TRUE	The bJogCtrlSlowDown2 and bJogCtrlStop2 inputs are evaluated.	the selected <i>bJogCtrlSlowDown</i> input, fixed setpoint 2 is activated in the setpoint generator.		
TRUE	TRUE	The inputs bSJogCtrllowDown3 and bJogCtrlStop3 are evaluated.	 If the stop function is activated via the selected blogCtrlStop input, the setpoint generator is deactivated. 		

[8-1] Truth table for activating the pre-switch off

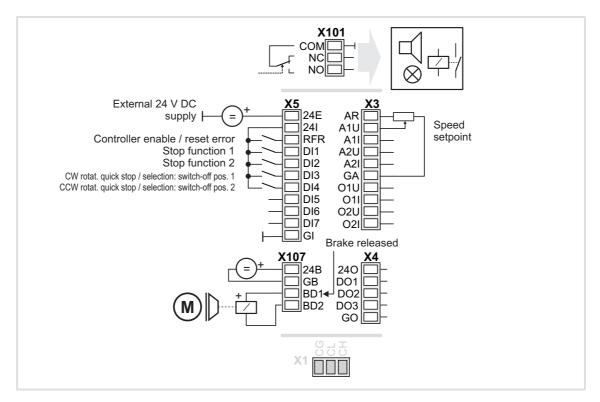


8.6.3 Terminal assignment of the control modes

The following comparison provides information about which inputs/outputs of the application block **LA_SwitchPos** are interconnected to the digital and analog input/output terminals of the drive controller in the different control modes.

				Control mo	de (C00007)			
	10: Terminals 0	12: Terminals 2	14: Terminals 11	16: Terminal 16	20: Keypad	21: PC	30: CAN	40: MCI
Digital input t	erminals					_		
X5/RFR	Controller enable			Control	ler enable / Reset of error r bFailReset	nessage		
X5/DI1	Fixed setpoint 1/3 bJogCtrlJog1	Stop function 1 Fixed setpoint 1/3		Stop fun bJogCtr				
X5/DI2	Fixed setpoint 2/3 bJogCtrlJog2	Stop function 2 bJogCtrlStop2	Selection: Pre-switch off 1 bJogCtrlSlowDown 1	Fixed setpoint 2/3 bJogCtrlJog2	-	-	Selection: Pre-switch off 1 blogCtrlSlowDown 1	
X5/DI3	Reset error messages bFailReset	bRL Selection: Swit	n quick stop QCw ch-off position 1 InputSel1	CW rotation quick stop bRLQCw	•	-	Stop fun bJogCtr	
X5/DI4	Change of direction of rotation bSetSpeedCcw	bRL Selection: Swit	on quick stop QCcw ch-off position 2 InputSel2	CCW rotation quick stop bRLQCcw	-	•	Selection: Pre bJogCtrlSlo	
X5/DI5	-	-	Stop function 2 bJogCtrlStop2	-	-	-	Stop fun bJogCtr	
X5/DI6	-	-	Selection: Pre-switch off 2 bJogCtrlSlowDown 2	-	-	-	Selection: Pre bJogCtrlSlo	
X5/DI7	-	-	-		-	-	-	-
Analog input terminals								
X3/A1U, A1I		Main speed setpoint nMainSetValue_a 10 V ≡ 100 % reference speed (<u>C00011</u>)			-	-	Additional sp $nAuxSet^{V}$ 10 V = 100 % referer	/alue a
X3/A2U, A2I	-	·	-		-	-	-	-
Digital output terminals								
X4/DO1 DO3	-	-	-	-	-	-	-	-
X107/BD1, BD2				Control of the bMBrakeR				
X101/COM, NO		-	-	-	-	-	-	-
Analog output terminals								
X3/O1U, O1I X3/O2U, O2I		-	-	-	-	-	-	-

8.6.3.1 Terminals 0



Connection	Assignment
X101/NC-NO	-
X5/RFR	-
X5/DI1	LA_SwitchPos.bJogCtrlJog1
X5/DI2	LA_SwitchPos.bJogCtrlJog2
X5/DI3	LA_SwitchPos.bFailReset
X5/DI4	LA_SwitchPos.bSetSpeedCcw
X5/DI5	-
X5/DI6	-
X5/DI7	-
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut
X107/BD2	-

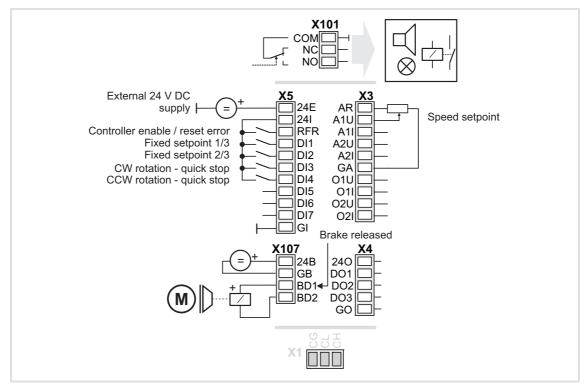
Connection	Assignment
X3/A1U	LA_SwitchPos.nMainSetValue_a
X3/A1I	$10 \text{ V} \equiv 100 \% \text{ reference speed } (C00011)$
X3/A2U	-
X3/A2I	-
X3/01U	-
X3/01I	-
X3/O2U	-
X3/O2I	-
X4/DO1	-
X4/DO2	-
X4/DO3	-

8.6.3.2 Terminals 2

Connection	Assignment	
X101/NC-NO	-	
X5/RFR	LA_SwitchPos: bFailReset	
X5/DI1	LA_SwitchPos: bJogCtrlStop1	
X5/DI2	LA_SwitchPos: bJogCtrlStop2	
X5/DI3	LA_SwitchPos: bRLQCw	
	LA_SwitchPos: bJogCtrlInputSel1	
X5/DI4	LA_SwitchPos: bRLQCcw	
	LA_SwitchPos: bJogCtrlInputSel2	
X5/DI5	-	
X5/DI6	-	
X5/DI7	-	
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut	
X107/BD2	-	

Connection	Assignment
X3/A1U	LA_SwitchPos.nMainSetValue_a 10 V ≡ 100 % reference speed (C00011)
X3/A1I	10 V = 100 % reference speed (<u>C00011</u>)
X3/A2U	-
X3/A2I	-
X3/01U	-
X3/01I	-
X3/O2U	-
X4/DO1	-
X4/DO2	-
X4/DO3	-

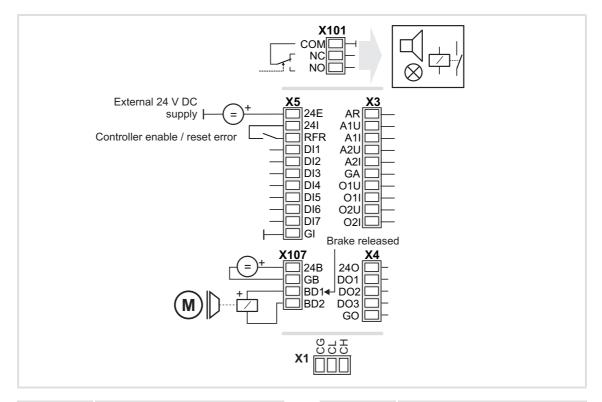
8.6.3.3 Terminals 11



Connection	Assignment
X101/NC-NO	-
X5/RFR	LA_SwitchPos: bFailReset
X5/DI1	LA_SwitchPos: bJogCtrlStop1
X5/DI2	LA_SwitchPos: bJogCtrlSlowDown1
X5/DI3	LA_SwitchPos: bRLQCw
	LA_SwitchPos: bJogCtrlInputSel1
X5/DI4	LA_SwitchPos: bRLQCcw
	LA_SwitchPos: bJogCtrlInputSel2
X5/DI5	LA_SwitchPos: bJogCtrlStop2
X5/DI6	LA_SwitchPos: bJogCtrlSlowDown2
X5/DI7	-
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut
X107/BD2	-

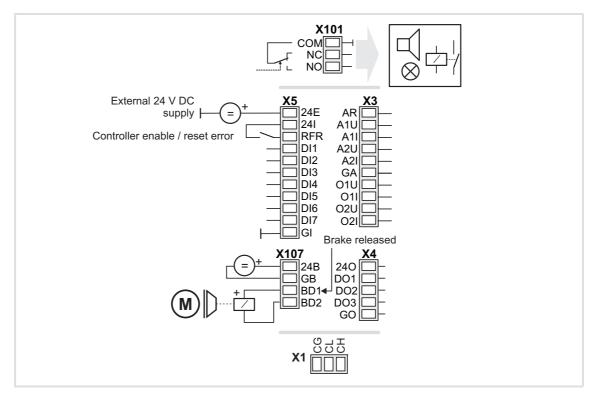
Connection	Assignment	
X3/A1U	LA_SwitchPos.nMainSetValue_a	
X3/A1I	$10 \text{ V} = 100 \% \text{ reference speed } (\underline{\text{C00011}})$	
X3/A2U	-	
X3/A2I	-	
X3/01U	-	
X3/01I	-	
X3/O2U	-	
X4/DO1	-	
X4/DO2	-	
X4/DO3	-	

8.6.3.4 Terminal 16


Connection	Assignment	
X101/NC-NO	-	
(5/RFR	LA_SwitchPos: bFailReset	
X5/DI1	LA_SwitchPos: bJogCtrlJog1	
X5/DI2	LA_SwitchPos: bJogCtrlJog2	
X5/DI3	LA_SwitchPos: bRLQCw	
X5/DI4	LA_SwitchPos: bRLQCcw	
X5/DI5	-	
X5/DI6	-	
X5/DI7	-	
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut	
X107/BD2	-	

Connection	Assignment	
X3/A1U	LA_SwitchPos.nMainSetValue_a	
X3/A1I	$10 \text{ V} \equiv 100 \% \text{ reference speed } (C00011)$	
X3/A2U	-	
X3/A2I	-	
X3/01U	-	
X3/01I	-	
X3/O2U	-	
X3/O2I	-	
X4/DO1	-	
X4/DO2	-	
X4/DO3	-	

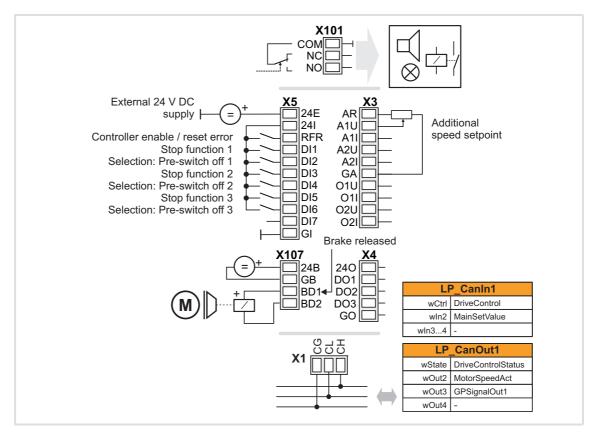
Technology applications
TA "Switch-off positioning"


8.6.3.5 Keypad

Connection	Assignment	
X101/NC-NO	-	
X5/RFR	-	
X5/DI1	-	
X5/DI2	-	
X5/DI3	-	
X5/DI4	-	
X5/DI5	-	
X5/DI6	-	
X5/DI7	-	
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut	
X107/BD2	-	

Connection	Assignment
X3/A1U	-
X3/A1I	-
X3/A2U	-
X3/A2I	-
X3/01U	-
X3/01I	-
X3/O2U	-
X3/O2I	-
X4/DO1	-
X4/DO2	-
X4/DO3	-

8.6.3.6 PC


Connection	Assignment	
X101/NC-NO	-	
X5/RFR	-	
X5/DI1	-	
X5/DI2	-	
X5/DI3	-	
X5/DI4	-	
X5/DI5	-	
X5/DI6	-	
X5/DI7	-	
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut	
X107/BD2	-	

Connection	Assignment
X3/A1U	-
X3/A1I	-
X3/A2U	-
X3/A2I	-
X3/01U	-
X3/01I	-
X3/O2U	-
X3/O2I	-
X4/DO1	-
X4/DO2	-
X4/DO3	-

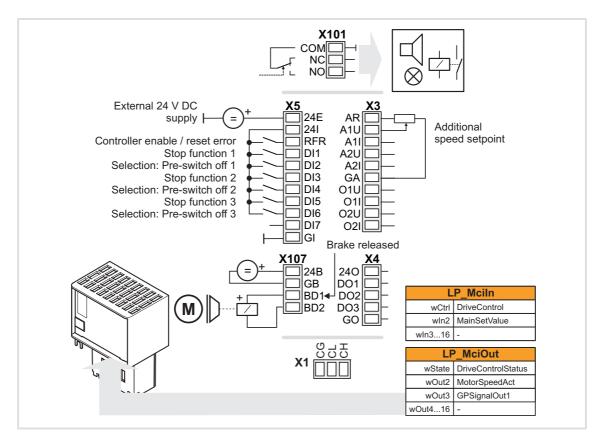
Technology applications
TA "Switch-off positioning"

8.6.3.7 CAN

Connection	Assignment	
X101/NC-NO	-	
X5/RFR	LA_SwitchPos: bFailReset	
X5/DI1	LA_SwitchPos: bJogCtrlStop1	
X5/DI2	LA_SwitchPos: bJogCtrlSlowDown1	
X5/DI3	LA_SwitchPos: bJogCtrlStop2	
X5/DI4	LA_SwitchPos: bJogCtrlSlowDown2	
X5/DI5	LA_SwitchPos: bJogCtrlStop3	
X5/DI6	LA_SwitchPos: bJogCtrlSlowDown3	
X5/DI7	-	
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut	
X107/BD2	-	

Connection	Assignment	
X3/A1U	LA_SwitchPos.nAuxSetValue_a 10 V ≡ 100 % reference speed (C00011)	
X3/A1I	10 V = 100 % reference speed (<u>C00011</u>)	
X3/A2U	-	
X3/A2I	-	
X3/01U	-	
X3/01I	-	
X3/O2U	-	
X3/O2I	-	
X4/D01	-	
X4/DO2	-	
X4/DO3	-	

▶ Process data assignment for fieldbus communication (☐ 460)



Note!

You must set the setpoint arithmetic in <u>C00190</u> to "1: NOut = NSet + NAdd" so that the additional speed setpoint selected via the analog input A1U has an additive effect.

8.6.3.8 MCI

Connection	Assignment	
X101/NC-NO	-	
X5/RFR	LA_SwitchPos: bFailReset	
X5/DI1	LA_SwitchPos: bJogCtrlStop1	
X5/DI2	LA_SwitchPos: bJogCtrlSlowDown1	
X5/DI3	LA_SwitchPos: bJogCtrlStop2	
X5/DI4	LA_SwitchPos: bJogCtrlSlowDown2	
X5/DI5	LA_SwitchPos: bJogCtrlStop3	
X5/DI6	LA_SwitchPos: bJogCtrlSlowDown3	
X5/DI7	-	
X107/BD1	LA_SwitchPos.bMBrakeReleaseOut	
X107/BD2	1.	

Connection	Assignment	
X3/A1U	LA SwitchPos.nAuxSetValue a	
X3/A1I	$10 \text{ V} \equiv 100 \% \text{ reference speed (} \underline{\text{C00011}}\text{)}$	
X3/A2U	-	
X3/A2I	-	
X3/01U	-	
X3/01I	-	
X3/O2U	-	
X3/O2I	-	
X4/D01	-	
X4/DO2	-	
X4/DO3	-	

▶ Process data assignment for fieldbus communication (☐ 460)

Note!

You must set the setpoint arithmetic in <u>C00190</u> to "1: NOut = NSet + NAdd" so that the additional speed setpoint selected via the analog input A1U has an additive effect.

8.6.4 Process data assignment for fieldbus communication

The fieldbus communication is connected (preconfigured) to the previously selected technology application by selecting the corresponding control mode in C00007:

- ► "30: CAN" for the connection to the system bus (CAN)
- ▶ "40: MCI" for the connection to a plugged-on communication module (e.g. PROFIBUS)

The assignment of the process data words does not depend on the applied bus system but exclusively on the application:

Input words	Name	Assignment
Word 1	DriveControl	Control wordSee table below for bit assignment.
Word 2	MainSetValue	Speed setpoint • Scaling: 16384 ≡ 100 % reference speed (C00011)
Word 3	-	Not preconfigured
Word 4	-	Not preconfigured
Word 5 16	-	Not preconfigured Only available for control mode "40: MCI".

Control word	Name	Function	
Bit 0	SwitchOn	 1 = Change to the "SwitchedOn" device status This bit must be set in the CAN/MCI control word to ensure that the device changes to the "SwitchedOn" device status after mains connection without the need for a master control specifying this bit via fieldbus. If control via a bus system is not wanted (e.g. in the case of control via terminals), the wDriveCtrl output signal of the LS ParFix system block can be connected to the control word inputs. 	
Bit 1	DisableVoltage	1 ≡ Inhibit inverter control (IMP - pulse inhibit)	
Bit 2	SetQuickStop	1 ≡ Activate quick stop (QSP). <u>Activate/Deactivate quick stop</u> (□ 98)	
Bit 3	EnableOperation	 1 ≡ Enable controller (RFR) If control via terminals is performed, this bit must be set both in the CAN control word and in the MCI control word. Otherwise, the controller is inhibited. ▶ Enable/Inhibit controller (□ 97) 	
Bit 4	ModeSpecific_1	Reserved (currently not assigned)	
Bit 5	JogCtrlInputSel1	Binary coded selection of the switch-off position 1 3	
Bit 6	JogCtrlInputSel2	Activation of the signal pairs bJogCtrlSlowDown1/bJogCtrlStop1, bJogCtrlSlowDown2/bJogCtrlStop2 or bJogCtrlSlowDown3/bJogCtrlStop3 according to the Truth table for activating the pre-switch off.	
Bit 7	ResetFault	 1 = Reset fault (trip reset) Acknowledge fault message (if the error cause has been eliminated). ▶ Reset error (□ 99) 	
Bit 8	bJogCtrlRfgIn	Ramping down of the setpoint generator in the downstream <u>L_NSet</u> FB according to the <u>Truth table for activating the pre-switch off</u>	
Bit 9	reserved_1	Reserved (currently not assigned)	
Bit 10	reserved_2		

Control word	Name	Function
Bit 11	MBrkRelease	Holding brake control: 0 ≡ Apply brake 1 ≡ Release brake • In conjunction with the operating mode selected in C02580 (Lenze setting: "Brake control off").
Bit 12	JogCtrlJog1	Binary coded selection of the fixed setpoints (JOG setpoints)
Bit 13	JogCtrlJog2	
Bit 14	SetFail	$1 \equiv Set error (trip set)$
Bit 15	SetSpeedCcw	0 ≡ Direction of rotation to the right (Cw) 1 ≡ Direction of rotation to the left (Ccw)

Output words	Name	Assignment	
Word 1	DriveControlStatus	Status word • See table below for bit assignment.	
Word 2	MotorSpeedAct	Actual speed value • Scaling: 16384 ≡ 100 % reference speed (C00011)	
Word 3	GPSignalOut1	 Analog signal monitor: Output signal 1 The selection of the signal source to output is executed in C00410/1. Gain and offset for the output signal can be parameterised in C00413/1 and C00413/2. For a detailed functional description see the L Signal Monitor a FB. 	
Word 4	-	Not preconfigured	
Word 5 16	-	Not preconfigured Only available for control mode "40: MCI".	

Status word	Name	Status	
Bit 0	DriveFail	1 = Drive controller in error status "Fault" device status is active.	
Bit 1	PowerDisabled	1 ≡ Inverter control inhibited (pulse inhibit is active)	
Bit 2	DriveReady	 1 ≡ Drive controller is ready for operation "SwitchedOn" device status is active. The drive is in this device status if the DC bus voltage is applied and the controller is still inhibited by the user (controller inhibit). 	
Bit 3	SpeedCcw	0 ≡ Direction of rotation to the right (Cw) 1 ≡ Direction of rotation to the left (Ccw)	
Bit 4	QsplsActive	1 ≡ Quick stop is active	
Bit 5	BrakeReleased	1 ≡ Brake released (after the brake opening time has elapsed)	
Bit 6	ActSpeedIsZero	During open-loop operation: 1 ≡ Speed setpoint < Comparison value (C00024)	
		During closed-loop operation: 1 ≡ Actual speed value < Comparison value (C00024)	
Bit 7	ControllerInhibit	1 ≡ Controller inhibited (controller inhibit is active)	
Bit 8	StatusCodeBit0	Bit coded display of the active device status	
Bit 9	StatusCodeBit1	Device state machine and device statuses (see table [4-1])	
Bit 10	StatusCodeBit2		
Bit 11	StatusCodeBit3		
Bit 12	Warning	1 ≡ A warning is indicated	

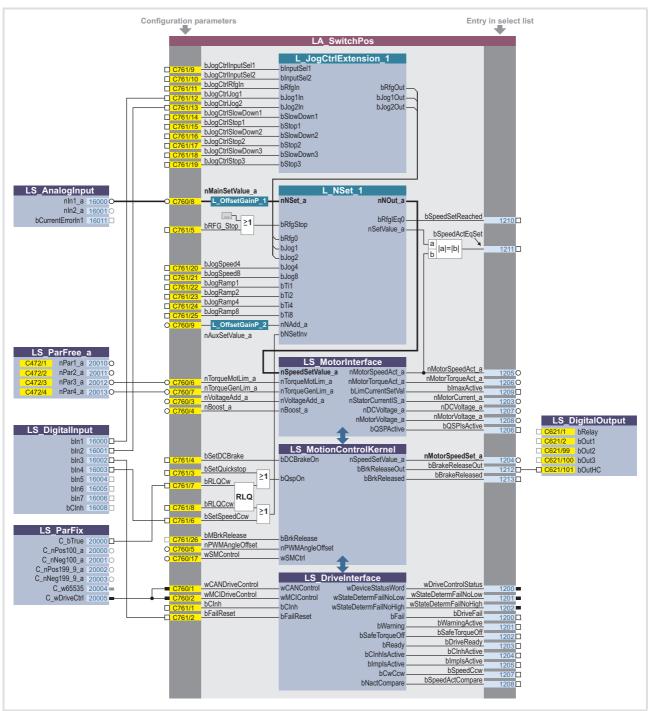
Technology applications
TA "Switch-off positioning"

Status word	Name	Status
Bit 13	Trouble	1 = Controller is in the "Trouble" device statusE.g. if an overvoltage has occurred.
Bit 14	JogCtrlInputSel1	Binary coded selection of the switch-off position 1 3
Bit 15	JogCtrlInputSel2	Bits 5 and 6 of the control word.

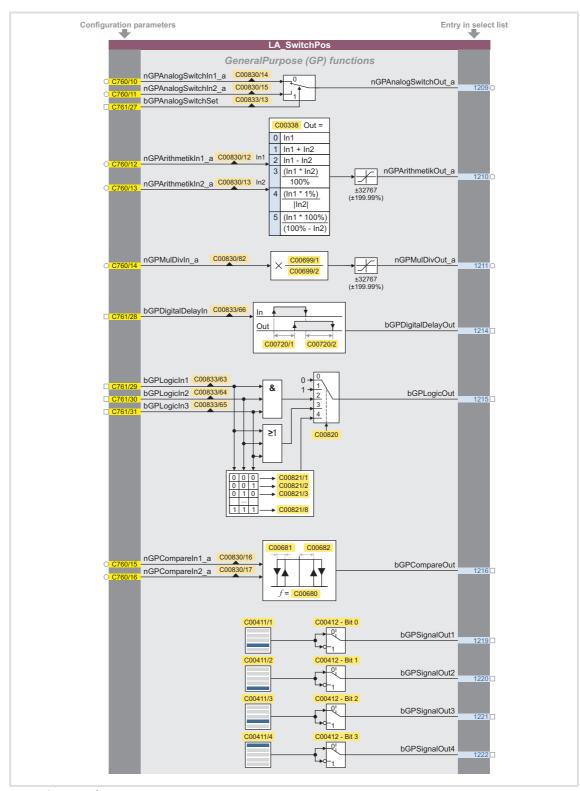
8.6.5 Setting parameters (short overview)

Parameter	Info	Lenze setting		
		Value	ue Unit	
C00011	Appl.: Reference speed	1500	rpm	
<u>C00012</u>	Accel. time - main setpoint	2.000	s	
<u>C00013</u>	Decel. time - main setpoint	2.000	s	
<u>C00105</u>	Decel. time - quick stop	2.000	s	
C00039/1	Fixed setpoint 1	40.00	%	
C00039/2	Fixed setpoint 2	60.00	%	
C00039/3	Fixed setpoint 3	80.00	%	
C00039/415	Fixed setpoint 4 15	0.00	%	
C00101/115	Add. accel. time 1 15	0.000	s	
C00103/115	Add. decel. time 1 15	0.000	S	
C00105	Decel. time - quick stop	2.000	s	
C00106	Auto DCB: Hold time	0.500	S	
C00107	DCB: Hold time	999.000	S	
C00134	Ramp rounding - main setpoint	0: Off		
C00182	S-ramp time PT1	20.00	S	
C00190	Setpoint arithmetic	0: NOut	= NSet	
C00220	Accel. time - add. setpoint	0.000	S	
<u>C00221</u>	Decel. time - add. setpoint	0.000	s	
C00241	L_NSet_1: Hyst. NSet reached	0.50	%	
C00488/1	InputSens.SlowDown1	0: Le	0: Level	
C00488/2	InputSens.Stop1	0: Le	vel	
C00488/3	InputSens.SlowDown2	0: Level		
C00488/4	InputSens.Stop2	0: Level		
C00488/5	InputSens.SlowDown3	0: Le	vel	
C00488/6	InputSens.Stop3	0: Level		
C00632/1	L_NSet_1: Blocking speed 1 max	0.00	%	
C00632/2	L_NSet_1: Blocking speed 2 max	0.00	%	
C00632/3	L_NSet_1: Blocking speed 3 max	0.00	%	
C00633/1	L_NSet_1: Blocking speed 1 min	0.00	%	
C00633/2	L_NSet_1: Blocking speed 2 min	0.00	%	
C00633/3	L_NSet_1: Blocking speed 3 min	0.00	%	
<u>C00635</u>	L_NSet_1: nMaxLimit	199.99	%	
C00636	L_NSet_1: nMinLimit	-199.99	%	
<u>C00670</u>	L_OffsetGainP_1: Gain	1.0000		
C00671	L_OffsetGainP_2: Gain	1.0000		

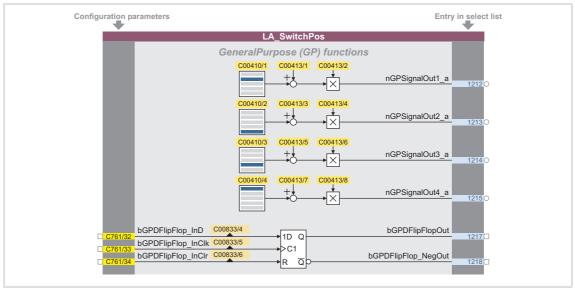
Parameter	Info	Lenze setting	
		Value	Unit
<u>C00672</u>	L_OffsetGainP_3: Gain	1.0000	
<u>C00696</u>	L_OffsetGainP_1: Offset	0.00	%
C00697	L_OffsetGainP_2: Offset	0.00	%
C00698	L_OffsetGainP_3: Offset	0.00	%
C00800	L_MPot_1: Upper limit	100.00	%
C00801	L_MPot_1: Lower limit	-100.00	%
C00802	L_MPot_1: Accel. time	10.0	S
C00803	L_MPot_1: Decel. time	10.0	S
C00804	L_MPot_1: Inactive fct.	0: Retain value	
C00805	L_MPot_1: Init fct.	0: Load last value	
C00806	L_MPot_1: Use	0: No	
C02610/2	MCK: Ramp time synchr. setpoint	2.000	S
C02611/1	MCK: Pos. max. speed	199.99	%
C02611/2	MCK: Pos. min. speed	0.00	%
C02611/3	MCK: Neg. min. speed	0.00	%
C02611/4	MCK: Neg. max. speed	199.99	%


Related topics:

▶ <u>"GeneralPurpose" functions</u> (☐ 467)

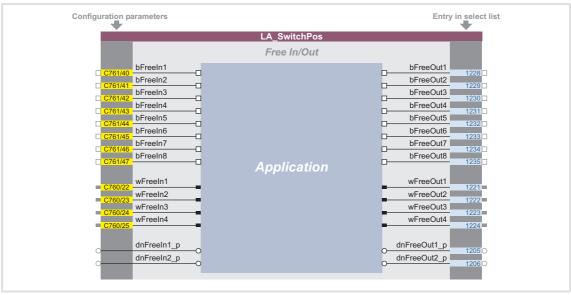

8.6.6 Configuration parameters

If required, the subcodes of <u>C00760</u> and <u>C00761</u> serve to change the pre-configured assignment of the application inputs:


[8-1] Pre-assignment of the "Switch-off positioning" application in the "Terminals 0" control mode

Configuration parameters for "GeneralPurpose" functions

[8-2] "GeneralPurpose" functions


Technology applications
TA "Switch-off positioning"

[8-3] "GeneralPurpose" functions (continuation)

Free inputs and outputs

These inputs can be freely interconnected in the application level. They can be used to transfer signals from the I/O level to the application level and vice versa.

[8-4] Free inputs/outputs

Related topics:

- ► <u>User-defined terminal assignment</u> (☐ 370)
- ▶ <u>"GeneralPurpose" functions</u> (☐ 467)

8.7 "GeneralPurpose" functions

Each technology application provides different free logic and arithmetic functions, socalled "GeneralPurpose" functions.

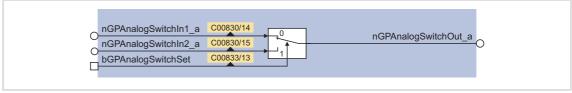
For the interconnection of these functions, the application block features inputs and outputs on the I/O level, which are linked to the logic/arithmetic function.

Note!

In the Lenze setting, the connectors for the "GeneralPurpose" functions are hidden in the function block editor.

• These connections can be shown via the Connector visibilities command in the Context menu of the application block.

The inputs of the "GeneralPurpose" functions can also be linked to other output signals via the configuration parameters of the technology application.

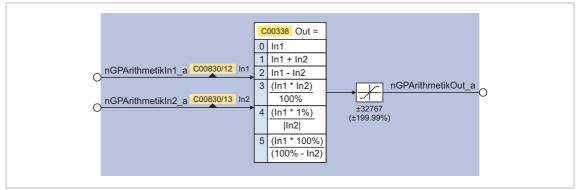

On the other hand, the outputs of the "GeneralPurpose" functions can be selected in the configuration parameters of other inputs.

Related topics:

- ▶ User-defined terminal assignment (☐ 370)
- ▶ TA "Actuating drive speed": Configuration parameters (□ 407)
- ► TA "Table positioning": Configuration parameters (□ 436)
- ▶ TA "Switch-off positioning": Configuration parameters (□ 464)

8.7.1 Analog switch

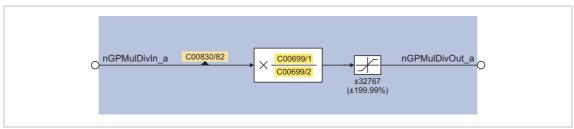
This function switches between two analog input signals. The switch-over is controlled by a boolean input signal.



- [8-5] GeneralPurpose function "Analog switch"
 - ► For a detailed functional description see FB L AnalogSwitch.

8.7.2 Arithmetic

This function links two analog signals arithmetically. The arithmetic function can be parameterised.


[8-6] GeneralPurpose function "Arithmetic"

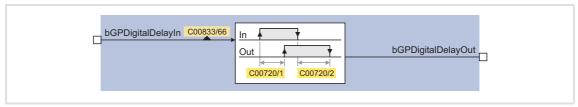
Parameter	Info	Lenze setting	
		Value	Unit
C00338	L_Arithmetik_1: Function	0: nOut_a = nIn1_a	

► For a detailed functional description see the <u>L_Arithmetik</u> FB.

8.7.3 Multiplication/Division

This function multiplies an analog input signal with a parameterisable factor. The factor must be selected in the form of a quotient (numerator and denominator).

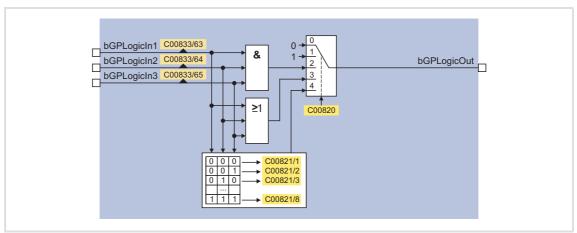
[8-7] GeneralPurpose function "Multiplication/division"


Parameter	Info	Lenze setting	
		Value	Unit
<u>C00699/1</u>	L_MulDiv_1: Numerator	0	
C00699/2	L_MulDiv_1: Denominator	10000	

► For a detailed functional description see FB L MulDiv.

8.7.4 Binary delay element

This function timely delays binary signals. On-delay and off-delay can be parameterised separately.


[8-8] GeneralPurpose function "Binary delay element"

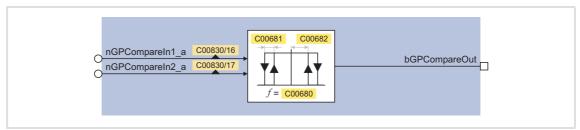
Parameter	Info	Lenze se	etting
		Value	Unit
<u>C00720/1</u>	L_DigitalDelay_1: On delay	0.000	S
C00720/2	L_DigitalDelay_1: Off delay	0.000	S

► For a detailed functional description see FB L <u>DigitalDelay</u>.

8.7.5 Binary logic

This function provides a binary output signal which is formed by a logic operation of the input signals. Alternatively, you can also select a fixed binary value which is independent of the input signals.

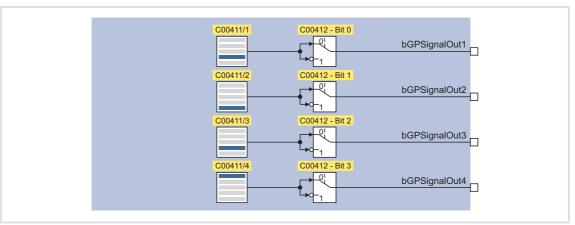
[8-9] GeneralPurpose function "Binary logic"


Parameter	Info	Lenze se	etting
		Value	Unit
C00820	L_DigitalLogic_1: Function	0: bOu	t = 0
C00821/1	bln1=0/bln2=0/bln3=0	0: FA	LSE
C00821/			
C00821/8	bln1=1/bln2=1/bln3=1	0: FA	LSE

► For a detailed functional description see FB L DigitalLogic.

8.7.6 Analog comparison

This function compares two analog signals and can be used e.g. to realise a trigger. The comparison operation, hysteresis and window size can be parameterised.


[8-10] GeneralPurpose function "Analog comparison"

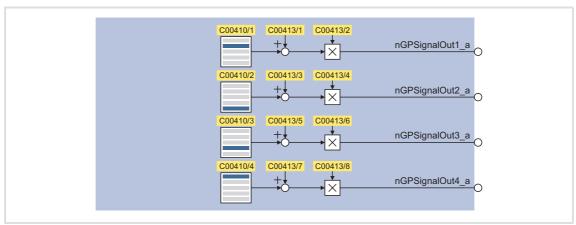
Parameter	Info	Lenze se	etting
		Value	Unit
<u>C00680</u>	L_Compare_1: Fct.	6: In1	< In2
<u>C00681</u>	L_Compare_1: Hysteresis	0.50	%
C00682	L_Compare_1: Window	2.00	%

► For a detailed functional description see FB L Compare.

8.7.7 Binary signal monitor

This function serves to output four binary signals selected from a list of all binary output signals available in the drive controller. You can set an inversion of the output signals.

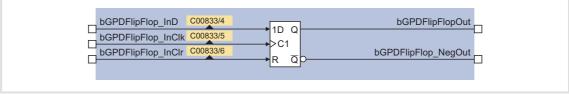
[8-11] GeneralPurpose function "Binary signal monitor"


Parameter	Info	Lenze se	etting
		Value	Unit
C00411/14	L_SignalMonitor_b: Signal 1 4	0: Not cor	nnected
C00412	L_SignalMonitor_b: Inversion	Bit co	ded

► For a detailed functional description see FB L SignalMonitor b.

8.7.8 Analog signal monitor

This function serves to output four analog signals selected from a list of all analog output signals available in the drive controller. Offset and gain of the source signals can be adjusted.


[8-12] GeneralPurpose function "Analog signal monitor"

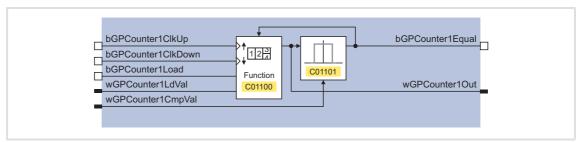
Parameter	Info	Lenze setting	
		Value	Unit
C00410/14	L_SignalMonitor_a: Signal 1 4	0: Not cor	nnected
<u>C00413/1</u>	L_SignalMonitor_a: Signal 1 offset	0.00	%
C00413/2	L_SignalMonitor_a: Signal 1 gain	100.00	%
C00413/3	L_SignalMonitor_a: Signal 2 offset	0.00	%
C00413/4	L_SignalMonitor_a: Signal 2 gain	100.00	%
C00413/5	L_SignalMonitor_a: Signal 3 offset	0.00	%
C00413/6	L_SignalMonitor_a: Signal 3 gain	100.00	%
C00413/7	L_SignalMonitor_a: Signal 4 offset	0.00	%
<u>C00413/8</u>	L_SignalMonitor_a: Signal 4 gain	100.00	%

► For a detailed functional description see the L SignalMonitor a FB.

8.7.9 D-FlipFlop

This function saves the logic status of the data input (1D) in case of an active clock edge at the clock input (C1) and puts out its value in sequence at the output Q. If there is no active clock edge, the input value is not accepted.

[8-13] GeneralPurpose function "D-FlipFlop" (clock-edge controlled)


► For a detailed functional description see FB L DFlipFlop.

Technology applications "GeneralPurpose" functions

8.7.10 Numerator

This function is a digital upcounter and downcounter with a comparison operation.

[8-14] GeneralPurpose function "Counter"

Parameter	Info	Lenze se	etting
		Value	Unit
<u>C01100/1</u>	L_Counter_1: Function	0: Normal	counting
C01101/1	L_Counter_1: Comparison	0: Greater tha	n or equal to

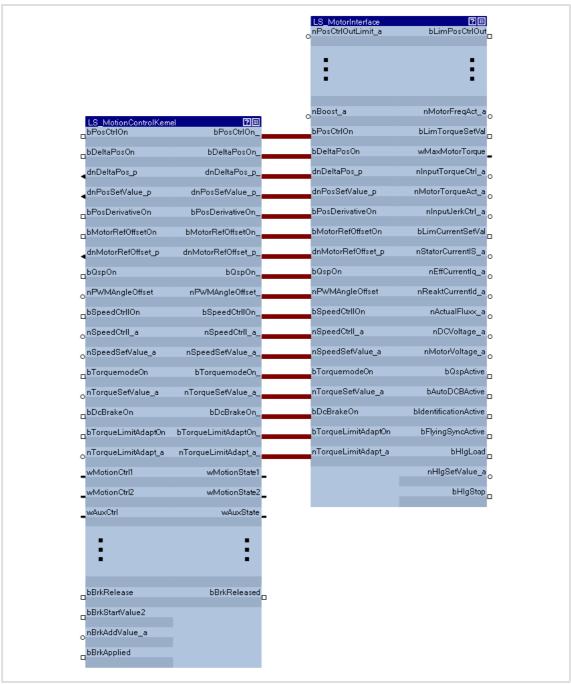
- ► Only available with <u>TA "Table positioning"</u>.
- ► For a detailed functional description see FB L Counter.

9 Basic drive functions (MCK)

In this chapter, the standard and basic drive functions integrated in the **Motion Control Kernel** (MCK) of the 8400 TopLine are described to which the active technology application can gain access via defined internal interfaces. As a result, the time-consuming creation of individual FB interconnections is avoided and the amount of work and complexity involved in the implementation of standard functions is minimised.

In the **Motion Control Kernel**, for example, an automatic holding brake control function is integrated which controls the holding brake in relation to the speed setpoint and various other internal control signals. Due to integrated automatic brake operation, the user is relieved of the task of managing these control signals.

Other standard functions integrated in the **Motion Control Kernel** in the case of the 8400 TopLine controller are, for example:


- ► Manual jog, e.g. for manual setting-up operation
- ▶ Homing for positioning functions of the drive
- ▶ Position profile generator for positioning functions of the drive

Basic drive functions (MCK) Basic signal flow

9.1 Basic signal flow

The **Motion Control Kernel** is connected between setpoint generator (e.g. ramp generator, PID process controller, etc.) and the motor control function in the case of the available technology applications. For problem-free interaction of the **Motion Control Kernel** and motor control function, the two associated system blocks <u>LS MotionControlKernel</u> and <u>LS MotorInterface</u> have interfaces with corresponding inputs/outputs. These are visible in the FB Editor for monitoring purposes and must be connected to each other:

[9-1] Interconnection of Motion Control Kernel and motor control function

In the interconnection previously shown, the **Motion Control Kernel** monitors every interface. Some of the signals such as a quick stop request or a DC-injection braking request are directly passed through to the motor control. However, other signals are passed through or modified depending on the operating mode (e.g. synchronising a setpoint selection via ramp function).

9.2 Internal interfaces | System block "LS_MotionControlKernel"

In the Function Block editor, the system block **LS_MotionControlKernel** provides the interfaces to the **Motion Control Kernel**.

Inputs

Identifier	Data type	Information/possible settings	
Control and setpoin The purpose of the f function (<u>LS_Motorl</u>	ollowing i	r motor control nputs is to transfer control signals and setpoints to the internal motor control	
bPosCtrlOn		Activation of position/angle control	
	BOOL	FALSE Position/angle control deactivated.	
		TRUE Position/angle control activated.	
bDeltaPosOn	BOOL	Activate position difference as setpoint selection • In order to position the motor shaft, the <u>position control</u> function can work within the motor control function with the absolute position setpoint <code>dnPosSetValue_p</code> or alternatively with the speed setpoint <code>nSpeedSetValue_a</code> at the position difference <code>dnDeltaPos_p</code> .	nd
		FALSE Positioning with position setpoint dnPosSetValue_p.	
		TRUE Positioning with speed setpoint nSpeedSetValue_a and position difference dnDeltaPos_p.	
dnDeltaPos_p	DINT	 Position difference (following error input) Difference between setpoint position and actual position in [increments] Is used for position control if bDeltaPosOn = TRUE. Scaling: a revolution is displayed with 65536 increments or steps. 	
dnPosSetValue_p	DINT	Absolute position setpoint in [increments] Is used for position control if bDeltaPosOn = FALSE. Scaling: a revolution is displayed with 65536 increments or steps.	
bPosDerivativeOn	BOOL	Create a setpoint for the speed controller from the position setpoint • For highly dynamic control systems, the setpoint for the speed controller can be created from the absolute position setpoint <code>dnPosSetValue_p</code> instead of the speed setpoint <code>nSpeedSetValue_a</code> . • Position control/additive speed specification	be
		 TRUE Create a speed setpoint from the position setpoint. The absolute position setpoint dnPosSetValue_p is differentiate and a speed value is created which is the setpoint for the speed controller. Internal limitation of 65536 increments/ms. 	ed d
bMotorRefOffsetOn		In preparation - Input has no function at present time! Adopt home position ("Homing on the fly")	
		FALSE TRUE Adopt home position dnMotorRefOffset_p.	

Identifier	Data type	Information/possible settings	
dnMotorRefOffset_p	DINT	Home position in [increments]	
bQspOn	BOOL	Trigger quick stop (QSP) via the MCK • Also see device command "Activate/Deactivate quick stop".	
		 Activate quick stop Motor control is decoupled from the setpoint selection and, within the deceleration time parameterised in <u>C00105</u>, the motor is brought to a standstill (n_{act} = 0). A pulse inhibit (CINH) is set if the auto-DCB function has been activated via <u>C00019</u>. The motor is kept at a standstill during closed-loop operation (function in preparation). 	
		 FALSE Deactivate quick stop The quick stop is deactivated if no other source for the quick stop is active. C00159 displays a bit code of active sources/causes for the quick stop. 	
nPWMAngleOffset	INT	Angular offset input • Scaling: 16384 ≡ 100 % • Setting range: 0 199.99 %	
bSpeedCtrlIOn	BOOL	Directly set the I-component of speed controller In order to statically specify a minimum torque, e.g. when a load is being lifted.	
		TRUE Se the I-component of the speed controller to the value nSpeedCtrll_a.	
nSpeedCtrlI_a	INT	 I-component of the speed controller Value is adopted in the case of a FALSE-TRUE edge at the input bSpeedCtrlIOn. 	
nSpeedSetValue_a	INT	Rotation speed/velocity setpoint	
bTorquemodeOn	BOOL	TRUE Switch on torque-controlled operation	
nTorqueSetValue_a	INT	Torque setpoint	
bDcBrakeOn	BOOL	 Manual DC-injection braking (DCB) For this function, the bDcBrakeOn_ output signal must be connected to the bDcBrakeOn input of the same name of the LS_MotorInterface system block. Detailed information on DC-injection braking is provided in the motor control chapter, subchapter "DC-injection braking". 	
		Note!	
		Holding braking is not possible when this braking mode is used! Use the basic "Holding brake control" function for controlling the holding brake with a low rate of wear.	
		FALSE Deactivate DC-injection braking.	
		 Activate DC-injection braking, i.e. the drive is brought to a standstill by means of DC-injection braking. The braking effect stops when the rotor is at standstill. After the hold time (C00107) has expired, the controller sets the pulse inhibit (CINH). 	

Identifier	ata type	Information/possible settings	
bTorqueLimitAdaptOn	97-	Adaptation of torque limitation	
	BOOL	TRUE Activate adaptation of torque limitation.	
nTorqueLimitAdapt_a	INT	 Value for adaptation of torque limitation Scaling: 16384 ≡ 100 % of the torque limit specified at the LS MotorInterface system block via the nTorqueMotLimit_a and nTorqueGenLimit_a inputs. 	
Control words			
MCK: wMotionCtrl1 wMotionCtrl2	WORD	MCK control word 1 & 2 The two control words together form a 32-bit double control word with which the entire Motion Control Kernel is controlled. All motion profiles in the different operating modes can be operated via this interface. See the "MCK control word" subchapter for a detailed description of the individual control bits. Display parameter: C01240	
wAuxCtrl	WORD	Fur future extensions - Input has not function at present time! Additional control word	
wSMCtrl	WORD	 Interface to the optional safety system. Setting control bit 0 ("SafeStop1") in this control word causes e.g. the automatic deceleration of the drive to standstill within this application (in the Motion Control Kernel). See the "Interface to safety system" subchapter for a detailed description of the individual control bits. 	
Control and setpoint sig	gnals fo	or Motion Control Kernel function	
dnProfilePosition_p	DINT	 Profile position in [increments] Position which is to be entered into a profile data set selected via the MCK control word. In the "absolute" mode, this position is a target position. However, in the "relative" mode it is a relative traverse path. 	
nSpeedAddValue_v	INT	Additive speed setpoint in [inc/ms]	
nSpeedOverride_a	INT	 Value for <u>Speed override</u> Percentage multiplier (0 199.99 %) for the currently active speed. 16384 ≡ 100 % of the maximum traversing speed (display in <u>C01211/1</u>). If the override value is 0 %, the drive is brought to a standstill. 	
nAccOverride_a	INT	 Value for Acceleration override Percentage multiplier (0 199.99 %) for the currently active acceleration. 16384 ≡ 100 % of the parameterised acceleration of the corresponding operating mode. If the override value is 0 %, acceleration ceases. 	
nSRampOverride_a	INT	Value for <u>S-ramp smoothing override</u> • Percentage multiplier (0 100 %) for the currently active acceleration. • 16384 ≡ 100 % of the parameterised S-ramp time (<u>C01306/115</u>). • Values > 16384 are ignored.	
		 Note! If the nSRampOverride_a input remains unconnected or if an override value of "0 %" is selected, activation of the S-ramp override causes deactivation of the S-ramp time. Deactivation of the S-ramp time before the start of a profile with S-ramp time causes linear ramp generation. Deactivation of the S-ramp time during a traversing process, however, is not accepted immediately in the profile generator, but the profile generator checks automatically when an online change of the ramp form can be carried out and then initiates it automatically. 	
bLimitSwitchPos	BOOL	Input for <u>Hardware limit switch</u> (positive)	
bLimitSwitchNeg	BOOL	Input for <u>Hardware limit switch</u> (negative)	

8400 TopLine C | Software ManualBasic drive functions (MCK)
Internal interfaces | System block "LS_MotionControlKernel"

Identifier	Data type	Information/possible settings	
bHomingMark	BOOL	Input for pre-stop mark/pre-stop signal for homing	
bBrkRelease	BOOL	Holding brake control: Releasing/applying the brake in connection with the selected operating mode	
		FALSE Apply brake.During automatic operation, the internal brake logic controls of the brake.	
		 TRUE Note! The brake can also be released when the controller is inhibited! During automatic operation, the internal brake logic is deactivated and the brake is released (supervisor operation). If the brake control has inhibited the controller, this inhibit is deactivated again. In semi-automatic operation, the brake is released including feedforward control. 	
bBrkStartValue2 BOOL		Holding brake control: Selection of the torque feedforward control value for manual specification of the feedforward control value Only effective if bit 4 in C02582 is set to "1". Feedforward control of the motor before release	
		FALSE Starting value 1 (C02581/4) active.	
		TRUE Starting value 2 (C02581/5) active.	
nBrkAddValue_a	INT	Holding brake control: Additive feedforward control value (speed or torque) in [%] for torque feedforward control when the respective control mode is started • For speed control: 100 % ≡ reference speed (C00011) • For torque control: 100 % ≡ maximum torque (C00057) ▶ Feedforward control of the motor before release	
bBrkApplied	BOOL	Holding brake control: Input for status detection via switching contacts at the brake Only effective if bit 5 in C02582 is set to "1".	
		FALSE Brake is released.	
		TRUE Brake is applied.	

Outputs

Identifier Da	ta type	Value/meanin	g
Control and setpoint signals f The following outputs are use (LS MotorInterface).			l ntrol signals and setpoints to the internal motor control function
bPosCtrlOn_	BOOL	TRUE	Activate position control.
bDeltaPosOn_	BOOL	TRUE	Control to adjust for following errors.
dnDeltaPos_p_	DINT	Following erro	rinput
dnPosSetValue_p_	DINT	Absolute posit	ion setpoint
bPosDerivativeOn_	BOOL	TRUE	Activate precontrol function of speed controller.
bMotorRefOffsetOn_	BOOL	FALSE 7TRUE	Accept home position.
dnMotorRefOffset_p_	DINT	Home position	
bQspOn_	BOOL	TRUE	Activate quick stop
nPWMAngleOffset_a_	INT	Angular offset	input
bSpeedCtrlIOn_	BOOL	TRUE	Set I-component of speed controller.
nSpeedCtrlI_a_	INT	I-component o	f the speed controller
nSpeedSetValue_a_	INT	Main setpoint	of speed
bTorqueModeOn_	BOOL	TRUE	Switch on torque-guided operation.
nTorqueSetValue_a_	INT	Torque setpoir	nt .
bDcBrakeOn_	BOOL	TRUE	Activate DC-injection braking.
bTorqueLimitAdaptOn_	BOOL	TRUE	Activate adaptation of torque limitation.
nTorqueLimitAdapt_a_	INT	Value for adap	tation of torque limitation
Status words			
wMotionState1 wMotionState2	WORD	"MCK statu	ed description of the individual status bits, see subchapter entitled
wAuxState	WORD	For future exte Additional stat	ensions - Output has no function at present time! cus word

INT	•	otion Control Kernel functions
	2050 . – 25	selection in [increments/ms] 000 rpm
DINT		n in [increments] evolution of the motor shaft
DINT	• 65535 ≡ 1 re	on in [increments] evolution of the motor shaft f the modulo measuring system
DINT		n positioning processes in [increments] evolution of the motor shaft
WORD	Number of cur	rent profile
WORD	Number of seq	uence profile
BOOL	TRUE	Setpoint profile generation is active.
BOOL	TRUE	Setpoint profile generation is completed (set position = target position).
BOOL	TRUE	 Homing has been carried out. The bHomingDone output, in contract to the bHomePosAvailable output, remains set to TRUE even if a travel command that resulted in a reset of the home position has been carried out.
BOOL	TRUE	Home position is known.
BOOL	Trigger signal for switching element holding brake control via a digital output • Use bit 0 under <u>C02582</u> to activate inverted switching element triggering. • <u>Holding brake control</u>	
	FALSE	Apply brake.
	TRUE	Release brake.
BOOL	If the holding to FALSE even	d" status signal considering the brake release time ag brake is triggered to be applied, bBrkReleased is immediately reset en if the brake application time has not elapsed yet!
	TRUE	Brake released (when the brake release time has elapsed).
WORD	 These output which process FB L CalcDit C01067/1 	gearbox factor set in C01202/1 and C01202/2 uts can be connected to the GearNum-/GearDenom inputs of the FBs ess a gearbox factor (FB L PhiIntegrator 1, FB L DFSET 1, ameter 1). 3 can be used to inform these FBs that the gearbox direction of enverted is mostly done by selecting "motor mounting position"
	DINT WORD WORD BOOL BOOL BOOL BOOL	Relative feed in 65535 = 1 rd Relative feed in 65535 = 1 rd Number of cur WORD Number of seq WORD TRUE BOOL TRUE BOOL TRUE Output of the generation of the generati

Related topics:

- **▶** MCKInterface
- ▶ Control inputs | "L MckCtrlInterface" function block
- ▶ <u>Status outputs | FB "L MckStateInterface"</u>

9.2.1 MCK control word

The motion control function implemented in the <u>LS MotionControlKernel</u> system block can be controlled via the *wMotionCtrl1* and *wMotionCtrl2* control words. Together, both control words form a 32-bit control double word which serves to control the entire MotionControlKernel. All motion profiles in the various operating modes can be operated via this interface.

For direct control via a fieldbus system, the two control words can be triggered by the field bus via a port block. In addition to a few other signals (e.g. limit switch, speed override) that are connected to the digital inputs of the drive controller, all control signals can therefore be activated/deactivated via the fieldbus used (CAN, PROFIBUS, etc.).

As an alternative to this, changes to the individual control bits or bit fields (e.g. for specifying the profile number) can also be carried out via separate process inputs provided by the <u>L_MckCtrlInterface</u> function block. The control words wOutMckPosCtrl_1 and wOutMckPosCtrl_2 output by this function block constitute the input information for the <u>LS_MotionControlKernel</u> system block in this case.

MCK control word 1 (wMotionCtrl1)

Bit	Designation	Description						
0	OpMode_Bit0	Operating mode Bit 3 Bit 2				Bit 0		
 3	 OpMode_Bit3	Speed follower	Speed follower 0 0					
5	Opiniode_bits	Homing	0	0	0	1		
		<u>Manual jog</u>	0	0	1	0		
		Positioning	0	0	1	1		
		Stop	0	1	0	0		
		<u>Position follower</u>	0	1	0	1		
		All other possible settings are r	eserved	for futu	ire exte	nsions!		
4	ManJogPos	Manual jog			Bit 5	Bit 4		
5	ManJogNeg	Stop manual jogging	0	0				
		Manual jog, right	0	1				
		Manual jog, left			1	0		
		No change from previous status			1	1		
6	ManExecute 2ndSpeed	"1" ≡ Change over to manual speed 2						
7	ReleaseLimitSwitch	"1" ≡ Retract operated hardware limit switch						
8	HomStartStop	"1" ≡ Start/stop homing process						
9	HomSetPos	"1" = Set homing position						
10	HomResetPos	"1" ≡ Reset the "Reference known" status • bHomePosDone and bHomePosAvailable are reset to FALSE. • The positions remain unaffected.						
11	EnableSpeedOverride	"1" ≡ Activate speed override						
12	EnableAccOverride	"1" ≡ Activate acceleration override						
13	Enable SRampOverride	"1" ≡ Activate S-ramp override						
14	PosTeachSetPos	"1" \equiv Teach MCK set position into the selected profile						
15	PosTeachActPos	"1" Teach current position into the selected profile	'1" = Teach current position into the selected profile					

MCK control word 2 (wMotionCtrl2)

Bit	Designation	Description									
16	PosExecute	"0 7 1" ≡ Start travellir	"071" ≡ Start travelling								
17	PosFinishTarget	"0 71 " ≡ Complete car	0 7 1" = Complete cancelled profile								
18	PosDisable FollowProfile	"1" ≡ Do not travel see	1" ≡ Do not travel sequence profile								
19	PosStop		"1" \equiv Cancel travelling From version 02.00.00, more travel requests will be inhibited ("PosExecute" will be blocked).								
20	PosModeBit0	Positioning mode					Bit 3	Bit 2	Bit 1	Bit 0	
 23	 PosModeBit3	Positioning mode = se	etting in	C01300	/115		0	0	0	0	
23	rosmodebits	Absolute (shortest pa	th)				0	0	0	1	
		Continuous					0	0	1	0	
		Relative					0	0	1	1	
		absolute (Cw)					0	1	0	0	
		absolute (Ccw)					0	1	0	1	
		Absolute (shortest path) to TP					1	0	0	0	
		Continuous to TP					1	0	0	1	
		Relative to TP					1	0	1	0	
		Absolute (Cw) on TP					1	0	1	1	
		Absolute (Ccw) on TP					1	1	0	0	
		All other possible sett	ings are	reserve	d for fut	ure exte	ensions				
24	ProfileNo_Bit0	Profile	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
 21	 DrofiloNo Pit7	Profile 0	0	0	0	0	0	0	0	0	
21	ProfileNo_Bit7	Profile 1	0	0	0	0	0	0	0	1	
		Profile 2	0	0	0	0	0	0	1	0	
		Profile 15	0	0	0	0	1	1	1	1	
			All othe	r possib	le settir	ngs are r	eserved	for fut	ure exte	nsions!	

Note!

The profile 0 is <u>no</u> valid profile for the "<u>Positioning</u>" operating mode.

If a driving request with an invalid profile number is started, the response set in C00595/12 occurs (Lenze setting: "WarningLocked").

Travel requests/profiles can also be started while the drive is running. The drive does not need to be at standstill.

9.2.2 MCK status word

MCK status word 1 (wMotionState1)

Bit	Designation	Description						
0	ActOpModeBit00	Active operating mode	Bit 3	Bit 2	Bit 1	Bit 0		
 3	 ActOpModeBit03	Speed follower	0	0	0	0		
,	Actophiloacutos	Homing	0	0	0	1		
		Manual jog	0	0	1	0		
		Positioning	0	0	1	1		
		Stop or Safe stop 1 (SS1)	0	1	0	0		
		<u>Position follower</u>	0	1	0	1		
		StandBy (internal operating mode in the event of quick stop, pulse inhibit, and DC-injection braking)	1	1	1	1		
4	Busy	"1" = Internal profile generation is active. A speed profile is being generated.						
5	Done	"1" = Generation of a speed profile with the selected position has been completed.						
6	AcceleratingActive	"1" \equiv Profile generation phase is in the acceleration process.						
7	ConstSpeedDuty	"1" = Profile generation phase at constant speed activ	e.					
8	DeceleratingActive	"1" \equiv Profile generation phase is in the deceleration p	rocess.					
9	S_ShapingActive	In preparation - status bit without function at the mo "1" = Rounding during acceleration/deceleration activ						
10	Pos. HW-Limit Detected	"1" ≡ Positive limit switch has triggered. • Reset only possible via"Manual jog" mode!						
11	Neg. HW-Limit Detected	"1" ≡ Negative limit switch has triggered. • Reset only possible via"Manual jog" mode!						
12	HomPosDone	"1" ≡ Homing has been completed.						
13	HomPosAvailable	"1" ≡ The home position has been detected and is known in the drive.						
14	Reserved	-						
15	Reserved	-						

Note!

The internal "StandBy" operating mode is assumed if pulse inhibit, quick stop and/or DC-injection braking are activated.

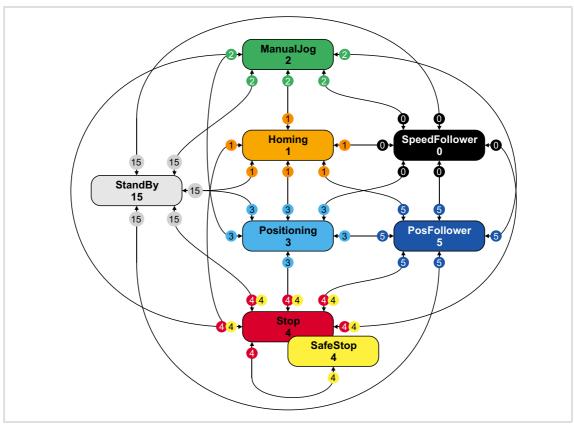
- No setpoint generation via the Motion Control Kernel in this operating mode.
- If the holding brake control sets a controller inhibit when the holding brake is closed, the internal "StandBy" operating mode is not assumed.

MCK status word 2 (wMotionState2)

Bit	Designation	Description								
16	DwellTime		'1" ≡ Dwell time after reaching the setpoint position is active. ► Target position monitoring (status "drive in target")							
17	InTarget		"1" ≡ Dwell time has expired and current actual position is in the set target window. ▶ Target position monitoring (status "drive in target")							
18	PosDone		"1" = Positioning profile has been completed in the "Positioning" or "Homing" mode. Setpoint position of a profile data set is in target.							
19	Reserved	-								
20	ActPosMode_Bit00	Active positioning mo	de				Bit 3	Bit 2	Bit 1	Bit 0
 23	 ActPosMode Bit03	Absolute (shortest pa	th)				0	0	0	1
23	ACT OSMOGE_BIOS	Continuous					0	0	1	0
		Relative					0	0	1	1
		absolute (Cw)					0	1	0	0
		absolute (Ccw)					0	1	0	1
		Absolute (shortest path) to TP					1	0	0	0
		Continuous to TP					1	0	0	1
		Relative to TP						0	1	0
		Absolute (Cw) on TP						0	1	1
		Absolute (Ccw) on TP					1	1	0	0
		Note: The display of t subchapter "Override	he active of the p	e positio aramete	ning mo	ode dep ositionir	ends on	further ".	factors	See
24	ActProfileNo_Bit00	Active profile	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
 21	 ActProfileNo_Bit07	Profile 0	0	0	0	0	0	0	0	0
71	ACCPROTITIENO_BILO7	Profile 1	0	0	0	0	0	0	0	1
		Profile 2	0	0	0	0	0	0	1	0
		Profile 15	0	0	0	0	1	1	1	1

Note!

The effective positioning mode is generated via the MCK control word (bit 20 ... 23) and/or the parameters C01300/1...15 for defining the positioning mode in the profile data. Here, the setting in the MCK control word superimposes the mode selection via the corresponding parameter. This means that the mode selection and the touch probe enable are possible via process data.


For generating the effective positioning mode, the following applies:

- Valid PosMode in the MCK control word:
 - → Use positioning mode of the MCK control word
- PosMode in the MCK control word = 0:
 - \rightarrow Use positioning mode set in C01300/x
- Invalid PosMode in the MCK control word:
 - → Error message "Ck09: Positioning mode invalid"

9.2.3 MCK state machine

Prio	rio Condition									
Global	Global conditions:									
1	15	etpoint generation through Motor control (MCTRL): DCB = DC-injection braking QSP = quick stop CINH = controller inhibit								
2	4	"Safe stop 1" (SS1) requested ▶ Interface to safety system DCB→C QSP→C CINH→C SafeStop1→								
Condit	tions rec	uested by MCK control word:	Bit 3	Bit 2	Bit 1	Bit 0				
3	2	Manual jog requested	0	0	1	0				
4	1	Homing requested	0	0	0	1				
5	3	Positioning requested	0	0	1	1				
6	0	Speed follower requested	0	0	0	0				
7	5	Position follower requested	0	1	0	1				
8	4	Stop requested	0	1	0	0				

[9-2] MCK state machine

9.2.4 Interface to safety system

For operation with optional safety system, the <u>LS MotionControlKernel</u> system block has the *wSMCtrl* input, This interface is used to transfer a control word by means of which the **Motion Control Kernel** can be supplied with information on requested or active safety functions. The **Motion Control Kernel** then initiates the necessary motion sequence (e.g. braking).

At the moment, only bit 0 in the wSMCtrl control word has a function. Additional functions are in preparation:

Bit	Designation	Description
0	SafeStop1	"1" \equiv Request for "Safe Stop 1" (SS1).
1	Reserved	In preparation - Still without function!
 15		

Behaviour in case of request for "Safe Stop 1" (SS1)

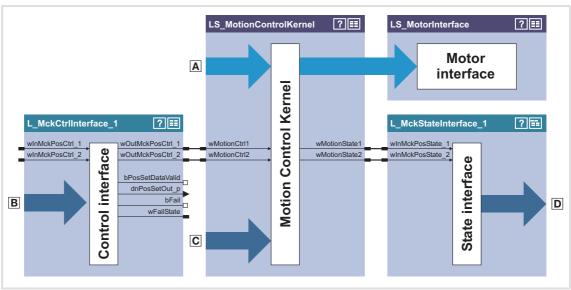
The drive is brought to a standstill with the stopping ramp set in C02610/3.

- ► The time set in <u>C02610/3</u> refers to the down-ramping of the reference speed set in <u>C00011</u>.
- ► If the current speed is lower, the time to standstill is accordingly lower as well.

[9-3] Ramping down to standstill

If the request is reset <u>during the down-ramping process</u> (bit $0 = "1 \lor 0"$), the behaviour depends on the active operating mode:

- ▶ In the "<u>Speed follower</u>" operating mode, direct synchronisation with the target speed takes place with the ramp time set in C02610/2.
- ► In the "Homing" operating mode, the ramp-down is continued with the deceleration for stop set in C01251 if the bit 8 ("HomStartStop") in the MCK control word = "0". If bit 8 is set, the homing process starts immediately in the selected homing mode.
- ► In the "Manual jog" operating mode, the behaviour depends on whether the manual jog initiator (bManJogPos or bManJogNeg) is still set:


Bit 0 (SafeStop1)	bManJogPos bManJogNeg	Behaviour
1	TRUE	Ramping down to standstill
0	TRUE	Accelerating to manual speed
0	FALSE	Ramping down to standstill

- ▶ In the "Positioning" operating mode, the behaviour depends on the setting in C01216.
- ► In the "<u>Position follower</u>" operating mode, (forward) positioning to the signalled absolute position always takes place if this position differs from the internal position.

9.3 MCKInterface

The so-called "MCK interface" described in this chapter consists of the two function blocks <u>L MckCtrlInterface</u> and <u>L MckStateInterface</u>, which are connected upstream respectively downstream of the LS MotionControlKernel system block:

- [9-4] Detail of the interconnection architecture for the "table positioning" technology application
 - A Control and setpoint signals for motor control
 - **B** Additional process inputs for controlling the **Motion Control Kernel**, e.g.:
 - Selection of the operating mode
 - Selection of the profile number
 - Override of the positioning mode
 - Control inputs for manual jogging, homing, positioning
 - Control inputs for speed/acceleration/S-ramp override
 - © Control and setpoint signals for the Motion Control Kernel such as
 - Selection of speed setpoint for speed follower
 - Selection of positioning setpoint for position follower
 - Selection of override values
 - Connection for limit switch & pre-stop mark for homing
 - Holding brake control
 - Output of status signals of the Motion Control Kernel

Basic drive functions (MCK) MCKInterface

Control of the Motion Control Kernel

Control of the basic drive functions implemented in the Motion Control Kernel is carried out by means of

- ▶ <u>direct</u> specification of the control words, for example via a master control unit also connected to the fieldbus.
 - For this purpose, the control word inputs can be directly connected to the field bus interface LP Mciln respectively LP CanIn.
 - See the "MCK control word" chapter for a detailed description of the individual control bits.
- ▶ the specification of individual process signals at the <u>L_MckCtrlInterface</u> FB which are then ORed with the control word.

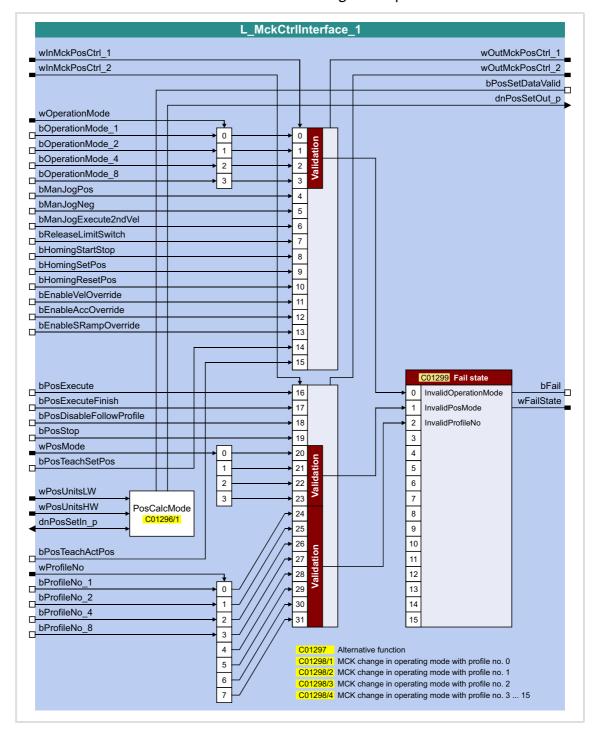
Plausibility check

The process signals applied to the <u>L_MckCtrlInterface</u> FB are logically linked by means of an OR logic operation to the specified control word via the two control word inputs wInMckPosCtrl_1 and wInMckPosCtrl_2 and, after a plausibility check, are output via the two control word outputs wOutMckPosCtrl_1 and wOutMckPosCtrl_2.

- ► The profile number, the operating mode, and the positioning mode are checked for plausibility.
- ▶ If implausibility is detected, only control bit information is output and the *bFail* output is set to TRUE.
- ► The result of the plausibility check is provided as the *wFailState* output word and displayed in <u>C01299</u>.

The control words that are output, namely wOutMckPosCtrl_1 and wOutMckPosCtrl_2, constitute the input information for the LS MotionControlKernel system block.

Status information of the Motion Control Kernel


Output by the <u>LS MotionControlKernel</u>, the status words *wMotionState1* and *wMotionState2* also constitute input information for the downstream <u>L MckStateInterface</u> FB, which provides this information to the application in the form of process signals.

9.3.1 Control inputs | "L_MckCtrlInterface" function block

This FB provides process inputs for controlling different basic functions of the **Motion** Control Kernel.

In addition to the ORing of discrete input signals with the control word inputs, the FB has further functions that are described in the following subchapters.

MCKInterface

Inputs

Identifier	Data type	Information/possible settings					
wInMckPosCtrl_1 wInMckPosCtrl_2	WORD	 Direct specification of the MCK control word 1 & 2 For example, via a master control unit that is also connected to the fieldbus. For this purpose, the control word inputs can be directly connected to the LP_MciIn respectively LP_CanIn1 fieldbus interface. The two control words together form a 32-bit double control word with which the entire Motion Control Kernel is controlled. All motion profiles in the different operating modes can be operated via this interface. See the "MCK control word" chapter for a detailed description of the individual control bits. 					
wOperationMode	WORD	 Selection of the operating mode of the Motion Control Kernel Only bit 0 bit 3 of wOperationMode are evaluated. If an invalid operating mode is selected, the response set in <u>C00</u>595/<u>11</u> occurs (Lenze setting: "Warning"). The current operating mode is displayed in <u>C01243</u>. 					
		0 Speed follower					
		1 Homing					
		2 Manual jog					
		3 Positioning					
		4 Stop					
		5 Position follower					
		6 15 Reserved for future extensions					
bOperationMode_1 bOperationMode_8	BOOL	 Binary-coded selection of the operating mode of the Motion Control Kernel See the "MCK control word" chapter for a detailed description of the individual control bits. If an invalid operating mode is selected, the response set in C00595/11 is activated (Lenze setting: "Warning"). The current operating mode is displayed in C01243. 					
bManJogPos bManJogNeg	BOOL	Manual jog: bManJogPos = TRUE: Manual jog right bManJogNeg = TRUE: Manual jog left Both inputs = TRUE: No change compared to previous state Both inputs = FALSE: Stop manual jog					
bManJogExecute2ndV		Manual jog: Changeover to speed 2					
	BOOL	FALSE Speed 1 (C01231/1) active					
		TRUE Speed 2 (C01231/2) active					
bReleaseLimitSwitch		Manual jog: Retract operated limit switch					
	BOOL	TRUE Retract operated limit switch (in opposite direction)					

Identifier	ata type	Information/p	ossible settings
bHomingStartStop	BOOL	Homing: Start, Only possib	stop homing le in the "referencing" operating mode.
		TRUE	If one of referencing modes "0" "15" in C01221 is selected: Start reference search The current status of the reference search is indicated via the status outputs bHomingDone and bHomePosAvailable. If the 100_Set_Ref_directly" referencing mode has been selected in C01221, the home position can be set manually via the bHomeStartStop input with the drive at a standstill. The current actual position is set as the home position (C01227/2)
			If referencing mode "100: SetRef" is selected: Setting the home position manually • The home position is set manually with the drive at a standstill. The current actual position now corresponds to the reference position set in C01227/2 in the machine measuring system.
		TRUEIJFALSE	 Stop homing. If the bHomingStartStop input is reset to FALSE during active referencing, homing is cancelled and the drive is brought to a standstill.
bHomingSetPos	BOOL	 With refere 	ome position ("on the fly" homing) ncing "on the fly", the home position of a machine can be set during overnent. Jerking and compensating movements do not occur.
		FALSE7TRUE	The position at the <i>dnMotorRefOffset_p</i> input of the <u>LS_MotionControlKernel</u> SB at the instant of activation is the set home position.
bHomingResetPos	BOOL	Note: With this bHomePosAvai	e home position s function, positions are not deleted but only the status signals silable and bHomePosDone are reset. Setpoints and actual positions hed until a renewed reference setting or homing.
		FALSE 7TRUE	 The internal status "reference known" is reset. The controller is no longer referenced. The process outputs bHomePosAvailable and bHomingDone are reset to FALSE.
bEnableVelOverride		Speed override	
	BOOL	TRUE	Activate speed override
bEnableAccOverride		Acceleration ov	<u>verride</u>
	BOOL	TRUE	Activate acceleration override
bEnableSRampOverride		S-ramp smootl	ning override
	BOOL	unconnected o override result Deactivatio causes linea Deactivatio accepted im automatica then initiate	Override_a input on the LS MotionControlKernel remains or if "0 %" is specified as the override value, activation of the S-ramp in in deactivation of the S-ramp time. In of the S-ramp time before the start of a profile with S-ramp time ar ramp generation. In of the S-ramp time during a traversing process, however, is not namediately in the profile generator, but the profile generator checks lly when an online change of the ramp form can be carried out and es it automatically.
bDosΓvst-			Activate S-ramp smoothing override
bPosExecute	BOOL	Positioning: St	
hPocEvocutoEinich			Execute selected profile
bPosExecuteFinish	BOOL		omplete cancelled profile
		rALSE/IKUE	A positioning process previously cancelled, e.g. by <i>bPosStop</i> or due to a device error, is resumed by travelling to the original target.

8400 TopLine C | Software Manual Basic drive functions (MCK) MCKInterface

Identifier Data type	-	ossible settings
bPosDisableFollowProfile		o not execute sequence profile (switch-off profile linkage)
ВОО	TRUE	Evaluation of the sequence profile number parameterised in C01307/115 for the selected profile is suppressed.
bPosStop		ancel travelling
BOO	TRUE	Stop positioning From version 02.00.00, more travel requests will be inhibited ("PosExecute" will be blocked).
wPosMode word	 Via this inp C01300/1 The value s Only bit 0 	e positioning mode set in the profile data ut, an override of the positioning mode parameterised in 15 for the selected profile is possible. et in C01300/115 is not overwritten in this case. bit 3 of wPosMode are evaluated. le = 0 is selected, the positioning mode set in C01300/115 is used.
	0	Positioning mode = setting in <u>C01300/115</u>
	1	Absolute (shortest path)
	2	Continuous
	3	Relative
	4	absolute (Cw)
	5	absolute (Ccw)
	8	Absolute (shortest path) to TP
	9	Continuous to TP
	10	Relative to TP
	11	Absolute (Cw) on TP
	12	Absolute (Ccw) on TP
	All other possi	ble settings are reserved for future extensions!
bPosTeachSetPos		ing: MCK setpoint position
BOO	FALSE TRUE	Teach MCK setpoint position into the selected profile.
wPosUnitsHW wPosUnitsHW	 wPosUnitsL 	e target position in [units] W = LOW word, wPosUnitsHW = HIGH word or calculating the position is selected in C01296/1.
dnPosSetIn_p		e target position in [increments] or calculating the position is selected in <u>C01296/1</u> .
bPosTeachActPos		ing: Current position
BOO	FALSE 7TRUE	Teach current position into the selected profile.
wProfileNo		the profile to be executed
WORE		as a data word or binary coded. Profile is stipulated, this FB carries out a mode change in the Lenze
bProfileNo_1	setting at t	he same time:
bProfileNo_8	−If profile 0 −If profile 1 −If profile 2	is stipulated: Activation of "Speed follower" operating mode is stipulated: Activation of "Homing" operating mode is stipulated: Activation of "Manual jog" operating mode i 15 is stipulated: Activation of "Positioning" operating mode

Outputs

Identifier	Data type	Value/meaning	g					
wOutMckPosCtrl_1 wOutMckPosCtrl_2	WORD	For transferFor a detaile	 Dutput of the MCK control word 1 & 2 For transfer to the LS MotionControlKernel system block. For a detailed description of the individual control bits, see chapter "MCK control word". (**\square* 481) 					
bPosSetDataValid	BOOL	This output been set for	Position conversion completed, data consistent" is permanently TRUE if the "0: dnPosOut_p=dnPosIn_p" mode has calculating the position in CO1296/1 since this is just a copy process omplex conversion.					
		TRUE	Conversion of the target position from [units] into [increments] has been completed. • The travel profile data are valid and the profile is ready to start.					
dnPosSetOut_p	DINT	Output of the target position in [increments] Observe the bPosSetDataValid status output!						
wFailState	WORD		lausibility check ameter: <u>C01299</u> coded:					
		Bit 0	Invalid operating mode selection • "1" ≡ The selected operating mode is not defined/invalid.					
		Bit 1	Invalid positioning mode selection "1" = The selected positioning mode is not defined/invalid.					
		Bit 2	Invalid profile number selection • "1" ≡ The selected profile number refers to a profile data set that does not exist.					
		Bit 3	Reserved					
 bFail		Bit 15 FALSE	Okay, no error					
Di dil	BOOL	TRUE	 Plausibility check error or control information error (in this case after ORing the individual signals with the control words) 					

Basic drive functions (MCK) MCKInterface

9.3.1.1 Alternative functions for control bit "PosExecute"

In <u>C01297</u>, alternative functions for bit 16 (PosExecute) in the MCK control word can be selected with bit-coding.

PosStop with PosExecute = FALSE

If bit 0 has been set in <u>C01297</u>, positioning can only be started/cancelled with the "PosExecute" control bit.

► If the "Positioning" operating mode has been set on the MCK, the "Pos-Execute" control bit has the following effects when being activated:

Signals at the input	Signals in the control word to the MCK
bPosExecute = TRUE	bPosExecute = TRUE bPosStop = FALSE bHomingStartStop remains unchanged
bPosExecute = FALSE	bPosExecute = FALSE bPosStop = TRUE bHomingStartStop remains unchanged

HomingStartStop with PosExecute

If bit 1 has been set in <u>CO1297</u>, homing can only be started/stopped with the "PosExecute" control bit.

► If the "Homing" operating mode has been set on the MCK, the "PosExecute" control bit has the following effect when activated:

Signals at the input	Signals in the control word to the MCK
bPosExecute = TRUE	bPosExecute = TRUE bPosStop = FALSE bHomingStartStop = TRUE
bPosExecute = FALSE	bPosExecute = FALSE bPosStop remains unchanged bHomingStartStop = FALSE

SetProfilPosition with PosExecute

If bit 2 has been set in <u>C01297</u> and control bit ("PosExecute") is being set, the setpoint position being applied is incorporated in the currently selected profile and then the profile is started immediately.

► If the "Positioning" operating mode has been set on the MCK, the "PosExecute" control bit has the following effect when activated:

Signals at the input	Signals in the control word to the MCK
bPosExecute = TRUE	bPosExecute = TRUE bPosStop = FALSE bHomingStartStop remains unchanged bPosTeachSetPos = TRUE (edge)
bPosExecute = FALSE	bPosExecute = FALSE bPosStop remains unchanged bHomingStartStop remains unchanged bPosTeachSetPos = FALSE

SetProfilPosition at position change

If bit 3 is set in C01297, the setpoint positions at the MCKInterface are automatically accepted into the profile with the applied profile number if a change of data is detected at the corresponding input for the setpoint position.

- ▶ If the "0: dnPosOut p=dnPosIn p" mode has been set in C01296/1 for converting the position, automatic acceptance is executed if the incremental position selection at the dnPosIn p input was changed.
- ▶ If another mode (>0) has been set in C01296/1, automatic acceptance is executed if the incremental position selection at the wPosUnitsLW and wPosUnitsHW inputs was changed.
- ► From version 02.00.00 a hysteresis can be set in C01245/3 for the position change.

PosExecute at position change

(from version 02.00.00)

If bit 4 is set in C01297, an automatic "PosExecute" takes place if the incremental position selection changes and this change is higher than set in the hysteresis for position change (C01245/3).

If the selection is made in units, so that in a first step it has to be converted into increments, and if this automatic function is then activated, the "PosExecute" will only be created automatically when the internal conversion is completed (bPosSetDataValid).

This option serves to start travel requests very easily by simply defining the new target position.

Operating mode change with profile number 9.3.1.2

One of the operating modes of the LS_MotionControlKernel system block can be assigned to the positioning profiles via the four subcodes of C01298:

Parameter	Info	Lenze setting
C01298/1	Operating mode if profile 0 is selected	Speed follower
C01298/2	Operating mode if profile 1 is selected	Homing
C01298/3	Operating mode if profile 2 is selected	Manual jog
C01298/4	Operating mode if profile 3 15 is selected	Positioning

- ▶ When a changeover to the corresponding profile is carried out, the set operating module is requested at the same time.
- ▶ In the case of the setting "0: No change", the operating mode is not changed when the profile changeover occurs. Instead, the operating mode requested "from outside" via the MCK control word is applicable.

Basic drive functions (MCK) MCKInterface

9.3.2 Status outputs | FB "L_MckStateInterface"

This FB provides the application with different status information of the **Motion Control Kernel** via process outputs.

Inputs

Identifier	Data type	Information/possible settings
wInMckPosState_1 wInMckPosState_2	WORD	Inputs for accepting the status words from the <u>LS_MotionControlKernel</u> system block.
dnPosIn_p	DINT	 Position in [increments] Is converted into [units] if <u>C01295</u> = "0: dnPosIn_p" and output at the wPosUnitsLW and wPosUnitsHW outputs. The mode for calculating the position is selected in <u>C01296/2</u>.

Outputs

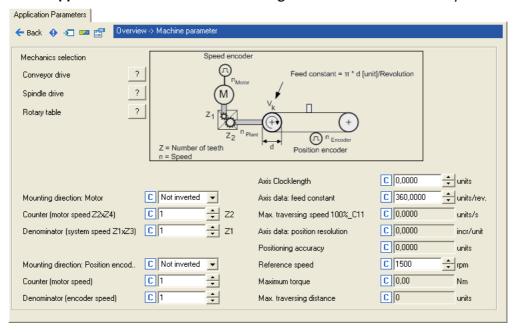
Identifier	ata type	Value/meaning	
bAccelerating	BOOL	TRUE	Acceleration phase active.
bDecelerating	BOOL	TRUE	Braking phase active.
bConstantSpeedDuty	BOOL	TRUE	Constant phase active.
bSShaping	2001	In preparation	- output without function at the moment!
	BOOL	TRUE	Profile rounding active.
bBusy	BOOL	TRUE	Setpoint generation active.
bDone	BOOL	TRUE	Target position (setpoint) has been approached.
bHomingPosAvailable	BOOL	TRUE	Home position is known.
wOperationMode	WORD	Active setpoint-generating state of the Motion Control Kernel . • Bit B0 B3 contain the information of the MCK status word. • Bits B4 B15 are fixed at "0".	
bHomingDone	BOOL	TRUE	Homing has been executed.
bDwellTime	BOOL	TRUE	Settling in target position is active
bInTarget	BOOL	TRUE	Target position (actual value) is in the target window.
bPosDone	BOOL	TRUE	Target position from the profile has been approached.
wActProfileNo	WORD	Current traversing profile number • Bit B0 B7 contain the information of the MCK status word. • Bits B8 B15 are fixed at "0".	
wActPosMode	WORD	Current positioning mode Bit B0 B3 contain the information of the MCK status word. Bits B4 B15 are fixed at "0".	
wPosUnitsLW wPosUnitsHW	WORD	Output of the position selected in <u>C01295</u> in [units] • wPosUnitsLW = LOW word, wPosUnitsHW = HIGH word • The mode for calculating the position is selected in <u>C01296/2</u> .	
dnPosOut_p	DINT		position selected in <u>C01295</u> in [increments] or calculating the position is selected in <u>C01296/2</u> .

Basic drive functions (MCK) **Basic settings**

9.4 **Basic settings**

9.4.1 Machine parameters

The motor end, among other things, is described by the machine parameters indicated below in respect of the mechanics used.



Note!

Setting the machine parameters is a basic prerequisite for the operating modes "Homing", "Manual jog" and "Positioning".

The more precisely the machine parameters are set, the better the results of positioning!

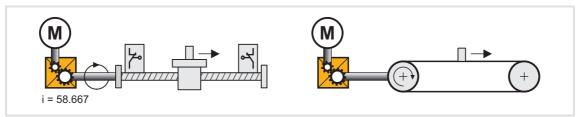
For TA "Table positioning", you can set the machine parameters in the "Engineer" on the tab headed **Application Parameters** on the dialog level *Overview* → *Machine parameters*:

You are provided with more detailed information on the machine parameters "Gearbox ratio" and "Feed constant" in the following subchapters.

Short overview of machine parameters:

Parameter	Info	Lenze sett	ing
		Value	Unit
<u>C01206/1</u>	Mounting direction: Motor	0: Not inve	rted
C01202/1	iM: Nominator of gearbox factor Z2	1	
C01202/2	iM: Denominator of gearbox factor Z1	1	
C01206/2	Mounting direction: Position encoder	0: Not inve	rted
C01203/1	iG: Nominator (motor speed)	1	
C01203/2	iG: Denominator (encoder speed)	1	
<u>C01201/1</u>	Axis data: Axis cycle • Activation of the modulo measuring system	0.0000	units
C01204	Axis data: Feed constant	360.0000	units/rev.
C00011	Appl.: Reference speed	1500	rpm

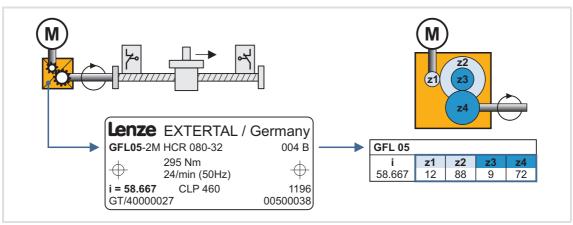
After the machine parameters have been entered, the drive controller sends back application-relevant data via the following display parameters:


Parameter	Info	Lenze setting	
		Value Unit	
<u>C01211/1</u>	Max. traversing speed 100%_C11 • Is used for orientation when the velocity is being set in the profile sets.	- units/s	
<u>C01205</u>	Axis data: Position resolution Is needed for the incremental specification of positions.	- incr/unit	
<u>C01210/5</u>	 MCK: Positioning accuracy Theoretical accuracy during positioning with account being taken of the machine data and encoder data. 	- units	
<u>C00057</u>	Maximum torque	- Nm	
C01213/1	MCK: Max. traversing distance	- units	
Highlighted in grey = display parameter			

Basic drive functions (MCK) Basic settings

9.4.1.1 Gearbox ratio

The gearbox ratio indicates the number of rotations of the motor axis it takes for exactly one rotation of the load axis (e.g. spindle or drive roll) to take place.



[9-5] Schematic diagram of gearbox ratio

► In the example shown in the illustration [9-5], the spindle rotates exactly once for every 58.667 rotations of the motor axis.

Specification of the gearbox ratio

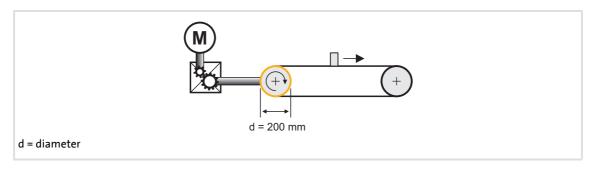
► The gearbox ratio is to be specified in the form of a quotient (numerator/denominator). You can find the necessary data in the technical data for the gearbox:

[9-6] Example: Technical data relating to the gearbox (from gearbox catalogue)

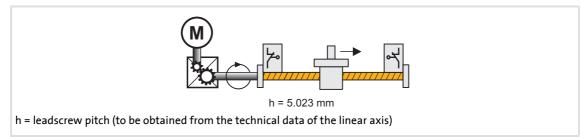
In order to specify the gearbox ratio exactly, use the number of teeth indicated on the data sheet or in the catalogue, if possible, instead of the information on the nameplate (see following calculation).

Calculation as an example based on the technical data relating to the gearbox:

```
Gearbox factor numerator (C01202/1) = z2 \times z4 = 88 \times 72 = 6336
Gearbox factor denominator (C01202/2) = z1 \times z3 = 12 \times 9 = 108
```


[9-7] Calculation example (for 2-stage gearbox)

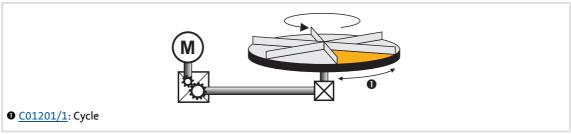
9.4.1.2 Feed constant


The feed constant corresponds to the machine movement for one revolution of the gearbox output shaft.

- ► The entry in the **Feed constant** (C01204) field is made in the user unit [units] in respect of the revolution.
- ► In the case of a conveyor drive, the feed constant is obtained from the drive roll's circumference, which, in the following example, is calculated on the basis of the indicated diameter:

Feed constant =
$$\pi \cdot d \frac{[unit]}{Revolution} = \pi \cdot 200 \frac{mm}{Revolution} = 628.3185 \frac{mm}{Revolution}$$

- [9-8] Schematic diagram: Feed constant for a conveyor driver
 - ▶ In the case of a spindle drive (linear axis), the feed constant is derived from the leadscrew pitch. The feed constant indicates the distance the slide travels during one revolution of the spindle (in the following example: 5.023 mm).


- [9-9] Schematic diagram: Feed constant for a spindle drive
 - ► In the case of a rotary table and its specification as an angle, the feed constant is = 360°/revolution.

Basic drive functions (MCK) Basic settings

9.4.1.3 Activation of the modulo measuring system

The Modulo measuring system is also called "rotary table application".

[9-10] Example: Rotary table application

- ▶ The measuring system is repeated.
- ▶ If the set cycle is exceeded, a defined overflow occurs.
 - In a rotative system, the cycle usually corresponds to one revolution or tool distance.
- ▶ The home position must be known for positioning.
 - Exception: Positioning mode relative (TP) and continuous (TP)
- ▶ Software limit positions are not effective.
- ▶ Absolute targets can be approached by exceeding the measuring system limit, e.g. from 10° via 0° to 350°.

Activating the Modulo measuring system

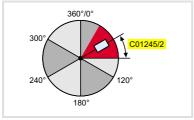
The Modulo system is activated by setting a cycle (C01201/1) > 0 units.

- ▶ The cycle can be set if the controller is enabled.
- ▶ When the cycle (C01201/1) is set to 0 units (Lenze setting), the traversing range is unlimited (classical measuring system).

Generation of the Modulo measuring system

When the Modulo measuring system is active, it is displayed internally via an integrator. The Modulo position is provided at the <code>dnPosSet_p</code> process output of the SB <u>LS_MotionControlKernel</u> and displayed in <u>CO1210/7</u>. When the Modulo measuring system is not active, the continuous (<code>dnPosSetValue_p</code>) setpoint position is output instead.

Blocking zone for "absolute (Cw)" and "absolute (Ccw)"positioning modes


Set a blocking zone in C01245/2 for the "absolute (Cw)" and "absolute (Ccw)" positioning modes in which no target positions are approached. This blocking zone around the current setpoint position serves to consider drift motions of the shaft in case of controller inhibit/enable cycles in order to prevent e.g. an unwanted motion by one cycle.

Stop!

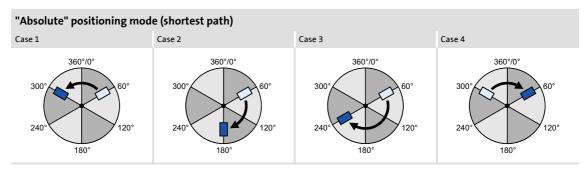
Target positions in the set blocking zone are always approached with the shortest possible distance in the "absolute (Cw)" and "absolute (Ccw)" positioning modes!

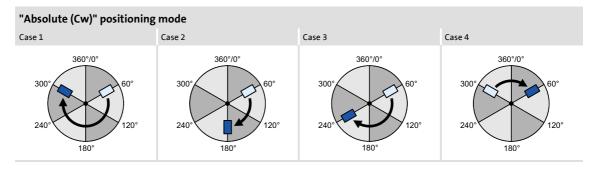
If the blocking zone is too large, the drive may travel to the opposite direction!

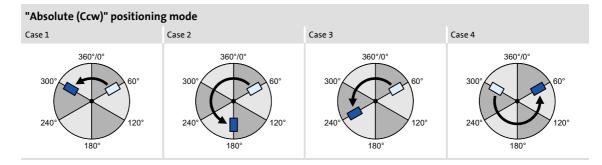
- ► Target positions outside the blocking zone are approached with the selected positioning mode.
- ► The blocking zone is limited internally to half the cycle.

[9-11] Definition of the blocking zone

Display of the target position in the "Positioning" mode


Positioning mode	Target position displayed in C01210/6 in [units]
Absolute (shortest path)	Defined position
absolute (Cw)	Defined position
absolute (Ccw)	Defined position
Continuous	214748.3647
Relative	Modulo position + defined position




Basic drive functions (MCK) Basic settings

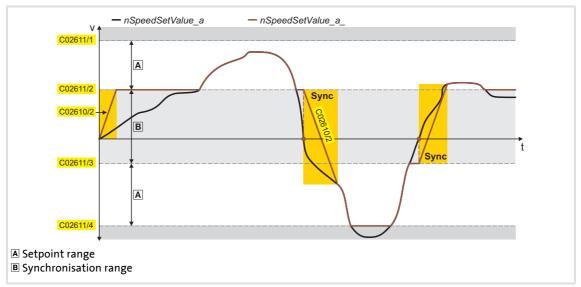
Case studies for Modulo positioning

In the following, some case studies are shown in the various positioning modes. The target positions are defined by the user.

9.4.2 Min/Max speed

For the "<u>Speed follower</u>" operating mode, yo can initially limit the speed setpoint by means of the following parameters:

Parameter	Info	Lenze setting	
		Value	Unit
C02610/2	MCK: Ramp time synchr. setpoint	2.000	s
C02611/1	MCK: Pos. max. speed	199.99	%
<u>C02611/2</u>	MCK: Pos. min. speed	0.00	%
<u>C02611/3</u>	MCK: Neg. min. speed	0.00	%
C02611/4	MCK: Neg. max. speed	199.99	%


In the »Engineer», you can set the initial limit by means of the dialog box Min/Max speed.

▶ Open the Min/max speed dialog box by opening the Application Parameters tab and clicking on the following button on the dialog level Overview → Signal flow:

Speed setpoint generation

When the speed limit values are set, the **Motion Control Kernel** influences the setpoint generation with a synchronisation mode The synchronisation mode serves to travel the synchronisation range dynamically with the synchronisation ramp set in $\underline{\text{C02610/2}}$. Synchronisation always starts in the zero crossing of the defined speed.

[9-12] Example: Speed setpoint generation in the "Speed follower" operating mode (with nSpeedAddValue_v = 0)

Basic drive functions (MCK) Basic settings

9.4.3 Limit position monitoring

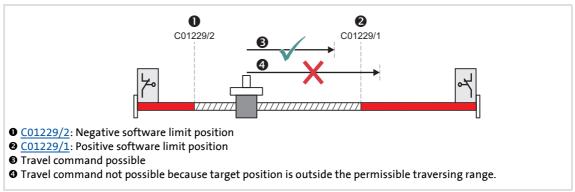
9.4.3.1 Software limit positions

The parameterisable limit positions are used by the software to limit the traversing range.

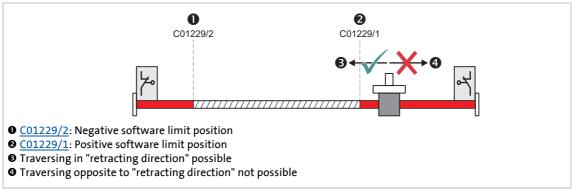
► The positive software limit position is set in <u>C01229/1</u> and the negative software limit position is set in <u>C01229/2</u>.

Stop!

The software limit positions are only evaluated and monitoring if the drive knows the home position and the software limit positions for the respective operating mode have been activated.


- For the "manual jogging" operating mode, travel range monitoring is switched off by means of parameterisable software limit positions in the Lenze setting of C01230.
- In the "<u>Homing</u>" and "<u>Positioning</u>" operating modes, the travel range monitoring is generally switched-on.

Parameter	Info	Lenze setting
<u>C01218</u> - Bit 3	SW limit positions for position follower on/off	On
<u>C01219</u> - bit 3	SW limit positions for speed follower on/off	On
<u>C01230</u> - bit 3	SW limit position for manual jogging on/off	Off


Behaviour in the case of active software limit positions

▶ If the software limit positions are active, travelling commands that would result in exiting from the permissible travel range can no longer be executed:

[9-13] Example: Traversing range limitation by means of software limit positions

▶ If the drive is already outside the permissible travel range and the software limit positions have been activated, only travel commands that result in the drive moving back into the permissible travel range can be executed:

[9-14] Example: Permissible traversing direction if software limit positions active

- ► If the software limit positions are active and a software limit position is passed ("overtravel"):
 - The error response "TroubleQuickStop" takes place in the Lenze setting, i.e. the drive is brought to a standstill in the deceleration time set for the quick stop function and does so irrespective of the setpoint selection. The error response can be parameterised in <u>C00595/3</u> and <u>C00595/4</u>.
 - The error message "Ck03: Pos. SW limit position" or "Ck04: Neg. SW limit position" is entered in the logbook of the drive controller.
 - Depending on the parameterised error response, the drive cannot traverse until the error has been acknowledged.

Basic drive functions (MCK) Basic settings

9.4.3.2 Hardware limit switch

The travel range limits are monitored by means of limit switches via the inputs bLimitSwitchPos and bLimitSwitchNeg of the LS MotionControlKernel system block.

- ▶ The two inputs react to the TRUE state.
- ▶ In <u>TA "Table positioning"</u>, the two inputs are connected to the digital inputs provided for connection of the limit switches.

Stop!

The limit switches are only evaluated if the limit switches for the respective operating mode have been activated (see the following table)!

Operating mode	Hardware limit switch effective
Speed follower	Yes (adjustable in <u>C01219</u> - bit 2)
Homing	Depending on the selected homing mode (see description of the homing modes)
<u>Manual jog</u>	No (adjustable in C01230 - bit 2)
Positioning	Yes
Stop	Yes
<u>Position follower</u>	Yes (adjustable in <u>C01218</u> - bit 2)

Note!

If the digital inputs used for connecting the limit switches are fail-safe inputs (tripping at LOW level), you simply change the terminal polarity of the corresponding digital inputs in C00114.

Behaviour when hardware limit switches are active

- ▶ If one of the two monitoring inputs is set to TRUE:
 - The error response "TroubleQuickStop" takes place in the Lenze setting, i.e. the drive is brought to a standstill in the deceleration time set for the quick stop function and does so irrespective of the setpoint selection. The error response can be parameterised in <u>C00595/1</u> and <u>C00595/2</u>.
 - The error message "Ck01: Pos. HW limit switch" or. "Ck02: Neg. HW limit switch" is entered in the logbook.
 - Bit 10 ("Pos. HW-Limit Detected") or bit 11 ("Neg. HW-Limit Detected") is set in the MCK status word.
 - Depending on the parameterised error response, the drive cannot traverse until the error has been acknowledged.

Note!

An activated limit switch can be retracted again by manual jog in the opposed direction or with the "Retract limit switch" function. ▶ Retracting of an operated limit switch (□ 540)

Only in the "Manual jog" operating mode, retracting of the limit switch resets bit 10 ("Pos. HW-Limit Detected") or bit 11 ("Neg. HW-Limit Detected") in the MCK status word.

Re-activation after acknowledging the error

When the error has been acknowledged and the limit switch is still active, the following action is required for a renewed activation of the monitoring depending on the operating mode:

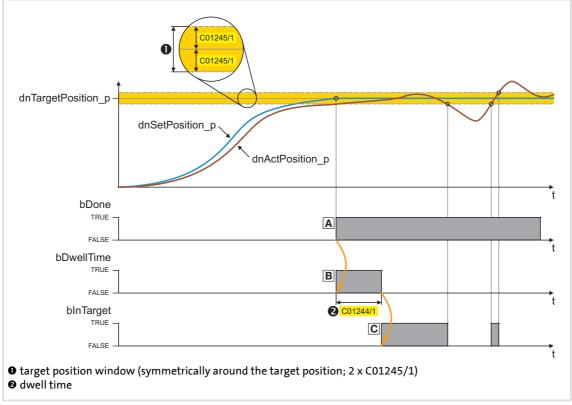
Operating mode	Action for (re) activation
Speed follower	Limit switch is activated and setpoint in direction of the activated limit switch is pending
<u>Homing</u>	Limit switch is activated and bHomStartStop = TRUE
<u>Manual jog</u>	Limit switch is activated and manual jog in direction of the activated limit switch
Positioning	Limit switch is activated and setpoint command has been transmitted.
Stop	Setting of the operating mode
Position follower	Limit switch is activated and setpoint in direction of the activated limit switch is pending

Basic drive functions (MCK) Basic settings

9.4.4 Target position monitoring (status "drive in target")

The target position monitoring detects whether the drive has reached the target.

Note!


- The target position detection is active with the following operating modes/functions:
 - Operating mode "Positioning": Absolute and relative positioning mode
 - Operating mode "<u>Homing</u>": After approaching the starting position via start profile (if start profile has been selected)
 - Operating mode "<u>Manual jog</u>": When the breakpoints and the software limit positions are approached
- The target position monitoring is active until the operating mode changes or a new travel command influences the setpoint.

Short overview of the parameters for target position monitoring:

Parameter	rameter Info		ing
		Value	Unit
<u>C01244/1</u>	MCK: Dwell time - target position For considering mechanical transient phenomenons of the tool when the target position is reached.	100	ms
<u>C01245/1</u>	MCK: Window target position • Symmetrical window around the target position.	1.0000	units

Principal procedure of the position detection

[9-15] Signal characteristics

Status "Done" (A)

▶ The position setpoint has reached the target position.

Status "DwellTime" (B)

- ▶ Bit 16 in the MCK status word or the bDwellTime output of the L MckStateInterface FB is set when the setpoint position has been reached after the dwell time set in C01244/1 has expired.
- ► The status detects the time after the *bDone* signal when settling to target position is executed and actual position detection is not active yet.

Status "InTarget" (©)

▶ If the actual position is within the symmetrical target position window after the dwell time has expired, bit 17 is set to "1" in the <u>MCK status word</u> or the <u>bInTarget</u> output of the <u>L MckStateInterface</u> FB is set to TRUE.

Basic drive functions (MCK) Basic settings

Note!

- The target position including the target position window has to be within the maximum traversing range.
- Please observe the following if you use *bInTarget* as stepping condition in a step sequence:

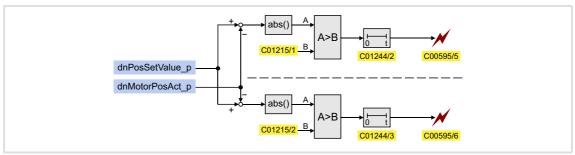
The bInTarget signal needs the set position to be located in the target. A profile restart immediately deletes the setpoint position in the first cycle and thus also resets bInTarget.

- ► The "InTarget" status is reset if:
 - The motor shaft leaves the target position window,
 - a new profile or a new motion process is started,
 - bInTarget has been set via manual jog (intermediate stops) and the "Manual jog" mode is left,
 - the target position window has been left in the "<u>Speed follower</u>" mode and a speed setpoint not equal to "0" is injected into the process,
 - a new homing process is started,
 - the reference is set,
 - the device is switched off/on.

9.4.5 Monitoring of the maximum travel distance

Continuous travel requests in the "Positioning" operating mode (or relative positioning with feed in the same direction) cause an overflow of the position integrators when the max. display area of the position is reached and the reference is set. The same behaviour takes place in the "Speed follower" and "Manual jog" operating modes. For this reason, a monitoring mode of the maximum travel distance is implemented in the Motion Control Kernel.

- ▶ If the maximum travel distance (C01213/1) is exceeded:
 - The error response set in <u>C00595/7</u> will be carried out (Lenze setting: "TroubleQuickStop").
 - The "Ck07: Travel range limit exceeded" error message is entered into the logbook.
 - The internal status "reference known" is reset (the controller is no longer referenced).
- ▶ A setting of C00595/7 = "0: No Reaction" deactivates the monitoring.



9.4.6 Following error monitoring system

The difference between set position and actual position is called the following error. Ideally, the following error should be "0". The set position is created by the internal definition of the traversing profiles of the **Motion Control Kernel**. The actual position is created by the integration of the speed supplied by the position encoder. If the position control is adjusted optimally, only a mininum following error arises which is always compensated dynamically and not increases continuously.

Certain processes, however, require that a defined limit as a difference between set position and actual position is not exceeded. If it is exceeded, it may have been caused by a mechanical blocking in the machine and the system part is not situated at the position defined at that time. In such a case, it makes sense to activate the "Fault" error response to make the motor torqueless.

In the 8400 TopLine controller, two independent following error monitoring systems can be parameterised:

[9-16] Two-channel following error monitoring system

Parameter	Info	Lenze setting	
		Value	Unit
<u>C01215/1</u>	MCK: Following error limit 1	0.0000	units
C01215/2	MCK: Following error limit 2 0.0000		units
<u>C01244/2</u>	MCK: Following error deceleration 1	0.000	S
C01244/3	MCK: Following error deceleration 2 0.000		S
C00595/5	MCK: Resp. to following error 1	Warning	
C00595/6	MCK: Resp. to following error 2	Warning	

Note!

If the limit for the following error is set to "0.0000 units" (Lenze setting, the following error monitoring system is not active.

8400 TopLine C | Software Manual

Basic drive functions (MCK) **Basic settings**

In certain situations (e.g. dynamic acceleration of the load), higher systemdependent following errors occur than while approaching the target position.

In order that no error is triggered during acceleration and a close tolerance limit can be monitored all the same at standstill in the target, the addressing of the following error monitoring system can be decelerated. Thus, dynamic processes or torque impulses occurring for short periods can be "masked out".

Operating mode

If the limit for the following error in C01215/x is set higher than "0.0000 units" and if the current following error exceeds this limit over the time set in C01244/x:

- ► The error response set in C00595/5 or C00595/6 will be carried out (Lenze setting: "Warning").
- ► The error message "Ck05: Error, following error 1" or "Ck06: Error, following error 2" will be entered into the logbook.

9.5 Speed follower

In the "speed follower" operating mode, the drive follows a speed setpoint.

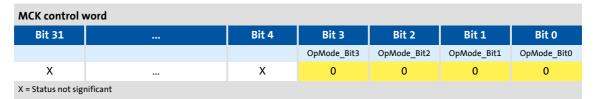
9.5.1 Parameter setting

Short overview of parameters for the "speed follower" operating mode:

Parameter	neter Info Lenze set		ing
		Value	Unit
<u>C01219</u>	MCK: Speed follower setting	Bit code	d
C02610/2	MCK: Ramp time synchr. setpoint	2.000	s
<u>C02611/1</u>	MCK: Pos. max. speed	199.99	%
C02611/2	MCK: Pos. min. speed	0.00	%
C02611/3	MCK: Neg. min. speed	0.00	%
C02611/4	MCK: Neg. max. speed	199.99	%

9.5.1.1 Functional settings

In <u>C01219</u>, various functional settings for the speed follower can be made in bit-coded form.


Functio	on	Lenze setting
Bit 0	Reserved	Off
Bit 1	Reserved	Off
Bit 2	HW limit switch on In the "speed follower" operating mode, a travel range monitoring mode via hardware limit switch is active. ▶ Limit position monitoring (□ 506)	On
Bit 3	SW limit switch on In the "speed follower" operating mode, a travel range monitoring mode via parameterised software limit positions. ▶ Limit position monitoring (□ 506)	On
Bit 4	Reserved	Off
Bit 5	Reserved	Off
Bit 6	Reserved	Off
Bit 7	Position controller off In the "Speed follower" operating mode, the position controller is deactivated. Thus, the compensation of the following error is switched off.	Off

Basic drive functions (MCK) Speed follower

9.5.2 Requesting the operating mode

Request for "speed follower" operating mode by means of the MCK control word:

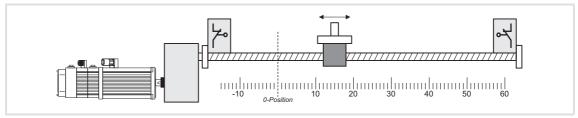
If the MCKInterface is connected upstream to the Motion Control Kernel and if the operating mode is requested at the <u>L_MckCtrlInterface</u> FB, the wOperationMode and bOperationMode_1...8 process inputs are available.

9.5.3 Setpoint selection

The speed setpoint is selected via the *nSpeedSetValue_a* process input and additively via the *nSpeedAddValue_v* process input.

- ► Usually, the ramp generator <u>L NSet</u> and, optionally, the process controller <u>L PCTRL</u> are upstream of the *nSpeedSetValue a* process input.
- ▶ The speed setpoint is limited internally to the speed limits set in C02611/1...4.

Note!


When the speed limit values are set, the **Motion Control Kernel** influences the setpoint generation with a synchronisation mode The synchronisation mode serves to travel the synchronisation range dynamically with the synchronisation ramp set in C02610/2.

▶ Min/Max speed (☐ 505)

9.6 **Homing**

The measuring system in the machine is selected by means of homing and the 0 position is set within the possible physical travel range:

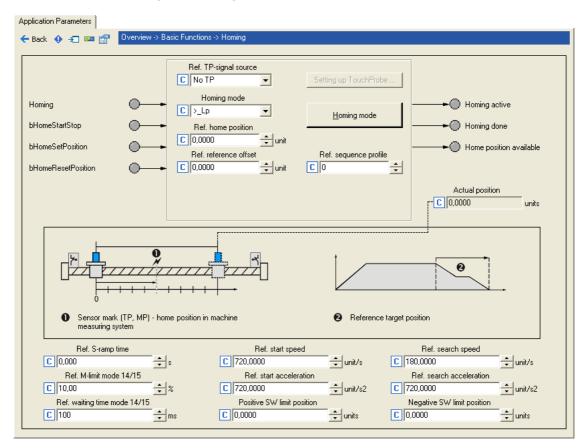
[9-17] Homing (selection of 0 position)

The zero position (home) can be defined by a reference run or by setting a home position:

- ▶ If a reference run is carried out, the drive follows a previously selected path to find the home position.
- ▶ When the reference is set, it is selected manually when the drive stands still.

Danger!

During homing, specially assigned profile parameters are active. If they have not been set correctly, the drive can engage in uncontrolled movement!


A reference run is mainly used for systems with feedback via encoders, resolvers, or single-turn absolute value encoders, as in the case of these systems the home position is lost when the supply voltage is switched off.

Usually the reference is set only once during commissioning or in the event of service (e.g. if drive components are replaced), and it is mostly used for systems with feedback via absolute value encoders.

9.6.1 Parameter setting

Parameterisation dialog in the »Engineer«

Short overview of parameters for "Referencing" operating mode:

Parameter Info		Lenze setting	
		Value	Unit
<u>C01221</u>	MCK: Ref. mode	12: >_Lr)
<u>C01224/1</u>	MCK: Ref. initial speed	720.0000	unit/s
<u>C01225/1</u>	MCK: Ref. initial acceleration	720.0000	unit/s2
C01224/2	MCK: Ref. search speed	180.0000	unit/s
C01225/2	MCK: Ref. search acceleration	720.0000	unit/s2
C01226/1	MCK: Ref. S-ramp time	0.000	s
C01222	MCK: Ref. M limit mode 14/15	10.00	%
<u>C01223</u>	MCK: Ref. waiting time mode 14/15	100	ms
C01227/1	MCK: Ref. offset reference degree	0.0000	unit
C01227/2	MCK: Ref. home position	0.0000	unit
<u>C01228</u>	MCK: Ref. sequence profile	0	
C01229/1	MCK: Positive SW limit position	0.0000	units
C01229/2	MCK: Negative SW limit position	0.0000	units
C01246/1	MCK: Ref. TP signal source 0: No TP)
C01246/2	MCK: Set.Ref. signal source	0: No TP	

9.6.1.1 Referencing mode

Specify the referencing mode in C01221, i.e. the way in which referencing is to take place.

- ▶ For reference setting, the referencing mode "100" is to be selected in C01221.
- ► For a reference search, <u>C01221</u> contains referencing modes "6"..."15" which can be selected from.

Referencing mode	Evaluated signals/sensors			
<u>C01221</u>	Sensor reference signal	Travel range limit switch		Pre-stop mark at
		Negative limit switch	Positive limit switch	bHomingMark
6	Ø			
7	Ø			Ø
8	Ø			
9				
10	Ø			
11	Ø			
12			\square	
13				
14	Positive direction of rotation to torque limit.			
15	Negative direction of rotation to torque limit.			
100	Set reference directly.			

Internal interfaces

The switches/sensors are evaluated via the following internal interfaces:

Switch/sensor	Internal interface for digital input signal
Touch probe sensor (Sensor reference signal)	 In the Lenze setting, a signal pending at the digital input DI3 is interpreted level-sensitive as TP sensor signal. In this case, the search speed must be selected in order that the signal at DI3 will be detected. Moreover, the high-precision homing with touch probe is supported. The touch probe signal source can be selected in C01246/1. If the reference signal is to follow a real touch probe, configure the touch probe signal accordingly. Touch probe detection (□ 362)
Positive travel range limit switch	bLimitSwitchPos
Negative travel range limit switch	bLimitSwitchNeg
Pre-stop mark/pre-stop signal	 bHomingMark This input responds to the FALSE status and is to be connected to the corresponding digital input to which the reference switch is connected. The response to the pre-switch off signal depends on the referencing mode selected.

Note!

For a reference search with touch probe detection:

- The touch probe signal source can be selected in C01246/1.
- Go to C02810/x and select the edge, the digital input used for the connection of the touch-probe sensor is to respond. In the Lenze setting of C02810/x, no touch probe is detected!
- Moreover, no "acceptance window" must be set in C2813/x and C02814/x for accepting the touch probe signal in order that a touch probe will always be detected independent of the position.
- ▶ Touch probe detection (☐ 362)

Start and search profile data set

Certain referencing modes use two different profile data sets for homing in order to shorten the homing time and, at the same time, increase accuracy.

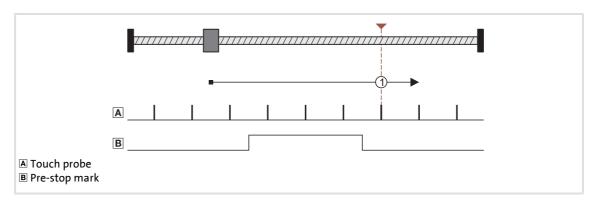
- ▶ At first, a quick approach of the limit switch/pre-stop mark (depending on the selected mode) is carried out using the start profile data set.
- ▶ After reversing at the limit switch/pre-stop mark, the search profile data set results in slower – but more accurate – approaching of the touch probe sensor.

Start profile data set		Search profile data set	
C01224/1	Start speed	<u>C01224/2</u>	Search speed
<u>C01225/1</u>	Start acceleration (deceleration as well)	<u>C01225/2</u>	Search acceleration (deceleration as well)
C01226/1	S-ramp time (identical in the two profile data sets)	<u>C01226/1</u>	S-ramp time (identical in the two profile data sets)

Note!

A changeover to the search profile data set is only carried out of the search speed has been set to (C01224/2) > "0"!

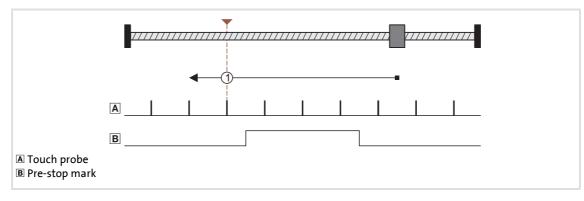
The exact time of the changeover to search profile data set occurs in the respective referencing mode is indicated in the process descriptions of the referencing modes.


The result of setting a lower search speed in C01224/2 and a high search acceleration in C01225/2 is that deceleration to search speed takes place quickly and position detection is exact (at slower search speed).

Abbreviations used for the referencing modes:

Abbreviation	Meaning
>	Movement in positive direction
<	Movement in negative direction
Ln	Negative travel range limit switch
Lp	Positive travel range limit switch
Rn	Negative edge - pre-stop mark/pre-stop signal
TP	Touch probe or sensor reference signal/reference switch detected
Mlim	Torque limit value reached

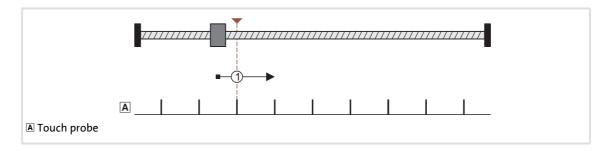
Mode 6: >_Rn_>_TP


Mode 6	>	Rn	>	TP	Offset path	Sequence profile (optional)
	Start	speed	Search speed		Profile speed	
Lp	Active	Active	Active	Active	Active	Active
Ln	Inactive	Inactive	Inactive	Inactive	Active	Active

Functional sequence:

- 1. Movement in positive direction with start profile data set.
- 2. Positive edge at *bHomingMark* activates search profile data set for further reference search.
- 3. Negative edge at *bHomingMark* enables home position detection.
- 4. Following edge of the touch probe sensor sets home position.

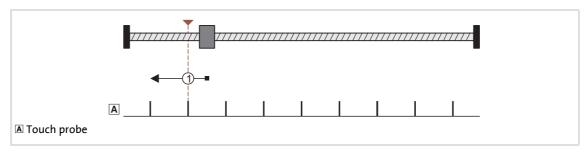
Mode 7: <_Rn_<_TP


Mode 7	<	Rn	<	TP	Offset path	Sequence profile (optional)
	Start	speed	Search speed		Profile speed	
Lp	Inactive	Inactive	Inactive	Inactive	Active	Active
Ln	Active	Active	Active	Active	Active	Active

Functional sequence:

- 1. Movement in negative direction with start profile data set.
- 2. Positive edge at *bHomingMark* activates search profile data set for further reference search.
- 3. Negative edge at *bHomingMark* enables home position detection.
- 4. Following edge of the touch probe sensor sets home position.

Mode 8: >_TP

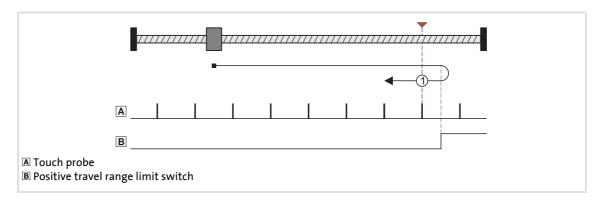


Mode 8	>	TP	Offset path	Sequence profile (optional)
		Profile speed		
Lp	Active	Active	Active	Active
Ln	Inactive	Inactive	Active	Active

Functional sequence:

- 1. Movement in positive direction with start profile data set.
- 2. Following edge of the touch probe sensor sets home position.

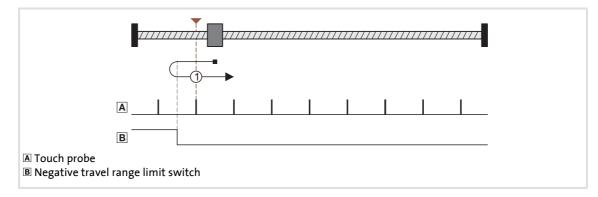
Mode 9: <_TP


Mode 9	<	TP	Offset path	Sequence profile (optional)
		Profile speed		
Lp	Inactive	Inactive	Active	Active
Ln	Active	Active	Active	Active

Functional sequence:

- 1. Movement in negative direction with start profile data set.
- 2. Following edge of the touch probe sensor sets home position.

Mode 10: >_Lp_<_TP



Mode 10	>	Lp	<	TP	Offset path	Sequence profile (optional)
	Start	speed	Search speed		Profile speed	
Lp	Inactive	Inactive	Inactive	Inactive	Inactive	Active
Ln	Inactive	Inactive	Active	Active	Active	Active

<u>Functional sequence:</u>

- 1. Movement in positive direction with start profile data set.
- 2. Reversing when the edge of the positive travel range limit switch is positive and, at the same time, activation of search profile data set for continued reference searching.
- 3. Negative edge of the travel range limit switch enables home position detection.
- 4. Following edge of the touch probe sensor sets home position.

Mode 11: <_Ln_>_TP

Mode 11	<	Ln	>	TP	Offset path	Sequence profile (optional)
	Start	speed	Search speed		Profile speed	
Lp	Inactive	Inactive	Active	Active	Active	Active
Ln	Inactive	Inactive	Inactive	Inactive	Inactive	Active

<u>Functional sequence:</u>

- 1. Movement in negative direction with start profile data set.
- 2. Reversing when the edge of the negative travel range limit switch is positive and, at the same time, activation of search profile data set for continued reference searching.
- 3. Negative edge of the travel range limit switch enables home position detection.
- 4. Following edge of the touch probe sensor sets home position.

Mode 12: > Lp

Mode 12	>	Lр	Offset path	Sequence profile (optional)
		Profile speed		
Lp	Inactive	Inactive	Inactive	Active
Ln	Inactive	Inactive	Active	Active

Functional sequence:

- 1. Movement in positive direction with start profile data set.
- 2. Positive edge of the travel range limit switch sets reference.

Note!

The load machine can also leave the travel range limit switch. There follows a return to the home position that was set with the positive edge of the travel range limit switch.

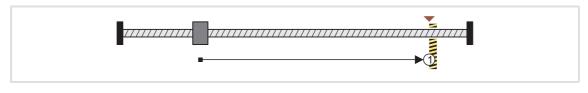
- It is possible that, as a result, the machine will remain on an operated limit switch.
- It is therefore recommended that a home value offset be set in C01227/1 in order to release the operated limit switch.

Mode 13: < Ln

Mode 13	<	< Ln C		Sequence profile (optional)
		Profile speed		
Lp	Inactive	Inactive	Active	Active
Ln	Inactive	Inactive	Inactive	Active

Functional sequence:

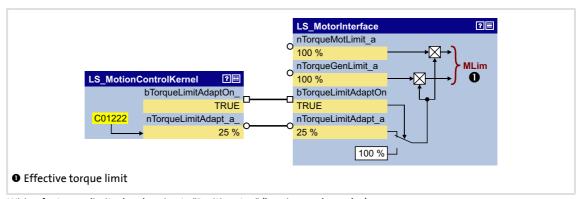
- 1. Movement in negative direction with start profile data set.
- 2. Positive edge of the travel range limit switch sets reference.


Note!

The load machine can also leave the travel range limit switch. There follows a return to the home position that was set with the positive edge of the travel range limit switch.

- It is possible that, as a result, the machine will remain on an operated limit switch.
- It is therefore recommended that a home value offset be set in C01227/1 in order to release the operated limit switch.

Mode 14: > Mlim


Mode 14	>	Mlim	Offset path	Sequence profile (optional)
		Profile speed		
Lp	Active	Active	Active	Active
Ln	Inactive	Inactive	Active	Active

Functional sequence:

- 1. Movement in a positive direction with reduced torque and start profile data set.
- 2. The reference is set if it is detected that the torque limit set in <u>C01222</u> is exceeded beyond the time set in <u>C01223</u> ("Homing to positive stop").
 - If a home value offset has not been set, this position is the home position.
 - If a home value offset has been set, correctly signed traversing by this offset takes
 place and the home position is set at the end of this travel distance.

Set a home value offset in <a>CO1227/1 to avoid stopping at the positive stop.

[9-18] Wiring for torque limit when homing to "Positive stop" (homing modes 14/15)

Mode 15: < Mlim

Mode 15	<	Mlim	Offset path	Sequence profile (optional)
		Profile speed		
Lp	Inactive	Inactive	Active	Active
Ln	Active	Active	Active	Active

Functional sequence:

- 1. Movement in a negative direction with reduced torque and start profile data set.
- 2. The reference is set if it is detected that the torque limit set in <u>C01222</u> is exceeded beyond the time set in <u>C01223</u> ("Homing to positive stop").
 - If a home value offset has not been set, this position is the home position.
 - If a home value offset has been set, correctly signed traversing by this offset takes
 place and the home position is set at the end of this travel distance.

Set a home value offset in C01227/1 to avoid stopping at the positive stop.

Mode 100: SetRef

Mode 15	SetRef	Offset path	Sequence profile (optional)
	-	Start speed	Profile speed
Lp	Active	Active	Active
Ln	Active	Active	Active

When the drive is at standstill, the measuring system is set via the bit 9 ("HomSetPos") in MCK control word. The current actual position now corresponds to the home position set in C01227/2 in the machine measuring system.

Basic drive functions (MCK) Homing

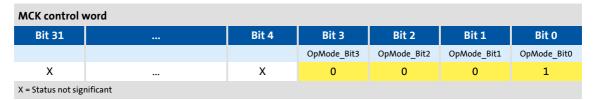
9.6.1.2 Home position & home value offset

If the home position is set in the course of the reference search, this determined position in the machine measuring system now corresponds to the home position set in C01227/2.

If a home value offset has been set in <u>CO1227/1</u>, the drive continues correctly signed traversing by this offset at search speed after the home position has been found. The home position is not set until after this movement.

9.6.1.3 Traversing a sequence profile after completion of homing

If necessary, a sequence (following or subsequent) profile can be entered in $\underline{\text{C01228}}$ in order to arrange for a positioning movement to be carried out immediately after completion of homing.



Note!

The positioning movement for the sequence profile set in C01228 is also carried out in the "referencing" mode. If a second sequence (following or subsequent) profile has been defined in the sequence profile, it is not automatically started!

9.6.2 Requesting the operating mode

Request for the "referencing" operating mode by means of the MCK control word:

If the MCKInterface is connected upstream to the Motion Control Kernel and if the operating mode is requested at the <u>L_MckCtrlInterface</u> FB, the wOperationMode and bOperationMode 1...8 process inputs are available.

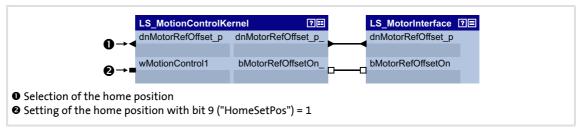
9.6.3 Carrying out homing

Control is exercised by means of bits 8 ... 10 in the MCK control word:

Homing	MCK control word			
	Bit 10	Bit 9	Bit 8	
	HomResetPos	HomSetPos	HomStartStop	
Stop homing	0	0	0	
Start homing	0	0	1	
Set home position	0	1	Х	
Delete home position	1	0	Х	
X = Status not significant				

If the **Motion Control Kernel** is downstream from the **MCKInterface** in the circuit, the <u>L MckCtrlInterface</u> FB provides the following process inputs for controlling the operating mode:

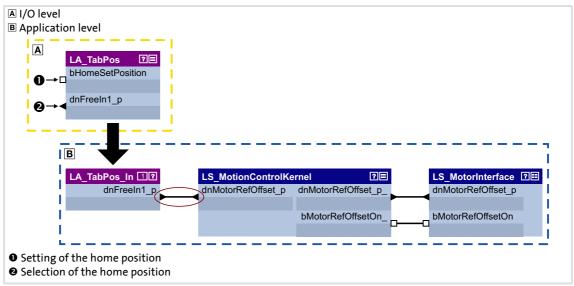
Identifier	Data type	nformation/possible settings		
bHomingStartStop	BOOL	Start/stop homing Only possible in the "referencing" operating mode.		
		in <u>C01221</u> , the home position of	ence search is indicated via the and bHomePosAvailable. Eferencing mode has been selected can be set manually via the edive at a standstill. The current	
		If referencing mode "100: SetRef" Setting the home position manua • The home position is set manu The current actual position not position set in C01227/2 in the	Illy Ially with the drive at a standstill. Orresponds to the reference	
		FRUE → FALSE Stop homing. • If the bHomingStartStop input referencing, homing is cancelle standstill.	is reset to FALSE during active ed and the drive is brought to a	
bHomingSetPos BOOL		et home position (<u>Homing on the fly</u>) With referencing "on the fly", the home position ongoing movement. Jerking and compensatin		
		The position applied at the dnMor SB LS MotionControlKernel at the position if C01246/2 = "0: No TP"	e time of activation is set as home	
bHomingResetPos	BOOL	elete home position lote: With this function, positions are not delete HomePosAvailable and bHomePosDone are reset emain untouched until a renewed reference sett	. Setpoints and actual positions	
		The internal status "reference known to the controller is no longer reference to FALSE. The process outputs bHomePowerset to FALSE.	renced.	



Basic drive functions (MCK) Homing

9.6.3.1 Homing on the fly

With referencing "on the fly", the home position of a machine can be set during ongoing movement. Jerking and compensating movements do not occur.


The following illustration shows the relevant interfaces for selecting the home position at the SB LS MotionControlKernel and SB LS MotorInterface:

[9-19] Interface for selecting the home position

In order that position selections can be accepted while homing on the fly, an additional connection is required in the application level.

- ► The following illustration shows the required modification using the example of the "table positioning" technology application.
- ► For transmitting the home position from the I/O level to the application level, the "free" input *dnFreeIn1* p is used here:

[9-20] Modified interconnection for selecting the home position

9.7 Manual jog

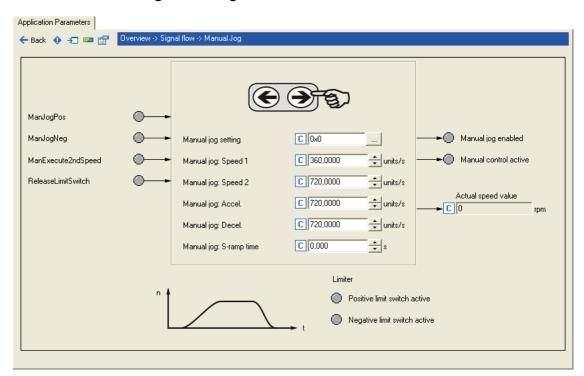
In this operating mode, the drive can be traversed manually in a clockwise or anticlockwise direction ("jogging mode").

- ▶ As an option, it is possible to change over to a second speed during traversing.
- ► "Retraction" of operated (travel range) limit switches is also supported. Only traversing in the corresponding retracting direction is then possible.

Danger!

During manual jogging, specially assigned profile parameters are active. If they have not been set correctly, the drive can engage in uncontrolled movement!

Stop!


In the Lenze setting, travel range monitoring is switched-off in <u>C01230</u> by means of hardware limit switches and software limit positions for the "Manual jog" operating mode!

If travel range monitoring has been deactivated, the drive can travel into a mechanical limit during manual jogging and machine parts can be destroyed or damaged!

9.7.1 Parameter setting

Parameterisation dialog in the »Engineer«

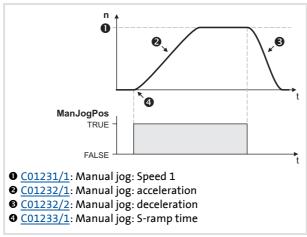
Short overview of parameters for "manual jogging" mode":

Parameter	Info	Lenze setting		
		Value	Unit	
<u>C01230</u>	MCK: Manual jog setting	Bit coded		
<u>C01231/1</u>	Manual jog: speed 1	360.0000	units/s	
<u>C01231/2</u>	Manual jog: Speed 2	720.0000	units/s	
<u>C01232/1</u>	Manual jog: Acceleration	720.0000	units/s2	
<u>C01232/2</u>	Manual jog: Deceleration	720.0000	units/s2	
<u>C01233/1</u>	Manual jog: S-ramp time	0.000	s	
<u>C01235/1</u>	Waiting time 2nd speed	5.000	s	
<u>C01234/1</u>	Manual jog: Breakpoint 1	0.0000	unit	
C01234/2	Manual jog: Breakpoint 2	0.0000	unit	
C01234/3	Manual jog: Breakpoint 3	0.0000	unit	
<u>C01234/4</u>	Manual jog: Breakpoint 4	0.0000	unit	

Note!

For trouble-free operation, the <u>Machine parameters</u> (at least gearbox factor and feed constant) must also be set correctly!

9.7.1.1 Functional settings


In $\underline{\text{C01230}}$, various functional settings for manual jogging can be carried out in bit-coded form.

unctio	on	Lenze setting
Bit 0	 Manual jog with breakpoint During manual jog, a stop is automatically made at the breakpoint positions set in C01234/14. The home position must be known for this function. Travelling is continued when the pushbutton is "released" and pressed again. This button has been assigned the ManJogPos and/or ManJogNeg control function. 	Off
Bit 1	Time-based start of second speed In manual jog mode, an automatic changeover to manual speed 2 takes place after a parameterisable waiting time. ▶ Time-based start of second speed (□ 537)	Off
Bit 2	HW limit switch on In the "manual jog" operating mode, a travel range monitoring mode via hardware limit switch is active. Limit position monitoring (506)	Off
Bit 3	SW limit switch on In the "manual jog" operating mode, a travel range monitoring mode via parameterised software limit positions. ▶ Limit position monitoring (□ 506)	Off
Bit 4	Reserved	Off
Bit 5	Reserved	Off
Bit 6	Reserved	Off
Bit 7	Position controller off In the "manual jog" operating mode, the position controller is deactivated. Thus, the compensation of the following error is switched off.	Off

Basic drive functions (MCK) Manual jog

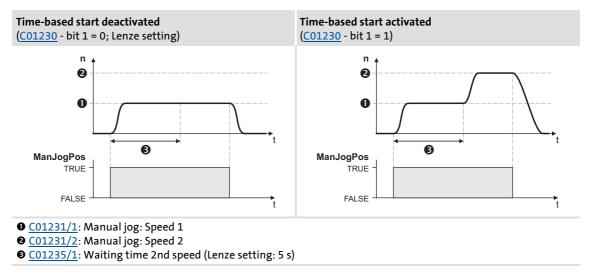
9.7.1.2 Smooth start and quick stop of the drive

- ► For accelerating and decelerating, different values can be set in C01232/1...2 so that smooth starting and quick stopping of the drive can be implemented.
- ► In order to reduce jerking, the two ramps can be set in such a way that they are s-shaped. This is done by entering a relative S-ramp time in C01233/1.

[9-21] Example: Smooth start and quick stop

Rapid deceleration (C01232/2) reduces the time from releasing of the "jog button" to actual stopping of the drive, with the result that it is easier to position the drive "by sight" and the desired stop position is not passed.

9.7.1.3 Second speed


[9-22] Example: Changing over to second speed

▶ By setting control bit 6 (ManExecute2ndSpeed) in theMCK control word, you can changeover to a second speed (C01231/2) during traversing.

9.7.1.4 Time-based start of second speed

If this function has been activated by means of bit 1 in $\underline{\text{C01230}}$ and a waiting time > "0 s" has been set in $\underline{\text{C01235/1}}$, an automatic change-over to manual jog speed 2 takes place when the manual jog function is activated and after the waiting time has expired.

▶ When the waiting time is set = 0 s, the automatic change-over is deactivated.

[9-23] Time-based start of second speed

By leaving the corresponding button for manual jog pressed down for longer than the waiting time and parameterising manual jog speed 2 so that it is higher than manual jog speed 1, you can enable longer distances to be travelled by means of manual jogging with this function.

9.7.2 Requesting the operating mode

Request for "manual jog" mode via the MCK control word:

MCK control word						
Bit 31		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			OpMode_Bit3	OpMode_Bit2	OpMode_Bit1	OpMode_Bit0
Х		Х	0	0	1	0
X = Status not significant						

If the MCKInterface is connected upstream to the Motion Control Kernel and if the operating mode is requested at the <u>L_MckCtrlInterface</u> FB, the wOperationMode and bOperationMode_1...8 process inputs are available.

9.7.3 Executing manual jogging

Control is exercised by means of bits 4 ... 7 in the MCK control word:

Manual jog	MCK control word				
	Bit 7	Bit 6	Bit 5	Bit 4	
	Release LimitSwitch	ManExecute 2ndSpeed	ManJogNeg	ManJogPos	
Stop manual jogging	0	X	0	0	
Manual jog, right • With speed 1 (C01231/1)		0	0	1	
Manual jog, right • With speed 2 (C01231/2)		1			
Manual jog, left • With speed 1 (C01231/1)		0	1	0	
Manual jog, left • With speed 2 (C01231/2)		1			
No change in relation to previous state		Х	1	1	
Retract operated limit switch	1	0	0	0	
X = Status not significant					

If the **Motion Control Kernel** is downstream from the **MCKInterface** in the circuit, the <u>L MckCtrlInterface</u> FB provides the following process inputs for controlling the operating mode:

Identifier Data	type	Information/possible settings		
bManJogPos bManJogNeg	BOOL	bManJogPos = TRUE: Manual jog right bManJogNeg = TRUE: Manual jog left Both inputs = TRUE: No change compared to previous state Both inputs = FALSE: Stop manual jog		
bManJogExecute2ndVel		Change over to speed 2 for manual jog		
В	BOOL	FALSE Speed 1 (C01231/1) active.		
		TRUE Speed 2 (C01231/2) active.		
bReleaseLimitSwitch	BOOL	Retract operated limit switch		
В		TRUE Retract operated limit switch (in opposite direction)		

Case 1: Reference known

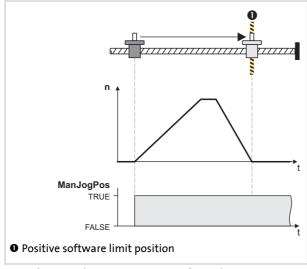
If the reference is known and the software limit positions have been set, i.e. at least one software limit position is > 0, manual jogging is carried out until a position at the corresponding software limit position is reached unless manual jogging is aborted first. Overtravelling the set software limit positions is not possible.

Case 2: Reference not known

If the reference is not known, the travel range limits are only monitored via the limit switches (if connected).

If you end manual jogging manually by resetting bManJogNeg or bManJogPos, the drive is brought to a standstill at the rate of deceleration set for manual jogging.

9.7.3.1 Manual jog to limit position

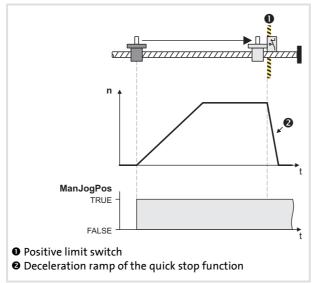

Stop!

In the Lenze setting, travel range monitoring is switched-off in <u>C01230</u> by means of hardware limit switches and software limit positions for the "Manual jog" operating mode!

If travel range monitoring has been deactivated, the drive can travel into a mechanical limit during manual jogging and machine parts can be destroyed or damaged!

▶ Limit position monitoring (□ 506)

Manual jog to software limit position


[9-24] Example: Manual jogging to positive software limit position

- ▶ f the reference is known and the software limit positions have been set and are active, positioning to the corresponding software limit position is carried out unless you manually stop manual jogging first by resetting control bit 4/5 (ManJogPos/ManJogNeg) in the MCK control word.
- ► The drive decelerates at the set rate of deceleration (C01232/2) to the position of the corresponding software limit position.

Basic drive functions (MCK) Manual jog

Manual jogging to hardware limit position (limit switch)

▶ When monitoring of the limit switches is switched on and a limit switch is approached during manual jog, the drive is braked within the deceleration time set for the quick stop function if the "TroubleQuickStop" error response is set in C00595/1 or C00595/2.

[9-25] Example: Manual jogging to positive limit switch

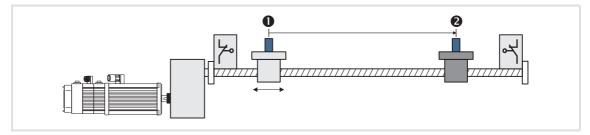
9.7.3.2 Retracting of an operated limit switch

If control bit 7 (ReleaseLimitSwitch) in the MCK control word is set, retracting from an operated limit switch is possible. Traversing is carried out in the corresponding retracting direction until the limit switch is not longer operated.

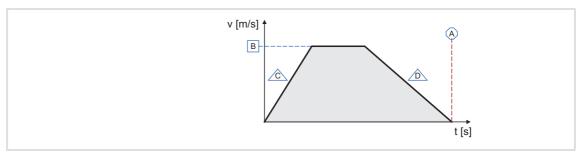
- ▶ If a direction preselection is made for retracting by means of control bit 4/5 (ManJoqPos/ManJoqNeq) in the retracting direction, travelling is continued, even after the limit switch has been left, until the corresponding control bit is reset.
- ▶ If, instead, a direction preselection is made against the retracting direction, the drive remains at a standstill.

Note!

Retracting from a limit switch is only possible if this switch is still in the operated state, i.e. the corresponding limit switch input is still active. You must therefore make sure that, when travelling to a limit switch, its tripping mechanism is not "driven over" due to e.g. an excessively high mass or too much momentum so that the limit switch is no longer in the operated state as a result.



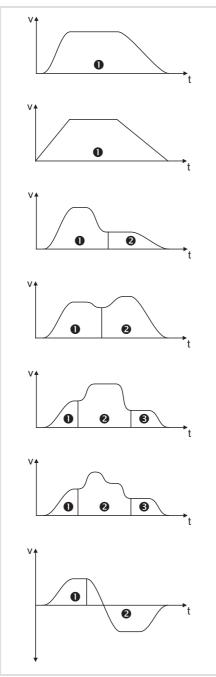
A limit switch that is in the operated state can also be moved away from again through manual jogging in the retracting direction by means of control bits 4/5 (ManJogPos/ManJogNeg).



9.8 Positioning

Positioning means that a workpiece/tool or material is moved from a starting position **①** to a defined destination **②**:

To carry out positioning, a travel profile has to be stored in the drive controller for at least the following profile parameter:


Symbol	Profile parameter
A	Position Target position or distance to be traversed.
В	Speed Maximum speed at which the target is to be approached.
Ĉ	Acceleration Stipulation of the change in speed at which maximum acceleration is to take place.
Ď	Deceleration Stipulation of the change in speed at which maximum deceleration to a standstill is to take place.

- ► A profile describes a motion task that can be converted into a rotary motion by the **Motion Control Kernel** in the "Positioning" operating mode.
- ► A positioning process can be composed of a large number of profiles that are executed in a fixed manner.
- ➤ You can find a detailed explanation of all profile parameters in the subchapter entitled "Profile entry". (☐ 545)

9.8.1 Possible motion profiles

The following illustration shows different movement profiles that can be travelled in the "positioning" mode:

Asymmetrical trapezoidal profile

with S-shaped ramps

Asymmetrical trapezoidal profile

with linear ramps

Velocity changeover for profile with S-shaped ramps

• here: $v_{Profile 1} > v_{Profile 2}$ or $v_{End1} = v_{Profile 2}$

Velocity changeover for profile with S-shaped ramps

here: v_{Profile 1} < v_{Profile 2}

Profile linkage

Profile linkage

• with speed override in profile 2

Profile linkage

· here: forwards/backwards profile

[9-26] Examples of possible motion profiles

Parameter setting 9.8.2

Short overview of parameters for "positioning" mode:

Parameter	Info	Lenze sett	ing	
		Value	Unit	
<u>C01216</u>	MCK: Positioning setting	Bit coded		
C01300/115	Profile 1 15: Mode	1: absolute (b	eeline)	
C01301/115	Profiles 1 15: Position	360.0000	unit	
C01302/115	Profile 1 15: Speed	360.0000	unit/s	
C01303/115	Profile 1 15: Accel.	720.0000	unit/s2	
C01304/115	Profile 1 15: Decel.	720.0000	unit/s2	
C01305/115	Profile 1 15: Final speed	0.0000	unit/s	
C01306/115	Profiles 1 15: S-ramp time	0.000	s	
C01307/115	Profiles 1 15: Sequence profile	0		
C01308/115	Profile 1 15: TP profile	0		
C01309/115	Profile 1 15: TP source	3: TP-Digl	n3	
<u>C00595/9</u>	MCK: Resp. to invalid pos.mode	4: WarningLo	ocked	
C00595/10	MCK: Resp. to invalid profile data	4: WarningLo	ocked	
C00595/12	MCK: Resp. to invalid profile no.	4: WarningLo	ocked	
C00595/14	MCK: React target out of travel range	4: WarningLo	ocked	
C01210/1	MCK: Curr. feed	-	units	
C01210/2	MCK: Akt. Set position	-	units	
C01210/3	MCK: Akt. Actual position	-	units	
C01210/4	MCK: Curr. following error	-	units	
C01210/5	MCK: Positioning accuracy	-	units	
C01210/6	MCK: Target position	-	units	
C01211/1	Max. traversing speed 100%_C11	Max. traversing speed 100%_C11 - units		
C01213/1	MCK: Max. traversing distance	-	units	
C01242	MCK: Current pos profile number	-		
Highlighted in grey = di	splay parameter			

For trouble-free operation, the <u>Machine parameters</u> (at least gearbox factor and feed constant) must also be set correctly!

Basic drive functions (MCK) Positioning

9.8.2.1 Functional settings

In <u>C01216</u>, various functional settings regarding behaviour in the case of a changeover to the "positioning" mode can be made in bit-coded form.

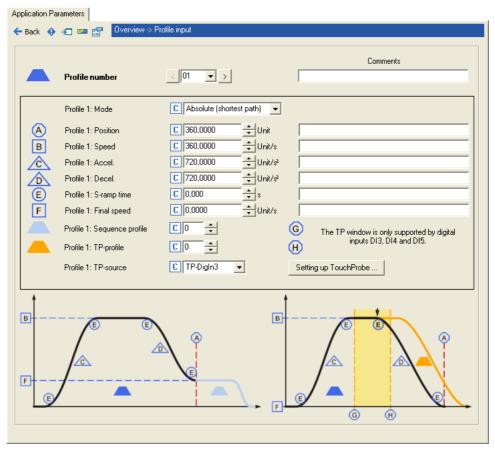
- ▶ When this is being done, any mode change must be taken into account.
- ▶ Positioning with controller inhibit/enable is also possible if the corresponding setting is made.

Functio	on
Bit 0	PosAbort at PosInit When a changeover to "positioning" mode is made, ramping down at the rate of deceleration set in C01251 for normal stopping is carried out.
Bit 1	PosExecute active at PosInit When a changeover is made to the "positioning" mode, the specified profile is immediately executed if the "MCK PosExecute" control bit has also been set. If the MCK "PosExecute" control bit has not been set, the setpoint is continued.
Bit 2	Reserved
Bit 3	Reserved
Bit 4	ProfilStart at PosInit When it is changed to the "Positioning" operating mode, the defined profile is executed immediately.
Bit 5	Reserved
Bit 6	Reserved
Bit 7	Reserved

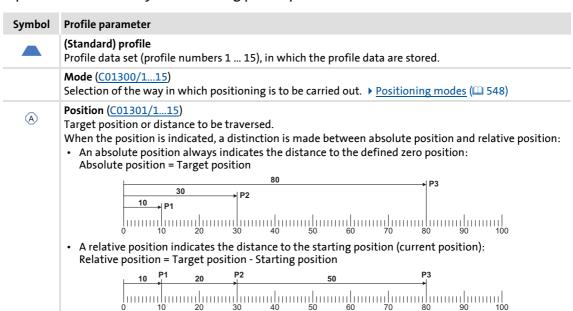
Note!

In the case of multiple selection, the "PosAbort at PosInit" function, which can be activated by means of bit 0, has priority over the other functions (see the following truth table).

Bit 4 ProfilStart	Bit 1 PosExecute active	Bit 0 PosAbort	MCK control bit "PosExecute"	Behaviour when it is changed to "	Positioning" operating mode
X	X	1	X	Positioning	Ramping down the setpoint
0	0	0	Х	Positioning	Continuing the setpoint
0	1	0	0		
0	1	0	1	Positioning	Positioning from the setpoint
1	Х	0	Х		
nrinted in hold = I	enze setting; x = ar	ny state			


Related topics:

- ▶ <u>Stipulation of the profile to be executed</u> (☐ 552)
- ▶ <u>Starting/cancelling a traversing task</u> (△ 553)

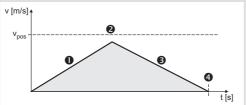


9.8.2.2 Profile entry

In the »Engineer«, the following parameterisation dialog is available for setting the profile parameters:

A profile is described by the following profile parameters:

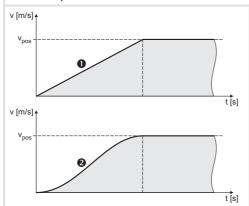
Symbol


Profile parameter

Speed (C01302/1...15)

Maximum speed at which the target is to be approached.

• Depending on the profile parameters of position, acceleration and deceleration, it is possible that the drive will not even reach the maximum speed. In this case, the graphic representation will be a trapezium instead of a triangle:


- Acceleration
- 2 Travelling speed (is not reached in this case)
- Oeceleration
- Target position (or traversing distance)

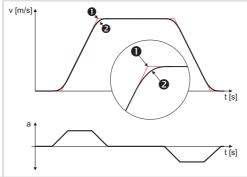
Acceleration (C01303/1...15)

Stipulation of the change in speed at which maximum acceleration is to take place.

- Two types of acceleration are distinguished:
 - -Constant acceleration: the speed increases linearly.
 - -Linearly increasing acceleration: Speed increases in S-shape.
 A linearly increasing acceleration (S-profile) results from the setting of an S-ramp time (see more below).

- Constant acceleration (L-profile)
- Linearly increasing acceleration (S-profile)

Deceleration (C01304/1...15)

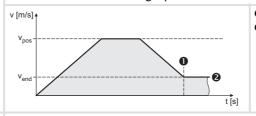

Stipulation of the change in speed at which maximum deceleration to a standstill is to take place.

S-ramp time (C01305/1...15)

Due to stipulation of an S-ramp time for a profile, the profile is executed with S-shaped ramps, i.e. acceleration and braking processes are initiated smoothly in order to reduce jerk and thus the stress on the drive components.

- The acceleration/deceleration stipulated in the profile is not achieved until after the specified Sramp time.
- This kind of acceleration/deceleration is needed for sensitive machine parts with a certain amount
 of play.
- The unavoidable consequence of the slower increase in acceleration in the case of the S profile is that the positioning time is longer compared to the L profile, which is more efficient in terms of time.
- ▶ S-ramp time for jerk limitation (☐ 550)

- Without jerk limitation (L profile)
- With jerk limitation (S profile)


Symbol

Profile parameter

Final speed (C01305/1...15)

This specifies the speed at which the drive is to start the next profile after reaching the target position. With a final speed not equal to "0", "velocity changeover" or "overchange" is possible, i.e. when the target position is reached, a second positioning process is started immediately without the drive coming to a standstill at the first target position.

Target position

❷ Final speed (in this case, not equal to "0")

Sequence profile (C01307/1...15)

for profile linkage/following block control

A special feature is automatic advancing to subsequent profiles with and without velocity changeover. For this purpose, the profile number of the desired subsequent profile (1 to 15) is simply set in the parameter "Sequence profile" (C01307/1...15) of a profile.

After execution of the profile (target position reached), the set following (subsequent) profile is started automatically. In this way, profile chains can be stipulated without additional control processes.

- If the profile parameter "Final speed" (<u>C01305/1...15</u>) is set to <> "0", there is a velocity changeover leading into the following (subsequent) profile at the set final speed.
- If "0" is set for the following (i.e. subsequent) profile, profile linkage does not take place.
- This function can be performed in all positioning modes.

TP profile (C01308/1...15)

Profile number of the profile (1 ... 15) that is to be executed after a touch probe has been detected.

- If "0" is set, there will be no profile stepping through touch probe.
- · Only relevant for positioning modes with touch-probe.
- ▶ Touch probe positioning (☐ 549)

TP source (C01309/1...15)

Selection of the signal source for touch probe detection.

- Only relevant for positioning modes with touch-probe.
- ▶ Touch probe positioning (☐ 549)

Basic drive functions (MCK) Positioning

9.8.2.3 Positioning modes

For positioning, it is possible to select from different positioning modes in relation to the type of axis/application. These modes are described in the following table.

Stop!

In the positioning modes "continuous" and "relative", the "TroubleQuickStop" error response occurs in the Lenze setting when the maximum travel distance is exceeded (C01213/1). ► Monitoring of the maximum travel distance (□ 512)

Note!

For absolute positioning, the home (reference) position must be known!

- If absolute positioning (positioning modes 1, 4, 5, 8, 11, 12) is started although the home position is not known:
 - The error message set in <u>C00595/8</u> is displayed (Lenze setting: "WarningLocked").
 - The error message "<u>Ck08: Home position unknown</u>" is entered into the logbook.

Positio	ning mode	Info
1	Absolute (shortest path)	Travelling along the axis takes place until an absolute position is
8	Absolute (shortest path) to TP	reached via the shortest path. • Reference for the absolute position is the zero position.
2	Continuous	In these two modes, no particular position is approached but
9	Continuous to TP	 travelling takes place at the traversing speed stipulated by means of the profile. The values of the profile are used for accelerating and decelerating. The direction of travel is determined by the sign of the traversing speed.
3	Relative	The axis is traversed by a distance.
10	Relative to TP	Reference for the distance is the target position of the previously executed profile.
	ning modes for Modulo measuring sys vation of the modulo measuring systen	
4	absolute (Cw)	Clockwise travelling along the axis takes place until an absolute
11	Absolute (Cw) on TP	 Position is reached. Reference for the absolute position is the zero position. The zero position of the axis can be exceeded in this direction.
5	absolute (Ccw)	Counter-clockwise travelling along the axis takes place until an
12	Absolute (Ccw) on TP	 absolute position is reached. Reference for the absolute position is the zero position. The zero position of the axis can be exceeded in this direction.

9.8.2.4 Touch probe positioning

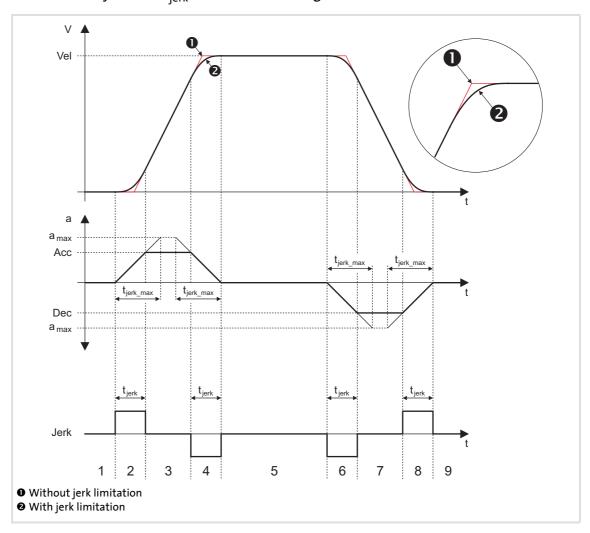
In case of a touch probe positioning, first the profile is executed according to the set profile parameters. If a touch probe is detected during the process, it is automatically changed to the profile defined in the "TP profile" profile parameter. This profile mode is also defined via the mode selection like in the following profile start processes.

If no valid TP profile is set, the travel request is aborted ("PosStop").

Preconditions for touch probe positioning

- ▶ The mode of the current profile data set contains the setting "to TP".
- ► For absolute positioning, the home (reference) position must be known.
- ► In the corresponding profile data set, the following profile parameters must be set in addition:
 - TP profile (C1308/x)
 - TP source (C1309/x)
- ▶ The touch probe interface is configured such that the selected TP source is enabled.
 - See chapter entitled "Touch probe detection". (□ 362)

Note!


Go to $\underline{\text{C02810/x}}$ and select the edge, the digital input used for the connection of the touch-probe sensor is to respond. In the Lenze setting of $\underline{\text{C02810/x}}$, no touch probe is detected!

9.8.2.5 S-ramp time for jerk limitation

The maximum jerk is defined by the selection of an S-ramp time t_{jerk_max} , after which the max. acceleration (a_{max}) only is reached.

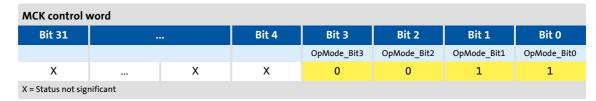
► The actual jerk time t_{ierk} is reduced according to the actual acceleration Acc:

- 1. Standstill
- 2. Acceleration with set jerk limitation
- 3. Acceleration according to acceleration profile (Acc)
- 4. Reduce acceleration (jerk limitation)
- 5. Traversing with Vel according to speed profile
- 6. Deceleration with set jerk limitation
- 7. Deceleration according to deceleration profile (Dec)
- 8. Reduce deceleration (jerk limitation)
- 9. Standstill (position target reached)

If disproportionately high S-ramp times are set for low acceleration times, this may result in an incorrect profile generation.

Example: v = 100 mm/s, $a = 1000 \text{ mm/s}^2$

$$\rightarrow$$
 t_{acc} = 0.1 s


$$\rightarrow$$
 t_{jerk_max} = 1 s

For this reason, you must only set plausible S-ramp times (this should not exceed half the value of t_{acc}).

9.8.3 Requesting the operating mode

Request for "positioning" mode by means of the MCK control word:

If the MCKInterface is connected upstream to the Motion Control Kernel and if the operating mode is requested at the <u>L_MckCtrlInterface</u> FB, the wOperationMode and bOperationMode_1...8 process inputs are available.

9.8.4 Carrying out positioning

9.8.4.1 Stipulation of the profile to be executed

The profile to be executed is stipulated by means of the MCK control word in bit-coded form:

Bit	Designation	Description								
24	ProfileNo_Bit0	Profile	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
 31		Profile 0	0	0	0	0	0	0	0	0
21	ProfileNo_Bit/	Profile 1	0	0	0	0	0	0	0	1
		Profile 2	0	0	0	0	0	0	1	0
		Profile 15	0	0	0	0	1	1	1	1
			All othe	r possib	le settin	igs are r	eserved	for futu	ıre exte	nsions!

If the **Motion Control Kernel** is downstream from the **MCKInterface**, the <u>L MckCtrlInterface</u> FB provides the following processing inputs for stipulating the profile to be executed:

Identifier	oata type	Information/possible settings
wProfileNo	WORD	Selection of the profile number • Optionally as a data word or binary coded.
bProfileNo_1 bProfileNo_8	BOOL	 In the Lenze setting, an operating mode change is carried out by the L_MckCtrlInterface FB at the same time as the profile is stipulated: If profile 0 is stipulated: Activation of "Speed follower" operating mode If profile 1 is stipulated: Activation of "Homing" operating mode If profile 2 is stipulated: Activation of "Manual jog" operating mode If profile 3 15 is stipulated: Activation of "Positioning" operating mode The operating mode change with profile number can be set in C01298/14.

Note!

The profile 0 is no valid profile for the "positioning" operating mode.

If a driving request with an invalid profile number is started, the response set in C00595/12 occurs (Lenze setting: "WarningLocked").

9.8.4.2 Starting/cancelling a traversing task

Control is exercised by means of bits 16 ... 19 in the MCK control word:

Homing	MCK control word							
	Bit 19	Bit 18	Bit 17	Bit 16				
	PosStop	Pos DisableFollowProfile	PosFinishTarget	PosExecute				
Start travelling	0	0	0	071				
Complete interrupted profile	0	0	071	0				
Do not travel sequence profile	0	1	X	X				
Cancel travelling*	1	X	X	X				

^{*}From version 02.00.00, more travel requests will be inhibited ("PosExecute" will be blocked).

If the Motion Control Kernel is downstream from the MCKInterface in the circuit, the L MckCtrlInterface FB provides the following process inputs for controlling the operating mode:

Identifier	Data type	Information/po	ossible settings
bPosExecute		Start travelling	
	BOOL	FALSE TRUE	Execute selected profile
b Pos Execute Finish		Complete inter	rupted profile
	BOOL	FALSE 7TRUE	A positioning process previously cancelled, e.g. by <i>bPosStop</i> or due to a device error, is resumed by travelling to the original target.
bPosDisableFollowPr		Do not execute	following profile (switch off profile linkage)
	BOOL	TRUE	Evaluation of the sequence profile number parameterised in C01307/115 for the selected profile is suppressed.
bPosStop		Cancel travellir	ng
	BOOL	TRUE	Stop positioning From version 02.00.00, more travel requests will be inhibited ("PosExecute" will be blocked).

Travel requests/profiles can also be started while the drive is running. The drive does not need to be at standstill.

Related topics:

- ▶ Target position monitoring (status "drive in target") (☐ 510)
- ▶ Monitoring of the maximum travel distance (□ 512)
- ▶ Following error monitoring system (☐ 513)

X = Status not significant

Basic drive functions (MCK) Positioning

9.8.4.3 Override of the parameterised positioning mode

The setting of the positioning mode in \underline{MCK} control word superimposes the mode selection via the "Mode" profile parameter ($\underline{C1300/1...15}$). This means that for selected profiles the mode selection and the request of a touch probe positioning via process data are possible. The value set in $\underline{C01300/1...15}$ is not overwritten. The following applies to the override:

- A. Valid positioning mode in the MCK control word: The positioning mode set in the MCK control word is used.
- B. Positioning mode in the MCK control word = 0:
 The positioning mode set in "mode" profile parameter (C1300/1...15) is used.
- C. Invalid positioning mode in the MCK control word:

 Ck09Error message "Ck09: Invalid positioning mode". The response set in C00595/9
 occurs (Lenze setting: "WarningLocked").

Bit	Designation	Description				
20	PosModeBit0	Positioning mode	Bit 3	Bit 2	Bit 1	Bit 0
 23	 PosModeBit3	Positioning mode = setting in <u>C01300/115</u>	0	0	0	0
23	rosmodebits	Absolute (shortest path)	0	0	0	1
		Continuous	0	0	1	0
		Relative	0	0	1	1
		absolute (Cw)	0	1	0	0
		absolute (Ccw)	0	1	0	1
		Absolute (shortest path) to TP	1	0	0	0
		Continuous to TP	1	0	0	1
		Relative to TP	1	0	1	0
		Absolute (Cw) on TP	1	0	1	1
		Absolute (Ccw) on TP	1	1	0	0
		All other possible settings are reserved for future exte	ensions!			

If the **Motion Control Kernel** is downstream from the **MCKInterface** in the circuit, the <u>L MckCtrlInterface</u> FB provides the following process input for stipulating an override of the positioning mode:

Identifier	Data type	Information/p	ossible settings
wPosMode wor			positioning mode set in the profile data bit 3 of wPosMode are evaluated.
		0	Positioning mode = setting in <u>C01300/115</u>
		1	Absolute (shortest path)
		2	Continuous
		3	Relative
		4	absolute (Cw)
		5	absolute (Ccw)
		8	Absolute (shortest path) to TP
		9	Continuous to TP
		10	Relative to TP
		11	Absolute (Cw) on TP
		12	Absolute (Ccw) on TP
		All other possi	ole settings are reserved for future extensions!

9.8.4.4 Position teaching

The MCK control word can be used to initiate "teaching" or "latching" of the MCK setpoint position or the current position into the currently selected profile.

Bit	Designation	Description
14	PosTeachSetPos	"1" \equiv Teach MCK set position into the selected profile
15	PosTeachActPos	"1" ≡ Teach current position into the selected profile

If the **Motion Control Kernel** is downstream from the **MCKInterface**, the <u>L MckCtrlInterface</u> FB provides the following process inputs for teaching:

Identifier	Data type	Information/possible settings		
b Pos Teach Set Pos	BOOL	Teach MCK setpoint position		
		TRUE Teach MCK setpoint position into the selected profile.		
bPosTeachActPos	BOOL	Teach current position		
		TRUE Teach current position into the selected profile.		

Note!

If request is made at the same time, the current position is taught.

Basic drive functions (MCK) Stop

9.9 Stop

If the "normal stop" operating mode is active, the drive is brought to a standstill with a parameterisable deceleration ramp.

9.9.1 Parameter setting

Short overview of parameters for "Normal stop" operating mode:

Parameter	Info	Lenze setting	
		Value	Unit
<u>C01251/1</u>	Normal stop: Deceleration	720.0000	units/s2
C01252/1	Stop: S-ramp time	0.000	s

9.9.2 Requesting the operating mode

Request for "Normal stop" operating mode by means of the MCK control word:

MCK control word						
Bit 31		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			OpMode_Bit3	OpMode_Bit2	OpMode_Bit1	OpMode_Bit0
Х		Х	0	1	0	0
X = Status not significant						

If the MCKInterface is connected upstream to the Motion Control Kernel and if the operating mode is requested at the <u>L MckCtrlInterface</u> FB, the wOperationMode and bOperationMode 1...8 process inputs are available.

9.10 Position follower

In the "position follower" operating mode, the drive follows a position setpoint.

9.10.1 Parameter setting

Short overview of parameters for "position follower" operating mode:

Parameter	Info	Lenze setting		
		Value Unit		
<u>C01218</u>	MCK: Pos follower setting	Bit coded		
C01236/1	PosFollower: Sync. speed	360.0000 units/s		
C01237/1	Pos follower: Sync. accel.	720.0000 units/s2		
C01237/2	Pos follower: Sync. decel.	720.0000 units/s2		
C01238/1	Pos follower: Sync. S-ramp time	0.000 s		
C01239	MCK: Interpolator cycle pos. follower	0.000 ms		

9.10.1.1 Functional settings

In <u>C01218</u>, various functional settings for the position follower can be made in bit-coded form.

Functio	on	Lenze setting	
Bit 0	Speed FF control.: nSpeedSetValue_a Off		
Bit 1	Speed FF control: nSpeedAddValue_v	Off	
Bit 2	P HW limit switch on On		
Bit 3	3 SW limit switch on On		
Bit 4	4 Reserved Off		
Bit 5	Reserved	Off	
Bit 6	6 Reserved Off		
Bit 7	7 Position controller off Off		

Speed feedforward control by means of nSpeedSetValue_a

If this function has been activated by means of bit 0 in $\underline{C01218}$, the main setpoint $nSpeedSetValue\ a$ is used as the speed feedforward control value.

Speed feedforward control by means of nSpeedAddValue_v

If this function has been activated by means of bit 1 in $\underline{\text{CO1218}}$, the additive speed value $nSpeedAddValue\ v$ is used as the speed feedforward control value.

HW limit switch on

If this function has been activated by means of bit 2 in <u>CO1218</u>, travel range monitoring by means of hardware limit switches is active in this mode.

▶ Limit position monitoring (☐ 506)

8400 TopLine C | Software Manual

Basic drive functions (MCK) Position follower

SW limit switch on

If this function has been activated by means of bit 3 in <u>CO1218</u>, travel range monitoring by means of parameterised software limit positions is active in this mode.

▶ Limit position monitoring (☐ 506)

Position controller off

If this function is activated via bit 7 in <u>CO1218</u>, the position controller is deactivated in this operating mode. Hence, following error control is switched-off.

9.10.2 Requesting the operating mode

Requesting the "position follower" operating mode by means of the MCK control word:

MCK control word						
Bit 31		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			OpMode_Bit3	OpMode_Bit2	OpMode_Bit1	OpMode_Bit0
Χ		Χ	0	1	0	1
X = Status not significant						

If the MCKInterface is connected upstream to the Motion Control Kernel and if the operating mode is requested at the <u>L_MckCtrlInterface</u> FB, the wOperationMode and bOperationMode_1...8 process inputs are available.

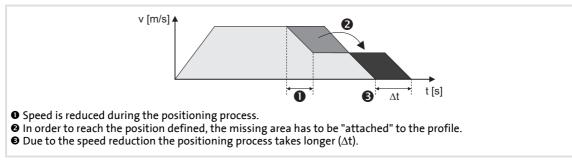
9.10.3 Setpoint selection

The absolute position setpoint is stipulated via the *dnPosSetValue p* process input.

Note!

The *bPosCtrlOn* process input must be set to TRUE so that position/angle control is active within motor control.

Compensating following errors


If the *bDeltaPosOn* process input is set to TRUE, a position difference (following error) is compensated for which is not internally generated from setpoint/actual positions but must be defined via the *dnDeltaPos_p* process input instead.

9.11 Override

An "Override" is the change of profile parameters and their acceptance during the positioning process.

▶ In this case the traversing profile has to be adapted accordingly, so that positioning is carried out exactly to the target position defined, even if for example a change in speed occurs during the positioning process ("Speed override"):

[9-27] Override (here: speed override)

- ► The override for speed, acceleration, and S-ramp time affects all motion profiles that are controlled by the internal profile generator:
 - Manual jog
 - Retracting from limit switches
 - Homing
 - Point-to-point positioning

Note!

The online change of speed and acceleration is in effect from the start of the profile until the deceleration phase begins. Changing the deceleration phase by means of an override is therefore not possible!

- In the case of an override value of 0 % for the speed, the drive is brought to a standstill.
- In the case of an override value of 0 % for the acceleration, acceleration does not take place any longer.

The acceleration override also has the same effect on the deceleration ramp to the same extent specified, but only until the deceleration phase is initiated.

The override has no impact on:

- The "speed follower" operating mode
- · Synchronising processes
- · Setpoint controls via external setpoints
- Abort via input bPosStop
- Speed setpoint selection in case of error (e. g. "Fail-QSP")

Basic drive functions (MCK) Override

9.11.1 Speed override

Activating override

If control bit 11 (*EnableSpeedOverride*) has been set to "1" in the <u>MCK control word</u>, a speed override is carried out in accordance with the stipulated override value.

If the **Motion Control Kernel** is downstream from the **MCKInterface** in the circuit, the **L** MckCtrlInterface provides the following process input for activating the speed override:

Identifier	Data type	Information/possible settings		
bEnableVelOverride		Speed override		
	BOOL	TRUE Activate speed override		

Stipulate override value

The override value is selected via the *nSpeedOverride_a* input at the SB <u>LS MotionControlKernel</u>. The override value is a percentage of the speed of the current profile.

Identifier	Data type	Information/possible settings
nSpeedOverride_a	INT	 Value for speed override Percentage multiplier (0 199.99 %) for the currently active speed. 16384 ≡ 100 % of the maximum traversing speed (display in C01211/1). If the override value is 0 %, the drive is brought to a standstill.

Deactivate override

If control bit 11 (EnableSpeedOverride) is reset to "0", travelling takes place at the speeds that have been specified by means of the profile parameters. Acceleration/deceleration from the speed defined with override to the speed set in the profile takes places immediately in this case.

Deactivating the override within the braking/deceleration ramp does not have any effect.

9.11.2 Acceleration override

Activating override

If control bit 12 (*EnableAccOverride*) in the MCK control word has been set to "1", an acceleration override takes place in accordance with the stipulated override value.

If the **Motion Control Kernel** is downstream from the **MCKInterface** in the circuit, the <u>L MckCtrlInterface</u> FB provides the following process input for activating the acceleration override:

Identifier	Data type	Information/possible settings	
bEnableAccOverride		Acceleration override	
	BOOL	TRUE Activate acceleration override	

Stipulate override value

The override value is stipulated via the *nAccOverride_a* input at the <u>LS MotionControlKernel</u> SB. The override value is a percentage of the maximum acceleration that has been set for the respective operating mode (referencing, manual jog, positioning etc.) in the corresponding profile parameter.

The acceleration override results in a deceleration override. Both ramps are evaluated by multiplication by the acceleration override until the deceleration process sets in.

Identifier Data type	Information/possible settings
nAccOverride_a	 Value for acceleration override Percentage multiplier (0 199.99 %) for the currently active acceleration. 16384 ≡ 100 % of the parameterised acceleration of the corresponding operating mode. If the override value is 0 %, acceleration ceases.

Deactivate override

If control bit 12 (EnableAccOverride) is reset to "0", travelling takes place at the acceleration rates specified by means of the profile parameters. "Ramping up" from the acceleration defined with override to the acceleration set in the profile takes place immediately in this case.

9.11.3 S-ramp smoothing override

Activating override

If control bit 13 (EnableSRampOverride) in the MCK control word is set to "1", S-ramp smoothing override is executed according to the selected override value.

If the Motion Control Kernel is downstream from the MCKInterface in the circuit, the L MckCtrlInterface FB provides the following process input for activating the S-ramp smoothing override:

Identifier Data type	Information/possible settings
bEnableSRampOverride	S-ramp smoothing override
BOOL	TRUE Activate S-ramp smoothing override

Stipulate override value

Optional stipulation of the override value is carried out via the nSRampOverride a input at the LS MotionControlKernel SB. The override value is a percentage of the S-ramp time set in the profile data.

Note!

If the nSRampOverride a input remains unconnected or if an override value of "0 %" is selected, activation of the S-ramp override causes deactivation of the Sramp time.

- Deactivation of the S-ramp time before the start of a profile with S-ramp time causes linear ramp generation.
- Deactivation of the S-ramp time during a traversing process, however, is not accepted immediately in the profile generator, but the profile generator checks automatically when an online change of the ramp form can be carried out and then initiates it automatically.

Thus it is possible to start a travel profile with S-ramp time and then deactivate the S-ramp time, e.g. to traverse with a linear characteristic after reaching the profile speed.

Identifier	Data type	Information/possible settings
nSRampOverride_a	INT	 Value for S-ramp smoothing override Percentage multiplier (0 100 %) for the currently active acceleration. 16384 ≡ 100 % of the parameterised S-ramp time (C01306/115). Values > 16384 are ignored.

Deactivate override

If control bit 13 (EnableSRampOverride) is reset to "0", the S-ramp time specified by means of the profile parameters is used for profile generation.

9.12 Holding brake control

This basic function is used for low-wear control of a holding brake.

Danger!

Please note that the holding brake is an important element of the safety concept of the entire machine.

Thus, proceed very carefully when commissioning this system part!

Stop!

Holding brakes on Lenze motors are not intended for braking during operation. The increased wear caused by braking during operation can destroy the motor holding brake!

Note!

- Deactivate automatic DC-injection braking when a holding brake is used!
 - For this purpose, go to <u>C00019</u> and set the <u>Auto DCB</u> threshold to "0".
 - Background: Controller inhibit is already activated by the holding brake control.
- If an electrically holding (self-releasing) brake is to be controlled instead of an electrically released (self-holding) brake, the trigger signal must be inverted!
 Functional settings (\$\subset\$ 569)
- Detailed information on mounting and electrical installation of the motor holding brake can be found in the documentation on the motor holding brake.

Intended use

Motor holding brakes are used to lock axes if the controller is inhibited or in case of "mains off" system status. This is not only important for vertical axes but also for e.g. horizontal axes which may cause various problems if the motion is not controlled.

Examples:

- ▶ Loss of the reference information after mains OFF and further spinning of the drive.
- ► Collision with other moving machine parts.

Basic drive functions (MCK) Holding brake control

9.12.1 Internal interfaces

In the function block editor, the <u>LS MotionControlKernel</u> system block provides the following internal interfaces for the basic function "holding brake control":

Inputs

Identifier	Data type	Information/possible settings		
bBrkRelease	BOOL	Releasing/applying the brake in connection with the selected operating mode		
		 FALSE Apply brake. During automatic operation, the internal brake logic controls of the brake. 		
		 TRUE Release brake manually (forced release). Note! The brake can also be released when the controller is inhibited! During automatic operation, the internal brake logic is deactivated and the brake is released (supervisor operation). If the brake control has inhibited the controller, this inhibit is deactivated again. In semi-automatic operation, the brake is released including feedforward control. 		
bBrkStartValue2	BOOL	Selection of the torque feedforward control value for manual specification of the feedforward control value Only effective if bit 4 in C02582 is set to "1". Feedforward control of the motor before release		
		FALSE Starting value 1 (C02581/4) active.		
		TRUE Starting value 2 (C02581/5) active.		
nBrkAddValue_a	INT	Additive feedforward control value (speed or torque) in [%] for torque feedforward control when the respective control mode is started • For speed control: 100 % ≡ reference speed (C00011) • For torque control: 100 % ≡ maximum torque (C00057) • Feedforward control of the motor before release		
bBrkApplied	BOOL	Input for status detection via switching contacts at the brake Only effective if bit 5 in C02582 is set to "1".		
		FALSE Brake is released.		
		TRUE Brake is applied.		

Outputs

Identifier	Data type	Value/meaning	
bBrkReleaseOut	BOOL	 Trigger signal for switching element holding brake control via a digital output Use bit 0 under <u>C02582</u> to activate inverted switching element triggering. ► <u>Functional settings</u> 	
		FALSE Apply brake.	
		TRUE Release brake.	
bBrkReleased	BOOL	"Brake released" status signal considering the brake release time • If the holding brake is triggered to be applied, bBrkReleased is immediately reset to FALSE even if the brake application time has not elapsed yet!	
		TRUE Brake released (when the brake release time has elapsed).	

Stop!

The digital outputs are not suitable for the "direct" control of a holding brake!

- Connect the digital output connected to the trigger signal bBrkReleaseOut with a relay or power contactor which switches the brake supply.
- When a power contactor is used, the response and release time of the earth contact is added to the response and release time of the brake. Both times must also be considered for parameterising the closing and opening time of the holding brake

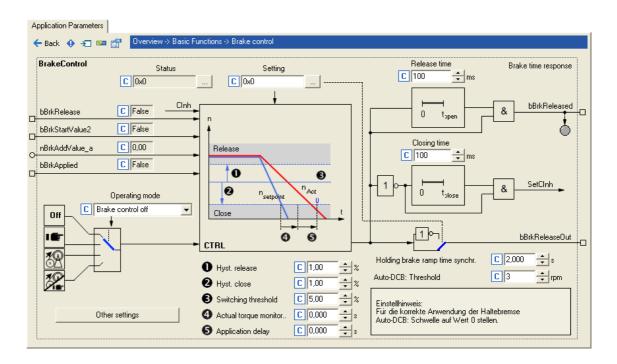
For direct triggering of a holding brake, the high current output of the 8400 TopLine controller can be used that can switch max. 2.5 A. For this purpose, connect the bBrkReleaseOut trigger signal to the bOutHC input of the SB LS DigitalOutput.

Parameter setting 9.12.2

Danger!

A faultless holding brake control function requires a correct setting of the different deceleration times in the following parameters!

A wrong setting of the delay times can cause a faulty control of the brake!



How to go to the parameterisation dialog of the holding brake control:

- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the *Overview* dialog level and click the "Basic functions" button.
- 4. Go to the Overview → Basic functions dialog box and click the Holding brake control button.

Basic drive functions (MCK) Holding brake control

Short overview of parameters for the holding brake control:

Parameter	arameter Info		Lenze setting		
		Value	Unit		
<u>C02580</u>	Holding brake: Operating mode 0: Brake control off		rol off		
C02581/1	Holding brake: Switching threshold	5.00	%		
C02581/2	Holding brake: Hysteresis for releasing	1.00	%		
C02581/3	Holding brake: Hysteresis for applying	1.00	%		
C02581/4	Holding brake: FF control starting value 1	0	%		
C02581/5	Holding brake: FF control starting value 2	0	%		
C02582	Holding brake: Setting	0			
C02589/1	Holding brake: Application time	100	ms		
C02589/2	Holding brake: Release time	100	ms		
C02589/3	Holding brake: Waiting time status	100	ms		
C02589/4	Holding brake: Ramp FF control	0	ms		
C02593/1	Holding brake: Actual value monitoring	0.000	ms		
C02593/2	Holding brake: Application delay	0.000	ms		
C02610/1	MCK: Holding brake ramp time synchr.	2.000	s		
C02607	Holding brake: Status	-			
C00830/68	MCK: nBrkTorqueAdd_a	-	%		
C00833/80	MCK: bBrkRelease	-			
C00833/81	MCK: bBrkStartTorqueDir	-			
C00833/82	MCK: bBrkApplied	-			
Highlighted in grey = display parameter					

9.12.2.1 **Operating mode**

For different applications and tasks, different operating modes are available in C02580. The selected operating mode determines whether the holding brake control is used and how the holding brake will be switched.

Mode 0: Brake control off

In this mode, brake control is switched off (not active).

- ▶ The trigger signal bBrkReleaseOut for the holding brake control switching element is set to FALSE.
- ▶ The status signal bBrkReleased is set to FALSE.

Note!

In the Lenze setting, the mode 0 is preset to get into a safe state after the mains is switched on.

Mode 11: Manual control

In this mode, brake release and brake application can be directly controlled via the input bBrkReleaseBrake without special logic or automatic.

- Setting pulse inhibit or controller inhibit has no influence on the trigger signal bBrkReleaseOut for the holding brake control switching element.
- ▶ After the brake has been activated and the brake application time has expired, the controller is inhibited automatically by the basic "Holding brake control" function.

You can use mode 11 to easily check if the brake switches correctly.

Mode 12: Automatic control

In this mode, the brake is controlled automatically.

Danger!

In this mode, the input bBrkReleaseBrake should be permanently set to FALSE unless manual release (supervisor operation) is required.

If the bBrkReleaseBrake input is set to TRUE, the brake is released immediately, even if the controller is inhibited!

- ▶ If the requested speed setpoint reaches a parameterisable upper speed threshold that allows traversing of the drive, the brake will be released and operation enabled.
- ▶ On the other hand, if speed setpoint and actual speed fall below a parameterisable lower speed threshold, the brake will be applied under consideration of different time parameters.

8400 TopLine C | Software Manual

Basic drive functions (MCK) Holding brake control

- ► For operating modes with setpoint request via control signal (e.g. "PosExecute" in the <u>Positioning</u>" operating mode), the speed thresholds do not apply. Here the control logic opens and closes the holding brake through internal commands in the **Motion Control Kernel**.
- ▶ The brake will also be activated automatically if quick stop is activated in the drive, e.g. by a device command or as response to an error, and in the event of controller inhibit or pulse inhibit.
- ► After automatic brake activation and elapse of the brake application time, the controller is inhibited automatically by the basic "Holding brake control" function.

The 2/12 mode is the common mode to control the brake.

Modus 13: Semi-automatic control

In this mode, brake release and brake application can be directly controlled via the input bBrkReleaseBrake without special logic or automatic.

In contrast to the manual operation (mode 11)

- ▶ the feedforward control is active in this mode, preventing a sagging e.g. in case of a hoist.
- ▶ the brake in this mode also closes when the controller is inhibited in order to prevent the axis in a hoist from falling.

Related topics:

- ▶ TroubleOSP (☐ 109)
- ▶ Behaviour in case of pulse inhibit (☐ 578)

9.12.2.2 Functional settings

The following bit coded functional settings for the holding brake control can be made in C02582:

Bit	Option	Info		
Bit 0	bBrkReleaseOut invert.	Activation of inverted control • "1" ≡ Inverted logic of trigger signal for holding brake control switching element		
Bit 1	Horizontal brake protection	 Brake response in case of pulse inhibit "1" ≡ In the case of a pulse inhibit, the actual speed value is monitored which must reach the "Close" threshold value to cause the holding brake to be applied. Note: This function is only active if bit 3 (horizontal/winding technology) is set as well. The function is used in order that, when the controller is inhibited, the holding brake of a drive with horizontal traverse path does not wear out during rotation. With vertical motion (bit 3 = 0), this function is not active. Especially with hoists and activated pulse inhibit of the controller, an immediate application of the brake is essential for safety-related reasons! 		
Bit 2	with hoist inv. feedfwd. control	Direction of feedforward control with vertical/hoist technology: • "0" ≡ Positive direction • "1" ≡ Negative direction Note: Reversal (Ccw) is then considered.		
Bit 3	Horizontal application	 Direction of movement of the axis "0" ≡ The axis performs vertical movements. Gravitational acceleration causes movements. "1" ≡ The direction of the axis is horizontal or rotary. The gravitational acceleration does not cause any movement. 		
Bit 4	Feedforward control C2581	Selection of the feedforward control value • "0" ≡ Automatic selection. - The torque saved at the last stop is used. • "1" ≡ Manual selection. - bBrkStartValue = FALSE: The feedforward control value 1 set in C02581/4 is used. - bBrkStartValue = TRUE: The feedforward control value 2 set in C02581/5 is used.		
Bit 5	Feedback monitoring	Activation of status monitoring • "1" ≡ The bBrkApplied input for status detection of the brake (via a switching contact at the brake) is monitored after the waiting time set in C02589/3 has expired.		
Bit 6	Sync ramp L_NSet_1 (from version 02.00.00)	Selection of the ramp time for the synchronisation process to setpoint speed after the brake opening time has elapsed Revised behaviour from version 02.00.00: • "1" ≡ The ramp time of the effective acceleration of the ramp function generator (L_NSet_1) is used (Lenze setting). • "0" ≡ As before, the ramp time set in C02610/1 is used. Note: The changeover can be dynamically both via the ramp parameter and via bit 6.		
Bit 7	Reserved			

Basic drive functions (MCK) Holding brake control

Related topics:

- ▶ Behaviour in case of pulse inhibit (☐ 578)
- ▶ Feedforward control of the motor before release (☐ 579)

Switching thresholds 9.12.2.3

Stop!

Do not set the lower speed threshold for brake application too high to prevent an excessive wear of the brake!

Note!

For the speed comparison, only the absolute motor speed value is considered, the direction of rotation is not taken into account.

Upper speed threshold for brake release:

Switching threshold (C02581/1) + hysteresis for release (C02581/2)

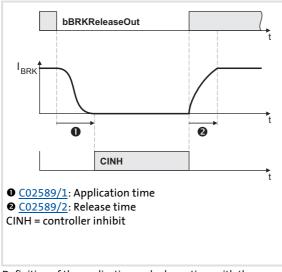
Lower speed threshold for brake application:

Switching threshold (C02581/1) - hysteresis for application (C02581/3)

The lower speed threshold for brake application should be set to approximately 5 ... 20 % of the maximum speed to minimise the wear of the brake and provide for an optimum brake reaction by a low grinding of the brake.

Related topics:

- ▶ Process when brake is released (☐ 575)
- ▶ Process when brake is closed (☐ 576)


9.12.2.4 Application and release time

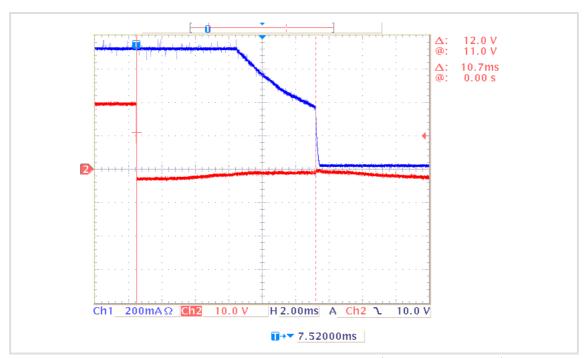
Danger!

A wrong setting of the application and release time can cause a faulty control of the brake!

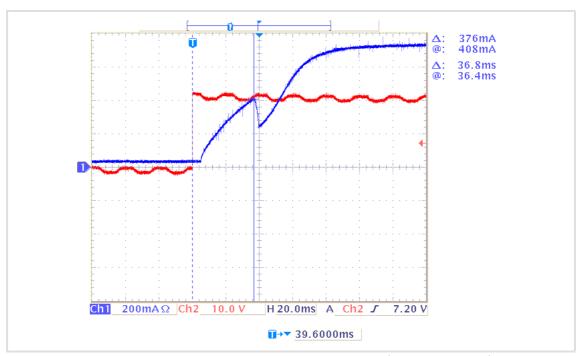
• If the application time is set too low, the controller is inhibited and the drive becomes torqueless before the brake is applied completely.

- ► Every mechanical holding brake comes with a construction-conditioned application and release time which must be considered by the holding brake control and is set in C02589.
- ► The application and release time of the Lenze holding brake is indicated in the supplied operating instructions in the "Technical data" chapter.
- ► If the application and release times are too long, this is uncritical in respect of safety but leads to unnecessarily long delays during cyclical braking processes.

[9-28] Definition of the application and release time with the example of the PM brake



The application and release times do not only vary between the brake types but also depend on the basic conditions in the plant:


- Parameters of the hardware (cable length, temperature, level of supply voltage
- Contact elements used (brake module or contactor at the digital output)
- Type of overvoltage limitation/suppressor circuit

For optimisation purposes, detect in individual cases the response times by measurement.

[9-29] Oscillogram 1: Current characteristic when a mechanical holding brake is closed (application time: 10.7 ms)

[9-30] Oscillogram 2: Current characteristic when a mechanical holding brake is released (release time: 36.8 ms)

Related topics:

- ▶ <u>Process when brake is released</u> (☐ 575)
- ▶ Process when brake is closed (☐ 576)

9.12.2.5 Ramp time for approaching the setpoint speed

For the "Speed follower" operating mode, a ramp time can be set in $\underline{\text{C02610/1}}$ if the setpoint is already out of reach while the holding brake is initiating the feedforward control process.

Note!

The "<u>Homing</u>", "<u>Manual jog</u>", and "<u>Positioning</u>" operating modes are based on a different control/release process of the holding brake. In these operating modes, the C02610/1 setting parameter does not have any effect!

Example:

A setpoint of 90 % is selected via the ramp function generator while the brake is applied (controller is inhibited).

- 1. At the set ramp (in most cases C00012), the ramp function generator ramps up to 90 %.
- 2. The brake identifies the setpoint selection of 5 % (release switching threshold). The feedforward control of the brake provides 3 % of the setpoint and will not report the release of the brake after approx. 1 s has expired.

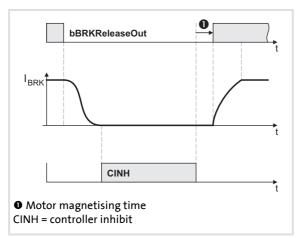
<u>Conclusion:</u> 90 % of the selected setpoint is already ramped up while the brake is only providing 3 % of the setpoint via the feedforward control.

Since at this point a step change from 3 % to 90 % may cause mechanical jerks, the setpoint is ramped up from 3 % to 90 %, using the ramp time set in C02610/1 (Lenze setting: 2 s).

Our example is based on the V/f characteristic control (VFCplus) operating mode since the servo control (SC) operating mode does not use the switching threshold for the application of the holding brake for speed feedforward control. However, ramping up to a setpoint that is out of reach is carried out for all motor control operating modes because there is always a mechanical/electric delay when controlling a holding brake.

This delay is due to:

- ► Motor magnetisation (in the case of servo control only)
- ▶ Mechanical delay of all switching elements connected upstream to the holding brake
- ► Mechanical delay of the holding brake itself
- ► Generation of the holding torque by the motor


Related topics:

▶ Process when brake is released (☐ 575)

Basic drive functions (MCK) Holding brake control

9.12.2.6 Motor magnetising time (only with asynchronous motor)

- ▶ When an asynchronous motor is used, first the magnetic field required for the holding torque is created (which is already available when a synchronous motor is used) after the controller inhibit is deactivated.
- ► The motor is internally magnetised through internal feedforward control of the lower speed threshold. The release time set in C02589/2 is considered here.

[9-31] Considering the motor magnetising time taking the PM brake as an example

Related topics:

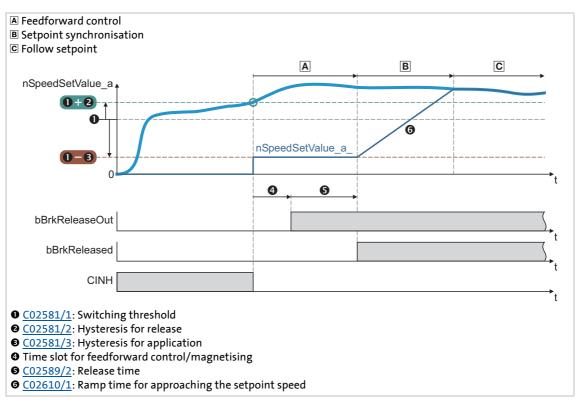
▶ Process when brake is released (☐ 575)

9.12.2.7 Actual value monitoring

If an actual value monitoring time > 0 s is selected in $\underline{C02593/1}$, the actual speed time monitoring is active.

- ► The monitoring time starts when the speed setpoint has reached the lower switching threshold and the actual speed is still above this threshold. (see illustration [9-34] in chapter "Process when brake is closed".)
- ▶ If the actual speed is still above the threshold when the monitoring time has expired, the brake will be automatically applied in the automatic brake control mode (mode 12).

Note!


In the Lenze setting, the actual speed time monitoring is deactivated $(\underline{\text{C02593/1}} = \text{"0 s"})$, i.e. the brake will only be applied when the actual speed has reached the lower switching threshold.

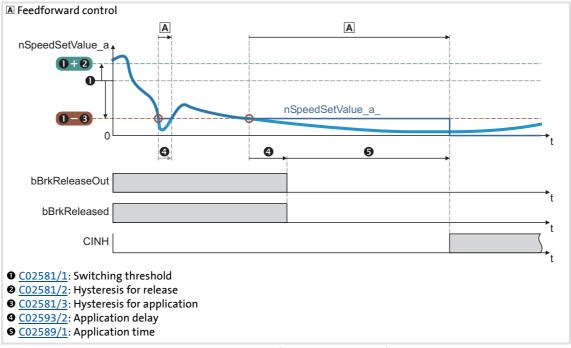
9.12.3 Process when brake is released

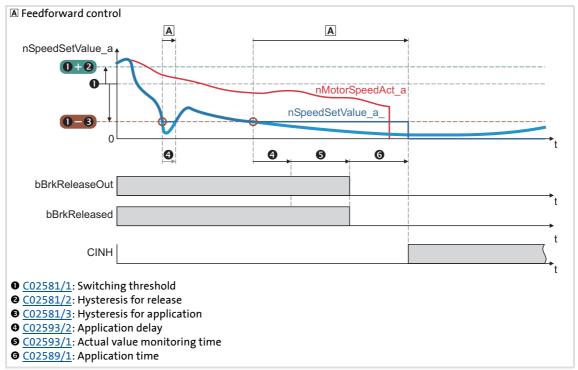
- 1. The controller inhibit is deactivated.
- 2. The magnetic field required for the holding torque is created in the motor (is already available when a synchronous machine is used).
- 3. The bBrkReleaseOut trigger signal for holding brake switching element is set to TRUE for releasing the brake.
- 4. After the brake opening time has elapsed:
 - The bBrkReleased status signal ("brake released") is set to TRUE.
 - In the "<u>Speed follower</u>" operating mode, the drive synchronises to the already accelerated speed setpoint.
 - In the operating modes with setpoint request via control signal (operating modes "Homing", "Manual jog" and "Positioning"), the ramping process starts after the brake release at 0.
- 5. After the waiting time set in <u>C02589/3</u> has additionally expired, the status monitoring starts again (if activated via bit 5 in <u>C02582</u>).

Time diagram

[9-32] Release holding brake in automatic mode via speed threshold

Related topics:


▶ Feedforward control of the motor before release (□ 579)


9.12.4 Process when brake is closed

- 1. The motor is decelerated when the setpoint is reduced by the user (e.g. turn down the potentiometer, setpoint selection via CAN).
 - The motor can also be decelerated by the "Quick stop" function or by "DC-injection braking", either directly requested by the user or as response to an error.
- 2. If the speed setpoint and the actual speed have fallen below the lower speed threshold or only the speed setpoint has fallen below the lower speed threshold and the actual value monitoring time has expired:
 - The bBrkReleaseOut trigger signal for the holding brake switching element is set to FALSE for closing the brake.
 - The bBrkReleased status signal is reset to FALSE.
 - In the operating modes with setpoint request via control signal (operating modes "Homing", "Manual jog" and "Positioning"), the brake closes depending on the internal state bBusy (setpoint generation through active profile generator) of the Motion Control Kernel.
 - The elapse of the brake application time starts.
- 3. After the brake application time has expired, the controller is inhibited.
- 4. After the waiting time set in <u>C02589/3</u> has additionally expired, the status monitoring starts again (if activated via bit 5 in <u>C02582</u>).
- 5. In order to prevent the drive from further rotating/accelerating in the event of an error of the feedback contact, controller inhibit is cancelled again and the drive is held at standstill in a speed-controlled manner.

Time diagrams

[9-33] Close holding brake in automatic mode via speed threshold (actual value = setpoint)

[9-34] Close holding brake in automatic mode with actual value monitoring time ($\frac{\text{C02593/1}}{\text{CO2593/1}} > 0 \text{ s}$)

Basic drive functions (MCK) Holding brake control

9.12.5 Behaviour in case of pulse inhibit

Setting the pulse inhibit causes a load-controlled coasting of the motor until the pulse is enabled again. In the enabled controller, the pulse can be inhibited e.g. due to a DC overvoltage, DC undervoltage or the "Safe torque off" request.

The brake response to pulse inhibit can be parameterised under <u>C02582</u>.

Stop!

For parameterising the response to pulse inhibit in <u>C02582</u>, the energy conditions of the machine should be evaluated first.

The energy stored in the machine can be considerably higher than the permissible switching energy and thus lead to the destruction of the brake if applied directly!

Activate brake immediately when pulse is inhibited

If bit 1 is set to "0" in C02582 (Lenze setting), the brake will be immediately applied when the pulse is inhibited to avoid damage to the mechanical components.

Especially in the case of hoist drives, immediate engagement of the brake is absolutely necessary for safety reasons if the pulse inhibit function of the drive controller has been activated!

Danger!

This behaviour is valid in (semi) automatic operation when the *bBrkRelease* input is set to FALSE.

When the *bBrkRelease* input is set to TRUE (supervisor operation) in automatic mode, the brake is not applied at pulse inhibit!

Only activate brake below threshold for brake activation

If bit 1 <u>and</u> bit 3 are set to "1" in <u>CO2582</u>, the brake remains released until the lower speed threshold is reached to avoid an excessive wear of the brake.

- ▶ The braking action only takes places due to the friction in the load mechanics.
- ▶ Only when the motor speed has reached the threshold for brake activation, the brake will be closed. Thus, the function depends on the signal of the speed encoder.

During uncritical operation (horizontal loading condition), delayed brake application may be required to protect the brake in case of high centrifugal masses.

In case of vertical motion (Bit 3 = 0), this function is not active due to safety-related reasons.

Related topics:

- ► Functional settings (□ 569)
- ▶ Switching thresholds (□ 570)

9.12.6 Feedforward control of the motor before release

The motor is precontrolled by selecting the lower speed threshold for applying the brake (control modes without feedback). When the upper speed threshold for brake release is reached, the motor is precontrolled with the for the release time set in C02589 with the lower threshold value before the brake switches to the release mode.

The direction of the feedforward control depends on two conditions:

- 1. On the settings selected under C02582:
 - Bit 2 = feedforward control inverted (for vertical drives/hoists)
 - Bit 3 = Direction of movement of the axis
- 2. On the sign of the setpoint.

Truth table for the direction of the feedforward control

Setpoint	Direction	Feedforward control	Scheme	Dire	ction
				Feedforward control value	Start value
n ≥ 0	Vertical/hoist (<u>C02582</u> : Bit 3 = 0)	not inverted (<u>C02582</u> : Bit 2 = 0)	n M	•	•
		inverted (<u>C02582</u> : Bit 2 = 1)	M n	•	•
n < 0		not inverted (<u>C02582</u> : Bit 2 = 0)	n M	•	•
		inverted (<u>C02582</u> : Bit 2 = 1)	n M m	•	•
n ≥ 0	Horizontal/winding drive (C02582: Bit 3 = 1)	Inversion via bit 2 with horizontal direction not effective	n M	•	•
n < 0			M	•	•

Basic drive functions (MCK) Holding brake control

Selection of the feedforward control value

The feedforward control value can be selected via bit 4 in C02582:

- ▶ Bit 4 = 0: Automatic selection
 - The torque saved at the last stop is used.
- ▶ Bit 4 = 1: Manual selection
 - bBrkStartValue = FALSE: The feedforward control value 1 set in C02581/4 is used.
 - bBrkStartValue = TRUE: The feedforward control value 2 set in C02581/5 is used.

Additive torque

If the servo control (SC) operating mode has been selected, an additive torque value in [%] can be selected via the nBrkTorqueAdd_a input.

Related topics:

- ► Functional settings (□ 569)
- ▶ <u>Switching thresholds</u> (☐ 570)

10 Diagnostics & error management

This chapter provides information on error handling, drive diagnostics, and fault analysis.

10.1 Basics on error handling in the controller

Many of the functions integrated into the controller can

- detect errors and thus protect the device from damage or overload, e.g. short-circuit detection, lxt overload detection, overtemperature detection, etc.
- ▶ detect an operating error by the user, e.g. a missing memory module, a required or missing communication module, etc.
- ▶ output a warning signal if desired, e.g. if the speed is too high or too low, etc.

Depending on the importance, the error detection in the device responds very fast (e.g. short-circuit detection < 1 ms) or in a slower cycle (e.g. temperature monitoring approx. 100 ms).

All functions provided with an error detection (e.g. the motor control) supply information to a so-called error handler. The error handler is processed every 1 ms and evaluates all information.

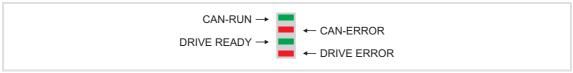
In this evaluation, the so-called status determining error (display in C00168) and the current error (display in C00170) are generated, and the controller is caused to take the respective error status (e.g. TroubleOSP).

These two types of error information serve to diagnose errors systematically and contain the following information:

- 1. The error type (e.g. "Warning")
- 2. The error subject area (e.g. "CAN generally integrated")
- 3. The error ID within the error subject area

Together all types of information form the real error number which is unique in the whole device system. ▶ Structure of the 32-bit error number (bit coding) (□ 602)

In addition to the control of the device status by the error handler, a logbook function records the errors and their histories. ▶ Logbook (□ 590)


For many device errors, the error type and hence the response of the controller to the error can be parameterised. > Setting the error response (597)

Diagnostics & error management LED status displays

10.2 LED status displays

Information on some operating statuses can quickly be obtained via LED displays:

[10-1] LED display on the controller front panel

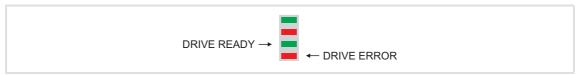
Labelling	Colour	Description	
CAN-RUN	green	CAN bus ok	▶ LED status displays for
CAN-ERR	red	CAN bus error	the system bus (🕮 644)
DRIVE READY	green	Standard device ready for operation	▶ <u>LED status displays of the</u>
DRIVE ERROR	red	Warning/fault/error	device status (🕮 583)

Note!

The four other LEDs have no function at present!

Related topics:

- ▶ Device control (DCTRL) (☐ 89)
- ▶ <u>Device state machine and device statuses</u> (☐ 101)
- ▶ System bus "CAN on board" (☐ 638)



Diagnostics & error management LED status displays

10.2.1 LED status displays of the device status

The control of the two "DRIVE READY" and "DRIVE ERROR" LED in the lower part on the front of the controller depends on the device status.

Device state machine and device statuses (LLL 101)

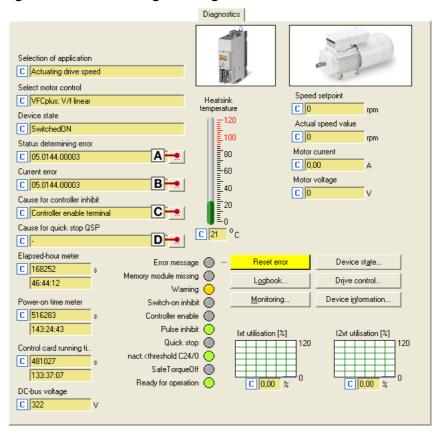
[10-2] DRIVE READY and DRIVE ERROR LED status displays

The meaning can be seen from the table below:

DRIVE READY	DRIVE ERROR	Description	Device status (Display in C00137)
Off	Off	OFF or initialisation active	<u>Init</u>
	Off	Safe torque off is active	<u>SafeTorqueOff</u>
	Off	Device is ready to start	ReadyToSwitchOn
	Off	Device is switched on	<u>SwitchedOn</u>
	Off	Motor data identification/operation	<u>OperationEnabled</u>
	1	The controller is ready to switch on, switched on or the operation is enabled and a warning is indicated.	
		Fault active, quick stop	TroubleQSP
Off		Trouble is active	<u>Trouble</u>
Off		Fault is active	<u>Fault</u>
Off		System fault is active	<u>SystemFault</u>

Legend

The symbols used for indicating the LED states have the following meaning:


LED is flashing once approx. every 3 seconds (slow flash)
LED is flashing once approx. every 1.25 seconds (flash)
LED is flashing twice approx. every 1.25 seconds (double flash)
LED is blinking every second
LED is permanently on

Diagnostics & error management
Drive diagnostics with the »Engineer«

10.3 Drive diagnostics with the »Engineer«

When an online connection to the controller has been established, the connected controller can be diagnosed and relevant actual controller states can be displayed in a clearly arranged visualisation using the »Engineer«:

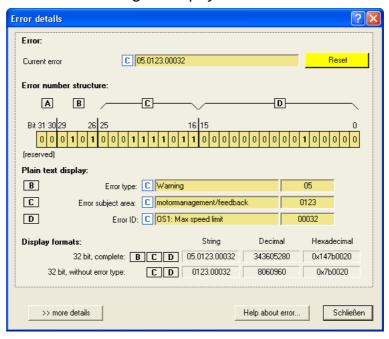
Button		Function	
	Α	Display details of the status determining error.	
	В	Display details of the current error.	
	C	Display all active sources of a controller inhibit.	
	D	Display all active sources of a quick stop.	
Resetting an error		Acknowledge fault message (if the error cause has been eliminated).	
Logbook		Display the Logbook of the controller. (590)	
Monitoring		Configure the Monitoring. (595)	
Device status		Display the internal state machine including the current device status.	
Drive control		Display the bit assignment of the following control-related words: • MCI control word (C00136/1) • CAN control word (C00136/2) • Cause of controller inhibit (C00158) • Cause of quick stop (C00159) • Status word (C00150) • Status word 2 (C00155)	
Device information		Display identification data, e.g. firmware information or serial number of individual controller components.	

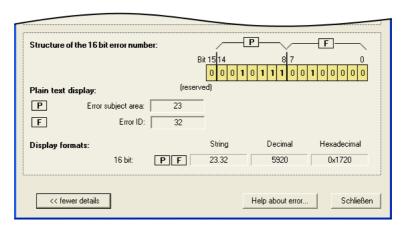
Diagnostics & error management Drive diagnostics with the »Engineer«

How to diagnose a drive with the »Engineer«:

- 1. Select the 8400 TopLine controller in the *project view*.
- 2. Click the ♠ icon or execute the Online → Go online command to establish an online connection to the controller.
- 3. Select the Diagnostics tab.
 - With an online connection, the **Diagnostics** tab displays current status information about the controller.

The online connection to the controller can be established via the following device interfaces:


- CAN interface X1 Diagnostics via the <a>System bus "CAN on board" (638)
- X6 diagnostic interface We recommend this diagnostic connection when the X1 CAN interface is used for process communication.


Diagnostics & error management
Drive diagnostics with the »Engineer«

10.3.1 Display details of the status determining error.

If you go to the **Diagnostics** tab and click the ____ button for the status determining or current error, the *Error details* dialog box displays further information on the error:

- ► Click the **Help about error...** button to open the online help with information on the error cause and possible remedies.
- ► The >> more details button serves to provide more information about the structure of the 16-bit error number:

Related topics:

- ▶ Structure of the 32-bit error number (bit coding) (□ 602)
- ▶ Structure of the 16-bit error number (bit coding) (□ 605)

10.4 Drive diagnostics via keypad/bus system

Keypad display of the controller status

▶ When the keypad is connected to the diagnostic interface X6 at the front of the controller, the status of the controller is displayed via different symbols on the LCD display in the area ①.

Symbol	Meaning	Note
RDY	Controller is switched on.	▶ <u>SwitchedOn</u> (□ 107)
RUN	Controller is enabled.	
QSP	Quick stop is active	
CINH	Controller is inhibited.	The power outputs are inhibited.
Mmax	Speed controller 1 in the limitation.	The drive is torque-controlled.
lmax	Set current limit has been exceeded in motor or generator mode.	
IMP	Pulse inhibit is active	The power outputs are inhibited.
!Sflt	System fault is active	
IFLT	Fault	▶ <u>Fault</u> (ш 111)
ITRB	Trouble	▶ <u>Trouble</u> (□ 110)
!Tqsp	TroubleQSP	► <u>TroubleQSP</u> (☐ 109)
WRN	Warning is active	

Diagnostics & error management
Drive diagnostics via keypad/bus system

Display parameters

The parameters listed in the following tables serve to query current states and actual values of the controller for diagnostic purposes, e.g. by using the keypad, a bus system or the »Engineer« (with an online connection to the controller).

- ► These parameters are listed in the »Engineer« parameter list and the keypad in the Diagnostics category.
- ► A detailed description of these parameters can be found in the chapter "Parameter reference" (☐ 742).

C00051 MCTRL: Ac	tual speed value
C00052 Motor vol	·
<u>C00032</u>	tage
<u>C00053</u> DC-bus vo	Itage
C00054 Motor cur	rent
<u>C00056/1</u> Torque se	tpoint
C00056/2 Actual tor	que value
C00058 Output fre	equency
C00061 Heatsink t	emperature
C00064/1 Device uti	lisation (Ixt)
C00064/2 Device uti	lisation (Ixt) 15s
C00064/3 Device uti	lisation (Ixt) 3 min
C00133 Brake resi	stor utilisation
<u>C00136/1</u> MCI contr	ol word
<u>C00136/2</u> CAN contr	ol word
C00137 Device sta	tus
<u>C00138/1</u> SYS contro	ol signals
<u>C00138/2</u> MCK cont	rol signals
<u>C00138/3</u> FWM conf	crol signals
C00150 Status wo	rd
Couse of c	ontroller inhibit
Couse of c	uick stop QSP
<u>C00165/1</u> Status det	ermining error (displayed as a numeric text)
C00165/2 Current er	ror (displayed as a numeric text)
C00168 Status det	ermining error (display of 32-bit number)
C00170 Current er	ror
C00166/1 Error type	status determining
C00166/2 Error subje	ect area, status determining
<u>C00166/3</u> Error ID, st	tatus determining
C00166/4 Error type	current
C00166/5 Error subjection	ect area, current
<u>C00166/6</u> Error ID, co	urrent

Diagnostics & error management Drive diagnostics via keypad/bus system

Parameter	Display
C00177/1	Switching cycles mains switching
<u>C00177/2</u>	Switching cycles output relay
<u>C00177/3</u>	Stress counter - short circuit
<u>C00177/4</u>	Stress counter - earth fault
<u>C00177/5</u>	Stress meter clamp
<u>C00178</u>	Time the controller was enabled (elapsed-hour meter)
<u>C00179</u>	Power-up time (power-on time meter)
C00180/1	Running time - control card
C00180/2	Running time - heatsink fan
<u>C00180/3</u>	Running time - internal fan

Identification data

The parameters listed in the following table belong to the **Identification** →**Controller** category of the »Engineer« parameter list and the keypad and serve to display the identification data of the controller:

Parameter	Display
<u>C00099</u>	Firmware version (as a string)
<u>C00100</u>	Firmware version (divided into subitems)
<u>C00200</u>	Firmware product type
C00201/16	Firmware of the control card and the power section
C00203/19	Product type code of the individual device components
C00204/19	Serial numbers of the individual device components

Diagnostics & error management Logbook

10.5 Logbook

The integrated logbook function of the controller chronologically logs important events within the system and plays an important role for troubleshooting and controller diagnostics.

Events that can be logged

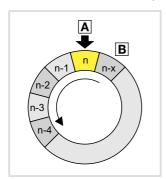
The following events can be logged in the logbook:

- ► Error messages of the operating system (□ 602)
- ► Error messages generated by the application (via LS SetError)
- ▶ Loading/saving of parameter sets, loading of the Lenze setting (in preparation)
- ► Transmitting the firmware to the controller (in preparation)
- ► Switching the controller on/off

Information saved

For each event, the following information is saved in the logbook:

- ► Type of response to the event (e.g. fault, warning or information)
- ▶ Subject area that activated the event (e.g. CAN or USER).
- ► Event
- ► Value of power-on time meter
- ► Selected process values (analog % signals, binary signals)


Memory depth

Maximum number of logbook entries: 14 (extension in preparation)

10.5.1 Functional description

The structure of the logbook corresponds to a ring buffer:

- ▶ As long as free logbook memory locations are available, the entries will be saved to the next free memory location (♠).
- ► If all memory locations are occupied, the oldest entry (B) will be deleted in favour of a new entry.
- ▶ The newest entries will always remain available.

Note!

In the event of a supply voltage failure, the logbook is saved and reloaded automatically when the controller is switched on. This ensures that the error history of the device does not get lost. For this reason it is very important to act with caution when deleting the logbook entries.

10.5.2 Filtering logbook entries

The logbook adds new entries to the ring buffer after they have been passed through a parameterisable filter. This filter helps you to exclude certain events from being entered into the logbook which would trigger a certain error response (fault, trouble, warning, information, etc.).

<u>C00169</u> (bit 1 ... bit 6) includes a bit coded specification of the events which are to be entered into the logbook. In the Lenze setting, all events are entered into the logbook.

Note!

Events with the "No response" setting are not entered into the logbook.

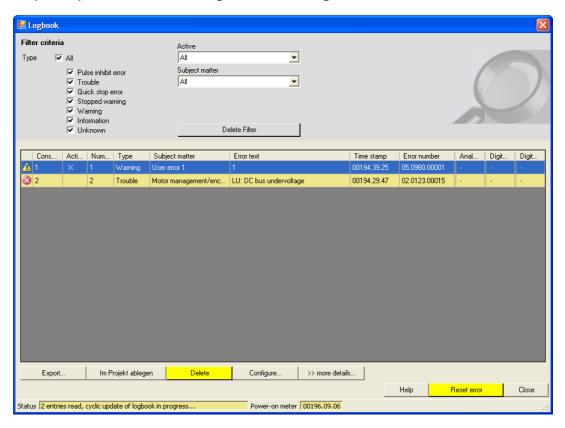
Counter for multiple entries

In order to prevent the ring buffer from overflowing with <u>identical</u> errors with frequent occurrence e.g. during commissioning, identical errors will not lead to new line entries in the configuration of the logbook in the Lenze setting. Instead, one counter will be counted up for this error.

- ► The time of the error is always the time of its first occurrence. Hence, a new logbook line will only be generated if a new error occurs.
- ▶ The error counter can be deactivated by resetting bit 9 in C00169.

Diagnostics & error management Logbook

10.5.3 Reading out logbook entries


With an online connection, the existing logbook entries can easily be displayed in the »Engineer«. Alternatively, the logbook entries can also be read out via the corresponding parameters (e.g. using the keypad).

How to display logbook entries in the »Engineer«:

- 1. Select the 8400 TopLine controller in the project view.
- 2. Click the ♠ icon or execute the Online → Go online command to establish an online connection to the controller.
- 3. Select the **Diagnostics** tab from the Workspace.
- 4. Click Logbook.

Example: Representation of the logbook in the »Engineer« V2.13

Button	Function
Reset filters	Reset set filter criteria to display all available logbook entries.
Export	Export the entries available in the logbook into a *.log file. • Exporting logbook entries to a file (593)
File in project	File the current logbook in the Engineer project to be able to access it offline, too. • File logbook in project (594)
Delete	Delete all entries available in the logbook.
Configure	Open parameterisation dialog for configuring the logbook.

Button	Function
>> more details	 Show more details: Analog value 1, digital values 1 & 2 More output types of the error numbers (32-bit, internal 32-bit and internal 16-bit). Instead of the >> more details button, the << less details is now displayed via which the details can be hidden again.
Help	Open online help for the logbook.
Resetting an error	 Acknowledge existing error message if the error cause has been eliminated and thus the error is not pending anymore. After the reset (acknowledgement) of the current error, further errors may be pending which must also be reset.
Close	Close the <i>Logbook</i> dialog box again.

10.5.4 **Exporting logbook entries to a file**

How to export the logbook entries to a file:

- 1. Go to the *Logbook* dialog box and click the **Export...** button.
 - The Export logbook dialog box is displayed.
- 2. Specify the folder, file name, and file type for the file.
- 3. Click the Save button to export the logbook entries to the specified file.
 - Hidden logbook entries are not exported, i.e. the filter criteria specified are accounted for during the export.
 - The logbook entries are written to the file in the form of a semicolon separated

Structure of the semicolon separated list

The list includes the following information:

1. Cons. no.	9. Error number
2. Active	10. Source - analog value 1
3. Numerator	11. Analog value 1
4. Type	12. Source - digital value 1
5. Subject area	13. Digital value 1
6. Error text	14. Source - digital value 2
7. Time stamp	15. Digital value 2
8. Relative time	

Diagnostics & error management Logbook

10.5.5 File logbook in project

If you want to display the currently available logbook entries at a later date in offline mode, i.e. without a connection to the controller, you can file the current logbook in the project.

How to file the logbook in the project:

Go to the *Logbook* dialog box and click the **File in project** button.

- ▶ The logbook with all the entries uploaded up to now is filed in the Engineer project independent of the set filter criteria.
- ▶ A logbook of the same device already filed before will be overwritten without querying the user.
- ► The filter settings are not filed in the project.
- ▶ When a logbook is filed in the project, the logbook can also be opened in offline mode via the **Logbook** button on the **Diagnostics** tab.

Note!

Filing the logbook changes the project.

- When the project is closed, you are asked to save the changed project.
- Only if the changed project is saved, the new logbook entries filed in the project remain stored.

10.6 Monitoring

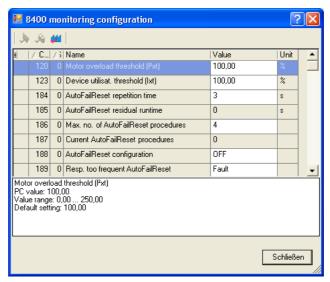
The controller is provided with various monitoring functions which protect the drive against impermissible operating conditions.

- ▶ If a monitoring function responds,
 - an entry will be made into the Logbook of the controller,
 - the response (TroubleQSP, Warning, Fault, etc.) set for this monitoring function will be triggered,
 - the status of the internal device control changes according to the selected response, controller inhibit is set, and the "DRIVE ERROR" LED on the front of the controller goes on:

Response	Entry in the logbook	Display in C00168	Pulse inhibit	Controller inhibit	Acknowledge ment required	LED "DRIVE ERROR"
None						Off
Fault	Ø	☑	☑	Ø	☑	
Trouble	☑	Ø	Ø	☑ (after 0.5 s)		JILLIL
TroubleQSP	☑	☑			☑	
WarningLocked	☑	Ø			Ø	1
Warning	\square	Ø				
Information	☑					Off
System error	Ø	Ø		Ø	Mains switching is required!	

Related topics:

- ▶ LED status displays of the device status (☐ 583)
- ▶ Device state machine and device statuses (□ 101)
- ▶ Device overload monitoring (Ixt) (☐ 275)
- ▶ Motor load monitoring (I2xt) (☐ 276)
- ▶ Motor temperature monitoring (PTC) (Ш 278)
- ▶ Brake resistor monitoring (I2xt) (☐ 279)
- ▶ Motor phase failure monitoring (☐ 281)
- ▶ Mains phase failure monitoring (☐ 283)
- ► Maximum current monitoring (□ 283)
- ► <u>Maximum torque monitoring</u> (284)
- ▶ Resolver/multi-encoder open-circuit monitoring (□ 320)
- ▶ Open-circuit monitoring HTL encoder (☐ 322)
- ▶ Motor temperature monitoring (KTY) (☐ 323)


Diagnostics & error management Monitoring

10.6.1 Monitoring configuration

How to configure the monitoring functions using the »Engineer«:

- 1. Select the 8400 TopLine controller in the project view.
- 2. Select the Diagnostics tab from the Workspace.
- 3. Click the Monitoring... button.
 - The 8400 monitoring configuration dialog box is displayed via which the desired settings can be made:

Related topics:

▶ <u>Setting the error response</u> (☐ 597)

10.6.2 Setting the error response

When a monitoring function responds, the response set for this monitoring function (TroubleQSP, Warning, Fault, etc.) will be triggered.

► For many monitoring functions the response can be individually parameterised via parameters.

The table in chapter "Short overview (A-Z)" contains the error messages for which the response can be set . (608)

Warning thresholds

Some of the monitoring functions are activated if a defined warning threshold (e.g. temperature) has been exceeded.

► The corresponding preset threshold values can be changed via the following parameters:

Parameter	Info
<u>C00120</u>	Setting of motor overload (I²xt)
<u>C00123</u>	Device utilisat. threshold (Ixt)
<u>C00572</u>	Brake resistor overload threshold
<u>C00599</u>	Motor phase failure threshold

Diagnostics & error management Monitoring

10.6.3 AutoFailReset function

The AutoFailReset function serves to automatically reset the latching "Fault" and "TroubleQSP" errors as well as the latching "WarningLocked" warning.

The "latching" term means that the effect on the controller remains active even after the error cause has been removed.

To reset latching errors and warnings, the following options are available:

► Manual reset

- with device command C00002/19 (activated by LOW/HIGH edge)
- by a LOW/HIGH edge at the bResetFail input of the LS <u>DriveInterface</u> system block (the "FailReset" control bit in the control word must be parameterised with a value of "1").

► Automatic reset

using the AutoFailReset function.

Overview of the relevant parameters

Parameter	Info
<u>C00184</u>	Repetition time of the error reset processes
<u>C00185</u>	Time left until the next error reset process
<u>C00186</u>	Max. number of error reset processes
<u>C00187</u>	Current number of error reset processes carried out ineffectively
<u>C00188</u>	Configuration of the AutoFailReset function • 0: Off • 1: Fault + TroubleQSP • 2: WarningLocked • 3: All locking
C00189	Response after max. number of error reset processes has been reached
Highlighted in grey = display parameter	

Maloperation of the drive 10.7

Maloperation	Cause	Remedy	
Motor does not rotate	DC-bus voltage is too low Red LED is blinking every 1 s Display in the keypad: LU	Check mains voltage	
	 Controller is inhibited Green LED is blinking Display in the keypad: GIMB 	Deactivate controller inhibit Note: Controller inhibit can be set via several sources! C00158 displays all active sources for controller inhibit.	
	Automatic start is inhibited (Bit 0 in C00142 = 1)	LOW/HIGH edge at RFR If required, correct starting condition with C00142	
	DC-injection braking (DCB) is active	Deactivate DC injection brake	
	Mechanical motor brake is not released	Release mechanical motor brake manually or electrically	
	Quick stop (QSP) is active • Display in the keypad:	Deactivate quick stop Note: Quick stop can be set via several sources! C00159 displays all active sources of quick stop.	
	Setpoint = 0	Select setpoint	
	JOG frequency = 0 at activated JOG setpoint	Set JOG setpoint in C00039/115	
	Trouble is active	Clear fault	
	With <u>C00006</u> = 4 "SLVC: Vector control" has been set, but no motor parameter identification has been carried out.	Execute automatic motor parameter identification with the C00002/23 device command	
	Assignment of several mutually exclusive functions with a signal source in <u>C00701</u>	Correct configuration in C00701	
Motor rotates	Motor cable is defective	Check motor cable	
irregularly	Maximum motor current in motor or generator mode is set too low	Adjust settings to the application: C00022: Imax in motor mode C00023: Imax in generator mode	
	Motor is underexcited or overexcited	Check parameterisation: C00006: Motor control C00015: VFC: V/f base frequency C00016: VFC: Vmin boost	
	Rated motor data (stator resistance, speed, current, frequency, voltage) and cos φ and/or magnetising inductance is not adapted to the motor data	Execute automatic motor parameter identification with the C00002/23 device command - or - Adjust motor parameters manually: C00084: Motor stator resistance C00087: Rated motor speed C00088: Rated motor current C00089: Rated motor frequency C00090: Rated motor voltage C00091: Motor cosine phi C00092: Motor magnetising inductance	
	Motor windings are wired incorrectly	Reverse from star connection to delta connection	

8400 TopLine C | Software Manual Diagnostics & error management Maloperation of the drive

Maloperation	Cause	Remedy
Motor consumes too	V _{min} boost has been selected too high	Correct setting with <u>C00016</u>
much current	V/f base frequency has been selected too low	Correct setting with C00015
	Rated motor data (stator resistance, speed, current, frequency, voltage) and cos φ and/or magnetising inductance is not adapted to the motor data	Execute automatic motor parameter identification with the C00002/23 device command - or - Adjust motor parameters manually: C00084: Motor stator resistance C00087: Rated motor speed C00088: Rated motor current C00089: Rated motor frequency C00090: Rated motor voltage C00091: Motor cosine phi C00092: Motor magnetising inductance
Motor parameter identification is aborted with error	Motor is too small compared to the rated device power (>1 : 3)	Use device with lower rated power
LP1	DC injection brake (DCB) is active via terminal	Deactivate DC injection brake
Drive behaviour with	different	Optimise or manually adapt vector control
vector control is not satisfactory		Execute automatic motor parameter identification with the <u>C00002/23</u> device command
Torque dip in field	Motor is overloaded	Check motor load
weakening range or motor stalling when	Motor windings are wired incorrectly	Reverse from star connection to delta connection
being operated in the	V/f reference point is set too high	Correct setting with C00015
field weakening range	Override point of field weakening is set too low	Correct setting with <u>C00080</u>
	Mains voltage is too low	Increase mains voltage
An asynchronous motor with feedback rotates without control and with too low speed	 Motor phases have been interchanged Thus the rotating field of the motor is not identical anymore with the rotating field of the feedback system. Therefore, the drive shows the following behaviour if V/f characteristic control (C00006 = 7) is performed: The motor rotates faster than the speed setpoint by the value set in C00074. After the controller has been enabled, the controller will not stop if the speed setpoint = 0 or a quick stop (QSP) occurs. Among other things, the final motor current depends on the value set for the V_{min} boost and may rise up to I_{max} which can trigger the "OC5: lxt overload" fault message. 	Check the phase position of the motor cable If possible: Operate the motor with deactivated feedback (C00006 = 6) and check direction of rotation of the motor
Motor phase (LP1) monitoring does not respond if the motor phases are interrupted	Monitoring is not active (C00597 = 0)	Activate monitoring (C00597 = 1)

Diagnostics & error management Operation without mains supply

10.8 Operation without mains supply

The following display parameters have a value of "0" if the mains supply is switched off and the external 24 V supply of the controller is switched on:

Parameter	Info
<u>C00050</u>	MCTRL: Speed setpoint
<u>C00051</u>	MCTRL: Actual speed value
<u>C00052</u>	Motor voltage
<u>C00053</u>	DC-bus voltage
<u>C00054</u>	Motor current
<u>C00058</u>	Output frequency
<u>C00061</u>	Heatsink temperature
C00064/13	Device utilisation (Ixt)
<u>C00066</u>	Thermal motor load (I²xt)
<u>C00177</u>	Switching cycles
<u>C00725</u>	Current switching frequency

Diagnostics & error management Error messages of the operating system

10.9 Error messages of the operating system

This chapter describes all error messages of the controller operating system and possible causes & remedies.

Each error message is also saved to the logbook in chronological order. Logbook (11 590)

Structure of the 32-bit error number (bit coding) 10.9.1

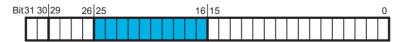
If an error occurs in the controller, the internal fault memory saves a 32-bit value which contains the following information:

[10-3] Structure of the error number

- ► Display parameter: C00168
- ► For the sake of legibility, the error number in the logbook and in C00165 is displayed with the following syntax:

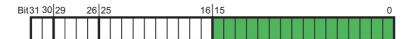
[Error type].[Error subject area no.].[Error ID]

Error type


The error type gives information about the behaviour/response of the controller to the error. The error type for some device errors can also be parameterised.

Bit 29	Bit 28	Bit 27	Bit 26	Meaning
0	0	0	0	0: No response
0	0	0	1	1: Fault
0	0	1	0	2: Trouble
0	0	1	1	3: TroubleQSP
0	1	0	0	4: WarningLocked
0	1	0	1	5: Warning
0	1	1	0	6: Information

Diagnostics & error management Error messages of the operating system

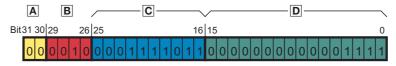

Error subject area

The error subject area indicates the internal "function unit" of the controller in which the error has occurred:

Error subject area		Assigned errors	Remedy possible by
No.	Name		user?
111	Supply voltage	Errors that occur in connection with the supply voltage of the device.	Yes
119	Temperature	Errors that occur for temperature reasons.	Yes
123	Motor management / encoder	Errors that occur within the motor control or encoder evaluation.	Yes
125	Analog I/O integrated	Errors that occur in connection with the analog inputs and outputs.	Yes
127	Extension module slot 1	Errors that are reported by the extension module, and communication errors to the plugged-in extension module.	Yes if it is a fieldbus error.
131	CAN integrated (general)	Errors related to general CAN functions.	Yes
135	CAN process data object (PDO)	Errors that are explicitly only related to the CAN-PDO (process data objects).	Yes
140	Device configuration	Errors that occur due to incompatibilities of the plugged-in individual components (fieldbus module, safety module, et al.).	Yes if the error relates to a module plugged-in by the user.
144	Parameter set	Errors that occur in connection with the parameter set or the parameter set memory (memory module).	Yes if the error relates to a missing or incompatible memory module.
145	Device firmware (internal error)	Internal error of the device firmware.	No
184	MotionControlKernel	Errors that occur within the MotionControl basic functions (e.g. profile generation, brake control, positioning).	Yes
400	Defective device hardware	Errors that occur due to defective device hardware.	No
444	Fieldbus	Errors that occur in connection with fieldbus communication.	Yes
980 983	User error 1 User error 4	Errors generated by the user (by the application) via the LS SetError 1 system block.	Yes
984 987	User error 5 User error 8	Errors generated by the user (by the application) via the LS SetError 2 system block.	Yes

Error ID

16-bit value (0 ... 65535) for error identification within the error subject area.



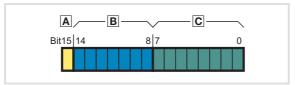
Diagnostics & error management Error messages of the operating system

Example for bit coding of the error number

C00168 displays an internal error number: "142278671".

▶ This decimal value corresponds to the following bit sequence:

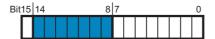
Assignment	Information	Meaning in the example
00	Reserved	-
0010	Error type	2: Trouble
0001111011	Error subject area	123: Motor management / encoder
000000000001111	Error ID	15: "LU: DC bus undervoltage"


► Thus, error number "142278671" means: A DC bus undervoltage has been detected in the "Motor management / encoder" subject area. The error response is a "Fault" which must be unlocked separately after the error has been eliminated.

Diagnostics & error management Error messages of the operating system

10.9.2 Structure of the 16-bit error number (bit coding)

In addition to the 32-bit error number, a 16-bit error number is generated if an error occurs. It consists of the following information:


- A Reserved
- **B** Error subject area
- © Error ID

[10-4] Structure of the error number

- ▶ Display parameter: <u>C00160</u>
- ► For the sake of legibility, the 16-bit error number in the logbook is displayed with the following syntax::

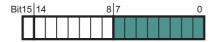
[Error subject area no.].[Error ID]

Error subject area

The error subject area indicates the internal "function unit" of the controller in which the error has occurred.

Note!

Due to the smaller value range (0 ...127), the number assignment to the error subject area differs from the 32-bit error number.


Error subject area		Assigned errors	Remedy possible by
No.	Name		user?
11	Supply voltage	Errors that occur in connection with the supply voltage of the device.	Yes
19	Temperature	Errors that occur for temperature reasons.	Yes
23	Motor management / encoder	Errors that occur within the motor control or encoder evaluation.	Yes
25	Analog I/O integrated	Errors that occur in connection with the analog inputs and outputs.	Yes
26	Defective device hardware	Errors that occur due to defective device hardware.	No
27	Extension module slot 1	Errors that are reported by the extension module, and communication errors to the plugged-in extension module.	Yes if it is a fieldbus error.
31	CAN integrated (general)	Errors related to general CAN functions.	Yes
35	CAN process data object (PDO)	Errors that are explicitly only related to the CAN-PDO (process data objects).	Yes
40	Device configuration	Errors that occur due to incompatibilities of the plugged-in individual components (fieldbus module, safety module, et al.).	Yes if the error relates to a module plugged-in by the user.
44	Parameter set	Errors that occur in connection with the parameter set or the parameter set memory (memory module).	Yes if the error relates to a missing or incompatible memory module.
45	Device firmware (internal error)	Internal error of the device firmware.	No
54	Fieldbus	Errors that occur in connection with fieldbus communication.	Yes
84	MotionControlKernel	Errors that occur within the MotionControl basic functions (e.g. profile generation, brake control, positioning).	Yes

Diagnostics & error management Error messages of the operating system

Error subject area		Assigned errors	Remedy possible by
No.	Name		user?
100 103	User error 1 User error 4	Errors generated by the user (by the application) via the LS SetError 1 system block.	Yes
104 107	User error 5 User error 8	Errors generated by the user (by the application) via the LS SetError 2 system block.	Yes

Error ID

8-bit value (0 ... 255) for error identification within the error subject area.

All possible 16-bit error numbers are listed in the table "Short overview (A-Z)" in the second column. (608)

10.9.3 **Reset error messages**

An error message with the response "Fault", "Trouble", "TroubleQSP" or "Warning locked" must be explicitly reset (acknowledged) after the cause of the error has been eliminated.

To reset (acknowledge) a pending error message, execute the device command C00002/19 = "1".

With an online connection to the controller, use the Diagnostics tab of the »Engineer« and click Error reset to reset a pending error message.

10.9.4 **Export error texts**

All error texts of the controller can be exported into a text file (*.txt) for further processing.

- ▶ The error text is preceded with the corresponding 32-bit and 16-bit error number (decimal).
- ▶ If there is no corresponding 16-bit error number for a 32-bit error number, the field remains empty.

Example

Output of the German and English error texts:

32-BitError 0 111 119 / 19	16-BitError 0 11	DE-de Kein Fehler Versorgungsspannung	EN-en No error Supply voltage
12323 : Motor 125	management / 25	encoder E/A integriert	I/O integrated
26214416 26214505	6672 6761	dH10: Lüfterausfall dH69: Abgleichdatenfehler	dH10: Fan failure dH69: Adjustment fault

How to export the error texts into a text file:

- 1. Go to the Project view in the context menu of the 8400 TopLine controller and execute the **Export error texts...** command.
- 2. Define the following options in the *Export error texts* dialog box:
 - · Output file and memory location
 - Languages to be exported (German/English/French)
 - Device/module to be exported
 - Separator (tabulator or semicolon)
 - Font (UTF8, standard font or ASCII)
- 3. Click **OK** to start the export.
 - · After the export, a message appears indicating whether the export was successful.

Diagnostics & error management Error messages of the operating system

10.9.5 Short overview (A-Z)

The table below contains all error messages of the controller operating system <u>in alphabetical order</u>.

Note!

For the sake of legibility, the $\underline{\mathsf{Logbook}}$ and $\underline{\mathsf{C00165}}$ display the 32-bit error number with the following syntax:

[Error type].[Error subject area no.].[Error ID]

In this documentation, "xx", a wildcard, stands for the error type since it is configurable for many error messages.

If you click the cross-reference in the first column, "Error number", you will reach the detailed description of the respective error message in the following chapter, "Cause & possible remedies". (🗆 611)

Error number			Error message	Response	can be set in	CAN Emergency
32 bits	16 bits _{hex}	16 bits _{dec}		(Lenze setting)		Error Code
▶ <u>xx.0125.00001</u>	0x1901	6401	An01: AIN1_I < 4 mA	TroubleQuickStop	C00598/1	0xF000
▶ <u>xx.0125.00002</u>	0x1902	6402	An02: AIN2_I < 4 mA	TroubleQuickStop	C00598/2	0xF000
▶ <u>xx.0131.00006</u>	0x1f06	7942	CA06: CAN CRC error	No Reaction	C00592/1	0x8000
▶ <u>xx.0131.00007</u>	0x1f07	7943	CA07: CAN Bus Warn	No Reaction	C00592/3	0x8000
▶ <u>xx.0131.00008</u>	0x1f08	7944	CA08: CAN Bus Stopped	No Reaction	C00592/4	0x8000
• xx.0131.00011	0x1f0b	7947	CA0b: CAN HeartBeatEvent	No Reaction	C00592/5	0x8130
▶ <u>xx.0131.00015</u>	0x1f0f	7951	CA0F: CAN control word	Fault	C00594/1	0xF000
▶ <u>xx.0127.00002</u>	0x1b02	6914	CE04: MCI communication error	No Reaction	C01501/1	0x7000
▶ <u>xx.0127.00015</u>	0x1b0f	6927	CEOF: MCI control word	Fault	C00594/2	0xF000
• xx.0135.00001	0x2301	8961	CE1: CAN RPDO1	No Reaction	C00593/1	0x8100
• xx.0135.00002	0x2302	8962	CE2: CAN RPDO2	No Reaction	C00593/2	0x8100
×x.0135.00003	0x2303	8963	CE3: CAN RPDO3	No Reaction	C00593/3	0x8100
×x.0131.00000	0x1f00	7936	CE4: CAN Bus Off	No Reaction	C00592/2	0x8000
▶ <u>xx.0184.00001</u>	0x5401	21505	Ck01: Pos. HW limit switch	TroubleQuickStop	C00595/1	0x8600
×x.0184.00002	0x5402	21506	Ck02: Neg. HW limit switch	TroubleQuickStop	C00595/2	0x8600
×x.0184.00007	0x5407	21511	Ck03: Pos. SW limit position	TroubleQuickStop	C00595/3	0x8600
▶ <u>xx.0184.00008</u>	0x5408	21512	Ck04: Neg. SW limit position	TroubleQuickStop	C00595/4	0x8600
×x.0184.00153	0x5499	21657	Ck05: Error following error 1	Warning	C00595/5	0x8611
×x.0184.00154	0x549a	21658	Ck06: Following Error 2	Warning	C00595/6	0x8611
×x.0184.00155	0x549b	21659	Ck07: Travel range limit exceeded	TroubleQuickStop	C00595/7	0x8612
×x.0184.00156	0x549c	21660	Ck08: Home position unknown	WarningLocked	C00595/8	0x8612
▶ <u>xx.0184.08005</u>	0x54cd	21709	Ck09: Positioning mode invalid	WarningLocked	C00595/9	0x8600
▶ <u>xx.0184.08007</u>	0x54cf	21711	Ck10: Profile data implausible	WarningLocked	C00595/10	0x8600
▶ <u>xx.0184.08009</u>	0x54d1	21713	Ck11: Operating mode invalid	Warning	C00595/11	0x8600
×x.0184.08014	0x54d6	21718	Ck12: Profile no. invalid	WarningLocked	C00595/12	0x8600
▶ <u>xx.0184.08015</u>	0x54d7	21719	Ck13: Error FB MCKCtrlInterface	Warning	C00595/13	0x8600
×x.0184.00015	0x540f	21519	Ck14: Target position beyond SW limit position	WarningLocked	C00595/14	0x8600
×x.0184.00005	0x5405	21509	Ck15: Error status sign. brake	TroubleQuickStop	-	0x8600
▶ xx.0184.00064	0x5440	21568	Ck16: Time overflow manual control	Fault	C00595/15	0x8600

8400 TopLine C | Software Manual
Diagnostics & error management
Error messages of the operating system

Error number			Error message	Response	can be set in	CAN Emergency
32 bits	16 bits _{hex}	16 bits _{dec}		(Lenze setting)		Error Code
xx.0140.00013	0x280d	10253	Cl01: Module missing/incompatible	No Reaction	C01501/2	0x7000
xx.0135.00004	0x2304	8964	CP04: CAN RPDO4	No Reaction	C00593/4	0x8100
xx.0145.00035	0x2d23	11555	dF10: AutoTrip Reset	Fault	C00189	0xF000
xx.0145.00014	0x2d0e	11534	dF14: SW/HW invalid	Fault	-	
xx.0145.00015	0x2d0f	11535	dF15: DCCOM CU2 error	Fault	-	
xx.0145.00024	0x2d18	11544	dF18: BU RCOM error	Fault	-	0x6100
xx.0145.00033	0x2d21	11553	dF21: BU Watchdog	Fault	-	0x6100
xx.0145.00034	0x2d22	11554	dF22: CU watchdog	Fault	-	0x6100
xx.0145.00025	0x2d19	11545	dF25: CU RCOM error	Fault	-	0x6100
xx.0145.00026	0x2d1a	11546	dF26: Appl. watchdog	No Reaction	C00580/1	0x6200
xx.0145.00050	0x2d32	11570	dF50: Retain error	Fault	-	0x6100
xx.0145.00051	0x2d33	11571	dF51: CuCcr error	Fault	-	0x6100
xx.0145.00052	0x2d34	11572	dF52: BuCcr error	Fault	-	0x6100
· xx.0400.00009	0x1a09	6665	dH09: EEPROM power section	Fault	-	0x5530
xx.0400.00016	0x1a10	6672	dH10: Fan failure	Warning	<u>C00566</u>	0x5000
xx.0400.00104	0x1a68	6760	dH68: Adjustment data error CU	Fault	-	0x5530
xx.0400.00105	0x1a69	6761	dH69: Adjustment data error BU	Fault	-	0x5530
xx.0123.00094	0x175e	5982	FC01: Switching frequency reduction	No Reaction	C00590	0x2000
xx.0123.00095	0x175f	5983	FC02: Maximum speed for Fchop	No Reaction	C00588	0xF000
xx.0123.00099	0x1763	5987	FC03: Field controller limitation	No Reaction	C00570/4	0xF000
xx.0123.00057	0x1739	5945	Id1: Motor data identification error	WarningLocked	-	0xF000
xx.0123.00056	0x1738	5944	Id2: Motor data identification error	Fault	-	0xF000
xx.0123.00058	0x173a	5946	Id3: CINH motor data identification	WarningLocked	-	0xF000
xx.0123.00059	0x173b	5947	Id4: Resistance identification error	Warning	-	0xF000
xx.0123.00074	0x174a	5962	ld5: Pole position identification error	Fault	C00643/1	
xx.0123.00075	0x174b	5963	Id6: Resolver ident error	Fault	-	
xx.0123.00145	0x1745	6033	LP1: Motor phase failure	No Reaction	C00597	0x3000
xx.0123.00015	0x170f	5903	LU: DC bus undervoltage	Trouble	C00600/1	0x3100
xx.0123.00016	0x1701	5904	oC1: Power section - short circuit	Fault	-	0x2000
• xx.0123.00017	0x1710	5905	oC2: Power section - earth fault	Fault	-	0x2000
xx.0119.00050	0x1711 0x1332	4914	oC5: Ixt overload	Warning	C00604	0x2000
xx.0123.00105	0x1332	5993	oC6: 12xt motor overload	-	C00604	0x2000
xx.0123.00103	0x1709 0x1707	5895	oC7: Motor overcurrent	Warning Fault	<u>C00606</u>	0x2000
					C00600	0x2000
xx.0123.00030	0x171e	5918	oC10: Maximum current reached	No Reaction	<u>C00609</u>	
xx.0123.00071	0x1747	5959	oC11: Clamp operation active	Fault	600574	0xF000
xx.0123.00065	0x1741	5953	oC12: I2xt brake resistor overload	No Reaction	<u>C00574</u>	0xF000
xx.0123.00090	0x175a	5978	oC13: Maximum current for Fch exceeded	Fault		0xF000
xx.0123.00096	0x1760	5984	oC14: Direct-axis current controller limitation	No Reaction	C00570/1	0xF000
xx.0123.00097	0x1761	5985	oC15: Cross current controller limitation	No Reaction	C00570/2	0xF000
xx.0123.00098	0x1762	5986	oC16: Torque controller limitation	No Reaction	C00570/3	0xF000
xx.0123.00031	0x171f	5919	oC17: Clamp sets pulse inhibit	No Reaction	<u>C00569/1</u>	0xF000
xx.0119.00001	0x1301	4865	oH1: Heatsink overtemperature	Fault	-	0x4000
xx.0119.00015	0x130f	4879	oH3: Motor temperature (X106) triggered	Fault	<u>C00585</u>	0x4000
xx.0119.00000	0x1300	4864	oH4: Heatsink temp. > shutdown temp5°C	No Reaction	<u>C00582</u>	0x4000
xx.0119.00020	0x1314	4884	oH6: Motor temperature MultiEncoder > C121	Warning	<u>C00583/4</u>	
xx.0119.00002	0x1302	4866	oH7: Motor temperature resolver > C121	Warning	<u>C00583/3</u>	
xx.0119.00003	0x1303	4867	oH9: Motor overtemperature resolver	Fault	C00583/1	
xx.0119.00021	0x1315	4885	oH12: Motor overtemperature MultiEncoder	Fault	<u>C00583/2</u>	
xx.0123.00032	0x1720	5920	oS1: Maximum speed limit reached	No Reaction	<u>C00579</u>	0x8400
xx.0123.00033	0x1721	5921	oS2: Max. motor speed	Fault	-	0x8400
xx.0123.00001	0x1701	5889	ot1: Max. torque reached	No Reaction	C00608	0x8300

8400 TopLine C | Software Manual Diagnostics & error management Error messages of the operating system

Error number			Error message	Response	can be set in	CAN Emergency
32 bits	16 bits _{hex}	16 bits _{dec}		(Lenze setting)		Error Code
×x.0123.00093	0x175d	5981	ot2: Speed controller output limited	No Reaction	C00567	0xF000
×x.0123.00014	0x170e	5902	OU: DC bus overvoltage	Trouble	-	0x3100
×x.0144.00001	0x2c01	11265	PS01: No memory module	Warning	-	0x6300
xx.0144.00002	0x2c02	11266	PS02: Invalid par. set	Fault	-	0x6300
xx.0144.00003	0x2c03	11267	PS03: Invalid device par. set	Fault	-	0x6300
xx.0144.00004	0x2c04	11268	PS04: Invalid MCI par. set	Fault	-	0x6300
xx.0144.00007	0x2c07	11271	PS07: Par. mem. module invalid	Fault	-	0x6300
xx.0144.00008	0x2c08	11272	PS08: Par. device invalid	Fault	-	0x6300
xx.0144.00009	0x2c09	11273	PS09: Par. format invalid	Fault	-	0x6300
xx.0144.00010	0x2c0a	11274	PS10: Memory module binding invalid	Fault	-	
xx.0123.00024	0x1718	5912	Sd2: Resolver open circuit	Fault	C00603/2	
xx.0123.00205	0x17cd	6093	Sd3: Feedback system open circuit	Fault	<u>C00586</u>	0x7300
xx.0123.00027	0x171b	5915	Sd4: MultiEncoder open circuit	Fault	C00603/1	
xx.0119.00012	0x130c	4876	Sd6: Error thermal detector resolver	Fault	C00583/5	
xx.0123.00026	0x171a	5914	Sd7: Error encoder communication	Fault	C00603/4	
xx.0123.00062	0x173e	5950	Sd8: Encoder angular drift monit.	Fault	C00603/3	
xx.0123.00200	0x17c8	6088	Sd10: Speed limit for feedback system 12	Fault	<u>C00607</u>	0x7300
xx.0123.00201	0x17c9	6089	Sd11: Speed limit for feedback system 67	Fault	<u>C00607</u>	0x7300
xx.0119.00022	0x1316	4886	Sd12: Error thermal detector MultiEncoder	Fault	C00583/6	
xx.0111.00002	0x0b02	2818	Su02: One mains phase is missing	Warning	<u>C00565</u>	0x3000
xx.0111.00003	0x0b03	2819	Su03: Too frequent mains switching	Fault	-	0x3000
xx.0111.00004	0x0b04	2820	Su04: CU Insufficiently Supplied	Fault	-	0x3000
xx.0111.00006	0x0b06	2822	Su06: Mains input overload	Fault	-	0x3000
xx.0980.00001	-	-	US01: User error 1	No Reaction	C00581/1	0x6200
xx.0981.00002	-	-	US02: User error 2	No Reaction	C00581/2	0x6200
xx.0982.00003	-	-	US03: User error 3	No Reaction	C00581/3	0x6200
xx.0983.00004	-	-	US04: User error 4	No Reaction	<u>C00581/4</u>	0x6200
xx.0984.00001	-	-	US05: User error 5	No Reaction	C00581/5	0x6200
xx.0985.00002	-	-	US06: User error 6	No Reaction	C00581/6	0x6200
xx.0986.00003	-	-	US07: User error 7	No Reaction	C00581/7	0x6200
xx.0987.00004	-	-	US08: User error 8	No Reaction	C00581/8	0x6200

Diagnostics & error management Error messages of the operating system

10.9.6 Cause & possible remedies

This chapter contains all error messages of the controller operating system in numerical order of the error numbers. The list provides detailed information on the response to the error message as well as information on the cause & possible remedies.

Note!

For the sake of legibility, the Logbook and C00165 display the error number with the following syntax:

[Error type].[Error subject area no.].[Error ID]

In this documentation, "xx", a wildcard, stands for the error type since it is configurable for many error messages.

A list of all error messages of the controller operating system in alphabetical order can be found in the previous chapter "Short overview (A-Z)" (608).

Su02: One mains phase is missing [xx.0111.00002]

Response (Lenze setting printed in bold)	Setting: C00565 (☑ Adjustable response)	
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☒ 5: Warning ☐ 6: Information		
Cause	Remedy	
One mains phase of a three-phase supply has failed.	Check mains connection (terminal X100).	

Su03: Too frequent mains switching [xx.0111.00003]

Response (Lenze setting printed in bold)				
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information				
Cause	Remedy			
 Too frequent mains switching of the power section. The device recognises if the power section is switched on and off too frequently. To protect internal charging connections from destruction, the device reports this error and prevents the controller inhibit. All other functions are active. 	 The error must be acknowledged by mains switching. The charging circuit can only cool down when the mains is switched off. After switching the mains 3 times in one minute, there must be a switching pause of 9 minutes. Cyclic mains switching every 3 minutes is permissible. 			

Su04: CU insufficiently supplied [xx.0111.00004]

Response (Lenze setting printed in bold)				
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information				
Cause	Remedy			
After switching on the device, the 24V supply voltage for the control electronics is too low (100ms after switch-on U is < 19V). • The current supply voltage is displayed in C00065.	The error must be acknowledged. With internal supply voltage via the power electronics, the controller must be replaced. With external supply voltage, check the correct connection and/or the stability of the supply voltage.			

Diagnostics & error management Error messages of the operating system

Su06: Mains input overload [xx.0111.00006]

Response (Lenze setting printed in bold)			
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information			
Cause	Remedy		
Overtemperature in case of devices from type 6 in the input rectifier or the mains choke.	 Check whether all mains phases are connected (a 2-phase supply may be existent). Provide for sufficient cooling of the device. 		

oH4: Heatsink temp. > shutdown temp. -5°C [xx.0119.00000]

Response (Lenze setting printed in bold)	Setting: <u>C00582</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
The heatsink temperature now only differs by 5 °C from the shutdown temperature of the motor.	Prevent further heating, i.e. reduce motor load or set controller inhibit so that the heatsink can cool down again.

oH1: Overtemperature heatsink [xx.0119.00001]

Response (Lenze setting printed in bold)		
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: Trouble QuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information		
Cause	Remedy	
The heatsink temperature is higher than the fixed limit temperature (90 ° C). Maybe the ambient temperature of the controller is too high or the fan or its ventilation slots are dirty.	 Check control cabinet temperature. Clean filter. Clean controller. If required, clean or replace the fan. Provide for sufficient cooling of the device. 	

oH7: Motor temperature resolver > C121 [xx.0119.00002]

Response (Lenze setting printed in bold)	Setting: C00583/3 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault □ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
The motor temperature detected via the resolver interface has exceeded the warning threshold set in C00121/1.	 Check motor temperature monitoring. Provide for sufficient cooling of the motor. Check terminals for open circuit or loose contact.

oH9: Motor overtemperature resolver [xx.0119.00003]

Response (Lenze setting printed in bold)	Setting: C00583/1 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
The motor temperature detected via the resolver interface is higher than the fixed limit temperature (90 °C).	 Check motor temperature monitoring. Provide for sufficient cooling of the motor. Check terminals for open circuit or loose contact.

Diagnostics & error management Error messages of the operating system

Sd6: Error thermal detector resolver [xx.0119.00012]

Response (Lenze setting printed in bold)

Setting: C00583/5 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

Cause

Remedy

• Check the contacting of the encoder cable at the motor and the controller.

• Check the selected motor thermal sensor in C01190/1 whether it complies with the assembly in the motor.

• If required, switch off thermal sensor monitoring (C00583/5="0").

oH3: Motor temperature (X106) triggered [xx.0119.00015]

Response (Lenze setting printed in bold)

☐ 0: No Reaction ☐ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☐ 5: Warning ☐ 6: Information

Cause

Remedy

• Check motor temperature monitoring function at the plug connector X106, terminal T1 /T2, has tripped.

Possible causes:
• The motor is overheated so that the thermal contact integrated into the motor has been switched.
• An open circuit or a loose contact at the connections mentioned above has occurred.

Setting: C00585 (☑ Adjustable response)

• Check motor temperature monitoring.
• Provide for sufficient cooling of the motor.
• Check terminals for open circuit or loose contact.

oH6: Motor temperature MultiEncoder > C121 [xx.0119.00020]

Response (Lenze setting printed in bold)

Setting: C00583/4 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

Cause

Remedy

• Check motor temperature monitoring.
interface has exceeded the warning threshold set in C00121/2.

• Check terminals for open circuit or loose contact.

oH12: Motor overtemperature MultiEncoder [xx.0119.00021]

 Response (Lenze setting printed in bold)
 Setting: C00583/2
 (☑ Adjustable response)

 ☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

 Cause

 Remedy

 The motor temperature detected via the encoder interface is higher than the fixed limit temperature (90 °C).

 • Check motor temperature monitoring.

 • Provide for sufficient cooling of the motor.

 • Check terminals for open circuit or loose contact.

Sd12: Error thermal detector MultiEncoder [xx.0119.00022]

Response (Lenze setting printed in bold)

Setting: C00583/6 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

Cause

Remedy

• Check the contacting of the encoder cable at the motor and the controller.

whether it complies with the assembly in the motor.

• If required, switch off thermal sensor monitoring (C00583/6="0").

Diagnostics & error management Error messages of the operating system

oC5: Ixt overload [xx.0119.00050]

Response (Lenze setting printed in bold)

Setting: C00604 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☒ 5: Warning ☐ 6: Information

Cause

Remedy

• Check and, if required, correct dimensioning of the device and the motor load with regard to technical data.

• Reduce motor load cycles (observe load cycles according to documentation).

• Load cycles are not complied with.

ot1: Maximum torque reached [xx.0123.00001]

Response (Lenze setting printed in bold)	Setting: <u>C00608</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
The device indicates that the maximally possible torque at the motor shaft has been reached. • C00057 displays the current torque.	Reduce motor load.

oC7: Motor overcurrent [xx.0123.00007]

Response (Lenze setting printed in bold)		
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information		
Cause	Remedy	
 The maximum current monitoring has tripped. The instantaneous value of the motor current has exceeded the limit value set in <u>C00939</u>. 	Check and, if required, correct dimensioning of the load with regard to the installed device power.	

oU: DC bus overvoltage [xx.0123.00014]

Response (Lenze setting printed in bold)	
□ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
 The device has detected an overvoltage in the DC bus. To protect the device hardware, the inverter control is switched off. Depending on the configuration of the auto-start lock function, C00142 serves to set that, if this error has been tripped, the controller only starts after the controller inhibit is switched. If this error message remains active longer than the time set in C00601, a "Fault" is tripped. 	 Reduce load in generator mode. Use a brake resistor. Use a regenerative power supply unit. Establish a DC-bus connection.

Diagnostics & error management Error messages of the operating system

LU: DC bus undervoltage [xx.0123.00015]

Response (Lenze setting printed in bold)

□ 0: No Reaction □ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

Cause

Remedy

The device has detected a DC bus undervoltage. The inverter control is switched off because the drive properties of the motor control cannot be provided anymore due to the DC bus undervoltage.

• Depending on the configuration of the auto-start lock function, C00142 serves to set that, if this error has been tripped, the controller only starts after the controller inhibit is switched.

oC1: Power section - short circuit [xx.0123.00016]

Response (Lenze setting printed in bold)

□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

Cause

The device has recognised a short circuit of the motor phases. To protect the device electronics, the inverter control is switched off.

- Mostly, incorrectly executed motor connections are the cause.
- If the device is inappropriately dimensioned with regard to the motor load and the current limitation in the controller (Imax controller) is set incorrectly, this error message may also occur.
- ▶ Motor control: Defining current limits

Remedy

- Check motor connections and the corresponding plug connector on the device.
- Only use permissible combinations of device power and motor power.
- Do not set the dynamics of the current limitation controller too high.

oC2: Power section - earth fault [xx.0123.00017]

Response (Lenze setting printed in bold)

□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

Cause

The device has recognised an earth fault at one of the motor phases. To protect the device electronics, the inverter control is switched off.

- Mostly, incorrectly executed motor connections are the cause.
- If motor filter, motor cable length, and cable type (shielding capacity) are dimensioned incorrectly, this error message may occur due to leakage currents to PE.
- If motor filters with additional terminals for +UG and –UG and devices greater or equal 3 kW are used, the earth fault detection may be triggered due to leakage currents to +UG and –UG.
- A cause can also be the use of shielded motor cables longer than 50 m.

Remedy

- Check motor connections and the corresponding plug connector on the device.
- Use motor filters, cable lengths, and cable types recommended by Lenze.
- If motor filters with additional terminals for +UG and –UG and devices greater or equal 3 kW are used:
 - Deactivate earth fault detection during operation by setting the filter time (C01770) to 250 ms.
- · If motor cables longer than 50 m are used:
 - Increase filter time for earth fault detection during operation (C01770).

Diagnostics & error management Error messages of the operating system

Sd2: Open circuit resolver [xx.0123.00024]

 Response (Lenze setting printed in bold)
 Setting: C00603/2
 (☑ Adjustable response)

 ☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

 Cause

 • Encoder signal interferences (EMC).

 • Resolver cable interrupted.
 • Check resolver cable.

 • Resolver defective.
 • Switch off monitoring (C00603/2 = "0: No reaction") if the resolver is not used.

Sd7: Encoder communication error [xx.0123.00026]

Response (Lenze setting printed in bold)	Setting: C00603/4 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
Encoder cable interrupted.Encoder defective.	Check encoder cableCheck encoder.Check parameter setting.

Sd4: Open circuit MultiEncoder [xx.0123.00027]

Response (Lenze setting printed in bold)	Setting: C00603/1 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information	
Cause	Remedy
 Encoder cable interrupted. Encoder defective. 	 Check encoder cable. Check encoder. Switch off monitoring (<u>C00603/1</u> = "0: No reaction") is the encoder is not used.

oC10: Maximum current reached [xx.0123.00030]

Response (Lenze setting printed in bold)	Setting: <u>C00609</u> (☑ Adjustable response)
図 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☑ 5: Warning ☐ 6: Information	
Cause	Remedy
The device displays that the maximum current has been reached.	 Check and, if required, correct dimensioning of the load with regard to the installed device power. Check the maximum current settings in C00022 (Imax in motor mode) and C00023 (Imax in generator mode).

oC17: Clamp sets pulse inhibit [xx.0123.00031]

Response (Lenze setting printed in bold)	Setting: C00569/1 (☑ Adjustable response)
図 0: No Reaction ☑ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Due to a short overcurrent, the inverter was switched off for a short time (clamp disconnection).	 Check and, if required, correct dimensioning of the load with regard to the installed device power. Reduce the dynamics of the setpoint change or speed control.

Diagnostics & error management Error messages of the operating system

oS1: Maximum speed limit reached [xx.0123.00032]

Response (Lenze setting printed in bold)	Setting: <u>C00579</u> (☑ Adjustable response)
図 0: No Reaction ☑ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
The device has recognised that the maximum speed has been reached.	 Limit setpoint selection to maximum values. Adjust set speed limitation (C00909) and frequency limitation (C00910) if necessary.

oS2: Max. motor speed [xx.0123.00033]

□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause R	Remedy
permissible motor speed has been reached.	 Limit setpoint selection to the maximally permissible motor speed. If required, adapt set maximum motor speed (C00965).

Id2: Motor data identification error [xx.0123.00056]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
During the identification of the motor parameters, an error has occurred that caused an abortion of the identification process. Possible causes: Interrupted motor cable. Switched-off power section during the identification. Implausible start parameter settings.	 Check the motor connections and the corresponding plug connector on the device and, if necessary, the motor terminal box. Correct start parameters for the motor parameter identification (motor nameplate data). Stable power supply of the device.

Id1: Motor data identification error [xx.0123.00057]

Response (Lenze setting printed in bold)	
□ 0: No Reaction □ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop 🗵 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
During the identification of the motor parameters, an error has occurred. Possible causes: Interrupted motor cable. Switched-off power section during the identification. Implausible start parameter settings.	 Check the motor connections and the corresponding plug connector on the device and, if necessary, the motor terminal box. Correct start parameters for the motor parameter identification (motor nameplate data). Stable power supply of the device.

Id3: CINH motor data identification [xx.0123.00058]

Response (Lenze setting printed in bold)	
□ 0: No Reaction □ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop 🗵 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
 The device has detected controller inhibit during the motor data identification. This cancels the identification process. The Lenze setting of the motor data is used. 	 Do not set controller inhibit during the motor data identification. Do not execute any device function which may activate controller inhibit.

Diagnostics & error management Error messages of the operating system

Id4: Resistor identification error [xx.0123.00059]

Response (Lenze setting printed in bold)	
☐ 0: No Reaction ☐ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning □ 6: Information
Cause	Remedy
 The device has recognised that an error has occurred in the calculation of the motor cable resistance. The parameters for cable cross-section and cable length are implausible. 	Enter sensible values for cable cross-section and motor cable length.

Sd8: Encoder angular drift monit. [xx.0123.00062]

oC12: I2xt overload - brake resistor [xx.0123.00065]

Response (Lenze setting printed in bold)	Setting: <u>C00574</u> (☑ Adjustable response)	
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☑ 5: Warning ☐ 6: Information		
Cause	Remedy	
Too frequent and too long braking processes.	Check drive dimensioning.	

oC11: Clamp operation active [xx.0123.00071]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
 The device indicates that the "CLAMP" overcurrent limitation has been activated. A permanent clamp operation causes an overload disconnection. 	Reduce setpoint generation dynamics or motor load.

Id5: Pole position identification error [xx.0123.00074]

Response (Lenze setting printed in bold)	Setting: <u>C00643/1</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
 With 360° pole position identification: The rotor position detected via the encoder system does not comply with the controlled output position (plausibility check). With pole position identification with minimum motion: The encoder system detected a motion higher than the permitted one set in C00645/1. 	 With 360° pole position identification: Check parameter setting of the pole position identification. If required, adapt error tolerance for plausibility check in C00645/2. With pole position identification with minimum motion: If required, adjust permitted motion in C00645/1.

Diagnostics & error management Error messages of the operating system

Id6: Resolver ident. error [xx.0123.00075]

Response (Lenze setting printed in bold)

□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

Cause

- A controller inhibit was set during resolver error identification.
- A time-out occurred while the algorithm was being processed. This error may occur if more than 60 seconds pass by between the setting of the "Resolver error identification" device command and the enable of the controller.
- The setpoint speed was too small (|nset| < 500 rpm).
- The setpoint speed was not traversed for at least 1 second.

Remedy

- Reduce the gain of the speed controller.
- · Check the shielding of the motor and encoder.
- Check encoder/encoder connection.
- Controller is enabled after the "Resolver error identification" device command has been set.
- Ensure that the speed profile is traversed for at least 1 second at constant setpoint speed (|nset| > 500 rpm).

oC13: Maximum current for Fch exceeded [xx.0123.00090]

Response (Lenze setting printed in bold)

□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

Cause

The device has detected a motor current which exceeds the maximum current limit at permanent switching frequency of the inverter.

 If a permanent switching frequency inverter is set, a certain limit arises for the maximum current, depending on the setting. If this current limit is exceeded due to a load impulse or overload, an error message is displayed.

Remed

- Observe the maximum current setting depending on the set switching frequency of the inverter.
- Reduce the required load or setting of the dynamic switching frequency if necessary.

ot2: Speed controller output limited [xx.0123.00093]

Response (Lenze setting printed in bold)

Setting: <u>C00567</u> (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked ☑ 5: Warning □ 6: Information

Cause

The output of the speed controller has reached the internal limit value. In this state, the speed controller is not able anymore to correct the system deviation.

 Only with "Closed loop" operation or vector control (SLVC).

Remedy

- Observe load requirements.
- Correct dimensioning or reduce setpoint generation dynamics if necessary.
- ▶ Motor control

FC01: Switching frequency reduction [xx.0123.00094]

Response (Lenze setting printed in bold)

Setting: <u>C00590</u> (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☑ 5: Warning ☐ 6: Information

Cause

Remedy

Load-dependent switching frequency reduction

- Observe load requirements.
- Correct dimensioning or reduce setpoint generation dynamics if necessary.
- ▶ Motor control

Diagnostics & error management Error messages of the operating system

FC02: Maximum speed for Fchop [xx.0123.00095]

Response (Lenze setting printed in bold)	Setting: <u>C00588</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Maximum speed for chopper frequency has been reached. The maximum speed has been exceeded depending on the switching frequency.	Select the correct maximum speed as a function of the switching frequency. • Motor control: Defining speed limits

oC14: Direct-axis current controller limitation [xx.0123.00096]

Response (Lenze setting printed in bold)	Setting: <u>C00570/1</u> (☑ Adjustable response)
図 0: No Reaction ☑ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4	I: WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Direct-axis current controller limitation is active.	 Observe load requirements. Correct dimensioning or reduce setpoint generation dynamics if necessary. Motor control

oC15: Cross current controller limitation [xx.0123.00097]

Response (Lenze setting printed in bold) ☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	Setting: C00570/2 (☑ Adjustable response) WarningLocked ☑ 5: Warning □ 6: Information
Cause	Remedy
Cross current controller limitation is active.	 Observe load requirements. Correct dimensioning or reduce setpoint generation dynamics if necessary. Check parameter setting of the current controller with regard to the motor controllers (e.g. reduce Vp). Motor control

oC16: Torque controller limitation [xx.0123.00098]

Response (Lenze setting printed in bold)	Setting: C00570/3 (☑ Adjustable response)
■ 0: No Reaction ☑ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4	: WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Actuator limitation according to speed controller.	 Observe load requirements. Correct dimensioning or reduce setpoint generation dynamics if necessary. Motor control

FC03: Field controller limitation [xx.0123.00099]

Response (Lenze setting printed in bold)	Setting: C00570/4 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☑ 5: Warning ☐ 6: Information	
Cause	Remedy
The output of the field controller has reached its maximum limit value. The drive is at the torque limit in the field weakening range.	 Observe load requirements. Correct dimensioning or reduce setpoint from the field weakening range if necessary. Motor control

Diagnostics & error management Error messages of the operating system

oC6: I2xt overload - motor [xx.0123.00105]

Response (Lenze setting printed in bold) ☑ 0: No Reaction ☑ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4:	Setting: C00606 (☑ Adjustable response) WarningLocked ☑ 5: Warning □ 6: Information
Cause	Remedy
Thermal overload of the motor.	 Observe load requirements. Correct dimensioning if necessary. In case of VFCplus operation: Check Vmin boost (C00016). Set ► Vmin boost

LP1: Motor phase failure [xx.0123.00145]

Response (Lenze setting printed in bold)	Setting: C00597 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4	1: WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
 Motor phase failure - power section This error message is displayed if a motor phase carries less current of one half-wave than set in C00599. 	 Check the motor connections and the corresponding plug connector on the device and, if necessary, the motor terminal box. Check the trigger threshold <u>C00599</u>.

Sd10: Speed limit - feedback system 12 [xx.0123.00200]

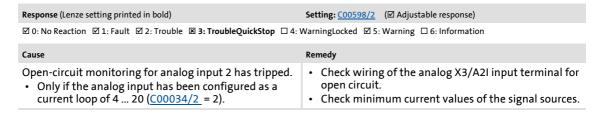
Response (Lenze setting printed in bold)	Setting: <u>C00607</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Maximally permissible speed of the feedback system connected to DI1/DI2 reached.	Reduce speed of the rotation shaft/feedback system. $n_{encoder} <= (f_{max} \times 60) / encoder increment$ (for $f_{max} = 10 \text{ kHz}$)

Sd11: Speed limit for feedback system 67 [xx.0123.00201]

Response (Lenze setting printed in bold)	Setting: <u>C00607</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Maximally permissible speed of the feedback system connected to DI6/DI7 reached.	Reduce speed of the rotation shaft/feedback system. $n_{encoder} <= (f_{max} \times 60) / encoder increment$ (for $f_{max} = 10 \text{ kHz}$)

Sd3: Open circuit - feedback system [xx.0123.00205]

Response (Lenze setting printed in bold)	Setting: <u>C00586</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☑ 5: Warning ☐ 6: Information	
Cause	Remedy
 HTL encoder cable interrupted. HTL encoder is defective. Note: May also be caused by a very dynamic acceleration or starting up against a blocked motor shaft (e.g. with a closed holding brake). 	 Check HTL encoder cable. Check HTL encoder. Check related terminals. Switch off monitoring (<u>C00603/</u> = "0: No reaction") is the HTL encoder is not used.



Diagnostics & error management Error messages of the operating system

An01: AIN1_I < 4 mA [xx.0125.00001]

Response (Lenze setting printed in bold)	Setting: C00598/1 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
 Open-circuit monitoring for analog input 1 has tripped. Only if the analog input has been configured as a current loop of 4 20 (<u>C00034/1</u> = 2). 	 Check wiring of the analog X3/A1I input terminal for open circuit. Check minimum current values of the signal sources.

An02: AIN2_I < 4 mA [xx.0125.00002]

CE04: MCI communication error [xx.0127.00002]

Response (Lenze setting printed in bold) ☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	Setting: C01501/1 (☑ Adjustable response) WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
Communication error with extension module in slot 1.	 Eliminate EMC interference. Switch off controller, correctly plug in the module, switch on the controller again. Mains switching or restart of the controller, respectively. Replace module/controller. If the problem occurs again, you needs to consult Lenze.

CEOF: MCI control word [xx.0127.00015]

Response (Lenze setting printed in bold)	Setting: <u>C00594/2</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☐ 4	: WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Bit 14 ("SetFail") of the wMciCtrl control word of the LS DriveInterface system block has been set.	Trace back signal source on the bus (e.g. PROFIBUS) that sets bit 14 ("SetFail").

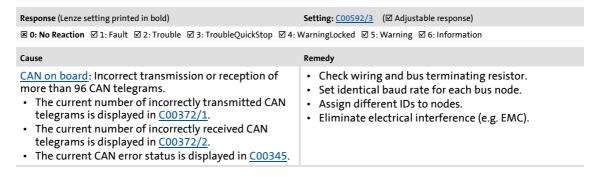
CE4: CAN bus off [xx.0131.00000]

Response (Lenze setting printed in bold)	Setting: C00592/2 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
 CAN on board: "Bus off" status Received too many faulty telegrams. Damaged cable (e.g. loose contact). Two nodes have the same ID. 	 Check wiring and bus terminating resistor. Set identical baud rate for each bus node. Assign different IDs to nodes. Eliminate electrical interference (e.g. EMC).

Diagnostics & error management Error messages of the operating system

CA06: CAN CRC error [xx.0131.00006]

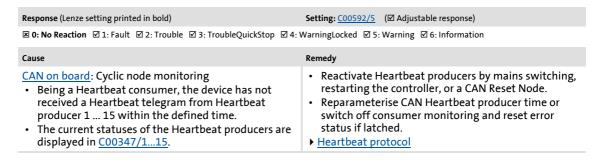
 Response (Lenze setting printed in bold)
 Setting: C00592/1 (☑ Adjustable response)


 ☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

 Cause
 Remedy

 CAN on board: A faulty CAN telegram has been detected.
 • Check wiring and bus terminating resistor.

 • Eliminate electrical interference (e.g. EMC).


CA07: CAN bus warning [xx.0131.00007]

CA08: CAN bus stopped [xx.0131.00008]

Response (Lenze setting printed in bold)	Setting: C00592/4 (☑ Adjustable response)
図 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy

CA0b: CAN HeartBeatEvent [xx.0131.00011]

CAOF: CAN control word [xx.0131.00015]

Response (Lenze setting printed in bold)	Setting: <u>C00594/1</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Bit 14 ("SetFail") in the wCANControl control word of the LS <u>DriveInterface</u> system block has been set.	Trace back signal source on the CAN bus that sets bit 14 ("SetFail").

Diagnostics & error management Error messages of the operating system

CE1: CAN RPDO1 [xx.0135.00001]

Response (Lenze setting printed in bold)

Setting: C00593/1 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

Cause

CAN on board: Time monitoring for RPDO1 has tripped.

RPDO1 has not been received within the monitoring time set in C00357/1 or was faulty.

Remedy

• Set the correct telegram length at the CAN master (transmitter).

Eliminate electrical interference (e.g. EMC).

• Adjust monitoring time in C00357/1 or switch off

time monitoring.

CE2: CAN RPDO2 [xx.0135.00002]

 Response (Lenze setting printed in bold)
 Setting: C00593/2
 (☑ Adjustable response)

 ☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

 Cause

 CAN on board: Time monitoring for RPDO2 has tripped.

 • RPDO2 has not been received within the monitoring time set in C00357/2 or was faulty.
 • Set the correct telegram length at the CAN master (transmitter).

 • Eliminate electrical interference (e.g. EMC).
 • Adjust monitoring time in C00357/2 or switch off time monitoring.

CE3: CAN RPDO3 [xx.0135.00003]

Response (Lenze setting printed in bold)

Setting: C00593/3 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

Cause

CAN on board: Time monitoring for RPDO3 has tripped.

• RPDO3 has not been received within the monitoring time set in C00357/3 or was faulty.

• Eliminate electrical interference (e.g. EMC).

• Adjust monitoring time in C00357/3 or switch off time monitoring.

CP04: CAN RPDO4 [xx.0135.00004]

 Response (Lenze setting printed in bold)
 Setting: C00593/4 (☑ Adjustable response)

 ☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

 Cause

 CAN on board: Time monitoring for RPDO4 has tripped.

 • RPDO4 has not been received within the monitoring time set in C00357/4 or was faulty.
 • Set the correct telegram length at the CAN master (transmitter).

 • Eliminate electrical interference (e.g. EMC).
 • Adjust monitoring time in C00357/4 or switch off time monitoring.

Cl01: Module missing/incompatible [xx.0140.00013]

Response (Lenze setting printed in bold)

Setting: C01501/2 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

Cause

Remedy

• Check connection between the communication module and standard device.

• Check if the module is plugged in correctly.

• In case of an incompatibility, either the module or the software of the standard device is out of date. In this case, please contact Lenze.

Diagnostics & error management Error messages of the operating system

PS01: No memory module [xx.0144.00001]

Response (Lenze setting printed in bold)

□ 0: No Reaction □ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked 🗵 5: Warning □ 6: Information

Cause

Remedy

Memory module is either not available or not snapped into place correctly.

- If a memory module has been provided: Plug the memory module into the slot of the standard device intended for this purpose.
- If a memory module has been provided: Check if the memory module has been plugged-in correctly.

PS02: Par. set invalid [xx.0144.00002]

Response (Lenze setting printed in bold)

□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

21160

Remedy

The parameter set saved to the memory module is invalid because it has not been saved completely.

 This can be due to voltage failure or caused by removing the memory module while saving the parameter set. Ensure voltage supply during the storage process and that the module remains plugged into the slot.

PS03: Par. set device invalid [xx.0144.00003]

Response (Lenze setting printed in bold)

□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

Cause

Remedy

The parameter set saved to the memory module is incompatible to the standard device.

 An incompatibility of the parameter set is caused e.g. when the memory module of an 8400 HighLine is plugged into an 8400 StateLine or the parameter set in the memory module has a higher version than expected by the standard device. When the memory modules are exchanged, observe the downward compatibility:

- OK: StateLine V2.0 to StateLine V3.0
- OK: StateLine V2.0 to HighLine V2.0
- Not OK: HighLine Vx.x to StateLine Vx.x
- Not OK: StateLine V3.0 to StateLine < V3.0

PS04: Par. set Mci invalid [xx.0144.00004]

Response (Lenze setting printed in bold)

□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information

Cause

Remedy

The parameter set saved to the communication module is incompatible to the standard device.

 An incompatibility of the parameter set is caused e.g. when the MCI module parameters in the memory module do not match the plugged communication module. When the memory modules are exchanged, observe the downward compatibility:

- OK: StateLine V2.0 to StateLine V3.0
- OK: StateLine V2.0 to HighLine V2.0
- Not OK: HighLine Vx.x to StateLine Vx.x
- Not OK: StateLine V3.0 to StateLine < V3.0

Diagnostics & error management Error messages of the operating system

PS07: Par. memory module invalid [xx.0144.00007]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
The parameter set saved to the memory module is invalid. • The error occurs while loading the parameter set.	Consultation with Lenze required.
The memory module plugged in the device lacks a code or a code is incorrect.	

PS08: Par. device invalid [xx.0144.00008]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
The parameter set in the device is invalid.The error occurs while loading the parameter set.One code in the device is incorrect.	Consultation with Lenze required.

PS09: Par. format invalid [xx.0144.00009]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
The code format is invalid. The error occurs while loading the parameter set.	Consultation with Lenze required.

PS10: Memory module binding invalid [xx.0144.00010]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
Active device personalisation: The memory module and the controller do not have identical binding IDs.	Use memory modules/controllers with matching binding IDs. Consult the machine manufacturer. Note: Lenze cannot modify e.g. a replacement device via special access to make it work with a personalised memory module.

dF14: SW-HW invalid [xx.0145.00014]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause Ro	remedy
Device error C	Consultation with Lenze required.

Diagnostics & error management Error messages of the operating system

dF15: DCCOM CU2 error [xx.0145.00015]

Response (Lenze setting printed in bold)		
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information		
Cause	Remedy	
Device error	Consultation with Lenze required.	

dF18: BU RCOM error [xx.0145.00024]

Response (Lenze setting printed in bold)		
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information		
Cause	Remedy	
Device error	Consultation with Lenze required.	

dF25: CU RCOM error [xx.0145.00025]

Response (Lenze setting printed in bold)	
□ 0: No Reaction ■ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause Mains switching too frequent. • Cyclic mains switching every 3 minutes is permissible.	After switching the mains 3 times in one minute, there must be a switching pause of 9 minutes.
• Cyclic mains switching every 5 minutes is permissible.	If the problem occurs again, you needs to consult Lenze.

dF26: Appl. watchdog [xx.0145.00026]

Response (Lenze setting printed in bold)	Setting: C00580/1 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4:	WarningLocked ☑ 5: Warning ☐ 6: Information
Cause	Remedy
Time-out of the application. The required computing time of the application exceeds the available computing time.	Reduction of the function block interconnection or the complexity of the application.

dF21: BU watchdog [xx.0145.00033]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
Device error	Consultation with Lenze required.

dF22: CU watchdog [xx.0145.00034]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
Device error	Consultation with Lenze required.

Diagnostics & error management Error messages of the operating system

dF10: AutoTrip reset [xx.0145.00035]

Response (Lenze setting printed in bold)	Setting: <u>C00189</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4	: WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
Too frequent auto-trip reset.	 Check the error cause that activates the auto-trip reset. Eliminate error cause and reset (acknowledge) error manually afterwards.

dF50: Retain error [xx.0145.00050]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
 An error has occurred when accessing retain data. Either caused by an internal hardware error or by lack of mains switching after a firmware download. 	Mains switching If the problem occurs again, you needs to consult Lenze.

dF51: CuCcr error [xx.0145.00051]

Response (Lenze setting printed in bold)	
□ 0: No Reaction ■ 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
Device error	Mains switching If the problem occurs again, you needs to consult Lenze.

dF52: BuCcr error [xx.0145.00052]

Response (Lenze setting printed in bold)	
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information	
Cause	Remedy
Device error	Mains switching If the problem occurs again, you needs to consult Lenze.

Ck01: Pos. HW limit switch [xx.0184.00001]

Response (Lenze setting printed in bold)	Setting: <u>C00595/1</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information	
Cause	Remedy
 MCK: The hardware limit switch in positive traversing direction has tripped. The bLimitSwitchPos input for travel range monitoring via positive hardware limit switch has been set to FALSE (fail-safe). 	Reset error message and retract limit switch.

Diagnostics & error management Error messages of the operating system

Ck02: Neg. HW limit switch [xx.0184.00002]

Response (Lenze setting printed in bold)	Setting: C00595/2 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
 MCK: The hardware limit switch in negative traversing direction has tripped. The bLimitSwitchNeg input for travel range monitoring via negative hardware limit switch has been set to FALSE (fail-safe). 	Reset error message and retract limit switch.

Ck15: Error status sign. brake [xx.0184.00005]

Response (Lenze setting printed in bold)	
□ 0: No Reaction □ 1: Fault □ 2: Trouble ☑ 3: TroubleQuickStop □ 4:	WarningLocked ☐ 5: Warning ☐ 6: Information
Cause	Remedy
MCK: The status monitoring of the holding brake control has tripped.	 Check configuration of the bBrkApplied input for status detection of the brake (via a switching contact at the brake). Check wiring/function of the switching contact. Adapt waiting time (C02589/3). Deactivate status monitoring (via bit 5 in C02582).

Ck03: Pos. SW limit position [xx.0184.00007]

Response (Lenze setting printed in bold)	Setting: C00595/3 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: The device has detected that the position is beyond the positive software limit position (C01229/1).	 Enlarge permissible traversing range (change settings of the software limit positions). Deactivate software limit position monitoring.

Ck04: Neg. SW limit position [xx.0184.00008]

Response (Lenze setting printed in bold)	Setting: C00595/4 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: The device has detected that the position is beyond the negative software limit position (C01229/2).	 Enlarge permissible traversing range (change settings of the software limit positions). Deactivate software limit position monitoring.

Ck14: Target position outside SW limit position [xx.0184.00015]

Response (Lenze setting printed in bold)	Setting: <u>C00595/14</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: A target beyond the software limit positions $(C01229/1)$ and $C01229/2$ has been attempted to position to.	 Select a target within the software limit positions. Enlarge permissible traversing range (change settings of the software limit positions). Deactivate software limit position monitoring.

Diagnostics & error management Error messages of the operating system

Ck16: Time overflow manual operation [xx.0184.00064]

Response (Lenze setting printed in bold)

Setting: C00595/15 (☑ Adjustable response)

☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: WarningLocked ☑ 5: Warning ☑ 6: Information

Remedy

Manual PC control: The connection monitoring has tripped.

• The online connection between the PC and the controller has been interrupted for a longer period of time than the timeout set in C00464/1.

Ck05: Following error 1 [xx.0184.00153]

Response (Lenze setting printed in bold) ☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	Setting: C00595/5 (☑ Adjustable response) WarningLocked ☑ 5: Warning ☑ 6: Information
Cause MCK: The following error limit 1 (C01215/1) has been exceeded.	Optimise control mode. Increase following error limit. Deactivate following error monitoring.

Ck06: Following error 2 [xx.0184.00154]

Response (Lenze setting printed in bold)	Setting: C00595/6 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: The following error limit 2 (C01215/2) has been exceeded.	Optimise control mode.Increase following error limit.Deactivate following error monitoring.

Ck07: Travel range limit exceeded [xx.0184.00155]

Response (Lenze setting printed in bold)	Setting: C00595/7 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault □ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: The maximum travel distance has been exceeded. • The maximum travel distance is displayed in C01213/1.	 Check profile parameters. Deactivate travel range limit monitoring.

Ck08: Home position unknown [xx.0184.00156]

Response (Lenze setting printed in bold)	Setting: C00595/8 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: Home position is unknown.	Perform homing.

Ck09: Positioning mode invalid [xx.0184.08005]

Response (Lenze setting printed in bold)	Setting: <u>C00595/9</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4: V	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: The positioning mode defined via the wPosProfileMode input is not supported.	Define a valid positioning mode.

Diagnostics & error management Error messages of the operating system

Ck10: Implausible profile data [xx.0184.08007]

Response (Lenze setting printed in bold)	Setting: C00595/10 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: Implausible profile data are at hand.	Check profile data set.

Ck11: Invalid operating mode [xx.0184.08009]

Response (Lenze setting printed in bold)	Setting: C00595/11 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault □ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
	•

Ck12: Invalid profile number [xx.0184.08014]

Response (Lenze setting printed in bold)	Setting: C00595/12 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
MCK: The positioning profile number in the positioning operating mode specified via the wPosProfileNo input is invalid.	Define a valid profile number.

Ck13: Error - MCKCtrlInterface function block [xx.0184.08015]

Response (Lenze setting printed in bold)	Setting: <u>C00595/13</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy

dH09: EEPROM power section [xx.0400.00009]

Response (Lenze setting printed in bold)		
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information		
Cause	Remedy	
Device error	Consultation with Lenze required.	

dH10: Fan failure [xx.0400.00016]

Response (Lenze setting printed in bold)	Setting: C00566 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☐ 2: Trouble ☐ 3: TroubleQuickStop ☐ 4: WarningLocked ☒ 5: Warning ☐ 6: Information	
Cause	Remedy
 The device fan has failed. Possible causes: The short-circuit check of the fan connection has tripped. The speed monitoring of the fan has tripped. 	Check the fan for short-circuit.Clean the fan.

Diagnostics & error management Error messages of the operating system

dH68: Adjustment data error CU [xx.0400.00104]

Response (Lenze setting printed in bold)		
□ 0: No Reaction 🗵 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information		
Cause	Remedy	
Device error	Consultation with Lenze required.	

dH69: Adjustment data error BU [xx.0400.00105]

Response (Lenze setting printed in bold)		
□ 0: No Reaction 🗷 1: Fault □ 2: Trouble □ 3: TroubleQuickStop □ 4: WarningLocked □ 5: Warning □ 6: Information		
Cause	Remedy	
Device error	Consultation with Lenze required.	

US01: User error 1 [xx.0980.00001]

Response (Lenze setting printed in bold)	Setting: <u>C00581/1</u> (☑ Adjustable response)
☑ 0: No Reaction ☑ 1 : Fault ☑ 2 : Trouble ☑ 3 : TroubleQuickStop ☑ 4 :	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
User error 1 has been tripped via the <i>bSetError1</i> input of the <u>LS_SetError_1</u> system block.	User-defined.

US02: User error 2 [xx.0981.00002]

Response (Lenze setting printed in bold)	Setting: C00581/2 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy

US03: User error 3 [xx.0982.00003]

Response (Lenze setting printed in bold)	Setting: C00581/3 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
User error 3 has been tripped via the <i>bSetError3</i> input of the <u>LS_SetError_1</u> system block.	User-defined.

US04: User error 4 [xx.0983.00004]

Response (Lenze setting printed in bold)	Setting: C00581/4 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
User error 4 has been tripped via the <i>bSetError4</i> input of the <u>LS_SetError_1</u> system block.	User-defined.

Diagnostics & error management Error messages of the operating system

US05: User error 5 [xx.0984.00001]

Response (Lenze setting printed in bold)	Setting: C00581/5 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1 : Fault ☑ 2 : Trouble ☑ 3 : TroubleQuickStop ☑ 4 :	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
User error 5 has been tripped via the <i>bSetError1</i> input of the LS SetError 2 system block.	User-defined.

US06: User error 6 [xx.0985.00002]

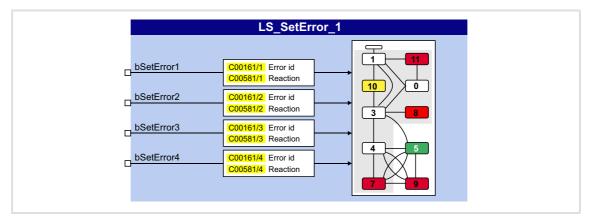
Response (Lenze setting printed in bold)	Setting: C00581/6 (☑ Adjustable response)
図 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
User error 6 has been tripped via the <i>bSetError2</i> input of the <u>LS_SetError_2</u> system block.	User-defined.

US07: User error 7 [xx.0986.00003]

Response (Lenze setting printed in bold)	Setting: C00581/7 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
User error 7 has been tripped via the <i>bSetError3</i> input of the <u>LS_SetError_2</u> system block.	User-defined.

US08: User error 8 [xx.0987.00004]

Response (Lenze setting printed in bold)	Setting: C00581/8 (☑ Adjustable response)
☑ 0: No Reaction ☑ 1: Fault ☑ 2: Trouble ☑ 3: TroubleQuickStop ☑ 4:	WarningLocked ☑ 5: Warning ☑ 6: Information
Cause	Remedy
User error 8 has been tripped via the <i>bSetError4</i> input of the <u>LS_SetError_2</u> system block.	User-defined.



Diagnostics & error management System block "LS_SetError_1"

10.10 System block "LS_SetError_1"

This system block is used for error handling within the application.

- ► The application can trip up to four different user error messages with parameterisable error IDs and error responses via the four boolean inputs.
- ► If several inputs are set to TRUE at the same time, the input with the lowest number will trip the error message.

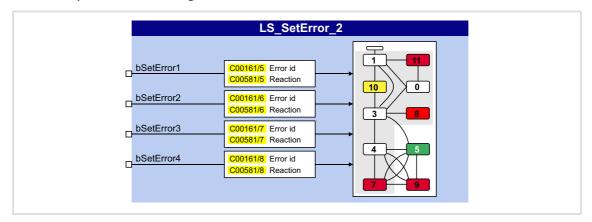
Inputs

Identifier	Data type	Information/possible settings
bSetError1	BOOL	Input for tripping " <u>US01: User error 1</u> " • Error subject number: 980 • Error number: (<u>C00581/1</u> x 0x0400000) + (980 x 0x10000) + (<u>C00161/1</u>)
bSetError2	BOOL	Input for tripping " <u>US02: User error 2</u> " • Error subject number: 981 • Error number: (<u>C00581/2</u> x 0x0400000) + (981 x 0x10000) + (<u>C00161/2</u>)
bSetError3	BOOL	Input for tripping " <u>US03: User error 3</u> " • Error subject number: 982 • Error number: (<u>C00581/3</u> x 0x0400000) + (982 x 0x10000) + (<u>C00161/3</u>)
bSetError4	BOOL	Input for tripping " <u>US04: User error 4</u> " • Error subject number: 983 • Error number: (<u>C00581/4</u> x 0x0400000) + (983 x 0x10000) + (<u>C00161/4</u>)

8400 TopLine C | Software Manual
Diagnostics & error management
System block "LS_SetError_1"

Parameter

Parameter	Possible	e setting	gs		Info
<u>C00161/14</u>	0			65535	Error ID for user errors 1 4
C00581/14					Response to user errors 1 4
	0	No Rea	iction		
	1	Fault (pulse inhibit)		
	2	Troubl	e		
	3	Troubl	eQuickStop		
	4	Warni	ngLocked		
	5	Warni	ng		
	6	Inform	ation		



Diagnostics & error management System block "LS_SetError_2"

10.11 System block "LS_SetError_2"

This system block is used for error handling within the application.

- ► The application can trip up to four different user error messages with parameterisable error IDs and error responses via the four boolean inputs.
- ► If several inputs are set to TRUE at the same time, the input with the lowest number will trip the error message.

Inputs

Identifier	Data type	Information/possible settings
bSetError1	BOOL	Input for tripping " <u>US05: User error 5</u> " • Error subject number: 984 • Error number: (<u>C00581/5</u> x 0x0400000) + (984 x 0x10000) + (<u>C00161/5</u>)
bSetError2	BOOL	Input for tripping " <u>US06: User error 6</u> " • Error subject number: 985 • Error number: (<u>C00581/6</u> x 0x0400000) + (985 x 0x10000) + (<u>C00161/6</u>)
bSetError3	BOOL	Input for tripping " <u>US07: User error 7</u> " • Error subject number: 986 • Error number: (<u>C00581/7</u> x 0x0400000) + (986 x 0x10000) + (<u>C00161/7</u>)
bSetError4	BOOL	Input for tripping " <u>US08: User error 8</u> " • Error subject number: 987 • Error number: (<u>C00581/8</u> x 0x0400000) + (987 x 0x10000) + (<u>C00161/8</u>)

8400 TopLine C | Software Manual
Diagnostics & error management
System block "LS_SetError_2"

Parameter

Parameter	Possible	e setting	gs		Info
<u>C00161/58</u>	0			65535	Error ID for user errors 5 8
C00581/58					Response to user errors 5 8
	0	No Rea	iction		
	1	Fault (pulse inhibit)		
	2 Trouble				
	3	Troubl	eQuickStop		
	4	Warni	ngLocked		
	5	Warni	ng		
	6	Inform	ation		

System bus "CAN on board" 11

The controller has an integrated CANopen system bus interface ("CAN on board") which is used to exchange i.a. process data and parameter values between the nodes. Furthermore, other modules can be connected via this interface such as decentralised terminals, operator and input devices (HMIs), as well as external controls and host systems.

The interface transfers CAN objects following the CANopen communication profile (CiA DS301, version 4.02) developed by the umbrella organisation of CiA (CAN in Automation) in conformity with the CAL (CAN Application Layer).

- In the »Engineer« parameter list and in the keypad, category CAN, you can find the parameters relevant for the CANopen system bus interface classified in different subcategories.
- Information on CAN communication modules and CANopen system bus interfaces of other Lenze devices is provided in the "CAN" communication manual in the Lenze library.

11.1 General information

For many years, the system bus (CAN) based on the CANopen communication profile has been integrated in Lenze controllers. Due to the lower number of data objects available, the functionality and compatibility of the previous system bus are lower as compared to CANopen. For parameter setting, two parameter data channels are always available to the user while CANopen provides only one active parameter channel.

The system bus (CANopen) of the Inverter Drives 8400 is a further development of the system bus (CAN) including the following properties:

- ► Full compatibility according to CANopen DS301, V4.02.
- ▶ Support of the "Heartbeat" NMT slave function (DS301, V4.02).
- ▶ Number of parameterisable server SDO channels:
 - Max. 2 channels with 1 ... 8 bytes
 - Due to the 2 server SDO channels, an address range of 1 ... 63 is provided.
- ▶ Number of parameterisable PDO channels:
 - For device version "BaseLine C":
 max. 2 transmit PDOs (TPDOs) with 1 ... 8 bytes (adjustable)
 max. 2 receive PDOs (RPDOs) with 1 ... 8 bytes (adjustable)
 - From device version "StateLine":
 max. 3 transmit PDOs (TPDOs) with 1 ... 8 bytes (adjustable)
 max. 3 receive PDOs (RPDOs) with 1 ... 8 bytes (adjustable)
- ▶ All PDO channels are functionally equivalent.
- ▶ Monitoring of the RPDOs for data reception
- ► Adjustable error response to ...
 - physical CAN errors (frame, bit, ACK error)
 - bus-stop, bus working
 - absent PDOs
- ► Telegram counters for SDOs and PDOs
- ► Bus status diagnostics
- ▶ Boot-up telegram generation
- ► Emergency telegram generation
- Reset node telegram generation (in case of master configuration)
- ▶ Sync telegram generation and response to sync telegrams:
 - Data transmission/reception
 - Device-internal time base synchronisation
- ► Abort codes
- ▶ All CAN on board functions can be parameterised via codes
- ▶ Object directory (all mandatory functions, optional functions, indexes)

11.1.1 General data and application conditions

Range	Values
Communication profile	CANopen, DS301 V4.02
Communication medium	DIN ISO 11898
Network topology	Line terminated at both ends
Adjustable node addresses (max. number of nodes)	 Depending on the number of SDO channels set in <u>C00366</u>: 1 SDO: Node address 1 127 (max. 127 nodes) 2 SDO: Node address 1 63 (max. 63 nodes) adjustable via DIP switches or via code <u>C00350</u>.
Adjustable baud rates	 20, 50, 125, 250, 500, 1000 kbps adjustable via DIP switches or via code <u>C00351</u>.
Process data	 Max. 3 transmit PDOs (TPDOs) with 1 8 bytes (adjustable) Max. 3 receive PDOs (RPDOs) with 1 8 bytes (adjustable)
Parameter data	Max. 2 server SDO channels with 1 8 bytes
Transfer mode for TPDOs	 in case of data change (including adjustable blocking time) Time-controlled, 1 to x ms After the reception of 1 to 240 sync telegrams

11.1.2 Supported protocols

Protocols					
Standard PDO protocols	PDO write PDO read				
SDO protocols	SDO download SDO download initiate SDO download segment				
	SDO upload SDO upload initiate SDO upload segment				
	SDO abort transfer				
	SDO block download SDO block download initiate SDO block download end				
	SDO block upload SDO block upload initiate SDO block upload end				
NMT protocols	Start remote node (master and slave)				
	Stop remote node (slave)				
	Enter pre-operational (slave)				
	Reset node (slave and local device)				
	Reset communication protocol (slave)				
Monitoring protocols	Heartbeat (heartbeat producer and heartbeat consumer) • Up to 15 Heartbeat Producers can be monitored.				
	Emergency telegram (to master)				
More protocols	 Transmitting and receiving a sync telegram Synchronisation of the internal time base to the reception of the CAN sync telegram is possible. ▶ Synchronisation of the internal time base 				

11.1.3 Communication time

The communication time is the time between the start of a request and the arrival of the corresponding response.

The communication times in the CAN network depend on:

- the processing time in the device
- the telegram runtime (baud rate/telegram length)
- the bus load (especially if the bus is charged with PDOs and SDOs at a low baud rate)

Processing time in the 8400 controller

No dependencies exist between parameter data and process data.

- ► Parameter data: approx. 5 ms (typical value)
 - For parameters concerning the motor control (e.g. C00011), the processing time may be longer (up to 30 ms).
- ▶ Process data: 1 ms

System bus "CAN on board" Possible settings via DIP switch

11.2 Possible settings via DIP switch

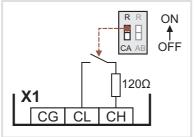
The following settings for the "CAN on board" system bus can be made via the front panel DIP switches:

DIP switch		Possible settings/detailed information
c b a 64 32 16 8 4 2 1 ON R R	а с	▶ <u>Setting the baud rate</u>
	1 64	▶ <u>Setting the node address</u>
Baud CAN Address OFF CA AB	CA	▶ Activating the bus terminating resistor

Lenze setting: All DIP switches are in the "OFF" position

Note!

- The DIP switch settings are accepted if a node address is unequal zero when the device or the 24-V supply is switched on by the DIP address.
- If all DIP switches are OFF when the device or the 24 V supply is switched on, the setting of the baud rate and node address are read out of the parameter set/parameter.


The current DIP switch settings are displayed in code C00349.

Bit 15 indicates that the setting of the DIP switches has been accepted when the device or the 24V supply has been switched on.

11.2.1 Activating the bus terminating resistor

The CAN bus must be terminated between CAN low and CAN high at the first and last physical node each by a resistor (120 Ω).

The 8400 controller is provided with an integrated bus terminating resistor, which can be activated via the DIP switch labelled with "CA":

- ► OFF = bus terminating resistor is inactive
- ► ON = bus terminating resistor is active

[11-1] Activation of the integrated bus terminating resistor

11.2.2 Setting the baud rate

The baud rate can be set via code C00351 or with the DIP switches a to c:

Note!

- All DIP switches (a ... c, 1 ... 64) = OFF (Lenze setting):
 - At switching on, the settings under code <u>C00350</u> (node address) and <u>C00351</u> (baud rate) will become active.
- · Preset baud rate: 500 kbps

DIP	DIP switch position		Baud rate
c	b	a	
ON	OFF	ON	20 kbps
OFF	ON	ON	50 kbps
OFF	ON	OFF	125 kbps
OFF	OFF	ON	250 kbps
OFF	OFF	OFF	500 kbps
ON	OFF	OFF	1000 kbps

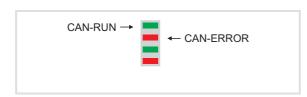
11.2.3 Setting the node address

The node address can be set via code C00350 or with the DIP switches 1 to 64.

- ► The labelling on the housing corresponds to the values of the individual DIP switches for determining the node address.
- ▶ The valid address range depends on the number of SDO channels set in <u>C00366</u>:
 - 1 SDO (Lenze setting): 1 ... 127
 - 2 SDO: 1 ... 63

Note!

- The addresses of the nodes must differ from each other.
- All DIP switches (a ... c, 1 ... 64) = OFF (Lenze setting):
 - At switching on, the settings under code <u>C00350</u> (node address) and <u>C00351</u> (baud rate) will become active.



System bus "CAN on board" LED status displays for the system bus

Example: Setting of the node address 23

DIP switch	64	32	16	8	4	2	1
Switch position	OFF	OFF	ON	OFF	ON	ON	ON
Value	0	0	16	0	4	2	1
Node address	= Sum of the values = 16 + 4 + 2 + 1 = 23						

11.3 LED status displays for the system bus

- ► CAN-RUN: Signals the CANopen state
- ► CAN-ERROR: Signals a CANopen error

System bus "CAN on board" Going online via system bus (CAN on board)

11.4 Going online via system bus (CAN on board)

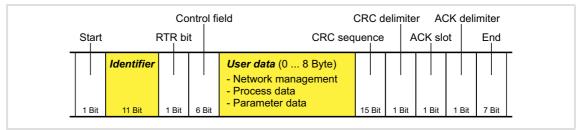
The integrated system bus interface (CAN on board, X1 terminal) can also be used for the communication between the »Engineer« and the controller, alternatively to the USB diagnostic adapter.

▶ Lenze offers the following communication accessories for connection to the PC:

Communication accessories	PC interface
PC system bus adapter 2173 incl. connection cable and voltage supply adapter • for DIN keyboard connection (EMF2173IB) • for PS/2 keyboard connection (EMF2173IBV002) • for PS/2 keyboard connection with electrical isolation (EMF2173IBV003)	Parallel interface (LPT port)
PC system bus adapter 2177 incl. connection cable (EMF2177IB)	USB (Universal Serial Bus)

Note!

- For detailed information about the PC system bus adapter, please see the "CAN Communication Manual".
- Please observe the documentation for the PC system bus adapter!
- In the "Engineer", go to the *Device assignment offline devices* dialog box and select the "System bus CAN" entry from the **Bus connection** list field to establish an online connection.


11.5 Reinitialising the CANopen system bus interface

The $\underline{\text{C00002/26}}$ = "1: On / start" device command reinitialises the CANopen system bus interface of the controller ("Reset node"), which is required after e.g. changing the data transfer rate, the node address or the identifiers, respectively.

System bus "CAN on board"
Structure of the CAN data telegram

11.6 Structure of the CAN data telegram

[11-2] Basic structure of the CAN telegram

The following subchapters provide a detailed description of the identifier and the user data. The other signals refer to the transfer characteristics of the CAN telegram whose description is not included in the scope of this documentation.

Please visit the homepage of the CAN user organisation CiA (CAN in automation) for further information:

http://www.can-cia.org

11.6.1 Identifier

The principle of the CAN communication is based on a message-oriented data exchange between a transmitter and many receivers. All nodes can transmit and receive quasi-simultaneously.

The identifier, also called COB-ID (abbr. for communication object identifier), is used to control which node is to receive a transmitted message. In addition to the addressing, the identifier contains information on the priority of the message and the type of user data.

The identifier consists of a basic identifier and the node address of the node to be addressed:

Identifier (COB-ID) = basic identifier + node address (node ID)

<u>Exception</u>: The identifier for process data/heartbeat/emergency objects as well as network management and sync telegrams is freely assigned by the user (either manually or automatically by the network configurator), or is permanently assigned.

Node address (node ID)

Every node of the system bus network must be assigned to a node address (also called node ID) within the valid address range (1 ... 127) for unambiguous identification.

- Assigning a node address more than once within a network is impermissible.
- The own node address can be configured via the DIP switches or via code <u>C00350</u>.
 <u>Setting the node address</u> (☐ 643)

Identifier assignment

The system bus is message-oriented instead of node-oriented. Every message has an unambiguous identification, the identifier. For CANopen, node-oriented transfer is achieved by the fact that every message has only one transmitter.

- ► The basic identifiers for network management (NMT) and sync as well as the basic SDO channel (SDO1) are defined in the CANopen protocol and cannot be changed.
- ► In the Lenze setting, the basic identifiers of the PDOs are preset according to the "Predefined connection set" of DS301, V4.02 and can be changed via parameters/indexes if required. ► <u>Identifiers of the process data objects</u> (☐ 661)

Object		Direction		Lenze-Base-ID		CANopen-Base-ID	
		from device	to device	dec	hex	dec	hex
Network management (NMT))			0	0	0	0
Sync ¹⁾				128	80	128	80
Emergency 1)		•		128	80	128	80
PDO1 (Process data channel 1)	TPDO1	•		384	180	384	180
	RPDO1		•	512	200	512	200
PDO2 (Process data channel 2)	TPDO2	•		640	280	640	280
	RPDO2		•	641	281	768	300
PDO3 (Process data channel 3)	TPDO3	•		768	300	896	380
	RPDO3		•	769	301	1024	400
SDO1 (Parameter data channel 1)	TSDO1	•		1408	580	1408	580
	RSDO1		•	1536	600	1536	600
SDO2 (Parameter data channel 2)	TSDO2	•		1472	5C0	1472	5C0
	RSDO2		•	1600	640	1600	640
Heartbeat		•		1792	700	1792	700
Boot-up		•		1792	700	1792	700

¹⁾ If you set the sync transmit/receive identifier manually, observe the use of the emergency telegram, since it has the same COB-ID.

System bus "CAN on board"
Structure of the CAN data telegram

11.6.2 User data

All nodes communicate by exchanging data telegrams via the system bus. The user data area of the CAN telegram either contains network management data or parameter data or process data:

Network management data

(NMT data)

► Control information on start, stop, reset, etc. of communication to specific nodes or to all nodes of the CAN network.

Process data

(PDOs – process data objects)

- ▶ Process data are transferred via the process data channel.
- ▶ Process data can be used to control the controller.
- ▶ Process data are not saved to the controller.
- ▶ Process data are transmitted between host system and nodes to ensure continuous exchange of current input and output data.
- ▶ Process data usually are unscaled/scalable raw data.
- ▶ Process data are, for instance, setpoints and actual values.
- ► The exact meaning of the PDO file contents is determined via the function block editor (FB Editor) in the I/O level or via the PDO mapping.

Parameter data

(SDOs – service data objects)

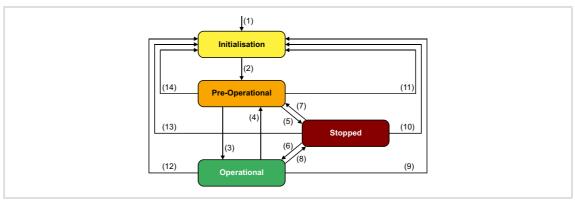
- ▶ Parameter data are the CANopen indexes or, in case of Lenze devices, the codes.
- ▶ Parameters are, for instance, used for one-off plant setting during commissioning or when the material is changed on a production machine.
- ▶ Parameter data are transmitted as SDOs via the parameter data channel. They are acknowledged by the receiver, i.e. the transmitter gets a feedback about the transmission being successful or not.
- ▶ The parameter data channel enables access to all Lenze codes and CANopen indexes.
- ▶ Parameter changes are automatically saved to the controller until mains switching.
- ▶ In general, the parameter transfer is not time-critical.
- ▶ Parameter data are, for instance, operating parameters, diagnostic information and motor data as well as control information on the interconnection of function blocks in the I/O level of the FB Editor.

11.7 Communication phases/network management

Regarding communication via the system bus, the controller distinguishes between the following statuses:

Status	Explanation
"Initialisation" (Initialisation)	 After switch-on, an initialisation run is carried out. During this phase, the controller is not involved in the data exchange via the bus. The standard values are re-written to all CAN-relevant parameters. After initialisation is completed, the controller is automatically set to the "Pre-Operational" status.
"Pre-Operational" (before being ready for operation)	Parameter data can be received, process data are ignored.
"Operational" (ready for operation)	Parameter data and process data can be received!
"Stopped" (stopped)	Only network management telegrams can be received.

Communication object	Initialisation	Pre-Operational	Operational	Stopped
PDO			•	
SDO		•	•	
Sync		•	•	
Emergency		•	•	
Boot-up	•			
Network management (NMT)		•	•	•



Part of the initialisation or the entire initialisation can be carried out anew in every status by transferring the corresponding network management telegrams.

The current CAN status is displayed in <a>CO0359 for diagnostic purposes.

11.7.1 **Status transitions**

[11-3] NMT status transitions in the CAN network

Transition	NMT command	Status after change	Effects on process/parameter data after status change			
(1)	-	Initialisation	 Initialisation starts automatically when the mains is switched on. During initialisation, the controller is not involved in the data exchange. After the initialisation is completed, the node sends a boot-up message with an individual identifier and automatically changes to the "pre-operational" status. 			
(2)	-	Pre-Operational	In this phase, the master determines the way in which the node(s) takes/take part in communication.			
i	 From here, the master changes the statuses for the entire network. A target address included in the NMT command defines the receiver(s). If the 8400 controller is configured as CAN master, the status is automatically changed to "Operational" after a waiting time has expired (C00356/1), and the 0x0100 ("Start remote nod NMT command is transmitted to all nodes. Data can only be exchanged via process data objects if the status is "Operational"! 					
(3), (6)	0x01 xx Start remote node	Operational	Network management/sync/emergency telegrams as well as process data (PDO) and parameter data (SDO) are active. Optional: When the status is changed, event and timecontrolled process data (PDOs) are transmitted once.			
(4), (7)	0x80 xx Enter Pre-Operational	Pre-Operational	Network management/sync/emergency telegrams and parameter data (SDO) are active.			
(5), (8)	0x02 xx Stop remote node	Stopped	Only network management telegrams can be received.			
(9), (10), (11)	0x81 xx Reset node	Initialisation	All CAN-relevant parameters (CiA DS 301) are initialised with the saved values.			
(12), (13), (14)	0x82 xx Reset communication		All CAN-relevant parameters (CiA DS 301) are initialised with the saved values.			
1	 Meaning of the node address in the NMT command: xx = 0x00: If this assignment is selected, the telegram addresses all nodes (broadcast telegram). The status of all nodes can be changed at the same time. xx = Node ID: If a node address is specified, only the status of the node with the corresponding address changes. 					

11.7.2 Network management telegram (NMT)

The telegram for the network management contains identifier "0" and the command included in the user data which consists of the command byte and the node address:

		Identifier			User data (2	Byte)					
		COB-ID = 0			command specifier	node address					
1	Bit	11 Bit	1 Bit	6 Bit	(cs)	(node ID)	15 Bit	1 Bit	1 Bit	1 Bit	7 Bit

[11-4] Network management telegram for changing over the communication phases

Command s	specifier (cs)	NMT command
dec	hex	
1	0x01	Start remote node
2	0x02	Stop remote node
128	0x80	Enter Pre-Operational
129	0x81	Reset node
130	0x82	Reset communication

The change-over of the communication phases for the entire network is carried out by one node, the CAN master. The function of the CAN master can also be carried out by the controller. ▶ Parameterising the controller as CAN master (□ 652)

Meaning of the node address in the user data:

- ▶ node ID = "0": The telegram addresses all nodes (broadcast telegram). The status of all nodes can be changed at the same time.
- ▶ node ID = "1" ... "127": If a node address is specified, only the status of the node with the corresponding address changes.

Example:

Data can only be exchanged via process data objects if the status is "Operational". If the CAN master is supposed to switch all nodes connected to the bus from the "Pre-Operational" communication status to the "Operational" communication status, the identifier and user data in the transmission telegram must be set as follows:

- ► Identifier: 0x00 (network management)
- ▶ User data: 0x0100 ("Start remote node" NMT command to all nodes)

System bus "CAN on board" Communication phases/network management

11.7.3 Parameterising the controller as CAN master

If the initialisation of the system bus and the associated status change from "Pre-Operational" to "Operational" is not effected by a superimposed host system, the controller can instead be defined to be a "quasi" master to execute this task.

The controller is configured as CAN master in C00352.

- ▶ Being the CAN master, the controller sets all nodes connected to the bus (broadcast telegram) to the "Operational" communication status with the "Start remote node" NMT telegram. Only in this communication status, data can be exchanged via process data objects.
- ▶ A delay time can be set in C00356/1 which must expire after mains switching before the controller transmits the "Start remote node" NMT telegram.

Parameter	Info	Lenze setting		
		Value	Unit	
<u>C00352</u>	CAN Slave/Master	Slav	re	
C00356/1	CAN delay boot-up - Operational	3000	ms	

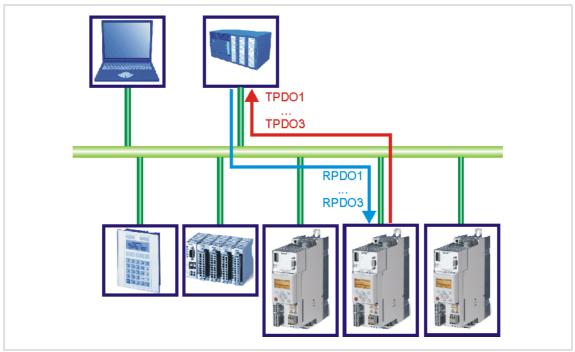
Note!

The changes of the master/slave operation in <a>C00352 will not be activated until

another mains switching of the controller

or

 the "Reset node" or "Reset communication" NMT telegram has been transmitted to the controller.


The "CAN reset node" device command (C00002/26) is provided as an alternative to the "Reset node" NMT telegram for the reinitialisation of the CAN-specific device parameters.

Master functionality is only required during the initialisation phase of the drive system.

11.8 Process data transfer

[11-5] PDO data transfer from / to the higher-level host system

"BaseLine C" versions have two separate process channels (PDO1 and PDO2) and from the "StateLine" version three separate process data channels (PDO1 ... PDO3) for process data transfer.

Definitions

- ▶ Process data telegrams between the host system and the devices are distinguished in terms of direction as follows:
 - Process data telegrams to the device (RPDO)
 - Process data telegrams <u>from</u> the device (TPDO)
- ▶ The CANopen process data objects are designated as seen from the node's view:
 - Receive PDOs (RPDOx): Process data object received by a node
 - Transmit PDOs (TPDOx): Process data object sent by a node

Note!

Data can only be exchanged via process data objects if the status is "Operational"!

► <u>Communication phases/network management</u> (649)

System bus "CAN on board" Process data transfer

11.8.1 Available process data objects

Controllers of the 8400 series have a maximum number of 3 receive PDOs (RPDOs) and 3 transmit PDOs (TPDOs).

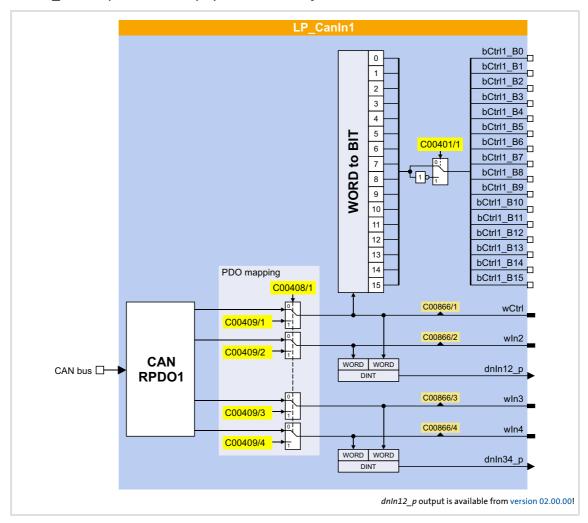
Process data object	Version "BaseLine C"	from version "StateLine"
RPDO1 Port block "LP_CanIn1"	•	•
RPDO2 Port block "LP_CanIn2"	•	•
RPDO3 Port block "LP_CanIn3"		•
TPDO1 Port block "LP_CanOut1"	•	•
TPDO2 Port block "LP_CanOut2"	•	•
TPDO3 Port block "LP_CanOut3"		•

Receive PDOs (RPDOs)

The process data objects transmitted from the CAN bus <u>to</u> the drive are processed via the <u>LP CanIn1</u> ... <u>LP CanIn3</u> port blocks.

- ► Every port block provides 4 words (2 bytes/word). The data of every first word are provided in a bit decoded manner (bit 0 ... 15).
- ► The first word of the <u>LP CanIn1</u> port block is defined as control word wCtrl. The wCtrl control word does <u>not</u> have a permanent connection to the device control and can be used as required. The predefined assignment of the wCtrl control word in the <u>C00007</u> = "30: CAN" control mode depends on the technology application selected in <u>C00005</u>:
 - TA "Actuating drive speed":
 Process data assignment for fieldbus communication (□ 403)
 - TA "Table positioning":
 Process data assignment for fieldbus communication (434)
 - TA "Switch-off positioning":
 Process data assignment for fieldbus communication (□ 460)

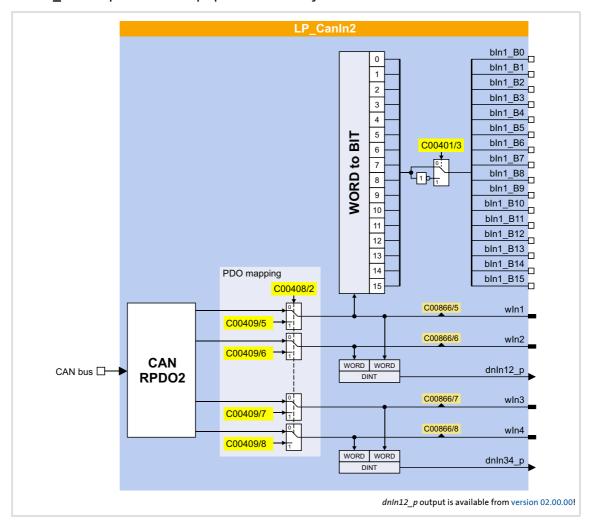
Transmit PDOs (TPDOs)


The process data transmitted from the drive <u>to</u> the CAN bust are processed via the <u>LP CanOut1</u> ... <u>LP CanOut3</u> port blocks.

- ► Every port block receives 4 words (2 bytes/word). The data of every first word are transmitted bit by bit (bit 0 ... 15).
- ► The first word of the <u>LP CanOut1</u> port block is defined as the *wState* status word. The *wState* status word does <u>not</u> have a permanent connection to the device control and can be used as required.
 - For the predefined assignment, see the <u>wDeviceStatusWord status word</u> of the drive interface.

11.8.1.1 RPDO1 | Port block "LP_CanIn1"

The LP_CanIn1 port block maps process data object RPDO1 in the FB Editor.


Short overview of the parameters for LP_CanIn1:

Parameter	Info	Lenze setting			
C00401/1	LP_CanIn1: Inversion bCtrl1_B015	0x0000			
C00866/1	LP_CanIn1: wCtrl	-			
C00866/2	LP_CanIn1: wIn2	-			
C00866/3	LP_CanIn1: wIn3	-			
C00866/4	LP_CanIn1: wIn4	-			
PDO mapping					
C00408/1	LP_CanIn1: Mapping selection	CanIn			
C00409/1	LP_CanIn1: wCtrl MapVal	0			
C00409/2	LP_CanIn1: wIn2 MapVal	0			
C00409/3	LP_CanIn1: wIn3 MapVal	0			
C00409/4	LP_CanIn1: wIn4 MapVal	0			
Highlighted in grey = display parameter					

11.8.1.2 RPDO2 | Port block "LP_CanIn2"

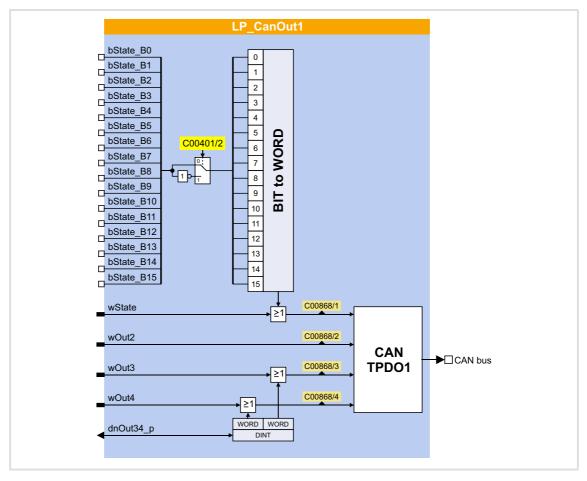
The LP_CanIn2 port block maps process data object RPDO2 in the FB Editor.

Short overview of the parameters for LP_CanIn2:

Parameter	Info	Lenze setting			
C00401/3	LP_CanIn2: Inversion bIn1_B015	0x0000			
C00866/5	LP_CanIn2: wIn1	-			
<u>C00866/6</u>	LP_CanIn2: wIn2	-			
C00866/7	LP_CanIn2: wIn3	-			
C00866/8	LP_CanIn2: wIn4	-			
PDO mapping					
<u>C00408/2</u>	LP_CanIn2: Mapping selection	CanIn			
C00409/5	LP_CanIn2: wIn1 MapVal	0			
<u>C00409/6</u>	LP_CanIn2: wIn2 MapVal	0			
C00409/7	LP_CanIn2: wIn3 MapVal	0			
C00409/8	LP_Canin2: win4 MapVal	0			
Highlighted in grey = display parameter					

11.8.1.3 RPDO3 | Port block "LP_CanIn3"

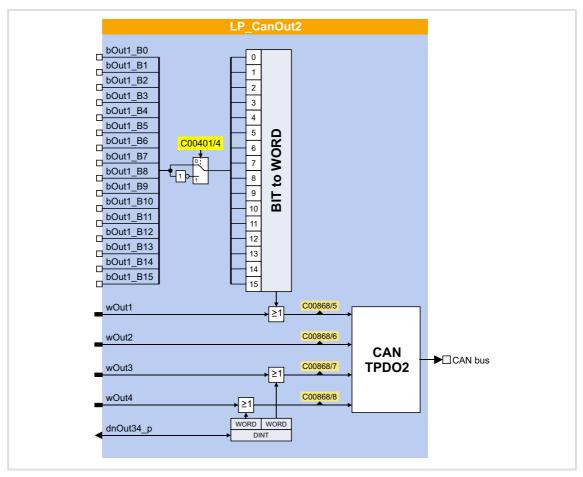
The LP_CanIn3 port block maps process data object RPDO3 in the FB Editor.


Short overview of the parameters for LP_CanIn3:

Parameter	Info	Lenze setting			
C00401/5	LP_CanIn3: Inversion bIn1_B015	0x0000			
C00866/9	LP_CanIn3: wIn1	-			
C00866/10	LP_CanIn3: wIn2	-			
C00866/11	LP_CanIn3: wIn3	-			
C00866/12	LP_CanIn3: wIn4	-			
PDO mapping					
C00408/3	LP_CanIn3: Mapping selection	CanIn			
C00409/9	LP_CanIn3: wIn1 MapVal	0			
C00409/10	LP_CanIn3: wIn2 MapVal	0			
C00409/11	LP_CanIn3: wIn3 MapVal	0			
C00409/12	LP_CanIn3: wIn4 MapVal	0			
Highlighted in grey = display parameter					

11.8.1.4 TPDO1 | Port block "LP_CanOut1"

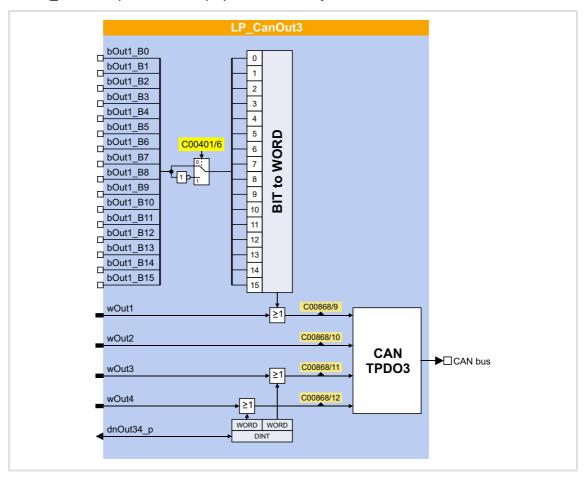
The **LP_CanOut1** port block maps process data object TPDO1 in the FB Editor.


Short overview of the parameters for LP_CanOut1:

Parameter	Info	Lenze setting			
C00401/2	LP_CanOut1: Inversion bState_B015	0x0000			
C00868/1	LP_CanOut1:wState	-			
C00868/2	LP_CanOut1:wOut2	-			
C00868/3	LP_CanOut1:wOut3	-			
C00868/4	LP_CanOut1: wOut4	-			
Highlighted in grey = display parameter					

11.8.1.5 TPDO2 | Port block "LP_CanOut2"

The LP_CanOut2 port block maps process data object TPDO2 in the FB Editor.


Short overview of the parameters for LP_CanOut2:

Parameter	Info	Lenze setting		
C00401/4	LP_CanOut2: Inversion bOut1_B015	0x0000		
C00868/5	LP_CanOut2: wOut1	-		
C00868/6	LP_CanOut2: wOut2	-		
C00868/7	LP_CanOut2: wOut3	-		
C00868/8	LP_CanOut2: wOut4	-		
Highlighted in grey = display parameter				

11.8.1.6 TPDO3 | Port block "LP_CanOut3"

The LP_CanOut3 port block maps process data object TPDO3 in the FB Editor.

Short overview of the parameters for LP_CanOut3:

Parameter	Info	Lenze setting			
C00401/6	LP_CanOut3: Inversion bOut1_B015	0x0000			
C00868/9	LP_CanOut3: wOut1	-			
C00868/10	LP_CanOut3: wOut2	-			
C00868/11	LP_CanOut3: wOut3	-			
C00868/12	LP_CanOut3: wOut4	-			
Highlighted in grey = display parameter					

11.8.2 Identifiers of the process data objects

In the Lenze setting, the identifier for process data objects PDO1 ... PDO3 consists of a socalled basic identifier (CANBaseID) and the node address set in C00350:

Identifier (COB-ID) = basic identifier + node address (node ID)

- ▶ The basic identifiers of the PDOs comply with the "Predefined connection set" of DS301, V4.02.
- ▶ Alternatively, define via code C00353 that the identifiers of the PDOs are to be assigned according to Lenze definition or that individual settings are to be made.
 - If C00353 = "2: COBID = C0354/x", the identifiers of the PDOs can be individually set via the Lenze codes and CANopen indexes listed in the table below. That way, identifiers independent of the node address can be set for specific PDOs.
 - If identifiers are assigned individually, all PDOs must have basic identifier values in the range of 385 ... 1407.

Process data object	Basic identifier		Individual setting		
	dec	hex	Lenze code	CANopen index	
PDO1					
RPDO1	512	0x200	<u>C00354/1</u>	<u>I-1400/1</u>	
TPDO1	384	0x180	C00354/2	<u>I-1800/1</u>	
PDO2					
RPDO2	768	0x300	<u>C00354/3</u>	<u>I-1401/1</u>	
TPDO2	640	0x280	<u>C00354/4</u>	<u>I-1801/1</u>	
PDO3					
RPDO3	1024	0x400	<u>C00354/5</u>	<u>I-1402/1</u>	
TPDO3	896	0x380	C00354/6	<u>l-1802/1</u>	

After a node address change (C00350) and a CAN reset node afterwards, the subcodes of C00354 automatically resume the values which result from the respective basic identifier and the set node address.

Short overview: Parameters for setting the identifiers

Parameter	Info	Lenze setting Value Unit
C00353/1	COBID source CAN1_IN/OUT	0: COBID = C0350 + CANBaseID
C00353/2	COBID source CAN2_IN/OUT	0: COBID = C0350 + CANBaseID
C00353/3	COBID source CAN3_IN/OUT	0: COBID = C0350 + CANBaseID
C00354/1	COBID CAN1_IN	0x00000201
C00354/2	COBID CAN1_OUT	0x00000181
C00354/3	COBID CAN2_IN	0x00000301
C00354/4	COBID CAN2_OUT	0x00000281
C00354/5	COBID CAN3_IN	0x00000401
<u>C00354/6</u>	COBID CAN3_OUT	0x00000381

8400 TopLine C | Software Manual

System bus "CAN on board" Process data transfer

11.8.3 Transmission type

Process data objects can be transmitted in an event-controlled or time-controlled manner. The below table shows that it is possible to combine the different methods by means of logic operations (AND, OR):

- **▶** Event-controlled
 - The PDO is sent when a special device-internal event has occurred, e.g. when the data contents of the TPDO have changed or when a transmission cycle time has elapsed
- ➤ Synchronous transmission A TPDO (or RPDO) is transmitted (or received) after the device has received a sync telegram (COB-ID 0x80).
- ➤ Cyclic transmission
 The cyclic transmission of PDOs takes place when the transmission cycle time has elapsed.
- ▶ Polled via RTR

A TPDO is transmitted when another device requests it by means of a data request telegram (RTR remote transmit request). For this purpose, the data requester (e.g. the master) sends the data request telegram with the COB-ID of the TPDO requested to be sent. The receiver recognises the RTR and transmits the corresponding PDO.

Transmission type		Logic combination of		
	cyclic	synchronous	different transmission types	
0		•	•	AND
1 240		•		-
254, 255	•		•	OR

Transmission type	Description
0	Synchronous and acyclic: The PDO is transmitted on an event-controlled basis with every sync (e.g. when a bit change occurs in the PDO).
1 240	 Synchronous and cyclic (sync-controlled with response): Selection n = 1: The PDO is transmitted with every sync. Selection 1 < n ≤ 240: The PDO is transmitted with every n-th sync.
241 251	Reserved
252	Synchronous - RTR only
253	Asynchronous - RTR only
254, 255	Asynchronous - manufacturer-specific / device profile-specific: If this value is entered, the PDO transmission is event-controlled <u>or</u> cyclic. (Note: The values "254" and "255" have the same meaning). For a cyclic transmission, a cycle time must be entered for the respective PDO. In this case, cyclic transmission takes place in addition to event-controlled transmission.

The communication parameters such as the transmission mode and cycle time can be set freely for every PDO and independently of the settings of other PDOs:

Parameter	Info	Lenze setting				
		Value	Unit			
CAN1_OUT	CAN1_OUT					
<u>C00322/1</u>	Transmission mode	254				
C00324/2	Blocking time	0	ms			
C00356/5	Cycle time	0	ms			
C00358/1	Data length	8	Byte			
CAN2_OUT						
C00322/2	Transmission mode	254				
C00324/3	Blocking time	0	ms			
C00356/2	Cycle time	0	ms			
C00358/2	Data length	8	Byte			
CAN3_OUT						
C00322/3	Transmission mode	254				
C00324/4	Blocking time	0	ms			
C00356/3	Cycle time	0	ms			
C00358/3	Data length	8	Byte			
CAN1_IN CAN3_IN						
<u>C00323/13</u>	Transmission mode CAN1_IN CAN3_IN In the case of the RPDO serves as monitoring setting in the case of synccontrolled PDOs.	254				

8400 TopLine C | Software Manual

System bus "CAN on board" Process data transfer

Blocking time

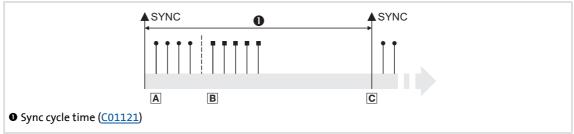
In $\underline{\text{C00324/x}}$ a "blocking time" can be set which defines the shortest transmission cycle with the transmission type"asynchronous - manufacturer-specific/device profile-specific".

Example: Cycle time = 500 ms, blocking time = 100 ms, data change sporadically:

- ▶ In the case of a sporadic data change < 500 ms, due to the blocking time set, a transmission takes place every 100 ms as quickly as possible (event-controlled transmission). The transmission cycle timer is reset to 0 if "event-controlled transmission" has been activated.
- ► In the case of a sporadic data change > 500 ms, due to the cycle time set, transmission takes place every 500 ms (cyclic transmission).

The communication parameters can also be set via the following CANopen objects:

- <u>I-1400</u> ... <u>I-1402</u>: Communication parameters for RPDO1 ... RPDO3
- I-1800 ... I-1802: Communication parameters for TPDO1 ... TPDO3



11.8.4 PDO synchronisation via sync telegram

During cyclic transmission, one or more PDOs are transmitted/received in fixed time intervals. An additional specific telegram, the so-called sync telegram, is used for synchronising cyclic process data.

- ▶ The sync telegram is the trigger point for the transmission of process data from the slaves to the master and for the acceptance of process data from the master in the slaves.
- ► For sync-controlled process data processing, the sync telegram must be generated accordingly.
- ► The response to a sync telegram is determined by the selected transmission type. ► Transmission type (☐ 662)

Basic workflow

[11-6] Sync telegram

- A. After the sync telegram has been received, the slaves transmit the synchronous process data to the master (TPDOs). The master reads them as process input data.
- B. When the transmission process is completed, the slaves receive (RPDOs) the process output data (of the master).
 - All other telegrams (e.g. parameters or event-controlled process data) are accepted acyclically by the slaves after the transmission is completed.
 - Illustration [11-6] does not include acyclic data. However, they need to be considered when dimensioning the cycle time.
- C. The data are accepted in the slave with the next sync telegram if the Rx mode is set to 1 ... 240. If the Rx mode is 254 or 255, the data are accepted in the next device cycle, irrespective of the sync telegram.

Short overview: Parameters for the synchronisation via sync telegram

Parameter	Info	Lenze setting		Assignment	
		Value	Unit	Sync master	Sync slave
C00367	CAN Sync-Rx-Identifier	128			•
C00368	CAN Sync-Tx-Identifier	128		•	
C00369	CAN Sync transmission cycle time	0	ms	•	

Related topics:

▶ Synchronisation of the internal time base (☐ 731)

System bus "CAN on board" Process data transfer

11.8.5 Monitoring of the RPDOs for data reception

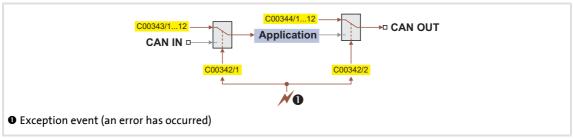
Every RPDO1 ... RPDO3 has a parameterisable monitoring time in which the RPDO must arrive. If the RPDO is not received within the monitoring time or with the configured sync, the response parameterised for the respective RPDO is activated.

Short overview: Parameters for RPDO monitoring

Parameter	Info	Lenze setting	
		Value	Unit
C00357/13	CAN13_IN monitoring time	3000	ms
C00593/13	Resp. to CAN13_IN monitoring	No response	

11.8.6 Configuring exception handling of the CAN PDOs

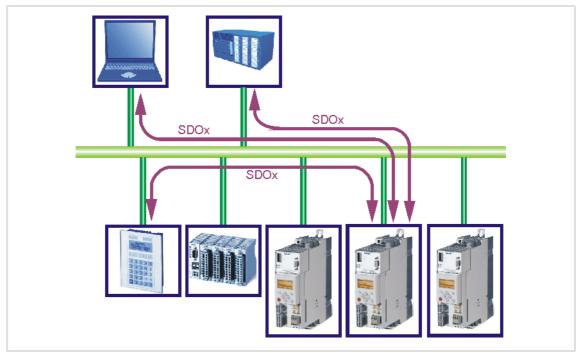
Exception handling for the CAN PDOs in the event of an error can be set via decoupling configuration and decoupling values.


- ▶ Bit coded selection is carried out in C00342/1 for the process data words read by the bus, defining the events that will trigger decoupling.
- ▶ Bit coded selection is carried out in C00342/2 for the process data words output by the application, defining the events that will trigger decoupling.

Bit	Event
Bit 0 □	BusOff_MsgErr
Bit 1 □	Warning
Bit 2 □	NodeStopped
Bit 3 □	HeartBeatEvent
Bit 4 □	CAN1_In_Überw.
Bit 5 □	CAN2_In_Überw.
Bit 6 □	CAN3_In_Überw.
Bit 7 □	Reserved
Bit 8 □	Reserved
Bit 9 □	Reserved
Bit 10 □	Reserved
Bit 11 □	Reserved
Bit 12 □	Reserved
Bit 13 □	Reserved
Bit 14 □	Trouble
Bit 15 □	Fault

Finally, the following parameters define the value that the process data words are to have when they are decoupled:

Parameter	Info	Lenze setting	
		Value	Unit
<u>C00343/1</u>	LP_CanIn1:wCtrl DiscVal	0	
C00343/24	LP_CanIn1:wIn2wIn4 DiscVal	0	
C00343/58	LP_CanIn2:wIn1wIn4 DiscVal	0	
C00343/912	LP_CanIn3:wIn1wIn4 DiscVal	0	
C00344/1	LP_CanOut1:wState DiscVal	0	
C00344/24	LP_CanOut1:wOut2wOut4 DiscVal	0	
C00344/58	LP_CanOut2:wOut1wOut4 DiscVal	0	
C00344/912	LP_CanOut3:wOut1wOut4 DiscVal	0	


[11-7] General signal flow in the event of a configured exception

Related topics:

▶ Configuring exception handling of the output terminals (△ 369)

11.9 Parameter data transfer

[11-8] Parameter data transfer via the available parameter data channels

Parameters are values stored in codes on Lenze controllers.

Two parameter data channels are available for parameter setting, enabling the simultaneous connection of different devices for configuration purposes.

Parameter data are transmitted via the system bus as SDOs (Service Data Objects) and acknowledged by the receiver. The SDO enables read and write access to all device parameters and to the CANopen object directory integrated in the device. Indices (e.g. 0x1000) ensure access to device parameters and functions included in the object directory. To transfer SDOs, the information contained in the user data must comply with the CAN SDO protocol.

Note!

In the Lenze setting, only the parameter data channel 1 is activated according to CANopen.

• In <u>C00366</u>, set "2 SDO Lenze" to activate both parameter data channels.

11.9.1 Identifiers of the parameter data objects

In the Lenze setting, the basic identifiers of the SDOs are preset according to the "Predefined Connection Set".

The identifiers of the parameter data objects SDO1 and SDO2 result from the basic identifier and the node address set under code C00350:

Identifier = basic identifier + node address

Object		Direction		Lenze-Base-ID		CANopen-Base-ID	
		from device	to device	dec	hex	dec	hex
SDO1 (Parameter data channel 1)	TSDO1	•		1408	580	1408	580
	RSDO1		•	1536	600	1536	600
SDO2 (Parameter data channel 2)	TSDO2	•		1472	5C0	1472	5C0
	RSDO2		•	1600	640	1600	640
Heartbeat		•		1792	700	1792	700
Boot-up		•		1792	700	1792	700

11.9.2 User data

Structure of the user data of the parameter data telegram

	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
(Command	Ind	lex	Subindex	Data 1	Data 2	Data 3	Data 4
		LOW byte HIGH			LOW	word	HIGH	word
			byte		LOW byte	HIGH byte	LOW byte	HIGH byte

Note!

For the user data, the Motorola format is used.

▶ Parameter data telegram examples (☐ 675)

The following subchapters provide detailed information on user data.

11.9.2.1 Command

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4
	J - J	HIGH byte		LOW word		HIGH word	
				LOW byte	HIGH byte	LOW byte	HIGH byte

The following commands can be transmitted or received for writing and reading the parameters:

Command	1st l	yte	Data length	Info
	hex	dec		
Write request	0x23	35	4 bytes	Writing of a parameter to the controller.
	0x2B	43	2 bytes	
	0x2F	47	1 byte	
Mrita recnance	0x21	33	Block	
Write response	0x60	96	4 bytes	Controller acknowledges a write request.
Read request	0x40	64	4 bytes	Reading of a parameter from the controller.
Read response	0x43	67	4 bytes	Controller's response to a read request with the current
	0x4B	75	2 bytes	parameter value.
	0x4F	79	1 byte	
	0x41	65	Block	
Error response	0x80	128	4 bytes	Controller's response if the write/read request could not be executed correctly. ▶ Error messages (□ 673)

More precisely, the command byte comprises the following information:

Command				1st l	yte			
	Command specifier (cs)			Toggle (t)	Length*		е	S
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Write request	0	0	1	0	0/1	0/1	1	1
Write response	0	1	1	0	0	0	0	0
Read request	0	1	0	0	0	0	0	0
Read response	0	1	0	0	0/1	0/1	1	1
Error response	1	0	0	0	0	0	0	0

*Bit coding of the length: 00 = 4 bytes, 01 = 3 bytes, 10 = 2 bytes, 11 = 1 byte e: expedited (shortened block service) s: segmented (normal block service)

More commands are defined in CANopen specification DS301, V4.02 (e.g. segmented transfer).

11.9.2.2 Addressing by means of index and subindex

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4
	LOW byte HIGH	-		LOW	word	HIGH	word
		byte		LOW byte	HIGH byte	LOW byte	HIGH byte

A parameter (a Lenze code) is addressed as per the following formula: Index = 24575 - (Lenze code number)

Example

The <u>C00011</u> parameter (motor reference speed) is to be addressed.

Calculation:

► Index:

- Decimal: 24575 - 11 = 24564

– Hexadecimal: 0x5FFF - 0xB = 0x5FF4

► Subindex: 0x00 (subindex 0 since the parameter does not have any subcodes)

Entries:

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4
	0xF4 0x5F		0x00				

11.9.2.3 Data 1 ... Data 4

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4
	, , , , , , , , , , , , , , , , , , , ,			LOW word		HIGH word	
		byte		LOW byte	HIGH byte	LOW byte	HIGH byte

Maximally 4 bytes are available for parameter value entries. Depending on the data format, they are assigned as follows:

5th byte	6th byte	7th byte	8th byte	
Parameter value (1 byte)	0x00	0x00	0x00	
Parameter va	alue (2 bytes)	0x00	0x00	
LOW byte	HIGH byte			
	Parameter va	alue (4 bytes)		
LOW	word	HIGH word		
LOW byte	HIGH byte	LOW byte	HIGH byte	

Note!

The "Factor" column of the <u>Table of attributes</u> contains a so-called scaling factor for all Lenze parameters. The scaling factor is relevant to the transfer of parameter values which have one or more decimal positions in the parameter list.

If the scaling factor is > 1, the value must be multiplied by the indicated scaling factor prior to transmission to be able to transfer the value as an integer. At the SDO client end, the integer must be divided by the scaling factor to obtain the original value including decimal positions again.

Example

A value of "123.45" is to be transmitted for a code, unit: "%" (e.g. C00039/1: "Fixed setpoint-JOG1").

In controllers of the 8400 series, parameters with the "%" unit have two decimal positions and hence a scaling factor of "100".

Calculation:

- ► Value to be transmitted = scaling factor x value
- ► Data _(1 ... 4) = 100 x 123.45 = 12345 (0x00 00 30 39)

Entries:

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4
				0x39	0x30	0x00	0x00

11.9.2.4 Error messages

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Error code			
0x80	0x80 LOW byte HIGH byte		byte HIGH byte		word	HIGH	word
(128)				LOW byte	HIGH byte	LOW byte	HIGH byte

In the event of an error, the addressed node generates a telegram with the "Error response" (0x80) command.

- ▶ The telegram includes the index and subindex of the code where the error occurred.
- ▶ The error code is entered in bytes 5 ... 8.
 - The error codes are standardised according to DS301, V4.02.
 - The representation of the error codes is provided in reverse read direction (see example below).

Example

Representation of error code "0x06 04 00 41" in bytes 5 ... 8:

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	
Command	Index		Subindex		Error code			
				0x41	0x00	0x04	0x06	

Parameter data transfer

Meaning of the error codes

The error codes are standardised acc. to DS301, V4.02.

Error code	Explanation
0x0503 0000	Toggle bit not changed
0x0504 0000	SDO protocol expired
0x0504 0001	Invalid or unknown client/server command specifier
0x0504 0002	Invalid block size (only block mode)
0x0504 0003	Invalid sequence number (only block mode)
0x0504 0004	CRC error (only block mode)
0x0504 0005	Not sufficient memory
0x0601 0000	Object access not supported
0x0601 0001	Attempt to read a write-only object
0x0601 0002	Attempt to write to a read-only object
0x0602 0000	Object not listed in object directory
0x0604 0041	Object not mapped to PDO
0x0604 0042	Number and length of the objects to be transferred exceed the PDP length.
0x0604 0043	General parameter incompatibility
0x0604 0047	General internal device incompatibility
0x0606 0000	Access denied because of hardware error
0x0607 0010	Unsuitable data type, unsuitable service parameter length
0x0607 0012	Unsuitable data type, service parameter length exceeded
0x0607 0013	Unsuitable data type, service parameter length not long enough
0x0609 0011	Subindex does not exist
0x0609 0030	Parameter value range exceeded
0x0609 0031	Parameter values too high
0x0609 0032	Parameter values too low
0x0609 0036	Maximum value falls below minimum value
0x0800 0000	General error
0x0800 0020	Data cannot be transferred/saved for application.
0x0800 0021	Data cannot be transferred/saved for application due to local control.
0x0800 0022	Data cannot be transferred/saved for application due to current device status.
0x0800 0023	Dynamic generation of object directory failed or no object directory available (e.g. object directory generated from file, generation not possible because of a file error).

11.9.3 Parameter data telegram examples

11.9.3.1 Read parameters

<u>Task:</u> The heatsink temperature of 43 °C (code <u>C00061</u>, data format INTEGER16, scaling factor 1) of the controller with node address "5" is to be read.

Telegram to drive

Identifier	User data								
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	
	Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4	
0x0605	0x40	0xC2	0x5F	0x00	0x00	0x00	0x00	0x00	

Explanations on the telegram to the drive				
Identifier	= 1536 + node address = 1536 + 5 = 1541 = 0x0605 (1536 = SDO1 basic identifier to the controller)			
Command	= 0x40 = "Read request" (request to read a parameter from the controller)			
Index	= 24575 - code number = 24575 - 61 = 24514 = 0x5FC2			
Subindex	= 0 (code <u>C00061</u> does not have any subcodes)			

Response telegram from drive (if data have been correctly transmitted)

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Inc	lex	Subindex	Data 1	Data 2	-	-
0x0585	0x4B	0xC2	0x5F	0x00	0x2B	0x00	-	-

Explanations on t	Explanations on the telegram from the drive				
Identifier	= 1408 + node address = 1408 + 5 = 1413 = 0x0585 (1408 = SDO1 basic identifier from the controller)				
Command	= 0x4B = "Read Response" (response to the read request with current value)				
Index	as in telegram to the drive				
Subindex					
Data 1 2	= 0x002B = 43 [°C]				

System bus "CAN on board" Parameter data transfer

11.9.3.2 Write parameters

<u>Task:</u> The rated current of the connected motor is to be entered with $I_N = 10.20$ A (code C00088) into the controller with node address "2".

Data 1 4	Calculation
Value for motor current, (data type U16; display factor 1/100)	10.20 x 100 = 1020 (0x03 FC)

Telegram to drive

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Inc	lex	Subindex	Data 1	Data 2	Data 3	Data 4
0x0602	0x23	0xA7	0x5F	0x00	0xFC	0x03	0x00	0x00

Explanations on the	Explanations on the telegram to the drive				
Identifier	= 1536 + node address = 1536 + 2 = 1538 = 0x0602 (1536 = SDO1 basic identifier to the controller)				
Command	= 0x23 = "Write request" (request to write a parameter to the controller)				
Index	= 24575 - code number = 24575 - 88 = 24487 = 0x5FA7				
Subindex	= 0 (code <u>C00088</u> does not have any subcodes)				
Data 1 4	= 10.20 x 100 = 1020 = 0x000003FC (motor current value; data type U32; display factor 1/100)				

Response telegram from drive (if data have been correctly transmitted)

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Inc	lex	Subindex	Data 1	Data 2	Data 3	Data 4
0x0582	0x60	0xA7	0x5F	0x00	0x00	0x00	0x00	0x00

Explanations on the telegram from the drive				
Identifier	= 1408 + node address = 1408 + 2 = 1410 = 0x0582 (1408 = SDO1 basic identifier from the controller)			
Command	= 0x60 = "Write response" (acknowledgement of the write access from the controller)			
Index	as in telegram to the drive			
Subindex				

11.9.3.3 Read block parameters

<u>Task</u>: The firmware version (code <u>C00099</u>) is to be read from the parameter set of the controller with node address "12". The firmware version has a length of 11 ASCII characters which are transmitted as a block parameter. Depending on the block, the data width from the 2nd to 8th byte is assigned within the user data.

Telegram 1 to the drive: Read request

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Inc	lex	Subindex	Data 1	Data 2	Data 3	Data 4
0x060C	0x40	0x9C	0x5F	0x00	0x00	0x00	0x00	0x00

Explanations on the telegram to the drive					
Identifier	= 1536 + node address = 1536 + 12 = 1548 = 0x060C (1536 = SDO1 basic identifier to the controller)				
Command	= 0x40 = "Read request" (request to read a parameter from the controller)				
Index	= 24575 - code number = 24575 - 99 = 24476 = 0x5F9C				
Subindex	= 0 (code <u>C00099</u> does not have any subcodes)				

Response telegram 1 from the drive: Indication of the block length (11 characters)

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Inc	lex	Subindex	Data 1	Data 2	Data 3	Data 4
0x058C	0x41	0x9C	0x5F	0x00	0x0B	0x00	0x00	0x00

Explanations on tl	Explanations on the telegram from the drive					
Identifier	= 1408 + node address = 1408 + 12 = 1420 = 0x058C (1408 = SDO1 basic identifier from the controller)					
Command	= 0x41 = "Read response" (response is block telegram)					
Index	as in telegram to the drive					
Subindex						
Data 1 4	= 0x0000000B = data length of 11 characters in the ASCII format					

Telegram 2 to the drive: Request of the 1st data block

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7
0x060C	0x60	0x00						

Explanations on the telegram to the drive

Command

- = 0x60 = "Read segment request" (request: read data block)
- Bit 4 = 0 (toggle bit)

Influence of the toggle bit on the request command

The blocks are toggled one after another, i.e. the request ist made with the "0x60" (= $0110*0000_{bin}$) command, then with the "0x70" (= $0111*0000_{bin}$) command, and then again with the "0x60" command, etc.

* Toggle bit

Response telegram 2 from the drive: Transmission of the 1st data block

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7
0x058C	0x00	0x30	0x31	0x2E	0x30	0x30	0x2E	0x30
		0 _{asc}	1 _{asc}	·asc	0 _{asc}	0 _{asc}	·asc	0 _{asc}

$= 0x00 = 00000000_{bin}$ Command • Bit 4 = 0 (toggle bit) Influence of the toggle bit on the transmission command • The 1st response of the controller in the command byte is "0x0000*0000_{bin}" if bytes 2 ... 8 are completely filled with data and other telegrams are following.

- The 2nd response of the controller in the command byte is "0x0001*0000_{bin}" if bytes 2 ... 8
 - are completely filled with data and other telegrams are following, etc.
- * Toggle bit

Explanations on the telegram to the drive

Data 1 ... 7 = "01.00.0" (ASCII representation)

Telegram 3 to the drive: Request of the 2nd data block

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7
0x060C	0x70	0x00						

Explanations on t	telegram 3 to the drive
Command	 = 0x70 = "Read segment request" (request: read data block) Bit 4 = 1 (toggle bit)

Response telegram 3 from the drive: Transmission of the 2nd data block including end identifier

Identifier	User data							
	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
	Command	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7
0x058C	0x17	0x30	0x2E	0x30	0x30	0x00	0x00	0x00
		0 _{asc}	·asc	0 _{asc}	0 _{asc}	-	-	-

Explanations on to	Explanations on telegram 3 from the drive						
Command	 = 0x17 = 00010111_{bin}: Bit 0 = 1 (end of transmission) Bit 1 bit 3 = 011_{bin} (3 bytes do not contain any data) Bit 4 = 1 (toggle bit) 						
	 Influence of the final bit and the residual data length on the transmission command The end of transmission is signalled via the set final bit 0. Bits 1 3 reveal the number of bytes that do not contain any data anymore. * Toggle bit 						
Data 1 7	= "0.00" (ASCII representation) The result of the data block transmission is: "01.00.00.00"						

8400 TopLine C | Software Manual

System bus "CAN on board" Monitoring

11.10 Monitoring

11.10.1 Integrated error detection

If a node detects an error, it rejects the CAN telegram bits received so far and transmits an error flag. The error flag consists of 6 consecutive bits with the same logic value.

The following errors are detected:

Bit error

The sending node follows the transmission on the bus and interrupts the transmission if it receives a different logic value than the value transmitted. With the next bit, the sending node starts the transmission of an error flag.

In the arbitration phase, the transmitter only detects a bit error if a dominantly sent bit is received as recessive bit. In the ACK slot as well, the dominant overwriting of a recessive bit is not indicated as a bit error.

Stuff-bit error

If more than 5 consecutive bits have the same logic value before the ACK delimiter in the CAN telegram, the previously transmitted telegram will be rejected and an error flag will be sent with the next bit.

CRC error

If the received CRC checksum does not correspond to the checksum calculated in the CAN chip, the CAN controller will send an error flag after the ACK delimiter and the previously transmitted telegram will be annulled.

Acknowledgement error

If the sent ACK slot recessively sent by the transmitting node is not dominantly overwritten by a receiver, the transmitting node will cancel the transmission. The transmitting node will annul the transmitted telegram and will send an error flags with the next bit.

Format error

If a dominant bit is detected in the CRC delimiter, in the ACK delimiter or in the first 6 bits of the EOF field, the received telegram will be rejected and an error flag will be sent with the next bit.

8400 TopLine C | Software Manual

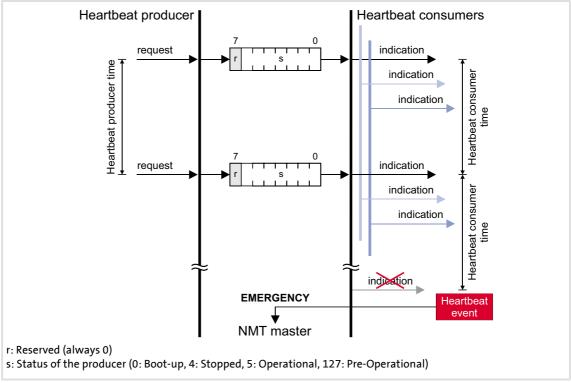
System bus "CAN on board" Monitoring

The errors mentioned before indicate that a physical error has occurred in the bus system.

Possible causes are:

- Several nodes with identical node address
- Wrong baud rate of one or several nodes
- · Too high cable length
- Too many or no terminating resistors
- Too high bus load/too many data telegrams (e.g. since a node permanently transmits event-controlled due to data changes of an analog signal/actual value.)
- EMC interferences on the CAN bus (e.g. since the CAN bus cable next to the motor cable is unshielded.)

C00364 displays whether such an error is active.



System bus "CAN on board" Monitoring

11.10.2 Heartbeat protocol

The heartbeat protocol can be used for node monitoring purposes within a CAN network.

Basic workflow

[11-9] Heartbeat protocol

- 1. A heartbeat producer cyclically transmits a so-called heartbeat telegram to one or more consumers.
- 2. The consumer(s) monitor the heartbeat telegram for arrival on a regular basis.

11.10.2.1 Telegram structure

- ► The heartbeat telegram of the producer has the following identifier: Identifier (COB-ID) = 1792 + producer's node address
- ► The user data (1 byte) contain the status (s) of the producer:

Heartbeat producer status		Data									
Communication status	Decimal value	(r)	Producer status (s)								
	(s)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Boot-up	0	0	0	0	0	0	0	0	0		
Stopped	4	0	0	0	0	0	1	0	0		
Operational	5	0	0	0	0	0	1	0	1		
Pre-Operational	127	0	1	1	1	1	1	1	1		

11.10.2.2 Parameter setting

Short overview of the parameters for the "Heartbeat" monitoring function:

Parameter	ter Info		Lenze setting		
		Value	Unit	Consumer	Producer
C00347/1n	CAN status of the heartbeat producer 1 n	-		•	
<u>C00381</u>	Heartbeat producer time	0	ms		•
C00385/1n	CAN node address of the heartbeat producer 1 n	0		•	
C00386/1n	Heartbeat consumer time for the heartbeat producer 1 n	0	ms	•	
C00592/5	Resp. to heartbeat event	No res	oonse	•	
Highlighted in grey = display	parameter				

Heartbeat producer time

Time interval for the transmission of the heartbeat telegram to the consumer(s).

- ▶ Parameterisable in <u>C00381</u> or via object <u>I-1017</u>. The parameterised time is rounded down to an integer multiple of 5 ms.
- ▶ The heartbeat telegram is sent automatically as soon as a time > 0 ms is set.

Heartbeat consumer time

Monitoring time for the nodes (producers) to be monitored.

- ▶ Parameterisable in C00386/1...n or via object I-1016.
- ► The parameterised time is rounded down to an integer multiple of 5 ms and must have a greater value than the heartbeat producer time of the node to be monitored.

8400 TopLine C | Software Manual

System bus "CAN on board" Monitoring

- ▶ The maximum number of the nodes to be monitored depends on the device version:
 - "BaseLine C": 1 Heartbeat Producer can be monitored.
 - "StateLine": Up to 7 Heartbeat Producers can be monitored.
 - "HighLine": Up to 15 Heartbeat Producers can be monitored.
- ► The node address(es) of the nodes to be monitored is/are set in C00385/1... or via object I-1016, too.

Heartbeat event

The "Heartbeat event" is activated in the consumer if it does not receive any heartbeat telegram from the producer within the heartbeat consumer time:

- ► The consumer changes from the "Operational" communication status to the "Pre-Operational" communication status.
- ► The NMT master receives an emergency telegram containing emergency error code 0x8130.
- ▶ The response parameterised in C00592/5 is activated (Lenze setting: "No response").

Note!

The heartbeat monitoring will not start until the first heartbeat telegram of a monitored producer has been received successfully and the "Pre-Operational" NMT status has been assumed.

The boot-up telegram counts as the first heartbeat telegram.

11.10.2.3 Commissioning example

Task

An 8400 controller (node 2) which is configured as heartbeat consumer is to monitor another 8400 controller (heartbeat producer, node 1).

- ► The heartbeat producer is to transmit a heartbeat telegram to the heartbeat consumer every 10 ms.
- ▶ The heartbeat consumer monitors the heartbeat telegram for arrival. A response is to be activated in the event of an error.

Parameterising the heartbeat producer (node 1)

1. Set the heartbeat producer time (C00381) to 10 ms.

Parameterising the heartbeat consumer (node 2)

- 1. Set the CAN node address of the producer in C00385/1.
- 2. Set the heartbeat consumer time in C00386/1.
 - Note: The heartbeat consumer time must be greater than the heartbeat producer time of the node to be monitored set in <u>C00381</u>.
- 3. Set the desired response in C00592/5 which is to be activated should a heartbeat event in the consumer occur.

<u>C00347/1...n</u> displays the heartbeat status of the monitored nodes.

Heartbeat telegram

► The heartbeat telegram of the producer has the following identifier: Identifier (COB-ID) = 1792 + producer's node address = 1792 + 1 = 1793 = 0x701

System bus "CAN on board" Monitoring

11.10.3 Emergency telegram

If the error status changes because an internal device error occurs or has been eliminated, the NMT master receives an emergency telegram once with the following structure:

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Emergency error codes		Error register	Manufacturer-specific error message				
LOW byte	HIGH byte	<u>l-1001</u>	0x00	LOW word		HIGH word	
			(Reserved)	LOW byte	HIGH byte	LOW byte	HIGH byte
See table below			 For emergency error code 0xF000: Lenze error number (value displayed in <u>C00168</u>) All other emergency error codes have a value of "0" here. 				

Emergency error codes	Error register	Cause
0x0000	0xXX	One of several errors eliminated
	0x00	One error has been eliminated (error-free status afterwards)
0x3100	0x01	Supply voltage of standard device faulty or failed
0x8100	0x11	Communication error (warning)
0x8130	0x11	Life guarding error or heartbeat error
0x8150	0x11	Collision of identifiers (COB-IDs): An identifier parameterised for reception is also used for transmission.
0x8210	0x11	PDO length shorter than expected
0x8220	0x11	PDO length greater than expected
0x8700	0x11	Monitoring of the sync telegram
0xF000	0x01	Generic error • An error with a "Fault", "Trouble", "TroubleQSP", "Warning", or "SystemFault" error response occurred in the standard device. • Error message is the Lenze error number (C00168).

The <u>Short overview (A-Z)</u> of error messages of the operating system includes a list of more emergency error codes. (<u>Q</u> 608)

Example

1st byte	2nd byte	3rd byte	4th byte	5th byte 6th byte 7th byte 8th b			
Emergency	error codes	Error register	Manufacturer-specific error message				
0x00	0xF0	0x01	0x00 Lenze error number				
Generic error			(Reserved)	► Error messages of the operating system Corresponding error-free message: Value "0x00000000"			

A detalied description can be found in CAN specification DS301, V4.02.

11.11 Implemented CANopen objects

Lenze devices can both be parameterised with Lenze codes and manufacturer-independent "CANopen objects". A completely <u>CANopen-compliant</u> communication can only be achieved by using CANopen objects for parameter setting. The CANopen objects described in this chapter are defined in the CAN specification DS301 V4.02.

Many CANopen objects can be mapped on Lenze codes. In the following table, the corresponding Lenze codes are listed in the column "Relationship to Lenze codes".

Note!

Some of the terms used here derive from the CANopen protocol.

Overview of CANopen indices and their relationship to Lenze codes

CANopen o	bject		Relationship to Lenze					
Index	Subindex	Name	code					
<u>l-1000</u>	0	Device type	-					
<u>l-1001</u>	0	Error register	-					
<u>l-1003</u>	Predefined 6	error field						
	0	Number of errors	-					
	1 10	Standard error field	-					
<u>l-1005</u>	0	COB-ID SYNC message	<u>C00367</u>					
			<u>C00368</u>					
<u>l-1006</u>	0	Communication cycle period	<u>C00369</u>					
<u>l-1014</u>	0	COB-ID EMCY	-					
<u>l-1016</u>	Consumer heartbeat time							
	0	Highest subindex supported	-					
	1 n	Consumer heartbeat time • "BaseLine C" version: n = 1 • "StateLine" version: n = 7 • "HighLine" version: n = 15	C00385/1n C00386/1n					
<u>l-1017</u>	0	Producer heartbeat time	<u>C00381</u>					
<u>l-1018</u>	Identity object							
	0	Highest subindex supported	-					
	1	Vendor ID	-					
	2	Product code	-					
	3	Revision number	-					
	4	Serial number	-					
<u>l-1200</u>	SDO1 server	parameter						
	0	Highest subindex supported	-					
	1	COB-ID client -> server (rx)	-					
	2	COB-ID server -> client (tx)	-					
<u>l-1201</u>	SDO2 server	parameter						
	0	Highest subindex supported	-					
	1	COB-ID client -> server (rx)	-					
	2	COB-ID server -> client (tx)	-					

8400 TopLine C | Software ManualSystem bus "CAN on board"
Implemented CANopen objects

CANopen o	bject		Relationship to Lenz code
Index	Subindex	Name	code
<u>l-1400</u>	RPDO1 com	munication parameter	
	0	Highest subindex supported	-
	1	COB-ID used by RPDO	C00355/1
	2	Transmission type	<u>C00323/1</u>
I-1401	RPDO2 com	munication parameter	
	0	Highest subindex supported	-
	1	COB-ID used by RPDO	<u>C00355/3</u>
	2	Transmission type	<u>C00323/2</u>
l-1402	RPDO3 com	munication parameter	
	0	Highest subindex supported	-
	1	COB-ID used by RPDO	<u>C00355/5</u>
	2	Transmission type	<u>C00323/3</u>
l-1600	RPDO1 map	ping parameter	
	0	Number of mapped application objects in PDO	-
	1 4	Application object 1 4	C00409/14 C00866/14
l-1601	RPDO2 map	ping parameter	
	0	Number of mapped application objects in PDO	-
	1 4	Application object 1 4	C00409/58 C00866/58
l-1602	RPDO3 map		
	0	Number of mapped application objects in PDO	-
	1 4	Application object 1 4	C00409/912 C00866/912
l-1800	TPDO1 com		
	0	Highest subindex supported	-
	1	COB-ID used by TPDO	C00355/2
	2	Transmission type	C00322/1
	3	Inhibit time	C00324/2
	5	Event timer	C00356/5 C00369
l-1801	TPDO2 com	munication parameter	
	0	Highest subindex supported	-
	1	COB-ID used by TPDO	C00355/4
	2	Transmission type	C00322/2
	3	Inhibit time	C00324/3
	5	Event timer	C00356/2 C00369
l-1802	TPDO3 com	munication parameter	
	0	Highest subindex supported	-
	1	COB-ID used by TPDO	C00355/6
	2	Transmission type	C00322/3
	3	Inhibit time	C00324/4
	5	Event timer	C00356/3 C00369

8400 TopLine C | Software Manual

System bus "CAN on board"

Implemented CANopen objects

CANopen obje	CANopen object						
Index	Subindex	Name	code				
<u>I-1A00</u>	TPDO1 mappir	ng parameter					
	0	Number of mapped application objects in PDO	-				
	1 4	Application object 1 4	C00868/14				
<u>I-1A01</u>	TPDO2 mappir	ng parameter					
	0	Number of mapped application objects in PDO	-				
	1 4	Application object 1 4	C00868/58				
<u>I-1A02</u>	TPDO3 mappir	ng parameter					
	0	Number of mapped application objects in PDO	-				
	1 4	Application object 1 4	C00868/912				

System bus "CAN on board" Implemented CANopen objects

I-1000

Index I-1000	Name: Device type					
Subindex	Default setting	Display range (min.	value unit m	nax. value)	Access	Data type
0: Device type	0	0		4294967295	ro	U32

The CANopen index I-1000 specifies the profile for this device. Furthermore, additional information defined in the device profile itself can be stored here.

8th byte	7th byte	6th byte	5th byte		
Data 4	Data 3	Data 2	Data 1		
HIGH	word	LOW word			
HIGH byte	LOW byte	HIGH byte LOW byte			
Additional i	nformation	Device profile number			

[11-1] Data telegram assignment

In case of 8400 series controllers, the four bytes contain the following values:

- ▶ 5th and 6th byte: The data content is 0x0000, i.e. no profile definition.
- ➤ 7th byte: The data content specifies the device type: Here the value is 0x00 for controllers.
- ▶ 8th byte: The data content is 0x00.

The data content for the 8400 controller thus is: 00 00 00 00

I-1001

Index: I-1001	Name: Error register						
Subindex	Default setting	Display range (min. value unit max. value)				Access	Data type
0: Error register	-	0		2	255	ro	U8

Error register

The error status in the data byte (U8) is bit coded. The following error states are coded in the data byte (U8):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Error status
0	0	0	0	0	0	0	0	No error
0	0	0	0	0	0	0	1	Device error message
0	0	0	1	0	0	0	1	Communication error

I-1003

Index: I-1003	Name: Predefined error field						
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type	
0: Number of errors	0	0		255	rw	U8	
1 10: Standard error field	-	0		4294967295	ro	U32	

Error history

This object indicates that an error has occurred in the module and in the standard device.

Subindex	Meaning
0	Number of saved error messages
110	Display of the error list The error messages (U32) consist of a 16-bit error code and a manufacturer-specific information field comprising 16 bits.

The values in the "standard error field" under subindex 1 ... 10 will be deleted if the subindex "number of recorded errors" is overwritten with the value "0".

Emergency error codes	Cause	Entry in the error register (<u>l-1001</u>)
0x0000	One of several errors eliminated	0xXX
	Elimination of one single error (afterwards no more errors)	0x00
0x1000	Standard device is in error status (error response "fault", "message", "warning", "error", "quick stop by trouble", or "system error")	0x01
0x3100	Supply voltage of standard device faulty or failed	0x01
0x8100	Communication error (warning)	0x11
0x8130	Life guard error or heartbeat error	0x11
0x8150	Collision of COB-IDs: An ID parameterised for reception is also used for transmission.	0x11
0x8210	PDO length shorter than expected	0x11
0x8220	PDO length greater than expected	0x11
0x8700	Monitoring of the sync telegram	0x11

System bus "CAN on board" Implemented CANopen objects

I-1005

Index: I-1005	Name: COB-ID SYNC message						
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type	
0: COB-ID SYNC message	0x0000 0080 or 0x8000 0080	0		4294967295	rw	U32	

This object can be used to activate the generation of sync telegrams and to write the identifier value.

► This object relates to codes <u>C00367</u> and <u>C00368</u>.

Creating sync telegrams

Sync telegrams are created by setting bit 30 (see below) to "1". The time between the sync telegrams can be set using the object <u>I-1006</u>.

Writing identifiers

To receive PDOs, the value 0x80 must be entered in the 11-bit identifier in the Lenze setting (and according to CANopen specification). This means that <u>all</u> modules are by default set to the same sync telegram.

- ▶ If sync telegrams are only to be received by <u>certain</u> communication modules, their identifiers can be entered with values up to and including 0x07FF.
- ► The identifier can only be changed if the communication module does not send any sync telegrams (bit 30 = "0").
- ► How to change the identifier:
 - Deactivate identifier (set bit 30 to "0").
 - Change identifier.
 - Activate identifier (set bit 30 to "1").

	8th byte 7th byte		6th byte		5th byte				
	Data 4		Data 3	Data 3 Data 2		Data 1			
Bit 31	Bit 30		Bit 29 bit 11		Bit 10 bit 0				
Х	0/1		Extended identifier*			11-bit identifier			
* The ext	* The extended identifier is not supported. Bit 11 bit 29 must be set to "0".								

[11-2] Data telegram assignment

System bus "CAN on board" Implemented CANopen objects

I-1006

Index: I-1006	Name: Communication	Name: Communication cycle period					
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type	
0: Communication cycle period	0 μs	0	μs	65535000	rw	U32	

Setting the sync telegram cycle time.

- ▶ The cycle time can be selected as "1000" or as an integer multiple of it.
- \blacktriangleright If "0 µs" is set (Lenze setting), <u>no</u> sync telegrams are created.
- ► This object relates to code <u>C00369</u>.

I-1014

Index: I-1014	Name: COB-ID EMCY					
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type
0: COB-ID EMCY	0x80 + node ID	0		4294967295	rw	U32

When communication errors occur and are acknowledged or when internal errors occur in the communication module or controller (e.g. "fault"), the system bus sends an error message. The telegram is sent once for every error. This function can be activated or deactivated with bit 31.

8th byte		byte	7th byte	6th byte		5th byte		
Data 4		:a 4	Data 3 Data 2			Data 1		
Bit 31	Bit 30		Bit 29 bit 11		Bit 10 bit 0			
0/1	0		Extended identifier*			11-bit identifier		
* The ext	* The extended identifier is not supported. Bit 11 bit 29 must be set to "0".							

[11-3] Data telegram assignment

Bit	Setting	
Bit 31	0	Emergency object is valid.
	1	Emergency object is invalid.

Note!

The identifier can only be changed in the "emergency object invalid" status (bit 31 = 1).

System bus "CAN on board" Implemented CANopen objects

I-1016

Index: I-1016	Name: Consumer hea	Name: Consumer heartbeat time						
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type		
0: Highest subindex supported	1 (for BaseLine) 7 (for StateLine) 15 (for HighLine)	- (read access only)			ro	U16		
1 n: Consumer heartbeat time	0	0		65535	rw	U16		

Monitoring time for the nodes to be monitored via heartbeat. ▶ Heartbeat protocol (☐ 682)

► The parameterised time is rounded down to an integer multiple of 5 ms and must have a greater value than the heartbeat producer time of the node to be monitored.

Subindex	Meaning	Lenze code
0	Number of nodes to be monitored	
1 n	Node ID and heartbeat time of the node to be monitored	Node ID: <u>C00385/x</u> Heartbeat time: <u>C00386/x</u>

8th byte	7th byte	6th byte	5th byte			
Data 4	Data 3	Data 2	Data 1			
Bit 31 bit 24	Bit 23 Bit 16	Bit 15 Bit 0				
O (Reserved)	Node ID	Heartbeat time in [ms]				

[11-4] Data telegram assignment

System bus "CAN on board" Implemented CANopen objects

I-1017

Index: I-1017	Name: Producer hear	Name: Producer heartbeat time						
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type		
0: Producer heartbeat time	0	0	ms	65535	rw	U16		

Time interval for sending the heartbeat telegram to the consumer(s). ▶ <u>Heartbeat protocol</u> (☐ 682)

- ▶ The parameterised time is rounded down to an integer multiple of 5 ms.
- ► The heartbeat telegram is automatically sent as soon as a time > 0 ms is entered. In this case, the "node guarding" monitoring function is deactivated.
- ► This object relates to code <u>C00381</u>.

I-1018

Index: I-1018	Name: Identity object					
Subindex	Default setting	Display range (min. value unit max. value)			Access	Data type
0: Highest subindex supported	see below	0		4294967295	ro	U32
1: Vendor ID						
2: Product code						
3: Revision number						
4: Serial number						

Subindex	Meaning			
1	The identification	 Manufacturer's identification number The identification number allocated to Lenze by the organisation "CAN in Automation e. V." is "0x0000003B". 		
2	Product code			
	0x84001	8400 BaseLine C		
	0x84002	8400 StateLine C		
	0x84003	8400 HighLine C		
3	Main and subversion of firmware			
4	Serial number			

System bus "CAN on board" Implemented CANopen objects

I-1200

Index: I-1200	Name: SDO1 server parameter					
Subindex	Default setting	Display range (min. value unit max. value)			Access	Data type
0: Highest subindex supported	2	2		2	ro	U8
1: COB-ID client -> server (rx)	node ID + 0x600	0		4294967295	ro	U32
2: COB-ID server -> client (tx)	node ID + 0x580	0		4294967295	ro	U32

Identifiers for SDO server channel 1 (basic SDO channel).

► According to DS301 V4.02, the basic SDO channel can neither be changed nor deactivated.

Subindex	Meaning
1	Specification of receive identifier • For SDO server channel 1: node address (C00350) + 0x600
2	Specification of send identifier • For SDO server channel 1: node address (C00350) + 0x580

8th byte		byte	7th byte	6th byte		5th byte	
	Data 4		Data 3	Data 2		Data 1	
Bit 31	Bit 30		Bit 29 bit 11		Bit	10 bit 0	
0	0		Extended identifier* 11-bit identifier				
* The ext	* The extended identifier is not supported. Bit 11 bit 29 must be set to "0".						

[11-5] Data telegram assignment

I-1201

Index: I-1201	Name: SDO2 server p	Name: SDO2 server parameter					
Subindex	Default setting	Setting range (min.	Setting range (min. value unit max. value)			Data type	
0: Highest subindex supported	3	- (read access only)	- (read access only)			U8	
1: COB-ID client -> server (rx)	0x80000000	0		4294967295	rw	U32	
2: COB-ID server -> client (tx)	0x80000000	0		4294967295	rw	U32	

Identifiers for SDO server channel 2.

- ► The SDO server parameter is only valid, if bit 31 is set to "0" for both transmission directions (subindex 1 and 2).
- ▶ In the Lenze setting, the SDO server channels 2 are deactivated (bit 31 = "1").
- ▶ The identifier can only be changed if the SDO is invalid (bit 31 = "1").

Subindex	Meaning
1	Specification of receive identifier
2	Specification of send identifier

	8th byte		7th byte	6th byte	5tl	1 byte
	Dat	ta 4	Data 3	Data 2	D	ata 1
Bit 31	Bit 30		Bit 29 bit 11		Bit 10 b	oit 0
0/1	0		Extended identifier* 11-bit identifier			
* The ext	* The extended identifier is not supported. Bit 11 bit 29 must be set to "0".					

[11-6] Data telegram assignment

Bit	Setting	Setting				
Bit 31	0	SDO is valid.				
	1	SDO is invalid.				

How to change the identifier:

- 1. Deactivate identifier (set bit 31 to "1").
- 2. Change identifier.
- 3. Activate identifier (set bit 31 to "0").

System bus "CAN on board" Implemented CANopen objects

Example

Parameter data channel 2 of the controller with node address 4 shall be activated.

- ► For this, bit 31 must be set to "0" (≡ "SDO is valid") in subindices 1 and 2 of the object <u>I-</u> 1201.
- ► The master must send the two "write request" commands to the nodes via the basic SDO channel.

Identifier calculation

- ▶ Identifier (COB-ID) = basic identifier + node address (node ID)
- ▶ Basic identifier SDO2 from master to drive: 1600 (0x640)
 - \rightarrow Identifier = 0x640 + 0x4 = 0x644
- ▶ Basic identifier SDO2 from drive to master: 1472 (0x5C0)
 - \rightarrow Identifier = 0x5C0 + 0x4 = 0x5C4

Resulting data (data 1 ... data 4)

	8th byte	7th byte	6th byte	5th byte		
	Data 4	Data 3	Data 2	Data 1		
Bit 31	Bit 30	Bit 29 bit 11		Bit 10 bit 0		
0	0	Extended identifier = 0 11-bit identifier = 0x64				
	0x00	0x00	0x06	0x44		

[11-7] Data telegram assignment for subindex 1

	8th byte	7th byte	6th byte	5th byte		
	Data 4	Data 3	Data 2	Data 1		
Bit 31	Bit 30	Bit 29 bit 11		Bit 10 bit 0		
0	0	Extended identifier = 0)	11-bit identifier = 0x5C4		
	0x00	0x00	0x05	0xC4		

[11-8] Data telegram assignment for subindex 2

User data assignment

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4
0x23	0x01	0x12	0x01	0x44	0x06	0x00	0x00

[11-9] User data assignment for writing to subindex 1

1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
Command	Index		Subindex	Data 1	Data 2	Data 3	Data 4
0x23	0x01	0x12	0x02	0xC4	0x05	0x00	0x00

[11-10] User data assignment for writing to subindex 2

I-1400

Index: I-1400	Name: RPDO1 comm	Name: RPDO1 communication parameter				
Subindex	Default setting	Setting range (min. value unit max. value) Access Data type			Data type	
0: Highest subindex supported	5	- (read access only)			ro	U8
1: COB-ID used by RPDO	0x200 + node ID	0 4294967295		rw	U32	
2: Transmission type	254	0		255	rw	U8
3: Inhibit time	-	- (not used for RPD	Os)		rw	U16
4: Compatibility entry	-	- (reserved, read or write access leads to error message 0x06090011)		rw	U8	
5: Event timer	-	- (not used for RPD	Os)		rw	U16

Communication parameter for receiving process data via RPDO1

Subindex	Meaning	Code
0	"5" is permanently set.Max. 5 subindices are supported.	-
1	 RPDO1 identifier According to the "Predefined Connection Set", the basic setting is: Identifier = 0x200 + node ID 	<u>C00354/1</u>
2	RPDO Transmission type according to DS301 V4.02 ▶ <u>Transmission type</u> (☐ 662)	<u>C00323/1</u>

	8th byte		7th byte	6th byte	5th byte	
	Data 4		Data 3 Data 2		Data 1	
Bit 31	Bit 30		Bit 29 bit 11		Bit 10 bit 0	
0/1	0/1		Extended identifier*	11-bit identifier		
* The extended identifier is not supported. Bit 11 bit 29 must be set to "0".						

[11-11] Data telegram assignment

How to change the identifier:

- 1. Deactivate identifier (set bit 31 to "1").
- 2. Change identifier.
- 3. Activate identifier (set bit 31 to "0").

Description of subindex 1

Bit no.	Value	Explanation
0 10	0/1	11-bit identifier
(11 28)*	0	*) The extended identifier (29 bits) is not supported. Any of these bits must be "0".
29*	0	
30	0	RTR to this PDO possible (cannot be set)
	1	RTR to this PDO not possible (Lenze)
31	0	PDO active
	1	PDO not active

[11-12] I-1400 ... I-1402, subindex 1

System bus "CAN on board" Implemented CANopen objects

Description of subindex 2

	PDO transmission		Transmission type	Explanation
cyclic	synchronous	event-controlled		
Х	Х		n = 1 240	When a value n is entered, this PDO will be accepted with every nth SYNC.
		X	n = 254	PDO will be accepted immediately.

[11-13] I-1400 ... I-1402, subindex 2

I-1401

Index: I-1401	Name: RPDO2 communication parameter					
Subindex	Default setting	Setting range (min. value unit max. value) Access Data t			Data type	
0: Highest subindex supported	5	- (read access only)			ro	U8
1: COB-ID used by RPDO	0x300 + node ID	0 4294967295		rw	U32	
2: Transmission type	254	0		255	rw	U8
3: Inhibit time	-	- (not used for RPD	Os)		rw	U16
4: Compatibility entry	-	- (reserved, read or write access leads to error message 0x06090011)			rw	U8
5: Event timer	-	- (not used for RPD	Os)		rw	U16

Communication parameter for receiving process data via RPDO2

Subindex	Meaning	Code
0	"5" is permanently set.Max. 5 subindices are supported.	-
1	 RPDO2 identifier According to the "Predefined Connection Set", the basic setting is: Identifier = 0x300 + node ID 	<u>C00354/3</u>
2	RPDO Transmission type according to DS301 V4.02 ▶ <u>Transmission type</u> (☐ 662)	<u>C00323/2</u>

► For data telegram assignment and description of subindices 1 and 2, see object <u>I-1400</u>.

How to change the identifier:

- 1. Deactivate identifier (set bit 31 to "1").
- 2. Change identifier.
- 3. Activate identifier (set bit 31 to "0").

System bus "CAN on board" Implemented CANopen objects

I-1402

Index: I-1402	Name: RPDO3 comm	Name: RPDO3 communication parameter				
Subindex	Default setting	Setting range (min. value unit max. value) Access Data type			Data type	
0: Highest subindex supported	5	- (read access only)			ro	U8
1: COB-ID used by RPDO	0x400 + node ID	0 4294967295		rw	U32	
2: Transmission type	254	0		255	rw	U8
3: Inhibit time	-	- (not used for RPD	Os)		rw	U16
4: Compatibility entry	-	- (reserved, read or write access leads to error message 0x06090011)		rw	U8	
5: Event timer	-	- (not used for RPD	Os)		rw	U16

Communication parameter for receiving process data via RPDO3

Subindex	Meaning	Code
0	"5" is permanently set. • Max. 5 subindices are supported.	-
1	 RPDO3 identifier According to the "Predefined Connection Set", the basic setting is: Identifier = 0x400 + node ID 	<u>C00354/5</u>
2	RPDO Transmission type according to DS301 V4.02 ▶ <u>Transmission type</u> (☐ 662)	<u>C00323/3</u>

▶ For data telegram assignment and description of subindices 1 and 2, see object <u>I-1400</u>.

How to change the identifier:

- 1. Deactivate identifier (set bit 31 to "1").
- 2. Change identifier.
- 3. Activate identifier (set bit 31 to "0").

System bus "CAN on board" Implemented CANopen objects

I-1600

Index: I-1600	Name: RPDO1 mapping parameter					
Subindex	Default setting	Default setting Setting range (min. value unit max. value) Access			Access	Data type
0: Number of mapped application objects in PDO	0	0		8	rw	U8
1 4: Application object 1 4	0	0		4294967295	rw	U32

The object I-1600 serves to receive parameter data as RPDO1.

▶ This object relates to codes <u>C00409/1...4</u> and <u>C00866/1...4</u>.

Subindex	Meaning
0	Number of mapped objects
1 4	 Mapping entries 1 4 for RPDO1 The 4th mapping entry is used for the statistic mapping. For this, there is no value available.

8th byte	7th byte	6th byte	5th byte
Data 4	Data 3	Data 2	Data 1
Bit 31 .	bit 16	Bit 15 bit 8	Bit 7 bit 0
Inc	lex	Subindex	Length

[11-14] Data telegram assignment

IEC 61131 process data words are mapped. Only whole bytes can be mapped (1-byte/mapping entry).

Related topics:

▶ RPDO1 | Port block "LP CanIn1" (☐ 655)

I-1601

Index: I-1601	Name: RPDO2 mapping parameter					
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type
0: Number of mapped application objects in PDO	0	0		8	rw	U8
1 4: Application object 1 4	0	0		4294967295	rw	U32

The object I-1601 serves to receive parameter data as RPDO2.

► This object relates to codes <u>C00409/5...8</u> and <u>C00866/5...8</u>.

Subindex	Meaning
0	Number of mapped objects
14	Mapping entries 1 4 for RPDO2 • The 4th mapping entry is used for the statistic mapping. For this, there is no value available.

► For data telegram assignment, see object <u>I-1600</u>.

Related topics:

▶ RPDO2 | Port block "LP CanIn2" (☐ 656)

System bus "CAN on board" Implemented CANopen objects

I-1602

Index: I-1602	Name: RPDO3 mapping parameter					
Subindex	Default setting	Setting range (min. value unit max. value)			Access	Data type
0: Number of mapped application objects in PDO	0	0		8	rw	U8
1 4: Application object 1 4	0	0		4294967295	rw	U32

The object I-1602 serves to receive parameter data as RPDO3.

► This object relates to codes <u>C00409/9...12</u> and <u>C00866/9...12</u>.

Subindex	Meaning
0	Number of mapped objects
14	 Mapping entries 1 4 for RPDO3 The 4th mapping entry is used for the statistic mapping. For this, there is no value available.

► For data telegram assignment, see object <u>I-1600</u>.

Related topics:

▶ RPDO3 | Port block "LP CanIn3" (☐ 657)

System bus "CAN on board" Implemented CANopen objects

I-1800

Index: I-1800	Name: TPDO1 communication parameter					
Subindex	Default setting	Setting range (min. value unit max. value) Access Data type				
0: Highest subindex supported	5	- (read access only)			ro	U8
1: COB-ID used by TPDO	0x180 + node ID	0		4294967295	rw	U32
2: Transmission type	254	0		255	rw	U8
3: Inhibit time	0 ms	0	0.1 ms	65535	rw	U16
4: Reserved	-	- (reserved, read or write access leads to error message 0x06090011)			rw	U8
5: Event timer	0 ms	0	ms	65535	rw	U16

Communication parameter for sending process data via TPDO1

Subindex	Meaning	Code
0	"5" is permanently set. • Max. 5 subindices are supported.	-
1	 TPDO1 identifier According to the "Predefined Connection Set", the basic setting is: Identifier = 0x180 + node ID 	<u>C00354/2</u>
2	TPDO transmission type according to DS301 V4.02 ▶ <u>Transmission type</u> (☐ 662)	<u>C00322/1</u>
3	Minimum time between sending two identical TPDOs (see DS301 V4.02).	<u>C00324/2</u>
5	Cycle time for PDO transmission with transmission type "254".	<u>C00356/5</u> <u>C00369</u>

	8th byte		7th byte	6th byte		5th byte
Data 4		a 4	Data 3 Data 2			Data 1
Bit 31	Bit 30		Bit 29 bit 11			Bit 10 bit 0
0/1	0/1		Extended identifier*			11-bit identifier
* The ext	* The extended identifier is not supported. Bit 11 bit 29 must be set to "0".					

[11-15] Data telegram assignment

Bit	Setting				
Bit 30	0	RTR to this PDO possible (Lenze).			
	1	RTR to this PDO not possible (not adjustable)			
Bit 31	0	PDO active			
	1	PDO inactive			

How to change the identifier:

- 1. Deactivate identifier (set bit 31 to "1").
- 2. Change identifier.
- 3. Activate identifier (set bit 31 to "0").

Subindex 2 - transmission type

PDO transmission		Transmission type	Explanation		
cyclic	synchronous	event- controlled			
•	•		n = 1 240	When a value n is entered, this PDO will be accepted with every nth SYNC.	
	•		n = 252	On sync, the PDO is filled with new data, but only sent on RTR.	
		•	n = 254, 255	Event-controlled or cyclic	

Subindex 3 - inhibit time

Note!

The delay time can only be changed when the PDO is not active (see subindex 1, bit 31 = 1).

The entered value multiplied by 0.1 gives the delay time in [ms]. Only integers will be considered, i.e. fractional numbers will be **rounded down** to integers.

Example:

- ► Entered value: 26
- ► Calculated time = $26 \times 0.1 \text{ [ms]} = 2.6 \text{ [ms]} \rightarrow \text{delay time} = 2 \text{ [ms]}$

Subindex 5 - event timer

For cyclic operation (transmission type 254), the cycle time for sending the process data object on the CAN bus can be set under subindex 5:

The entered value corresponds to the time in [ms].

System bus "CAN on board" Implemented CANopen objects

I-1801

Index: I-1801	Name: TPDO2 comm	Name: TPDO2 communication parameter					
Subindex	Default setting	Setting range (min. value unit max. value) Access Data type					
0: Highest subindex supported	5	- (read access only)	- (read access only)			U8	
1: COB-ID used by TPDO	0x280 + node ID	0		4294967295	rw	U32	
2: Transmission type	254	0		255	rw	U8	
3: Inhibit time	0 ms	0	0.1 ms	65535	rw	U16	
4: Reserved	-	- (reserved, read or write access leads to error message 0x06090011)			rw	U8	
5: Event timer	0 ms	0	ms	65535	rw	U16	

Communication parameter for sending process data via TPDO2

Subindex	Meaning	Code
0	"5" is permanently set. • Max. 5 subindices are supported.	-
1	 TPDO2 identifier According to the "Predefined Connection Set", the basic setting is: Identifier = 0x280 + node ID 	<u>C00354/4</u>
2	TPDO transmission type according to DS301 V4.02 ▶ <u>Transmission type</u> (□ 662)	<u>C00322/2</u>
3	Minimum time between sending two identical TPDOs (see DS301 V4.02).	<u>C00324/3</u>
5	Cycle time for PDO transmission with transmission type "254".	<u>C00356/2</u> <u>C00369</u>

► For data telegram assignment and description of subindices, see object <u>I-1800</u>.

How to change the identifier:

- 1. Deactivate identifier (set bit 31 to "1").
- 2. Change identifier.
- 3. Activate identifier (set bit 31 to "0").

I-1802

Index: I-1802	Name: TPDO3 commi	Name: TPDO3 communication parameter					
Subindex	Default setting	Setting range (min. value unit max. value) Access Data type					
0: Highest subindex supported	5	- (read access only)	- (read access only)			U8	
1: COB-ID used by TPDO	0x380 + node ID	0		4294967295	rw	U32	
2: Transmission type	254	0		255	rw	U8	
3: Inhibit time	0 ms	0	0.1 ms	65535	rw	U16	
4: Reserved	-	- (reserved, read or write access leads to error message 0x06090011)			rw	U8	
5: Event timer	0 ms	0	ms	65535	rw	U16	

Communication parameter for sending process data via TPDO3

Subindex	Meaning	Code
0	"5" is permanently set. • Max. 5 subindices are supported.	-
1	 TPDO3 identifier According to the "Predefined Connection Set", the basic setting is: Identifier = 0x380 + node ID 	<u>C00354/6</u>
2	TPDO transmission type according to DS301 V4.02 ▶ <u>Transmission type</u> (☐ 662)	<u>C00322/3</u>
3	Minimum time between sending two identical TPDOs (see DS301 V4.02).	<u>C00324/4</u>
5	Cycle time for PDO transmission with transmission type "254".	C00356/3 C00369

► For data telegram assignment and description of subindices, see object <u>I-1800</u>.

How to change the identifier:

- 1. Deactivate identifier (set bit 31 to "1").
- 2. Change identifier.
- 3. Activate identifier (set bit 31 to "0").

System bus "CAN on board" Implemented CANopen objects

I-1A00

Index: I-1A00	Name: TPDO1 mapping parameter					
Subindex	Default setting	Setting range (min.	value unit m	nax. value)	Access	Data type
0: Number of mapped application objects in PDO	0	0		8	rw	U8
1 4: Application object 1 4	0	0		4294967295	rw	U32

The object I-1A00 serves to send parameter data as TPDO1.

► This object relates to code C00868/1...4.

Subindex	Meaning
0	Number of mapped objects
14	 Mapping entries 1 4 for TPDO1 The 4th mapping entry is used for the statistic mapping. For this, there is no value available.

8th byte	th byte 6th byte 6th byte		5th byte
Data 4	Data 3	Data 2	Data 1
Bit 31 .	bit 16	Bit 15 bit 8	Bit 7 bit 0
Inc	lex	Subindex	Length

[11-16] Data telegram assignment

IEC 61131 process data words are mapped. Only whole bytes can be mapped (1-byte/mapping entry).

Related topics:

▶ TPDO1 | Port block "LP CanOut1" (☐ 658)

I-1A01

Index: I-1A01	Name: TPDO2 mapping parameter					
Subindex	Default setting	Setting range (min.	value unit m	nax. value)	Access	Data type
0: Number of mapped application objects in PDO	0	0		8	rw	U8
1 4: Application object 1 4	0	0		4294967295	rw	U32

The object I-1A01 serves to send parameter data as TPDO2.

► This object relates to code C00868/5...8.

Subindex	Meaning
0	Number of mapped objects
14	 Mapping entries 1 4 for TPDO2 The 4th mapping entry is used for the statistic mapping. For this, there is no value available.

► For data telegram assignment, see object <u>I-1A00</u>.

Related topics:

▶ TPDO2 | Port block "LP CanOut2" (☐ 659)

System bus "CAN on board" Implemented CANopen objects

I-1A02

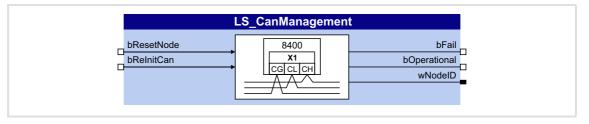
Index: I-1A02	Name: TPDO3 mapping parameter					
Subindex	Default setting	Setting range (min.	. value unit m	nax. value)	Access	Data type
0: Number of mapped application objects in PDO	0	0		8	rw	U8
1 4: Application object 1 4	0	0		4294967295	rw	U32

The object I-1A02 serves to send parameter data as TPDO3.

► This object relates to code C00868/9...12.

Subindex	Meaning
0	Number of mapped objects
1 4	 Mapping entries 1 4 for TPDO3 The 4th mapping entry is used for the statistic mapping. For this, there is no value available.

► For data telegram assignment, see object <u>I-1A00</u>.


Related topics:

▶ TPDO3 | Port block "LP CanOut3" (☐ 660)

11.12 Internal interfaces | System block "LS_CANManagement"

The LS_CANManagement system block serves to control internal functions of the CAN driver (reset node and re-initialisation) and to display the "Operational" status as well as the node address (analogous to the 9300 ServoPLC and ECS devices).

Inputs

Identifier	Data type	Information/possible settings		
bResetNode		Reset node		
	BOOL	TRUE	Carry out reset node • If the controller is configured as CAN master in C00352, the NMT command "Start Remote Node" is sent to all nodes at the bus (broadcast telegram). ▶ Network management telegram (NMT)	
bReInitCAN		Reinitialisation		
	BOOL		Reinitialise "CAN on board" interface.	

Outputs

Identifier	Data type	Value/meaning			
bFail		Error			
	BOOL	TRUE	An event according to the error configuration in $\underline{\text{C00341}}$ has occurred		
bOperational		"Operational"	Operational" status signal		
	BOOL	TRUE	The system bus is in the "Operational" status		
wNodeID	WORD	Output of the	node address		

Note!

If a "Bus off" error is detected, the "CAN on board" interface will automatically be reinitialised after 1 second.

Hence, 1 second after the "Bus off" has occurred, the controller will automatically be active again on the CAN bus ("Auto bus off recovery").

12 Fieldbus interface

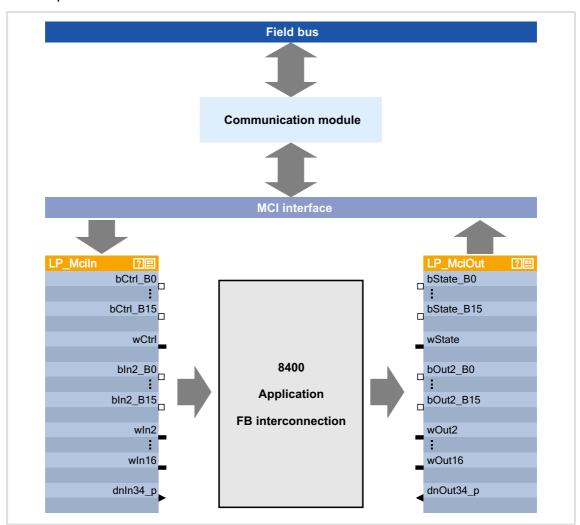
The drive controllers of the 8400 series can accommodate plug-in communication modules and can therefore take part in the data transfer of an existing fieldbus system.

When using a communication module, the major advantage for the user is the possibility of parameterising, controlling, and diagnosing the drive system via the available fieldbus.

The following fieldbuses are supported by the 8400 TopLine controller:

- **▶** EtherCAT
- **▶** Ethernet POWERLINK
- ► INTERBUS
- **▶** PROFIBUS
- **▶** PROFINET

Detailed information is provided in the communication manual (KHB) for the respective fieldbus and in the »Engineer« online help.


12.1 Process data transfer

The process data serve to control the controller. Thus the transfer of the process data is time-critical.

- ► The process cycle is 1 ms, irrespective of the respectively plugged-in bus system and the type of drive controller.
- ▶ Process data transfer takes place cyclically between the master system and the drive controllers.
 - This concerns the continuous exchange of current input and output data.
 - In the case of the 8400 drive controller, 16 words per direction are exchanged.
- ► The master computer can directly access the process data.

 Access to the process data takes place via the port blocks LP_MciIn and LP_MciOut (see FB interconnection of the »Engineer«).

 These port blocks are also called process data channels.
- ▶ The process data are not saved in the controller.

[12-1] External and internal data transfer between bus system, drive controller and function block interconnection

Voltage supply

Depending on the complexity and functional range of the fieldbus, the communication modules are supplied by the standard device or an external 24 supply at the module.

The external 24 V voltage supply of the communication module is required if the supply of the standard device fails but the communication via the bus is to continue.

Parameter setting of the communication modules

All codes which must be parameterised for establishing the fieldbus communication are saved in the memory module of the controller.

The archived data can be addressed by all bus systems supported by the controller.

Hotplug

The communication module (MCI module) can be plugged in/out while the controller is switched on. When the module is plugged in, it is automatically detected and checked for plausibility regarding the function and version.

Fieldbus-specific device profiles and PDO mapping

When specific bus systems are used, the controller is to behave according to a defined, manufacturer-spanning standard. The following definitions have been made for this:

- ▶ Definitions of the device state machine (e.g. DSP402, DriveCOM, ProfiDrive etc.)
- ▶ Definition of the bit assignment of control and status words
- ▶ Definition of signal scaling (on a limited scale)
- ▶ Definition of parameter scaling (on a limited scale)
- ▶ Definition of the process data mapping

These device profiles are not mapped in the communication module since some definitions have a strong effect on the device-internal behaviour and the device profiles are not uniform regarding this matter.

- ▶ The task of the communication modules is
 - to address parameters (SDOs),
 - to transfer PDOs and
 - the signal mapping of the PDOs.
- ► The process data objects (e.g. the meaning of the control word bits or the speed setpoint stipulated) are interpreted in the drive controller.

Fieldbus interface Control mode "MCI"

12.2 Control mode "MCI"

"40: MCI" can be selected as a control mode in <u>C00007</u> in order to quickly and easily set-up drive controller control by means of MCI-PDOs via the fieldbus interface.

Given that the technology applications are fundamentally different and have different requirements regarding the signals sent to them, predefined assignment of the MCI-PDOs depends on the technology application selected in C00005:

► TA "Actuating drive speed":

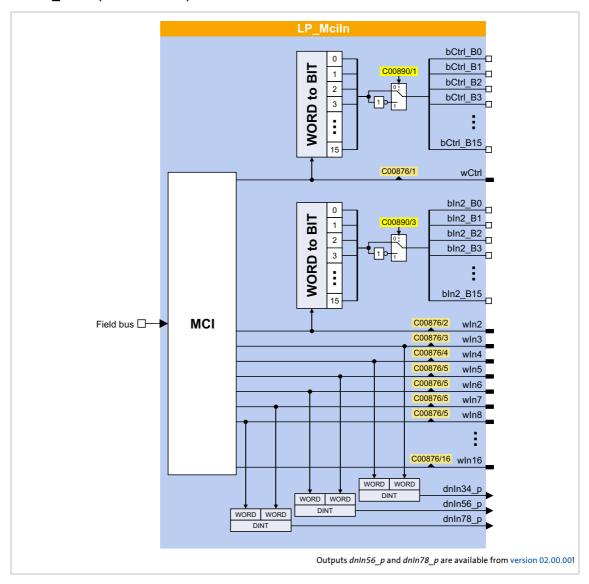
Process data assignment for fieldbus communication (□ 403)

► TA "Table positioning":

Process data assignment for fieldbus communication (434)

► TA "Switch-off positioning":

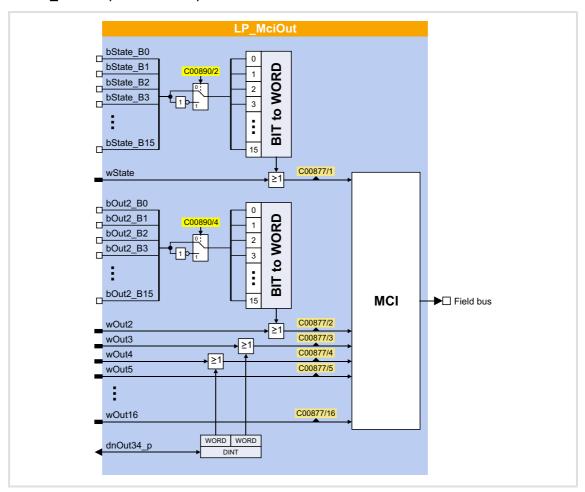
Process data assignment for fieldbus communication (□ 460)



The predefined assignment of the MCI-PDOs can be parameterised by means of PDO mapping and can be freely configured on the I/O level in the function block editor (FB editor).

12.2.1 Port block "LP Mciln"

The LP_MciIn port block maps the received MCI-PDOs in the FB Editor.


Short overview of the parameters for LP_MciIn:

Parameter	Info	Lenze setting			
<u>C00876/1</u>	LP_Mciln:wCtrl	-			
C00876/216	LP_Mciln: wln2 wln16	-			
C00890/1	LP_Mciln: Inversion bCtrl_B015	0x0000			
C00890/3	LP_Mciln: Inversion bln2_B015	0x0000			
Highlighted in grey = display parameter					

12.2.2 Port block "LP_MciOut"

The LP_MciOut port block maps the MCI-PDOs to be transmitted in the FB Editor.

Short overview of the parameters for LP_MciOut:

Parameter	Info	Lenze setting			
<u>C00877/1</u>	LP_MciOut:wState	-			
C00877/216	LP_MciOut: wOut2 wOut16	-			
C00890/2	LP_MciOut: Inversion bState_B015	0x0000			
C00890/4	LP_MciOut: Inversion bOut2_B015	0x0000			
Highlighted in grey = display parameter					

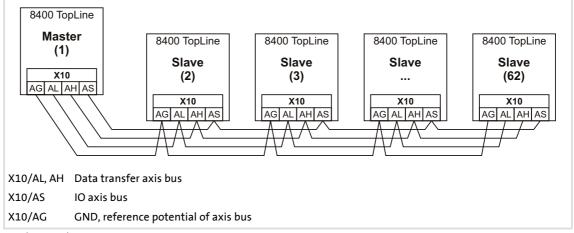
13 Axis bus

This function extension is available from version 02.00.00!

The 8400 TopLine controller has an integrated axis bus which is used to couple several 8400 TopLine controllers in an axis interconnection. The main task of the axis bus is a simple cross-data exchange from axis to axis.

Axis bus operation uses two transmission media, "data transfer axis bus" and "IO axis bus" that can be used independently of each other:

- ► The data transfer axis bus is based on CAN physics and enables a high-performance data transfer of master values and control signals to other 8400 TopLine controllers.
- ▶ The IO axis bus is a 1-wire bus with open-collector circuitry (5 V isolated). The IO axis bus can either be used to transfer controller errors in the interconnection ("release cord" principle) or as a pure open-collector IO function. In the first case, the internal time base of the controllers can be synchronised via the IO axis bus.


Max. 62 controllers can be connected to the axis bus.

Stop!

The data transfer axis bus of the 8400 TopLine controller is designed especially for performance and simplicity. HMIs and other peripherals as well as the L-force »Engineer« are <u>not supported</u> at the axis bus.

The IO axis bus of the 8400 TopLine controller is <u>not compatible</u> to the state bus of the 9300/9400 device series due to different voltage levels!

[13-1] Axis bus topology

13.1 Data transfer axis bus

Stop!

The data transfer axis bus of the 8400 TopLine controller is designed especially for performance and simplicity. HMIs and other peripherals as well as the L-force »Engineer« are <u>not supported</u> at the axis bus.

The data transfer axis bus is based on isolated CAN physics.

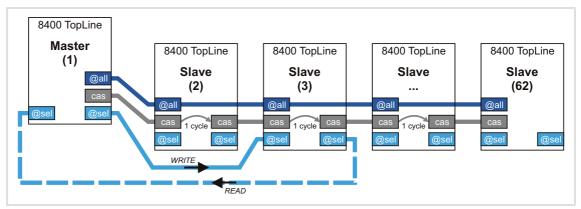
- ▶ Max. 62 nodes are supported at the bus (1 master and max. 61 slaves).
- ▶ The baud rate is permanently set to 500 kbits.
- ► Transfer cycle = 1 ms (at baud rate = 500 kbits)

13.1.1 Topologies

There are generally two different topologies for an interconnected operation:

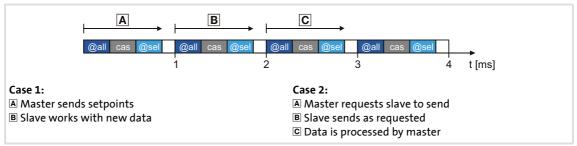
- A. <u>All nodes</u> of the network are connected to the higher-level master control via MCI module and the respective fieldbus.
 - The axes can exchange data via the axis bus.
 - Moreover, the CAN bus is available.
- B. Only the axis bus master of the network is connected to the higher-level master control via MCI module and the respective fieldbus.
 - For cost reasons, this topology only makes sense if only few information has to be transferred from the master control to the network.

In both cases, the axes can exchange data via the axis bus and the CAN bus is available in addition.


13.1.2 Transfer mechanisms

The axis bus supports three different transfer mechanisms simultaneously according to the following methodology:

- ▶ "@all": Data transfer from master to all slaves
 - A data packet is sent from the master to all slaves in the transmission cycle.
 - Application: Data distribution according to line topology
 - Cycle time = transmission cycle = 1 ms (at baud rate = 500 kbits)
- ► "cas": Data transfer from node to node (cascade)
 - In the first transmission cycle, a data packet is sent from master to slave 1, in the next transmission cycle from slave 1 to slave 2, etc.
 - Application: Data distribution according to cascade topology
 - Cycle time = transmission cycle * no. of slaves+1



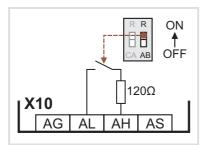
- ▶ "@sel": Data transfer from master to a slave
 - A data packet is sent from the master to one selected slave in the transmission cycle.
 - More options: Send to no slave, send to all slaves, and read one selected slave.
 - Application: Data distribution according to line topology for controlling one single node.
 - Cycle time = transmission cycle

[13-2] Transfer mechanisms

The axis bus data is transferred in 1-ms transmission cycle:

[13-3] Data transfer

The axis bus data transfer is connected to the master/slave application via the **LS_AxisBus** systems blocks:


- ► For a data transfer from the master to all slaves (@all) and/or a cascaded data transfer (cas), the systems blocks <u>LS AxisBusIn</u> and <u>LS AxisBusOut</u> are available in the FB Editor.
- ► For a data transfer from the master to a certain slave (@sel), the <u>LS_AxisBusAux</u> system block is available.

13.1.3 Activating the bus terminating resistor

The axis bus must be terminated between axis bus low (AL) and axis bus high (AH) at the first and last physical node each by a resistor (120 Ω).

The 8400 controller is provided with an integrated bus terminating resistor, which can be activated via the DIP switch labelled with "AB":

- ► OFF = bus terminating resistor is inactive
- ► ON = bus terminating resistor is active

[13-4] Activation of the integrated bus terminating resistor

13.1.4 Parameter setting

Short overview of the relevant parameters:

Parameter	Info	Lenze setting		
		Value	Unit	
<u>C01120</u>	Sync signal source	0: O	0: Off	
<u>C02430/1</u>	Axis bus address • 1 = Master • 2 62 = slave 1 slave 61	1	1	
<u>C02430/2</u>	Axis bus no. of nodesNumber of slaves connected to the axis bus.Setting only required for the master.	2	2	
<u>C02431/1</u>	Axis bus decel. boot-up operat. • Delay during status change from "Boot-up" to "Operational".	3000	ms	
<u>C02431/2</u>	Axis bus decel. operat 1.transmit - "Operational" time until "first transmission".	1000	ms	
<u>C02431/3</u>	Axis bus decel. BusOffRecovery	1000	ms	
<u>C02435</u>	Axis bus status	-		
<u>C02436</u>	Axis bus error status	-		
<u>C02437</u>	Axis bus MessageError	-		
C02440/1	Axis bus IO function	0: O	ff	
Highlighted in grey = display parameter				

Defining the master

For a "safe" data transfer, one controller must be the master in the network. The master controls and synchronises the network.

Make the following settings for the controller which is to be the master in the network:

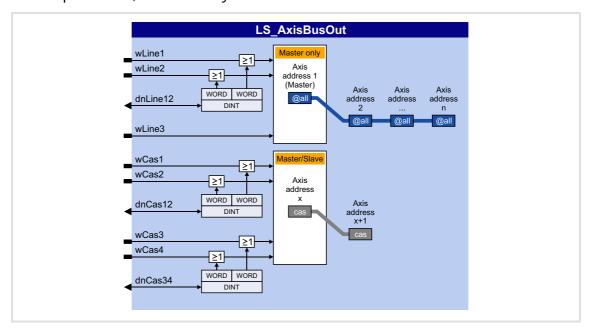
- ► Axis bus address (C02430/1) = "1"
 - With this setting, the controller automatically takes over the control in the network.
 - Only one master is allowed in the network.
- ► Axis bus IO function (C02440/1) = "1: Master"
 - With this setting, the controller outputs a synchronisation cycle to the I/O axis bus to which the slaves can orient themselves.

Required settings for the slaves

Make the following settings for the other controllers in the network:

- ► Axis bus address (C02430/1) = "2" ... "62"
 - Make sure that all controllers connected to the axis bus have <u>different</u> axis bus addresses.
- ► Sync signal source (C01120) = "2: AxisBusIO"
 - With this setting, the synchronisation cycle output by the master is used as synchronisation source.
 - Basically, only one source is allowed to synchronise the internal time base.
- ▶ Optional: Axis bus IO function (C02440/1) = "2: Slave"
 - Only required if the IO axis bus is to be used for transfer of controller errors in the network ("release cord" principle).

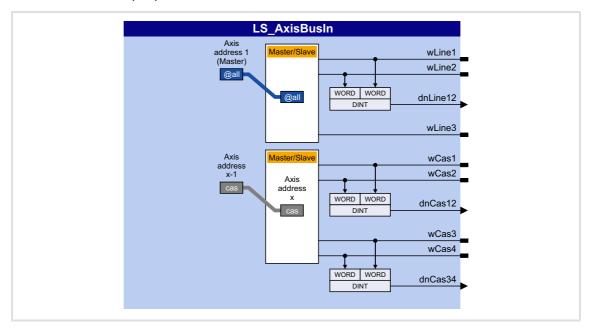
Related topics:


▶ <u>"Master/slave" function</u> (☐ 727)

13.1.5 Internal interfaces | System block "LS_AxisBusOut"

This system block is used to send line data from the master to all slaves (@all) and/or send the cascaded data (cas).

- ► The line data is sent as process data object (PDO) per transmission cycle to all slaves and forwarded to the application. Moreover, this PDO serves to transmit an internal control word (thus, only three words are available for data transfer).
- ► The cascaded data is also sent as PDO per transmission cycle from one slave to the next. The control which slave has to send when and at what time a slave in the chain has to accept the data, is executed by the internal control word in the PDO of the line data.


Inputs

Input	Data type	Information/possible settings		
wLine1/wLine2	WORD	Line data - word 1 and word 2 • Selection as separate words or as double word.		
dnLine12	DINT	The double word is OR'd with word 1 and word 2.		
wLine3	WORD	Line data - word 3		
wCas1/wCas2	WORD	Cascaded data - word 1 and word 2 • Selection as separate words or as double word.		
dnCas12	DINT	The double word is OR'd with word 1 and word 2.		
wCas3/wCas4	WORD	Cascaded data - word 3 and word 4 • Selection as separate words or as double word.		
dnCas34	DINT	The double word is OR'd with word 3 and word 4.		

13.1.6 Internal interfaces | System block "LS_AxisBusIn"

This system block is used to receive the (line) data from the master (@all) and/or receive the cascaded data (cas).


Outputs

Output Data ty	Value/meaning Delivery Control of the Control of th
wLine1/wLine2	Line data - word 1 and word 2
dnLine12	Line data - word 1 and word 2 as double word
wLine3	Line data - word 3
wCas1/wCas2	Cascaded data - word 1 and word 2
dnCas12	Cascaded data - word 1 and word 2 as double word
wCas3/wCas4	Cascaded data - word 3 and word 4
dnCas34	Cascaded data - word 3 and word 4 as double word

13.1.7 Internal interfaces | System block "LS_AxisBusAux"

This system block is used for data transfer between the master and one selected slave (@sel). Data can either be received from the slave ("read") or sent to the slave ("write"). By selecting the axis bus address "63", data can also be sent to all slaves at the axis bus.

Inputs

Input	Data type	Information/possible settings		
wAuxOut1/wAuxOut2		The double word is OR'd with word 1 and word 2.		
dnAuxOut12	DINT			
wAuxOut3/wAuxOut4	WORD	Data to be sent - word 3 and word 4 • Selection as separate words or as double word.		
dnAuxOut34	DINT	The double word is OR'd with word 3 and word 4.		
<u> </u>	-	relevant for the master. ontrols the data acceptance of the "@sel" data in the slave.		
wSelectSlave	WORD	 Axis bus address of the slave data is to be received of or data is to be sent to. "0" ≡ data is sent to no slave. "63" ≡ data is sent to all slaves. 		
bReadWrite		Read/write access		
	BOOL	FALSE Data is received by selected slave.		
		TRUE Data is sent to selected slave.		
bExecute		Data acceptance		
	BOOL	TRUE The pending data is accepted and the read/write access is executed		
bStop		Stop data transfer		
	BOOL	TRUE The axis bus changes to the "Stopped" status. In this status, the entire data transfer is switched off.		

Outputs

Output	Data type	Value/meaning		
wAuxIn1/wAuxIn2	WORD	Received data - word 1 and word 2		
dnAuxIn12	DINT	Received data - word 1 and word 2 as double word		
wAuxIn3/wAuxIn4	WORD	Received data - word 3 and word 4		
dnAuxIn34	DINT	Received data - word 3 and word 4 as double word		
wSlaveNo	WORD	Display which slave has sent its data. Output only relevant for master.		
bDone		Status signal "Data transfer completed"		
E	BOOL	TRUE Data has been received correctly.		
bFail		Status signal "Error"		
	BOOL	TRUE Data has not been received correctly (e.g. bus error).		

13.2 IO axis bus

Stop!

The IO axis bus of the 8400 TopLine controller is <u>not compatible</u> to the state bus of the 9300/9400 device series due to different voltage levels!

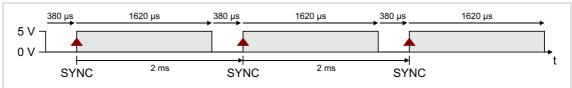
In order to use the IO axis bus, first decide whether the IO axis bus is to be used for transferring controller errors in the network ("release cord" principle) or as a pure open-collector IO function. The required function of the IO axis bus must then be set for all nodes in C02440/1.

- ► "Master/slave" function ("release cord" principle)
 - In this setting, the IO axis bus only knows the two statuses "OK" and "Error".
 - Each node connected to the IO axis bus can set the IO axis bus into the "Error" status.
 - In the "Error" status, all nodes start their adjustable response, e.g. a synchronised braking of the drive system or the master only brakes the network to standstill.
 - The "Error" status can only be reset by the node defined as "master".
 - The internal time base of the controllers can be synchronised via the IO axis bus.
- ► "IO" function
 - With this setting, the IO axis bus is used as a pure IO transmission medium.
 - Each node connected to the IO axis bus can transmit a TRUE signal to all nodes.

13.2.1 "Master/slave" function

With this setting, the IO axis bus can be used as "release cord", i.e. each node can set all other nodes into an error status.

One IO axis bus node takes over the master role. The master's task is to output a synchronisation cycle to the IO axis bus to which the slaves can orient themselves:



[13-5] IO axis bus: Synchronisation cycle from the master (error-free status)

The controller is configured as master or slave in $\frac{\text{CO2440/1}}{\text{O2: Slave}}$ or by selecting "1: Master" or "2: Slave".

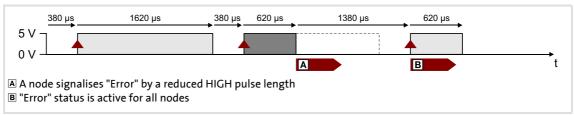
Synchronisation of the internal time base

The internal time base of the slaves can be synchronised via the IO axis bus. The slaves orient themselves to the synchronisation cycle output by the master:

[13-6] Synchronisation cycle

- ► In order that the IO axis bus is used as synchronisation source, all slaves must be set to "AxisBusIO" in C01120.
 - The internal time base is synchronised based on the HIGH edge in a 2-ms cycle (see illustration above).
 - Internal timing and trimming of the phase position are set automatically.
- ► Basically, only one source is allowed to synchronise the internal time base. If "AxisBusIO" is selected, this is the IO axis bus master.

More information on this subject can be found in the following main chapter "Synchronisation of the internal time base". (731)


Error-free status

In the error-free status, all nodes are error-active, i.e. each node can set the IO axis bus into the "Error" status.

Error status

By setting the <u>LS_AxisBusIO</u>. $bSetFail_DigOut$ input to TRUE, each node can set the IO axis bus into the "Error" status. The node signalises this by reducing the HIGH pulse length to 620 μ s:

[13-7] Synchonisation cycle (error status)

All other nodes detect the "error status" due to the changed pulse length which has the following effect:

- ► The <u>LS AxisBusIO</u>.*bFail_DigIn* output is set to TRUE. This digital signal can be used for any application within the function block interconnection.
- ► The nodes are now error-passive, i.e. they cannot signalise any further errors in order that the HIGH edge for synchronisation can be detected after 2 ms.

In order to trigger a parameterisable error response, you can connect the bFail_DigIn output signal of the SB <u>LS AxisBusIO</u> to a bSetError input of the SB <u>LS SetError 1</u> or SB <u>LS SetError 2</u>.

Reset "error" status

Note!

The "error" status can only be reset by the master!

A FALSE/TRUE edge at the <u>LS_AxisBusIO</u>.bResetFail input (for the master) serves to reset the "error" status again. The master signalises this by providing a LOW pulse for 3 ms.

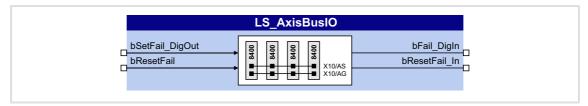
All other nodes detect the error reset due to this signal, which has the following effect:

- ► The <u>LS AxisBusIO</u>.bFail DigIn output is reset to FALSE.
- ► After a delay time of 2 ms, the <u>LS AxisBusIO</u>.bResetFailIn output is set for 3 ms to TRUE. This digital signal can be used within the function block interconnection to e.g. reset errors.

13.2.2 "IO" function

With this setting, the IO axis bus is used as a pure IO transmission medium, just like it the case for the 9300 and 9400 device series.

The "IO" function is activated in <a>CO2440/1 by selecting "3: IO".


Note!

- "IO" function and <u>Data transfer axis bus</u> are mutually exclusive since with activated "IO" function, a synchronisation of the internal time base is not possible (which is required for a "safe" data transfer).
- The "IO" function must be set for all IO axis bus nodes.
- Triggering an error message with this function is only possible by function block interconnection.
- Resetting an error message is not possible with this function.
- ▶ By setting the LS AxisBusIO.bSetFail_DigOut input to TRUE, the IO axis bus is set to the dominant level and for all nodes, the LS AxisBusIO.bFail DigIn output is set to TRUE.
- ► The LS AxisBusIO.bResetFail input has no function.
- ► The LS AxisBusIO.bResetFail In output is always FALSE.

13.2.3 Internal interfaces | System block "LS_AxisBusIO"

The LS_AxisBusIO system block maps the IO axis bus in the FB Editor:

Inputs

Identifier	Data type	Information/possible settings		
bSetFail_DigOut		Set IO axis bus into the "error" status / IO data exchange		
	BOOL	TRUE For all IO axis bu	s nodes, the <i>bFail_DigIn</i> output is set to TRUE.	
bResetFail	bResetFail Reset "error" status Only possible with "Master/slave" function via the IO axis bus mass		lave" function via the IO axis bus master.	
			s nodes, the <i>bFail_DigIn</i> output is reset to FALSE. e of 2 ms, the <i>bResetFail_In</i> output is set to TRUE for set.	

Outputs

Identifier	Data type	Value/meaning	
bFail_DigIn	BOOL	With "master/slave" function: "Error" status With "IO" function: Data exchange	
		TRUE An IO axis bus nodes has set the bSetFail_Digout input to TRUE.	
bResetFail_In BOOL		"Error" status has been reset • With "IO" function, this output is always FALSE.	
		TRUE The IO axis bus master has reset the error message. This status is only pending for 3 ms.	

14 Synchronisation of the internal time base

In a drive system, synchronising the internal time bases of all controllers involved makes sense because cyclic process data should be processed synchronously in all drives.

- ▶ One of the following signal sources can be used for automatic synchronisation of the internal time base of the controller:
 - CAN bus ("CAN on board") → sync telegram
 - Axis bus ("AxisBusIO") → master/slave function
 - MCI → sync signal of a plugged-in communication module (EtherCAT, PROFINET or Powerlink)

Short overview of the parameters for the synchronisation of the internal time base:

Parameter	Info Lenze setting		etting		
		Value	Unit		
<u>C00370/1</u>	CAN Sync instant of transmission	-	μs		
<u>C00370/2</u>	Sync instant of reception	-	μs		
<u>C01120</u>	Sync signal source	Of	f		
<u>C01121</u>	Sync cycle time setpoint	1000	μs		
<u>C01122</u>	Sync phase position	0	μs		
<u>C01123</u>	Sync window	100	μs		
<u>C01124</u>	Sync correction width	320	ns		
Highlighted in grey = display parameter					

Sync signal source

The synchronisation signal source can be selected in <u>CO1120</u>. As a general rule, only one source can be used to synchronise the internal time base.

Sync cycle time setpoint

Time after which the internal phase-locking loop (PLL) anticipates the synchronisation signals. The time must be set in $\underline{\text{C01121}}$ according to the cycle of the synchronisation source selected in $\underline{\text{C01120}}$.

Note!

- Only integer multiples of 1000 μs can be set in C01121.
- Intelligent communication modules usually define the cycle time setpoint derived from the bus cycle. In this case, a manual change is not possible.
- Even in case of a synchronisation via axis bus, a setting of the cycle time and the phase position is not required/possible and is executed automatically.

Example: For the CAN bus, 2 ms has been selected as interval between two synchronisation signals. If the CAN bus is to be used as synchronisation source, a cycle time setpoint of $2000 \mu s$ must be selected in C01121.

Sync phase position

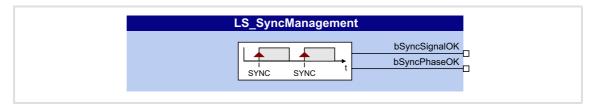
The phase position determines the zero-time of the internal system cycle with regard to the synchronisation signal (bus cycle). Since PDO processing is an inherent part of the system part of the application, the instant of acceptance of the PDOs is postponed as well by a changed phase position.

- ▶ If "0" is set, the internal system cycle starts at the same time as the synchronisation signal.
- ▶ If a value > 0 is set, the internal system cycle starts by the set time earlier (the phase position has a negative effect) than the synchronisation signal.
- ▶ Intelligent communication modules define the optimal time with activated synchronisation by themselves. In this case, a manual change is not possible.
- ► For determining <u>C01122</u>, the point in time where all bus nodes have valid PDOs is decisive.

Example: If the phase position is set to 550 μ s, the system part of the application starts 550 μ s before the arrival of the synchronisation signal.

Sync correction width

If the cycle times of the synchronisation signal and the phase-locking loop (PLL) are different, the setting in $\underline{\text{CO1124}}$ defines the correction increments for the phase-locking loop.


- ► The recommended reset time for the CAN bus as synchronisation source in case of occurring deviations is 320 ns (Lenze setting).
- ▶ If synchronisation is not reached, select a higher correction width.
- ► The optimum setting depends on quartz precision and must be determined empirically if required.

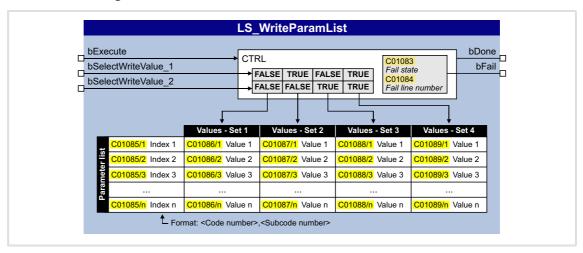
Synchronisation of the internal time base Internal interfaces | System block "LS_SyncManagement"

14.1 Internal interfaces | System block "LS_SyncManagement"

The SB **LS_SyncManagement** provides status information for synchronising the internal time base:

Outputs

Identifier	Data type	Value/meaning	
bSyncSignalOK	BOOL	TRUE	Sync signal OK
bSyncPhaseOK	BOOL	TRUE	Sync phase position OK


15 Parameter change-over

For up to 32 freely selectable parameters, this basic function provides a change-over between four sets with different parameter values.

The parameter list is created in the same way as the user menu is composed, namely by means of parameterisation. In the »Engineer«, a user-friendly parameterisation dialog with import and export functions is available for this purpose.

15.1 Internal interfaces | System block "LS_WriteParamList"

The **LS_WriteParamList** system block provides the internal interfaces for the basic "Parameter change-over" function:

Inputs

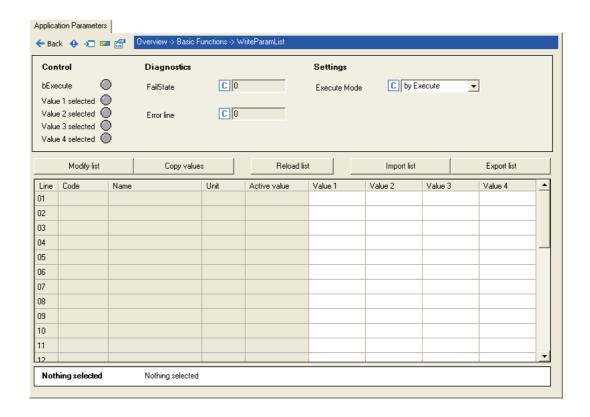
Identifier	Data type	Information/possible settings		
bExecute	BOOL	FALSE 7TRUE	If Execute Mode (C01082) = "0: by Execute": Activate writing of the parameter list	
bSelectWriteValue_1		Binary coded selection of the value set 1 4 to be used.		
bSelectWriteValue_2	BOOL	bSelectWrite Value_1	bSelectWrite Value_2	
		FALSE	FALSE	Value set 1 (<u>C01086/1 n</u>)
		TRUE	FALSE	Value set 2 (<u>C01087/1 n</u>)
		FALSE	TRUE	Value set 3 (C01088/1 n)
		TRUE	TRUE	Value set 4 (<u>C01089/1 n</u>)

Outputs

Identifier	Data type	Value/meaning		
bDone BO	BOOL	 "Writing of the parameter list completed" status signal The output is automatically reset to FALSE if writing via bExecute is activated again. 		
		TRUE	Writing of the parameter list successfully completed.	
		FALSE	The FALSE status can have the following meanings: 1. There is no active writing of the parameter list. 2. Writing of the parameter list has not been completed yet. 3. An error has occurred (if <i>bFail</i> = TRUE).	
bFail BOOL		"Error" status		
	BOOL	TRUE	An error has occurred (group signal). • For details see display parameter C01083 .	

Configuring the list using the »Engineer« parameterisation dialog 15.2

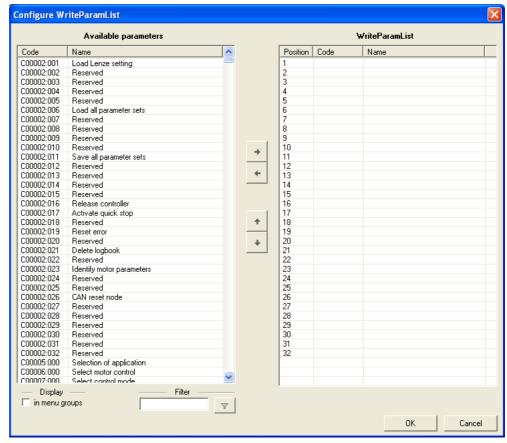
Proceed as follows to open the dialog for parameterising the parameter change-


- 1. »Engineer« Go to the *Project view* and select the 8400 TopLine controller.
- 2. Go to Workspace and change to the Application parameters tab.
- 3. Go to the Overview dialog level and click the "basic functions" button.
- 4. Go to the Overview → Basic functions dialog box and click the Parameter changeover button.

8400 TopLine C | Software Manual

Parameter change-over

Configuring the list using the »Engineer« parameterisation dialog



Creating/changing the list

To create or change the list, proceed as follows:

- 1. Click on **Change list** button.
 - The dialog box entitled Configure WriteParamList is shown:

- · On the left-hand side, all the parameters of the drive controller with write and read access are shown in the list entitled Available parameters.
- If the option In menu groups is activated, all parameters are shown assigned to their functions.
- By clicking on the <u>v</u> button in the **Filter** area, you can shorten the list of available parameters. If, for example, you enter the text "ain1" and then click on the button, only those parameters whose designation contains this text are shown for selection.
- 2. Highlight the parameter/parameters in the **Available parameters** list that is/are to be added to the WriteParamList.
 - Here, you can use the **<Ctrl>** key and the **<Shift>** key for multiple selection, as in the case of general Windows functions.

8400 TopLine C | Software Manual

Parameter change-over

Configuring the list using the »Engineer« parameterisation dialog

- 3. Click on the button in order to add the highlighted parameters to the WriteParamList on the right-hand side.
 - With the 1 and 1 buttons, you can alter the sequence of parameters in the WriteParamList.

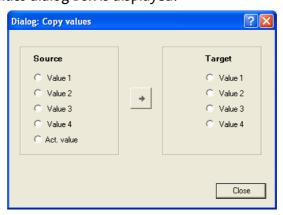
To remove parameters from the WriteParamList, proceed as follows:

- Highlight the parameter/parameters in the WriteParamList that is/are to be removed from the WriteParamList.
- Click on the button to remove the highlighted parameters from the WriteParamI ist
- 4. Click on the **OK** button to accept the configuration and close the dialog box.
 - You can call the configuration dialog again at any time in order to change or expand the WriteParamList retrospectively.

Entering values

After composing the list, you can directly enter the desired parameter values into the input fields (columns 1st value ... 4th value).

If you place the cursor in an input field, the permitted value range for the corresponding parameter is shown under the table.


Copying values

All the settings of a value set can be copied to another value set.

To copy values, proceed as follows:

- 1. Click on the Copy values button.
 - The Copy values dialog box is displayed:

- 2. Select Source and Target.
- 3. Click on button in order to copy the values from **Source** to **target**.

Importing/exporting the list

For <u>cross-device</u> reuse of the configured *WriteParamList*, you can click on the **Export list** and **Import list** buttons to save the parameter selection as an *.epc file and then to re-import the saved *.epc file into another drive controller 8400.

15.3 Configuring the list by means of parameterisation

The following application example shows the necessary procedure for configuring the list without using the »Engineer« parameterisation dialog.

Task:

Using the **LS_WriteParamList** SB, the $\underline{\text{C00012}}$, $\underline{\text{C00026/1}}$, $\underline{\text{C00027/1}}$, and $\underline{\text{C00222}}$ to $\underline{\text{C000224}}$ parameters are to be written.

Compiling the parameter list

In <u>C01085/1 ... n</u>, specify the above-named parameters in the <Code>,<Subcode> format:

- ightharpoonup C01085/1 = 12.000
- \triangleright C01085/2 = 26.001
- \triangleright C01085/3 = 27.001
- ► C01085/4 = 222.000
- ► C01085/5 = 223.000
- \triangleright C01085/6 = 224.000
- ► C01085/7 ...<u>n</u> = 0.000 (no parameter)

Note!

Gaps in the parameter list (setting = 0.000) are permissible and are skipped in the process.

Invalid parameter entries are not accepted at the input.

Entering values for the parameters (value set 1)

In $\underline{\text{C01086/1 ... n}}$, specify the values to be used to describe the selected parameters. The values are entered according to the scaling format/scaling factor of the respective parameter.

- ightharpoonup C01086/1 = <value> for list entry 1 (in our example: for parameter C00012)
- ► C01086/2 = <value> for list entry 2 (in our example: for parameter C00026/1)
- ightharpoonup C01086/3 = <value> for list entry 3 (in our example: for parameter C00027/1)
- etc.

These values are used in the writing process if the two *bSelectWriteValue_1* and *bSelectWriteValue_2* inputs are not assigned or both set to FALSE.

Parameter change-over Selecting a value set

Entering other values for the parameters (value sets 2 ... 4)

If required, up to three other sets can be set in the same way in C01087/1...n to C01089/1...n which can optionally be written to the parameters. The decision as to which value set is finally used is dependent upon the assignment of the two bSelectWriteValue_1 and bSelectWriteValue 2 inputs:

15.4 Selecting a value set

The value set to be used is selected via the selection inputs bSelectWriteValue_1 and bSelectWriteValue_2 of the SB LS WriteParamList:

bSelectWriteValue_1	bSelectWriteValue_2	Value set used
FALSE	FALSE	Value set 1 (<u>C01086/1 n</u>)
TRUE	FALSE	Value set 2 (<u>C01087/1 n</u>)
FALSE	TRUE	Value set 3 (<u>C01088/1 n</u>)
TRUE	TRUE	Value set 4 (<u>C01089/1 n</u>)

15.5 Activating the writing of the parameters

For writing the parameter list, two modes are available in C01082:

- ▶ 0: by Execute (Lenze setting) The writing of the parameter list is activated by a FALSE/TRUE edge at the bExecute control input.
- ▶ 1: by Input Select
 The parameter list is written when the selection inputs bSelectWriteValue_1 and
 bSelectWriteValue 2 are changed and once during the initialisation of the controller.

The parameters are written one at a time every time the main program is executed until the entire parameter list is processed. In the event of an error, respective error messages are output.

Note!

The "parameter change-over" basic function is always processed, even if the **LS_WriteParamList** system block has been removed from the interconnection by the FB Editor.

If you do not require this basic function anymore, delete the composed parameter list in order that no unwanted parameter write operations take place.

8400 TopLine C | Software Manual

Parameter change-over Activating the writing of the parameters

After successful completion

- ... the bDone output is set to TRUE.
- ► The *bDone* output is automatically reset to FALSE if writing via *bExecute* is activated again.

In the event of an error

- ... the bDone output remains set to FALSE and the bFail output is set to TRUE.
- ► <u>C01083</u> displays an error status and <u>C01084</u> displays the number of the list entry at which the error occurred (in connection with the selected value set).
- ▶ If several errors occur at the same time, only the first incorrect list entry will be displayed. Hence, after elimination of the displayed error and another activation, more errors may be displayed.
- ► The parameter list will always be processed from beginning to end, even if errors occur in the meantime.

16 Parameter reference

This chapter describes all parameters which can be used for parameterising and monitoring the controller.

Parameters which are only available in the controller from a certain software version onwards are marked with a corresponding note in the parameter description ("from version xx.xx.xx").

The parameter descriptions are based on software version V02.00.00

For quick reference of a parameter with a certain name, simply use the **index** of the online documentation. The index always contains the corresponding code in parentheses after the name.

General information on parameter setting can be found in the chapter "Introduction: Parameterising the controller". (30)

For general information on how to read and change parameters, please see the online documentation for the »Engineer«.

16.1 Structure of the parameter descriptions

Each parameter is described in the <u>Parameter list</u> in the form of a table which consists of the following three areas:

Table header

The table header contains the following general information:

- ► Parameter number (Cxxxxx)
- ▶ Parameter name (display text in the »Engineer» and keypad)
- ▶ Data type
- ► Parameter index in decimal and hexadecimal notation for access via a fieldbus (e.g. CAN system bus).

The parameter index is calculated as follows:

- Index [dec] = 24575 code
- Index [hex] = 0x5FFF code

Example for code C00005:

- Index [dec] = 24575 5 = 24570
- Index [hex] = 0x5FFF 0x{5} = 0x5FFA

Table contents

The table contains further general explanations & notes on the parameter and the possible settings, which are represented in different ways depending on the parameter type:

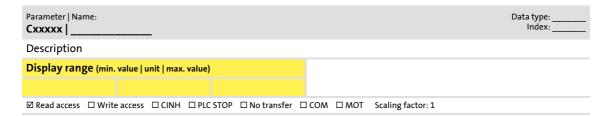
- Parameters with read-only access
- ► Parameters with write access

Table footer

The table footer contains the <u>Parameter attributes</u>.

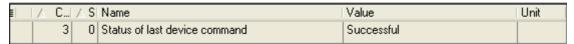
Parameter reference Structure of the parameter descriptions

16.1.1 Data type


The parameters can be of the following data types:

Data type	Meaning
INTEGER_16	16-bit value with sign
INTEGER_32	32-bit value with sign
UNSIGNED_8	8-bit value without sign
UNSIGNED_16	16-bit value without sign
UNSIGNED_32	32-bit value without sign
VISIBLE_STRING	String of characters from printable characters

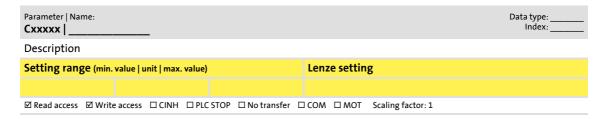
16.1.2 Parameters with read-only access


Parameters for which the "write access" attribute has not been set, can only be read. They cannot be changed by the user.

Description structure

Representation in the »Engineer«

The »Engineer« displays these parameters with a grey background or, with an online connection, with a pale-yellow background:

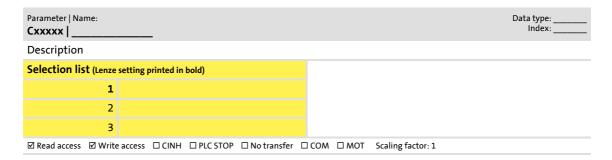

16.1.3 Parameters with write access

Only parameters with a check mark (\boxtimes) in front of the "write access" attribute can be changed by the user. The Lenze setting for these parameters is **printed in bold**.

- ► The settings can either be selected from a selection list or the values can be entered directly.
- ▶ Values outside the valid setting range are represented in red in the »Engineer«.

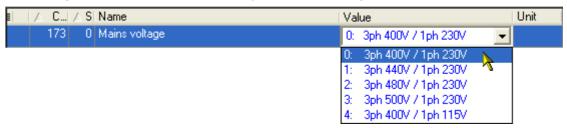
16.1.3.1 Parameters with setting range

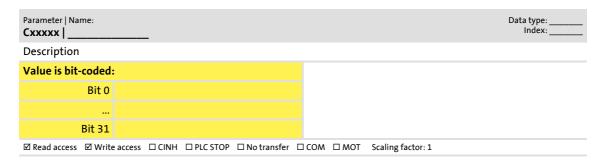
Description structure


Parameter setting in the »Engineer«

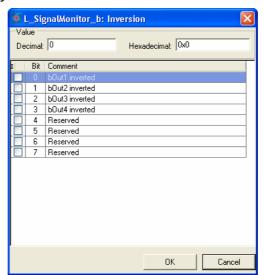
In the »Engineer«, parameters are set by entering the desired value into the input field:

16.1.3.2 Parameters with selection list


Description structure

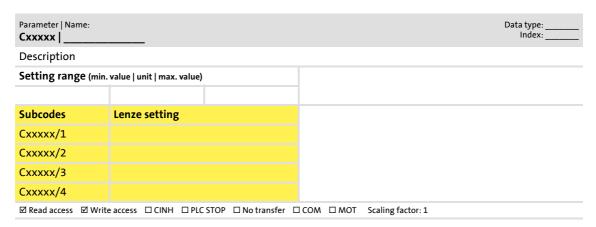

Parameter setting in the »Engineer«

In the »Engineer«, a list field is used for parameter setting:


16.1.3.3 Parameters with bit-coded setting

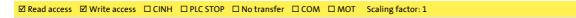
Description structure

Parameter setting in the »Engineer«


The »Engineer« uses a dialog box for parameter setting in which the individual bits can be set or reset. Alternatively, the value can be entered as a decimal or hexadecimal value:

16.1.3.4 Parameters with subcodes

Description structure


Parameter setting in the »Engineer«

The »Engineer« parameter list displays each subcode individually. The parameters are set as described in the previous chapters.

F	△ C	ΔS	Name	Value	Unit
	39	1	Fixed setpoint 1	40.00	%
	39	2	Fixed setpoint 2	60.00	%
	39	3	Fixed setpoint 3	80.00	%
	39	4	Fixed setpoint 4	0.00	%

16.1.4 Parameter attributes

The table footers contain the parameter attributes:

Attribute Meaning			
☑ Read access	Read access to parameter possible.		
☑ Write access	Write access to parameter possible. • Please also observe the following attributes:		
	☑ CINH	Parameter value can only be changed when the controller is inhibited.	
	☑ PLC STOP	Parameter value can only be changed when the application is stopped.	
☑ No transfer	Parameter is not transferred to controller when the command <u>Download parameter set</u> is executed.		
☑ COM	Communication-relevant parameter This parameter is relevant for parameter data transfer via the (CAN) system bus.		
☑ MOT	Motor control parameters		

Parameter reference Structure of the parameter descriptions

Scaling factor

The "scaling factor" is important for parameter access via a bus system.

Signal type	Scaling factor	Resolution	Value range
Analog (scaled)	100	16 bits signed	± 199.99 %
Angular velocity	1	16 bits signed	± 32767 incr./ms
Position in [units]	10000	32 bits signed	± 214748.3647 [units]
Digital (BOOL)	1	8 bits unsigned	$0 \equiv FALSE; 1 \equiv TRUE$
Time	1000	16 bits unsigned	0 999.000 s
Selection value	1	16 bits unsigned	0 65535

<u>Example 1</u>: The value "654" of the parameter <u>C00028/1</u> (AIN1: input voltage) read via a bus system must be divided by the corresponding scaling factor "100" to obtain the actual display value "6.54 V".

[16-1] Conversion formula for read access via bus system

<u>Example 2</u>: In order to set the parameter <u>C00012</u> (acceleration time main setpoint) to the value "123.45 %" via a bus system, the integer value "12345" must be transferred, i.e. the value to be set must be multiplied by the corresponding scaling factor "100".

Value to be written (via bus system) = Value to be set · Scaling factor

[16-2] Conversion formula for write access via bus system

Character length

In case of parameters of "VISIBLE_STRING" data type, the character length is given in addition. This is also important for the parameter access via a bus system.

16.2 Parameter list

This chapter lists all parameters of the operating system in numerically ascending order.

Note!

The parameter descriptions are based on the software version V02.00.00.

C00002

Parameter | Name:
C00002 | Device command

Data type: UNSIGNED_8 Index: 24573_d = 5FFD_h

Note:

Selection list

- Before switching off the supply voltage after carrying out a device command, check whether the device command has been carried out successfully via the status display under <u>C00003</u>!
- Before activating device commands by a master control, wait for the "Ready" signal of the controller.
- The device will reject a write process to C00002/x if the value is >1 and issue an error message.
 - ▶ <u>Drive control (DCTRL)</u>: <u>Device commands</u>

0	Off / ready	
1	On / start	
4	Action cancelled	
5	No access	
6	No access controller inhibit	
20	20% working	
40	40% working	
60	60% working	
80	80% working	
Subcodes	Lenze setting	Info
C00002/1	0: Off / ready	Load Lenze settingAll parameters are reset to the Lenze setting.Only possible when the controller is inhibited.
C00002/2	0: Off / ready	Reserved
C00002/3	0: Off / ready	Reserved
C00002/4	0: Off / ready	Reserved
C00002/5	0: Off / ready	Reserved
C00002/6	0: Off / ready	Load all parameter setsAll parameter sets are loaded by the memory module.Only possible when the controller is inhibited.
C00002/7	0: Off / ready	Reserved
C00002/8	0: Off / ready	Reserved
C00002/9	0: Off / ready	Reserved
C00002/10	0: Off / ready	Reserved
C00002/11	0: Off / ready	Save all parameter setsAll parameter sets are saved to the memory module safe against mains failure.
C00002/12	0: Off / ready	Reserved
C00002/13	0: Off / ready	Reserved

Parameter Name: C00002 Devic	e command	Data type: UNSIGNED_8 Index: 24573 _d = 5FFD _h
C00002/14	0: Off / ready	Reserved
C00002/15	0: Off / ready	Reserved
C00002/16	1: On / start	Enable controller "1" ≡ Enable controller "0" ≡ Inhibit controller
C00002/17	0: Off / ready	Activate quick stop "1" ≡ Activate quick stop "0" ≡ Deactivate quick stop
C00002/18	0: Off / ready	Reserved
C00002/19	0: Off / ready	 Reset error After the reset (acknowledgement) of the current error, further errors may be pending which must also be reset. The status determining error is displayed in <u>C00168</u>. The current error is displayed in <u>C00170</u>.
C00002/20	0: Off / ready	Reserved
C00002/21	0: Off / ready	 Delete logbook All entries in the logbook of the controller are deleted. In the logbook, information on the error history is saved.
C00002/22	0: Off / ready	Reserved
C00002/23	0: Off / ready	 Motor parameter identification This device command serves to carry out automatic motor parameter identification. The identification method can be selected in <u>C02867</u>. The device command is only executed when the drive controller is in the "SwitchedOn" status. In order to identify the motor parameters, the controller must be enabled after this device command. <u>Automatic motor parameter identification</u>
C00002/24	0: Off / ready	Reserved
C00002/25	0: Off / ready	Identify resolver error e ▶ Optimise resolver behaviour
C00002/26	0: Off / ready	 CAN reset node Reinitialise "CAN on board" interface. Required when changing the baud rate, node address, or identifiers. System bus "CAN on board"
C00002/27	0: Off / ready	 Device search function This device command serves to optically locate a controller connected online (e.g. for maintenance work). Device search function
C00002/28	0: Off / ready	Check MasterPin ▶ Unlocking the controller with a MasterPin
C00002/29	0: Off / ready	Set binding ID <u>Device personalisation</u>
C00002/30	0: Off / ready	Delete binding ID <u>Device personalisation</u>
C00002/31	0: Off / ready	Set password ▶ Password protection

Parameter Name: C00002 Device command Data type: UNSIGNED Index: 24573 _d = 5FFE			
C00002/32	0: Off / ready	Check password Password protection	
C00002/33	0: Off / ready	Delete password Password protection	
C00002/34	0: Off / ready	 Identify pole position (360°) This device command is serves to carry out an automatic identification of the pole position. The device command is only carried out if the controller is in the "Switched On" status In order to identify the pole position, the controller must be enabled after this device command. Pole position identification 	
☑ Read access ☑ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT Scaling factor: 1			

C00003

Parameter Name:	Data type: UNSIGNED_8
C00003 Status of last device command	Index: $24572_d = 5FFC_h$

Status of the device command executed last (C00002).

Note

Before switching off the supply voltage after carrying out a device command, check whether the device command has been carried out successfully via the status display!

▶ <u>Drive control (DCTRL)</u>: <u>Device commands</u>

Selection list (read only)		Info
0	Successful	Device command has been executed successfully.
1	Command unknown	Device command implausible or unknown to the system.
2	Password protection	Unauthorised access for requested device command. ▶ Password protection
3	Time-out	Device command could not be processed in the defined time (timeout).
4	System error	
5	Command server assigned	
6	Controller inhibit required	
10	Memory module binding error	▶ <u>Device personalisation</u>
11	Password too short	▶ <u>Password protection</u>
12	Wrong password	
13	Password already set	
14	Password not assigned	
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer □	☐ COM ☐ MOT Scaling factor: 1

8400 TopLine C | Software Manual

Parameter reference Parameter list | C00005

C00005

Parameter Name: C00005 Applicati	on	Data type: UNSIGNED_16 Index: 24570 _d = 5FFA _h
Selection of the te	chnology application	
Selection list (Lenze	setting printed in bold)	Info
0	Wiring has changed	This display appears if the FB interconnection has been changed in the application level using the FB Editor.
1000	Actuating drive speed	This technology application is used to solve speed-controlled drive tasks, e.g. conveying belts.
2000	Table positioning	This technology application is used to solve position-controlled drive tasks which are usually controlled by a higher-level control system using a fieldbus.
3000	Switch-off positioning	This technology application is used to solve speed-controlled drive tasks which require a pre-switch off or stopping at certain positions, e.g. roller conveyors and conveying belts. This is implemented by connecting switch-off sensors.
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 1

C00006

Parameter Name: C00006 Motor control	Data type: UNSIGNED_8 Index: 24569 _d = 5FF9 _h
--	--

Selection of the motor control mode

▶ Motor control (MCTRL): Select control mode

Selection list (Lenze	setting printed in bold)	Info
1	SC: Servo control PSM	This control type is used for the servo control of a synchronous motor. • The control type requires a speed feedback via an encoder mounted to the motor! • Servo control
2	SC: Servo control ASM	This control type is used for the servo control of an asynchronous motor. • The control type requires a speed feedback via an encoder mounted to the motor! • Servo control
3	SLPSM: Sensorless PSM	This control type is used for the sensorless control of a synchronous motor. ▶ Sensorless control for synchronous motors
4	SLVC: Vector control	 This control type is used for sensorless vector control of an asynchronous motor. The control type requires motor parameters to be set as exactly as possible! Sensorless vector control
6	VFCplus: V/f linear	 This control type is used for the speed control of an asynchronous motor via a linear V/f characteristic and is the simplest control type. For setting the V/f characteristic, only the rated frequency (C00089) and the rated voltage (C00090) of the motor have to be entered. V/f characteristic control
7	VFCplus: V/f linear + encoder	This control type is used for speed control of an asynchronous motor via a linear V/f characteristic. • The control type requires a speed feedback via an encoder mounted to the motor! • For setting the V/f characteristic, only the rated frequency (C00089) and the rated voltage (C00090) of the motor have to be entered. • V/f control

Parameter Name:	entrol	Data type: UNSIGNED_8 Index: 24569 _d = 5FF9 _h
8	VFCplus: V/f quadr	This control type is used for speed control of an asynchronous motor via a square-law V/f characteristic. • For setting the V/f characteristic, only the rated frequency (C00089) and the rated voltage (C00090) of the motor have to be entered. • V/f characteristic control
9	VFCplus: V/f quadr + encoder	 This control type is used for speed control of an asynchronous motor via a square-law V/f characteristic. The control type requires a speed feedback via an encoder mounted to the motor! For setting the V/f characteristic, only the rated frequency (C00089) and the rated voltage (C00090) of the motor have to be entered. V/f control
10	VFCplus: V/f definable	 This type of control is used for the speed control of an asynchronous motor via a user-definable characteristic with several interpolation points. For setting the V/f characteristic, only the rated frequency (C00089) and the rated voltage (C00090) of the motor have to be entered. V/f characteristic control
11	VFCplusEco: V/f energy-saving	This control type is used for energy-saving speed control of an asynchronous motor via a linear V/f characteristic. • For setting the V/f characteristic, only the rated frequency (C00089) and the rated voltage (C00090) of the motor have to be entered. • Predestinated application areas of this control type are materials handling technology and pump and fan systems. • V/f characteristic control, energy-saving

8400 TopLine C | Software Manual

Parameter reference Parameter list | C00007

C00007

 Parameter | Name:
 Data type: UNSIGNED_16

 C00007 | Control mode
 Index: 24568_d = 5FF8_h

With this parameter the control mode for the technology application selected under $\underline{\text{C00005}}$ is defined, i.e. how the inputs and outputs of the technology application are connected to the I/Os of the controller.

- How the inputs and outputs are connected in the individual control modes is described in the corresponding technology application:
 - -"Actuating drive speed" TA
 - -TA "Table positioning"
 - -"Switch-off positioning" TA

Selection list (Lenze setting printed in bold)		Info	
0	Wiring has changed	This is displayed when the FB interconnection has been changed in the I/O level via the FB Editor.	
10	Terminals 0	The technology application is controlled via the digital	
12	Terminals 2	and analog input terminals of the controller. • For a short overview of the preconfigured terminal	
14	Terminals 11	assignment see the following section "Terminal	
16	Terminal 16	assignment of the control modes 10 16".	
20	Keypad	The technology application is controlled via the keypad.	
21	PC	The technology application is controlled via the "Free parameters" of the controller (PC control).	
30	CAN	The technology application is controlled by means of CAN-PDOs via the system bus "CAN on board". • System bus "CAN on board"	
40	MCI	The technology application is controlled by means of MCI-PDOs via the MCI-interface of an attached communication module (e.g. PROFIBUS).	

Terminal assignment of the control modes 10 ... 16

Note: The following tables only list the connected inputs/outputs.

"Actuating drive speed" TA				
Input/output	10: Terminals 0	12: Terminals 2	14: Terminals 11	16: Terminals 16
RFR	Controller enable / Reset of error message			
DI1	Fixed setpoint 1/3		Change of direction of rotation	Fixed setpoint 1/3
DI2	Fixed setpoint 2/3		Activate manual DC- injection braking (DCB)	Fixed setpoint 2/3
DI3	Activate manual DC-injection braking (DCB)	Quick stop	Motor potentiometer: Increase speed	CW rotation quick stop
DI4	Change of direction of rotation		Motor potentiometer: Decrease speed	CCW rotation quick stop
A1U, A1I	Main speed setpoint (10 V = 100 % reference speed)			
01U, 01I	Actual speed value (10 V ≡ 100 % reference speed)			
DO1	Status "Drive is ready"			
Relay output	Status "Error is pending"			

TA "Table positioning"				
Input/output	10: Terminals 0	12: Terminals 2	14: Terminals 11	16: Terminals 16
RFR		Controller enable / Reset of error message		
DI1		-	Positive limit switch	-
DI2	-	-	Negative limit switch	-
DI3	Positive limit switch	-	-	Manual jog in positive direction
DI4	Negative limit switch	Negative limit switch Positioning profile, array bit (valency 4) Manual jog in negative dire		
DI5	Positioning profile, array bit (valency 2)			
DI6		Positioning profile, array bit (valency 1)		
DI7		Start of profile generation		
A1U, A1I	Main speed setpoint (10 V = 100 % reference speed)			
01U, 01I	Actual speed value (10 V ≡ 100	Actual speed value (10 V ≡ 100 % reference speed)		
O2U, O2I	Current motor current (10 V ≡ 3	Current motor current (10 V = 100 % I _{max_mot})		
DO1	Status "Drive is ready"	Status "Drive is ready"		
DO2	Status "Target position (actual value) is in the target window"			
DO3	Status "Home position is know	Status "Home position is known"		
BD1, BD2	Control of the holding brake	Control of the holding brake		
Relay output	Status "Error is pending"	Status "Error is pending"		

"Switch-off positioning" TA				
Input/output	10: Terminals 0	12: Terminals 2	14: Terminals 11	16: Terminals 16
RFR	Controller enable	Controller enable / Reset of error mes		ssage
DI1	Fixed setpoint 1/3	Stop function 1		Fixed setpoint 1/3
DI2	Fixed setpoint 2/3	Stop function 2	Selection: Pre-switch off 1	Fixed setpoint 2/3
DI3	Reset error messages	CW rotation quick stop Selection: Switch-off position 1		CW rotation quick stop
DI4	Change of direction of rotation	CCW rotation quick stop Selection: Switch-off position 2		CCW rotation quick stop
DI5		-	Stop function 2	-
DI6	Selection: Pre-switch off 2		-	
A1U	Main speed setpoint (10 V \equiv 100 % reference speed)			
BD1, BD2	Control of the holding brake			

C00008

Parameter | Name: C00008 | Original application | control source Data type: UNSIGNED_16 Index: 24567_d = 5FF7_h

Display of the originally selected technology application and the originally selected control mode.

- This parameter shows the selection that was set with C00007 before a change in the I/O level or the application level was carried out.
- For diagnostic purposes, this display serves to determine whether there is a standard interconnection in the controller or a change carried out by the user.

Selection list (read only)		Info	
0	Free Free	Application: Interconnection has been changed. I/O level: Interconnection has been changed.	
10	Free Terminal0	Application: Interconnection has been changed. I/O level: "Terminals 0" control mode	
12	Free Terminal2	Application: Interconnection has been changed. I/O level: "Terminal 2" control mode	
14	Free Terminal11	Application: Interconnection has been changed. I/O level: "Terminal 11" control mode	

ameter Name: 0008 Original a	application control source	Data type: UNSIGNED _. Index: 24567 _d = 5F
16	Free Terminal 16	Application: Interconnection has been changed. I/O level: "Terminal 16" control mode
20	Free Keypad	Application: Interconnection has been changed. I/O level: "Keypad" control mode
21	Free PC	Application: Interconnection has been changed. I/O level: "PC" control mode
30	Free CAN	Application: Interconnection has been changed. I/O level: "CAN" control mode
40	Free MCI	Application: Interconnection has been changed. I/O level: "MCI" control mode
1000	Speed Free	Application: Actuating drive speed I/O level: Interconnection has been changed.
1010	Speed Terminal0	Application: Actuating drive speed I/O level: "Terminals 0" control mode
1012	Speed Terminal2	Application: Actuating drive speed I/O level: "Terminal 2" control mode
1014	Speed Terminal11	Application: Actuating drive speed I/O level: "Terminal 11" control mode
1016	Speed Terminal16	Application: Actuating drive speed I/O level: "Terminal 16" control mode
1020	Speed Keypad	Application: Actuating drive speed I/O level: "Keypad" control mode
1021	Speed PC	Application: Actuating drive speed I/O level: "PC" control mode
1030	Speed CAN	Application: Actuating drive speed I/O level: "CAN" control mode
1040	Speed MCI	Application: Actuating drive speed I/O level: "MCI" control mode
2000	TabPos Free	Application: Table positioning I/O level: Interconnection has been changed.
2010	TabPos Terminal0	Application: Table positioning I/O level: "Terminals 0" control mode
2012	TabPos Terminal2	Application: Table positioning I/O level: "Terminal 2" control mode
2014	TabPos Terminal11	Application: Table positioning I/O level: "Terminal 11" control mode
2016	TabPos Terminal16	Application: Table positioning I/O level: "Terminal 16" control mode
2020	TabPos Keypad	Application: Table positioning I/O level: "Keypad" control mode
2021	TabPos PC	Application: Table positioning I/O level: "PC" control mode
2030	TabPos CAN	Application: Table positioning I/O level: "CAN" control mode
2040	TabPos MCI	Application: Table positioning I/O level: "MCI" control mode
3000	SwitchPos Free	Application: Switch-off positioning I/O level: Interconnection has been changed.
3010	SwitchPos Terminal0	Application: Switch-off positioning I/O level: "Terminals 0" control mode

Parameter Name: C00008 Original a	application control source	Data type: UNSIGNED_16 Index: 24567 _d = 5FF7 _h	
3012	SwitchPos Terminal 2	Application: Switch-off positioning I/O level: "Terminal 2" control mode	
3014	SwitchPos Terminal 11	Application: Switch-off positioning I/O level: "Terminal 11" control mode	
3016	SwitchPos Terminal 16	Application: Switch-off positioning I/O level: "Terminal 16" control mode	
3020	SwitchPos Keypad	Application: Switch-off positioning I/O level: "Keypad" control mode	
3021	SwitchPos PC	Application: Switch-off positioning I/O level: "PC" control mode	
3030	SwitchPos CAN	Application: Switch-off positioning I/O level: "CAN" control mode	
3040	SwitchPos MCI	Application: Switch-off positioning I/O level: "MCI" control mode	
☑ Read access □ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

Parameter Name:	Data type: INTEGER_16
C00010 AIN1: Characteristic	Index: 24565 _d = 5FF5 _t

▶ Analog terminals: Signal adaptation via characteristic

Setting range (min. value unit max. value)			
0.00	%	199.99	
Subcodes	Lenze setting		Info
C00010/1	0.00 %		AIN1: (+y0) = min
C00010/2	0.00 %		AIN1: (+x0) = Dead band
C00010/3	0.00 %		AIN1: (-y0) = (-min)
C00010/4	0.00 %		AIN1: (-x0) = (-Dead band)
C00010/5	100.00 %		AIN1: (+ymax)
C00010/6	100.00 %		AIN1: (+xmax)
C00010/7	100.00 %		AIN1: (-ymax)
C00010/8	100.00 %		AIN1: (-xmax)
☑ Read access ☑ Write	e access	COM MOT Scaling factor: 100	

C00011

Parameter | Name:

C00011 | Appl.: Reference speed

Data type: UNSIGNED_16
Index: 24564_d = 5FF4_h

Setting the reference speed

- In the controller, all speed-related signals are processed to one reference variable in percent.
- Set a reference speed here that corresponds to 100 %.
- The frequency that corresponds to the set reference speed is displayed in C00059.

Note:

This is not a maximum limitation!

All values in percent in the controller may be in a range of 0 ... 199.99 %.

Setting range (min. value unit max. value)			Lenze setting	
50	rpm 60000		1500 rpm	
☑ Read access ☑ Write	e access	LC STOP □ No transfer □] сом □ мот	Scaling factor: 1

Parameter reference Parameter list | C00012

C00012

Parameter | Name:

C00012 | Accel. time - main setpoint

Data type: UNSIGNED_32
Index: 24563_d = 5FF3_h

The L NSet 1 FB: Acceleration time of the ramp generator for the main speed setpoint

• Generally, this ramp generator is used for all speed-controlled technology applications.

Setting range (min. value unit max. value)			Lenze setting
0.000	s 999.999		2.000 s
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	□ COM □ MOT Scaling factor: 1000

C00013

Parameter | Name:

C00013 | Decel. time - main setpoint

Data type: UNSIGNED_32
Index: 24562_d = 5FF2_h

The L NSet 1 FB: Deceleration time of the ramp generator for the main speed setpoint

• Generally, this ramp generator is used for all speed-controlled technology applications.

Setting range (min. value unit max. value)			Lenze setting
0.000 s 999.999		999.999	2.000 s
☑ Read access ☑ Write	e access	STOP □ No transfer □	□ COM □ MOT Scaling factor: 1000

C00015

V/f base frequency for V/f characteristic control (VFCplus) and V/f control (VFCplus+encoder)

- The motor voltage increases linearly with the frequency until the base frequency is reached. From this value on, the motor voltage remains constant, the speed increases and the maximum torque decreases.
- After the motor to be used has been selected from the motor catalogue, the suitable value can be entered
 automatically. An automatic detection via the motor parameter identification is possible as well.

Setting range (min. value unit max. value)			Lenze setting
7.5	Hz	2600.0	50.0 Hz
☑ Read access ☑ Write	e access	STOP □ No transfer □ C	COM MOT Scaling factor: 10

C00016

 Parameter | Name:
 Data type: UNSIGNED_16

 C00016 | VFC: Vmin boost
 Index: 24559_d = 5FEF_h

Boost of the V/f voltage characteristic in the range of small speeds or frequencies with V/f characteristic control ($\frac{VFCplus}{e}$) and V/f control ($\frac{VFCplus}{e}$)

- · This may increase the starting torque.
- After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically. An automatic detection via the motor parameter identification is possible as well.

Motor control (MCTRL): Setting the Vmin boost

Setting range (min. value unit max. value)			Lenze setting
0.00	%	100.00	1.60 %
☑ Read access ☑ Write	e access	D □ No transfer □	□ COM □ MOT Scaling factor: 100

Parameter | Name:
C00018 | Switching frequency

Data type: UNSIGNED_8 Index: 24557_d = 5FED_h

Selection of the pulse width modulated switching frequency transferred from the inverter to the motor

- Select between an ideal setting for the drive which provides smooth running, and an optimal setting with regard to the inverter which keeps its losses to a minimum (min. Pv).
- Both possibilities offer fixed and variable switching frequencies.
- When a variable switching frequency is selected, the switching frequency may change as a function of the load and rotational frequency.

▶ <u>Selection of switching frequency</u>

Selection list (Lenze	Selection list (Lenze setting printed in bold)		
1	4 kHz var./drive-optimised		
2	8 kHz var./drive-optimised		
3	16 kHz var./drive-optimised		
5	2 kHz constant/drive-optimised		
6	4 kHz constant/drive-optimised		
7	8 kHz constant/drive-optimised		
8	16 kHz constant/drive-optimised		
11	4 kHz var./min. Pv		
12	8 kHz var./min. Pv		
13	16 kHz var./min. Pv		
15	2 kHz constant/min. Pv		
16	4 kHz constant/min. Pv		
17	8 kHz constant/min. Pv		
18	16 kHz constant/min. Pv		
21	8 kHz var./drive-opt./4 kHz min		
22	16 kHz var./drive-opt./4 kHz min		
23	16 kHz var./drive-opt./8 kHz min		
31	8 kHz var./min. Pv/4 kHz min		
32	16 kHz var./min. Pv/4 kHz min		
33	16 kHz var./min. Pv/8 kHz min		

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00019

Parameter | Name: C00019 | Auto DCB: Threshold

Data type: UNSIGNED_16 Index: 24556_d = 5FEC_h

Setpoint speed threshold for automatic DC injection braking

• For speed setpoints with values below the thresholds a DC current is injected or the motor is not supplied with current, depending on the setting.

▶ DC-injection braking

Setting range (min.	value unit max. value)		Lenze setting
0	rpm	60000	3 rpm
☑ Read access ☑ Write	e access	P □ No transfer □	□ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C00020

C00020

Parameter | Name:

C00020 | AIN2: Characteristic

Data type: INTEGER_16
Index: 24555_d = 5FEB_h

▶ Analog terminals: Signal adaptation via characteristic

			Analog terminals: Signal adaptation via characteristic
Setting range (min. value unit max. value)			
0.00	%	199.99	
Subcodes	Lenze setting		Info
C00020/1	0.00 %		AIN2: (+y0) = min
C00020/2	0.00 %		AIN2: (+x0) = Dead band
C00020/3	0.00 %		AIN2: (-y0) = (-min)
C00020/4	0.00 %		AIN2: (-x0) = (-Dead band)
C00020/5	100.00 %		AIN2: (+ymax)
C00020/6	100.00 %		AIN2: (+xmax)
C00020/7	100.00 %		AIN2: (-ymax)
C00020/8	100.00 %		AIN2: (-xmax)
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ CC			COM MOT Scaling factor: 100

C00021

Parameter | Name: C00021 | Slip comp.

Data type: INTEGER_16 Index: 24554_d = 5FEA_h

Slip compensation for V/f characteristic control (VFCplus) and sensorless vector control (SLVC)

- A higher slip compensation results in a higher increase in frequency and voltage when the machine is under load.
- After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically. An automatic detection via the motor parameter identification is possible as well.
 - ▶ Motor control (MCTRL): Optimising the operational performance by slip compensation

Setting range (min. value unit max. value)			Lenze setting
-100.00 % 100.00		100.00	2.67 %
☑ Read access ☑ Write	access	STOP No transfer	□ COM □ MOT Scaling factor: 100

C00022

 Parameter | Name:
 Data type: UNSIGNED_16

 C00022 | Imax in motor mode
 Index: 24553_d = 5FE9_h

Maximum current in motor mode for all motor control modes

Setting range (min.	value unit max. value)		Lenze setting
0.00	Α	655.35	47.00 A
☑ Read access ☑ Write	e access	STOP No transfer	COM MOT Scaling factor: 100

C00023

Parameter | Name:

C00023 | Imax in generator mode

Data type: INTEGER_16
Index: 24552_d = 5FE8_h

Maximum current in generator mode for all motor control modes

• 100 % ≡ Imax in motor mode (C00022)

Setting range (min.	value unit max. value)	Lenze setting
0.00	%	100.00	100.00 %
☑ Read access ☑ Write	access 🗆 CINH 🗆 PL	C STOP □ No transfer □	□ COM □ MOT Scaling factor: 100

Parameter | Name:

C00024 | LS_DriveInterface: bNActCompare

Data type: INTEGER_16
Index: 24551_d = 5FE7_h

Threshold for the actual speed comparison

- This parameter serves to set a threshold that is compared with the actual speed value.
- If the value falls below this threshold, the bNactCompare output sets the LS_DriveInterface system block to TRUE.
- Switching hysteresis = +1 %

Setting range (min.	value unit max. value)		Lenze settin	g
0.00	%	199.99	0.00 %	
☑ Read access ☑ Write	access CINH PLC	STOP □ No transfer □	ом □мот	Scaling factor: 100

C00026

Parameter | Name:

C00026 | AINx: Offset

Data type: INTEGER_16
Index: 24549_d = 5FE5_h

Offset for analog inputs

► Analog terminals

Setting range (m	in. value unit max. value)		
-199.99	%	199.99	
Subcodes	Lenze setting		Info
C00026/1	0.00 %		AIN1: Offset
C00026/2	0.00 %		AIN2: Offset
☑ Read access ☑ W	rite access	TOP □ No transfer □	COM ☐ MOT Scaling factor: 100

C00027

Parameter | Name:

C00027 | AINx: Gain

Data type: INTEGER_32
Index: 24548_d = 5FE4_h

Gain for analog inputs

Analog terminals

Setting range (min.	value unit max. value)	
-100.0000	100.0000	
Subcodes	Lenze setting	Info
C00027/1	1.0000	AIN1: Gain
C00027/2	1.0000	AIN2: Gain
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	I COM ☐ MOT Scaling factor: 10000

C00028

Parameter | Name:

C00028 | AINx: Input voltage

Data type: INTEGER_16
Index: 24547_d = 5FE3_h

Display of the input voltage at the analog inputs

▶ Analog terminals

Display range (min	n. value unit max. value)	
-10.00	V	10.00	
Subcodes			Info
C00028/1			AIN1: Input voltage
C00028/2			AIN2: Input voltage
☑ Read access ☐ Wri	te access □ CINH □ PL	C STOP ☑ No transfer ☐	COM MOT Scaling factor: 100

Parameter reference Parameter list | C00029

C00029

Parameter | Name:

C00029 | AINx: Input current

Data type: INTEGER_16
Index: 24546_d = 5FE2_h

Display of the input current at the analog inputs

- When the corresponding analog input is configured for current measurement ($\frac{\text{C00034/x}}{\text{x}} = 1 \text{ or 2}$).
- When <u>C00034/x</u> is set = 2 (4 ... 20 mA), 0 ... 16 mA is displayed.

▶ Analog terminals

Display range (r	nin. value unit max. value)	
0.00	mA	20.00	
Subcodes			Info
C00029/1			AIN1: Input current
C00029/2			AIN2: Input current
☑ Read access □ V	/rite access □ CINH □ PLO	C STOP ☑ No transfer □	□ COM □ MOT Scaling factor: 100

C00033

Parameter | Name:

C00033 | AINx: Output value

Data type: INTEGER_16
Index: 24542_d = 5FDE_h

Display of the output value in percent of the analog input amplifier

• $100 \% \equiv 16384 \equiv +10 \text{ V} / +20 \text{ mA}$

▶ Analog terminals

Display range (mir	ı. value unit max. value)	
-199.99	%	199.99	
Subcodes			Info
C00033/1			AIN1: Output value
C00033/2			AIN2: Output value
☑ Read access ☐ Wri	te access 🗆 CINH 🗆 PLO	STOP INotransfer	□ COM □ MOT Scaling factor: 100

C00034

Parameter | Name:

C00034 | AINx: Configuration

Data type: UNSIGNED_8
Index: 24541_d = 5FDD_h

Configuration of the analog inputs for current or voltage measurement

▶ Analog terminals

Selection list		Info
0	-10V+10V	Input signal is the voltage signal -10 V +10 V • -10 V +10 V \equiv -100 % +100 %
1	0mA20mA	Input signal is the current signal 0 mA 20 mA • 0 mA 20 mA \equiv 0 % +100 %
2	4mA20mA	 Input signal is the current signal 4 mA 20 mA 4 mA 20 mA ≡ 0 % +100 % The current loop is monitored for open circuit (I < 4 mA) by the device.
Subcodes	Lenze setting	Info
C00034/1	0: -10V+10V	AIN1: Config.
C00034/2	0: -10V+10V	AIN2: Config.
☑ Read access ☑ Write	access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C00036

Parameter | Name:

C00036 | DC braking: Current

Data type: INTEGER_16
Index: 24539_d = 5FDB_h

Braking current in [%] based on rated device current (C00098)

▶ DC-injection braking

Setting range (min.	value unit max. value)	Lenze setting
0.00	%	200.00	50.00 %
☑ Read access ☑ Writ	e access □ CINH □ PL	C STOP □ No transfer □	COM □ MOT Scaling factor: 100

Parameter Name: C00039 Fixed se	tpoint x (L_NSet_1 n	-Fix)	Data type: INTEGER_16 Index: 24536 _d = 5FD8 _h
The <u>L_NSet_1</u> FB:	Fixed speed setpoin	ts (JOG values) for t	he setpoint generator
Setting range (min	. value unit max. value)		
-199.99	%	199.99	
Subcodes	Lenze setting		Info
C00039/1	40.00 %		Fixed setpoint 1
C00039/2	60.00 %		Fixed setpoint 2
C00039/3	80.00 %		Fixed setpoint 3
C00039/4	0.00 %		Fixed setpoint 4
C00039/5	0.00 %		Fixed setpoint 5
C00039/6	0.00 %		Fixed setpoint 6
C00039/7	0.00 %		Fixed setpoint 7
C00039/8	0.00 %		Fixed setpoint 8
C00039/9	0.00 %		Fixed setpoint 9
C00039/10	0.00 %		Fixed setpoint 10
C00039/11	0.00 %		Fixed setpoint 11
C00039/12	0.00 %		Fixed setpoint 12
C00039/13	0.00 %		Fixed setpoint 13
C00039/14	0.00 %		Fixed setpoint 14
C00039/15	0.00 %		Fixed setpoint 15
☑ Read access ☑ Writ	te access	STOP □ No transfer □	COM MOT Scaling factor: 100
Parameter Name: C00050 MCTRL:	Speed setpoint		Data type: INTEGER_32 Index: 24525 _d = 5FCD _h
Display of the spe	ed setpoint at the sp	eed setpoint input	of the motor control
Display range (min	ı. value unit max. value)		
-60000	rpm	60000	
☑ Read access ☐ Writ	te access 🗆 CINH 🗆 PLC	STOP ☑ No transfer ☐	COM □ MOT Scaling factor: 1

C00051

C00050

Parameter | Name:

C00051 | MCTRL: Actual speed value

Data type: INTEGER_32
Index: 24524_d = 5FCC_h

Display of the actual speed value of the motor shaft

Note

The displayed value only corresponds to the real actual speed value of the motor shaft if an encoder is connected to the motor and the evaluation of the feedback signal has been set correctly ("Closed loop" operation). In case of operation without speed feedback, the signal is calculated from the motor control and thus may not correspond to the real actual speed.

Display rang	e (min. value unit max. value)	
-60000	rpm	60000
☑ Read access	☐ Write access ☐ CINH ☐ PLC STOP	☑ No transfer ☐ 0

Parameter reference Parameter list | C00052

C00052

C00053

C00054

Parameter Name: C00052 Motor vo	oltage						Data type: UNSIGNED_16 Index: 24523 _d = 5FCB _h
Display of the curr	ent motor vol	tage/outp	ut voltage of t	he inve	erter		
Display range (min.	value unit max.	value)					
0	V		1000				
☑ Read access ☐ Write	e access	□ PLC STOP	☑ No transfer	□ сом	□ мот	Scaling factor: 1	
Parameter Name: C00053 DC-bus v	oltage						Data type: UNSIGNED_16 Index: 24522 _d = 5FCA _h
Display of the curr	ent DC-bus vo	ltage					
Display range (min.	value unit max.	value)					
0	V		1000				
☑ Read access ☐ Write	e access	□ PLC STOP	☑ No transfer	□ сом	□ мот	Scaling factor: 1	
Parameter Name:	rrent						Data type: UNSIGNED_16 Index: 24521 _d = 5FC9 _h
Display of the curr	ent motor cur	rent/outpu	ut current of t	he inve	erter		
Display range (min.	value unit max.	value)					
0.00	Α		300.00				

C00055

Parameter | Name:

C00055 | Actual values

Data type: INTEGER_16
Index: 24520_d = 5FC8_h

☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 100

Actual value of the encoder/feedback system

Note

When a single-track feedback has been selected for the HTL encoder ($\underline{\text{C00115}} = 1 \text{ or 3}$), the sign of the actual speed value is created from the sign of the speed setpoint. In C00055/1 und C00055/2, a positive speed is always displayed.

▶ Encoder/feedback system

Display range (min. value unit max. value)				
-32767	rpm	32767		
Subcodes			Info	
C00055/1			Actual value - HTL encoder FreqIn12	
C00055/2			Actual value - HTL encoder FreqIn67	
C00055/3			Actual value - MultiEncoder TTL	
C00055/4			Actual value - resolver	
☑ Read access □ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT Scaling factor: 1				

C00056	Parameter Name: C00056 Torque							Data type: INTEGER_32 Index: 24519 _d = 5FC7 _h
	Display of the cur	rrent torque						
	Display range (mi		nax. value)					
	-65000.00	Nn			65000.00			
	Subcodes					Info		
	C00056/1					Torque set	point	
						Only in a		tor control (<u>SLVC</u>) and
	C00056/2					Actual torq • Estimate		ll motor control modes.
	☑ Read access ☐ Wr	ite access	NH □ PLC S	TOP 🗹 N	No transfer [□сом □мот	Scaling factor: 100	
C00057								
C00037	Parameter Name: C00057 Maximu	um torque						Data type: UNSIGNED_32 Index: 24518 _d = 5FC6 _h
	• The maximum (C00022) and	n torque to b	e generat				arious factors, e.g. on	Imax in motor mode
	Display range (mi	n. value unit r	nax. value)					
	0.00	Nn	า		65000.00			
	☑ Read access □ Wr	ite access □CI	NH □ PLC S	TOP 🗹 N	No transfer D	□сом □мот	Scaling factor: 100	
C00058	Parameter Name: C00058 Output	frequency						Data type: INTEGER_32 Index: 24517 _d = 5FC5 _h
	Display of the cu	rrent output	frequency	y				
	Display range (mi	n. value unit r	nax. value)					
	-1300.00	Hz			1300.00			
	☑ Read access □ Wr	ite access □ CI	NH □ PLC S	TOP 🗹 N	No transfer D	□сом □мот	Scaling factor: 100	
C00059	Parameter Name: C00059 Appl.: R	eference fre	quency C1	l 1				Data type: UNSIGNED_32 Index: 24516 _d = 5FC4 _h
	Display of the fie	ld frequency	which co	rrespon	ds to the r	eference spe	ed set in <u>C00011</u> .	
	Display range (mi	n. value unit r	nax. value)					
	0.00	Hz	:		1300.00			
	☑ Read access □ Wr	ite access □ CI	NH □ PLC S	TOP 🗹 N	No transfer D	□сом □мот	Scaling factor: 100	
C00060	Parameter Name: C00060 Motor r	otor positio	1					Data type: UNSIGNED_16 Index: 24515 _d = 5FC3 _h
	Display range (mi	n. value unit r	nax. value)					
	0				2047			
	☑ Read access □ Wr	ite access □ CI	NH □ PLC S	TOP 🗹 N	No transfer D	□сом 🗹 мот	Scaling factor: 1	
C00061	Parameter Name: C00061 Heatsin	k temperatu	ıre					Data type: INTEGER_16 Index: 24514 _d = 5FC2 _h
	Display of the cu	rrent heatsir	ık tempera	ature				
	Display range (mi	n. value unit r	nax. value)					
	-50	°C			150			
	☑ Read access ☐ Wr	ite access	NH □ PLC S	TOP ☑ N	No transfer [□ COM □ MOT	Scaling factor: 1	

Parameter reference Parameter list | C00062

C00062

Parameter Name: C00062 Tempera	ture inside the cont	roller			Data type: INTEGER_16 Index: 24513 _d = 5FC1 _h
From version 02.0 Display of the curr	0.00 ent temperature in	side the controller			
Display range (min.	value unit max. value)				
-200	°C	200			
Subcodes			Info		
C00062/1			Interior temp	erature of CU	
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1					

C00063

Parameter Name: C00063 Motor te	mperature	Data type: INTEGER_16 Index: 24512 _d = 5FC0 _h			
Display of the curr	ent motor tempera	ture			
Display range (min.	value unit max. value)				
-200	°C	250			
Subcodes			Info		
C00063/1			Motor temperature		
C00063/2			Motor temperature via resolver		
C00063/3			Motor temperature via MultiEncoder		
☑ Read access □ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT Scaling factor: 1					

C00064

Parameter | Name:

C00064 | Device utilisation (Ixt)

Data type: INTEGER_16
Index: 24511_d = 5FBF_h

Display of the device utilisation Ixt in different time resolutions

If the value displayed here exceeds the threshold set in <u>C00123</u>, the fault message "OC5: Device overload (lxt)" is output and the fault response set in <u>C00604</u> is executed (default setting: "Warning").

Display range (min.	. value unit max. value)				
0.00	%	250.00			
Subcodes			Info		
C00064/1			 Device utilisation (lxt) Maximum value of the pulse utilisation (C00064/2) and permanent utilisation (C00064/3). 		
C00064/2			 Device utilisation (Ixt) 15s Pulse utilisation over the last 15 seconds (only for loads >160 %). 		
C00064/3			Device utilisation (Ixt) 3 min Permanent utilisation over the last 3 minutes.		
☑ Read access ☐ Writ	e access 🗆 CINH 🗆 PLC	STOP ☑ No transfer ☐	COM MOT Scaling factor: 100		

C00065

Parameter | Name:

C00065 | Supply voltage 24V

Data type: INTEGER_16
Index: 24510_d = 5FBE_h

Display of the 24V supply voltage for the supply of the control electronics

Note:

The 24 V supply for the control electronics is either provided by an external supply or by the controller itself if it is connected to the mains voltage.

Display range (min. value unit max. value)							
0.0			V		3276.	7	
☑ Read access	☐ Write a	ccess	□ CINH	□ PLC STO	P 🗹 No transfer	□сом	□ мот

Parameter reference Parameter list | C00066

C00066

Parameter | Name:

C00066 | Thermal motor load (I²xt)

Data type: INTEGER_16
Index: 24509_d = 5FBD_h

Display of the thermal motor load, sensorlessly determined using a motor model

• If the value displayed here exceeds the motor overload setting (C00120), the fault message "OC6: Thermal motor overload (I2xt)" is output and the fault response set in C00606 is executed (default setting: "Warning").

Display range (min.	value unit max. value)			
0.00	%	199.99		
☑ Read access ☐ Write	e access	STOP ☑ No transfer ☐ COM	☐ MOT Scaling factor: 100	

C00070

Parameter | Name:

C00070 | Vp speed controller

Data type: UNSIGNED_16
Index: 24505_d = 5FB9_h

Amplification factor Vp of the speed controller for different motor control modes

Setting range (min			
0.00		600.00	
Subcodes	Lenze setting	Info	
C00070/1	15.00		SLVC: Vp speed controller
C00070/2	6.00		SC: Vp speed controller
C00070/3	3.00		SLPSM: Vp speed controller
☑ Read access ☑ Writ	e access 🗆 CINH 🗆 PLC	COM ☑ MOT Scaling factor: 100	

C00071

Parameter | Name:

C00071 | Ti speed controller

Data type: UNSIGNED_16
Index: 24504_d = 5FB8_h

Reset time Ti of the speed controller for different motor control modes

Setting range (min.	value unit max. value)				
0.0	ms	6000.0			
Subcodes	Lenze setting		Info		
C00071/1	100.0 ms		SLVC: Ti speed controller		
C00071/2	50.0 ms		<u>SC</u> : Ti speed controller		
C00071/3	100.0 ms		SLPSM: Ti speed controller		
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 10		

C00072

Parameter | Name:

C00072 | SC: Tdn speed controller

Data type: UNSIGNED_16
Index: 24503_d = 5FB7_h

Differential time constant Tdn of the speed controller for servo control (\underline{SC}) and sensorless control for synchronous motors (\underline{SLPSM})

Setting range (min.	value unit max. value)		Lenze setting			
0.00	ms	3.00	0.00 ms			
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	COM ☑ MOT Scaling factor:	100			

Parameter reference Parameter list | C00073

C00073

Parameter Name: C00073 Imax/M	controller gain		Data type: UNSIGNED_16 Index: 24502 _d = 5FB6 _h	
Amplification fact	or Vp of certain con	trollers for different	motor control modes	
Setting range (min.	value unit max. value)			
0.00		16.00		
Subcodes	Lenze setting		Info	
C00073/1			 VFC: Vp Imax controller After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically. 	
C00073/2	1.25		<u>SLVC</u> : Vp torque controller	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM ☑ MOT Scaling factor: 100				

C00074

Parameter Name: C00074 Reset tin	Data type: UNSIGNED_16 Index: 24501 _d = 5FB5 _h						
Reset time Ti of ce	Reset time Ti of certain controllers for different motor control modes						
Setting range (min.	value unit max. value)						
0	ms	9990					
Subcodes	Lenze setting		Info				
C00074/1	65 ms		VFC: Ti Imax	controller			
C00074/2	30 ms		SLVC: Ti torq	ue controller			
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM ☑ MOT	Scaling factor: 1			

C00075

Parameter | Name:
C00075 | Vp current controller

Data type: UNSIGNED_16 Index: 24500_d = 5FB4_h

Gain factor Vp of the current controller for servo control (\underline{SC}) and certain inverter functions (parameter identification, flying restart circuit)

• After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Setting range (min. value unit max. value)			Lenze setting
0.00	V/A	500.00	7.00 V/A
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM ☑ MOT Scaling factor: 100

C00076

Parameter | Name:

C00076 | Ti current controller

Data type: UNSIGNED_16 Index: 24499_d = 5FB3_h

Reset time Ti of the current controller for servo control (SC) and certain inverter functions (parameter identification, flying restart circuit)

• After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Setting range (min. value unit max. value)) Le	Lenze setting
0.00	ms	500.00 1	10.61 ms
☑ Read access ☑ Wri	te access □ CINH □ PL	C STOP □ No transfer □ CC	COM MOT Scaling factor: 100

Parameter | Name:

C00077 | SC: Vp field controller

Data type: UNSIGNED_16
Index: 24498_d = 5FB2_h

Gain factor Vp of the field controller for servo control (SC)

After the motor to be used has been selected from the motor catalogue, the suitable value can be entered
automatically.

Setting range (min.	value unit max. value)		Lenze settin	g	
0.00		500.00	12.80		
☑ Read access ☑ Write	access	STOP No transfer	COM ☑ MOT	Scaling factor: 100	

C00078

Parameter | Name:

C00078 | SC: Tn field controller

Data type: UNSIGNED_16
Index: 24497_d = 5FB1_h

Reset time Tn of the field controller for servo control (SC)

After the motor to be used has been selected from the motor catalogue, the suitable value can be entered
automatically.

Setting range (min.	value unit max. value)		Lenze setting
0.1	ms	6000.0	256.0 ms
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM ☑ MOT Scaling factor: 10

C00079

Parameter | Name:

C00079 | SC: Settings

Data type: UNSIGNED_8
Index: 24496_d = 5FB0_h

Configuration of different options for servo control (SC) and sensorless control for synchronous motors (SLPSM)

Selection list	
0	Off
1	On

Subcodes	Lenze setting	Info
C00079/1	0: Off	 SC: Current controller - feedforward control Feedforward control/decoupling network of the current controller.
C00079/2	1: On	SC: Adapt. field weakening controllerSpeed-dependent adaptive field weakening controller.
C00079/3	0: Off	 SC: n-ctrl anti-wind-up "Anti-wind-up" effect of the speed controller in case of an output voltage limitation in the field weakening range.
C00079/4	0: Off	Field weakening for synchronous motors From version 02.00.00
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer □	☐ COM ☑ MOT Scaling factor: 1

C00080

Parameter | Name:

C00080 | Override point of field weakening

Data type: INTEGER_16
Index: 24495_d = 5FAF_h

Offset of the override point of field weakening

 In the V/f characteristic control mode (VFCplus), the stall protection function or the max. permissible current in the field weakening range can be adapted.

Setting range (min. value unit max. value)			nze setting
-500	Hz	500 0 H	łz
☑ Read access ☑ Writ	e access □ CINH □ PL	STOP INo transfer ICOM	M ☑ MOT Scaling factor: 1

Parameter reference Parameter list | C00081

	n		

Parameter | Name:

C00081 | Rated motor power

Data type: UNSIGNED_16
Index: 24494_d = 5FĀE_h

This value can be obtained from the motor nameplate. After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Note

It is mandatory to give the rated motor power for the sensorless vector control (SLVC) and the servo control (SC).

Setting range (min. value unit max. value)		Lenze setting		
0.00	kW	500.00	11.00 kW	
☑ Read access ☑ Write	e access	STOP No transfer	COM ☑ MOT Scaling	g factor: 100

C00082

Parameter | Name:

C00082 | Motor rotor resistance

Data type: UNSIGNED_32
Index: 24493_d = 5FĀD_h

After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically. An automatic detection via the motor parameter identification is possible as well.

Setting range (min. value unit max. value)			Lenze setting
0	mOhm	200000	276 mOhm
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	□ COM ☑ MOT Scaling factor: 1

C00083

Parameter | Name:

C00083 | Motor rotor time constant

Data type: UNSIGNED_16
Index: 24492_d = 5FAC_h

Display of the rotor time constant of the motor

 This value is calculated from the rotor resistance and the rotor inductance (leakage and magnetising inductance).

Display range (min.	value unit max. value)		
0	ms	32767	
☑ Read access ☐ Writ	e access	P ☑ No transfer ☐ COM ☐ MO	T Scaling factor: 1

C00084

Parameter | Name: Data type: UNSIGNED_32
C00084 | Motor stator resistance
Index: $24491_d = 5F\overline{A}B_h$

After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically. An automatic detection via the motor parameter identification is possible as well.

Setting range (min.	value unit max. value)		Lenze setting	3
0	mOhm	200000	330 mOhm	
☑ Read access ☑ Write	e access	STOP □ No transfer □	ом ⊠мот	Scaling factor: 1

C00085

Parameter | Name:

C00085 | Motor stator leakage inductance

Data type: UNSIGNED_16
Index: 24490_d = 5FAA_h

After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically. An automatic detection via the motor parameter identification is possible as well.

Setting range (min.	value unit max. value)	Len	enze setting
0.00	mH	650.00 3.5	50 mH
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLO	STOP INo transfer In COM	M ☑ MOT Scaling factor: 100

Parameter reference Parameter list | C00087

C00087

Parameter | Name:

C00087 | Rated motor speed

Data type: UNSIGNED_16
Index: 24488_d = 5FA8_h

This value can be obtained from the motor nameplate. After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Note

It is mandatory to give the rated motor speed for the sensorless vector control (SLVC) and the servo control (SC).

Setting range (min.	value unit max. value)		Lenze setting	B
50	rpm	60000	1460 rpm	
☑ Read access ☑ Write	access	STOP No transfer	COM ☑ MOT	Scaling factor: 1

C00088

This value can be obtained from the motor nameplate. After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Setting range (min.	value unit max. value)		Lenze setting
0.20	Α	320.00	21.00 A
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM ☑ MOT Scaling factor: 100

C00089

Parameter | Name:

C00089 | Rated motor frequency

Data type: UNSIGNED_16
Index: 24486_d = 5FĀ6_h

This value can be obtained from the motor nameplate. After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Note:

It is mandatory to give the rated motor frequency for the sensorless vector control (SLVC) and the servo control (SC).

Setting range (min.	value unit max. value)		Lenze setting
1	Hz	1000	50 Hz
☑ Pead access ☑ Write	access DCINH DDIC	STOP Notransfer	COM MOT Scaling factor: 1

C00090

Parameter | Name:

C00090 | Rated motor voltage

Data type: UNSIGNED_16
Index: 24485_d = 5FA5_h

This value can be obtained from the motor nameplate. After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Setting range (min.	value unit max. value)		Lenze setting
0	V	5000	400 V
☑ Read access ☑ Write	e access	STOP □ No transfer □	□ COM ☑ MOT Scaling factor: 1

C00091

Parameter | Name: Data type: UNSIGNED_8
C00091 | Motor cosine phi Index: $24484_d = 5FA\overline{4}_h$

This value can be obtained from the motor nameplate. After the motor to be used has been selected from the motor catalogue, the suitable value can be entered automatically.

Setting range (mir	. value unit max.	value)	Lenze setting	
0.40		1.00	0 0.85	
☑ Read access ☑ Wri	te access 🗆 CINH	☐ PLC STOP ☐ No transfer	□ COM ☑ MOT Scaling factor: 100	

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00092

	C00092 Mo		agneti	sing ind	luctan	ce						Data type: UNSIGNED_16 Index: 24483 _d = 5FA3 _l	
											e, the suitable valu fication is possible		
	Setting rang	e (min.	value u	ınit max.	value)			Le	nze	setting	3		
	0.0			mΗ			6500.	81	0 r	пH			
	☑ Read access	☑ Write	access	□ CINH	□ PLC	STOP	☐ No transfer	□ co	M [☑ мот	Scaling factor: 10		
C00093													
	Parameter Nam		ction i	dentific	ation							Data type: UNSIGNED_16 Index: 24482 _d = 5FA2 _l	
	Display of th	e iden	tificat	ion of tl	ne det	ectec	l power sect	ion o	f th	e contr	oller		
	Display rang	e (min.	value u	ınit max.	. value)								
	0						6553	5					
	☑ Read access	□ Write	access	□ CINH	□ PLC	STOP	☑ No transfer	□ co	M [□ мот	Scaling factor: 1		
50000													
C00095	Parameter Nam		agneti	sing cur	rent							Data type: UNSIGNED_16 Index: 24480 _d = 5FA0 _l	
											e, the suitable valu fication is possible		
	Setting rang	e (min.	value u	ınit max.	value)			Le	nze	setting	3		
	0.00			Α			320.0	0 8.	50 A	4			
	☑ Read access	☑ Write	access	□ CINH	□ PLC	STOP	☐ No transfer	□ со	M [☑ мот	Scaling factor: 100		
_													
C00097	Parameter Nam		otor to	rque								Data type: UNSIGNED_32 Index: 24478 _d = 5F9E _l	
	Display of th The value					ed fr	om different	para	ıme	ters, e.	g. the maximum c	current set in <u>C00022</u> .	
	Display rang	e (min.	value u	ınit max.	. value)								
	0.00			Nm			65535.0	0					
	☑ Read access	□ Write	access	□ CINH	□ PLC	STOP	☑ No transfer	□ со	M [□ мот	Scaling factor: 100		_
C00098	Parameter Nam		ted cu	rrent								Data type: UNSIGNED_16 Index: 24477 _d = 5F9D _l	
	Display of th	e rate	d inver	rter curi	rent w	hich	is defined by	the	inte	egrated	power section.		
	Display rang												
	0.0			Α			6000.	0					
	☑ Read access	□ Write	access	□ CINH	□ PLC	STOP	☑ No transfer	□ co	M [☑ MOT	Scaling factor: 10		
C00099	Parameter Nam		e versio	on								Data type: VISIBLE_STRING Index: 24476 _d = 5F9C _l	
	Display of th	e firm	ware v	ersion (of the	devi	e as string						
	☑ Read access							□со	M	□ мот	Character length: 12		
													-

Parameter Name: C00100 Firmwar	e version		Data type: UNSIGNED_8 Index: 24475 _d = 5F9B _h
Display of the firn	nware version of the	e device, divided into	subsections.
Display range (min	. value unit max. value)	
0		99	
Subcodes			Info
C00100/1			Firmware version - main version
C00100/2			Firmware version - subversion
C00100/3			Firmware version - release
C00100/4			Firmware version - build
☑ Read access ☐ Writ	e access	CSTOP ☑ No transfer □	COM MOT Scaling factor: 1

C00101

Parameter | Name:

C00101 | Add. accel. time x

Data type: UNSIGNED_32
Index: 24474_d = 5F9A_h

The <u>L_NSet_1</u>: FB: Additional acceleration times for the main setpoint

• The additional acceleration times set here can be selected via the binary inputs bTI1 ... bTI8 of the L NSet 1 FB.

Setting range (mi	n. value unit max. value)	
0.000	S	999.999
Subcodes	Lenze setting	
C00101/1	0.000 s	
C00101/		
C00101/15		
☑ Read access ☑ Wr	ite access □ CINH □ PLC	STOP No transfer

C00103

Parameter | Name:

C00103 | Add. decel. time x

Data type: UNSIGNED_32
Index: 24472_d = 5F98_h

The <u>L_NSet_1</u> FB: Additional deceleration times for the main setpoint

• The additional deceleration times set here can be selected via the binary inputs bTI1 ... bTI8 of the L_NSet_1 FB.

Setting range (min	. value unit max. value)					
0.000	S	999.999				
Subcodes	Lenze setting		Info			
C00103/1	0.000 s		Add. decel. time 1	15		
C00103/						
C00103/15						
☑ Read access ☑ Write access ☐ CINH ☐ PLC STOP ☐ No transfer ☐ COM ☐ MOT Scaling factor: 1000						

Parameter reference Parameter list | C00104

C00104

C00105

Parameter Name: C00104 Position	control with quick s	top			Data type: UNSIGNED_16 Index: 24471 _d = 5F97 _h
From version 02.00	0.00				
Setting range (min. hex value max. hex value)					
0x0000		0xFFFF			
Value is bit-coded:	: (☑ = bit set)				
Bit 0 □	Standstill position-controlled				
Bit 1 □	Ramp position-controlled				
Bit 2 □	Reserved				
Bit 3 □	Reserved				
Bit 4 □	Reserved				
Bit 5 □	Reserved				
Bit 6 □	Reserved				
Bit 7 □	Reserved				
Bit 8 □	Reserved				
Bit 9 □	Reserved				
Bit 10 □	Reserved				
Bit 11 □	Reserved				
Bit 12 □	Reserved				
Bit 13 □	Reserved				
Bit 14 □	Reserved				
Bit 15 □	Reserved				
Subcodes	Lenze setting		Info		
C00104/1	0		Position cont	rol at quick stop	
☑ Read access ☑ Write	e access	STOP No transfer] сом □ мот		
Parameter Name: C00105 Decel. tir	ne - quick stop				Data type: UNSIGNED_32 Index: 24470 _d = 5F96 _h
The set deceleration	on time determines	the ramp slope at o	Juick stop		
Setting range (min.	ı. value unit max. value)		Lenze setting	g	
0.000	s 999.900		2.000 s		
☑ Read access ☑ Write	e access	STOP No transfer] СОМ □ МОТ	Scaling factor: 1000	
Parameter Name: C00106 Auto DCE	3: Hold time				Data type: UNSIGNED_32 Index: 24469 _d = 5F95 _h
	Hold time of the automatic DC injection brake • The DC injection brake is applied for the time set here if the value falls below the speed setpoint set in C00019.				
Setting range (min.	Setting range (min. value unit max. value)			B	

Setting range (min. value unit max. value)			Lenze setting
0.000 s 999.000		999.000	0.500 s
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □			□ COM □ MOT Scaling factor: 1000

Parameter reference Parameter list | C00107

C00107

Parameter | Name:

C00107 | DC braking: Hold time

Data type: UNSIGNED_32
Index: 24468_d = 5F94_h

Maximum hold time of the manual DC injection brake

• A time can be set here after which the DC injection brake is switched off automatically to prevent the motor from thermal overload.

Setting range (min.	value unit max. value)	Lenze settin	g	
0.000	S	999.000	999.000 s		
☑ Read access ☑ Write	access	C STOP □ No transfer □	ом □мот	Scaling factor: 1000	

C00114

Parameter | Name:

C00114 | DigInX: Inversion

Data type: UNSIGNED_16
Index: 24461_d = 5F8D_h

The polarity of each digital input of the device can be inverted via this bit field.

▶ Digital input terminals

Setting range (min.	hex value max. hex value)	Lenze setting			
0x0000	0xFFFF	0x0000 (decimal: 0)			
Value is bit-coded	: (☑ = bit set)	Info			
Bit 0 □	Invert. DI1	Inversion of digital input 1			
Bit 1 □	Invert. DI2	Inversion of digital input 2			
Bit 2 □	Invert. DI3	Inversion of digital input 3			
Bit 3 □	Invert. DI4	Inversion of digital input 4			
Bit 4 □	Invert. DI5	Inversion of digital input 5			
Bit 5 □	Invert. DI6	Inversion of digital input 6			
Bit 6 □	Invert. DI7	Inversion of digital input 7			
Bit 7 □	Reserved				
Bit 8 □	Reserved				
Bit 9 □	Reserved				
Bit 10 □	Reserved				
Bit 11 □	Reserved				
Bit 12 □	Reserved				
Bit 13 □	Reserved				
Bit 14 □	Reserved				
Bit 15 □	Invert CInh	Inversion of digital input RFR (controller enable)			
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT				

Parameter reference Parameter list | C00115

C00115

Parameter | Name: Data type: UNSIGNED_8
C00115 | DI 1/2 & 6/7: Fct. Index: 24460_d = 5F8C_h

Function assignment of the digital terminals DI1/2 and DI6/7

▶ <u>Digital input terminals</u>: <u>Function assignment</u>

Selection list		Info		
0	DI1(6)=In / DI2(7)=In	DI1/6 = digital input DI2/7 = digital input		
1	DI1(6)=FreqIn / DI2(7)=In	DI1/6 = 1-track frequency input DI2/7 = digital input		
2	DI1(6)&DI2(7)=FreqIn (2-track)	DI1/6 and DI2/7 = 2-track frequency input		
3	DI1(6)=FreqIn / DI2(7)=direction	DI1/6 = 1-track frequency input DI2/7 = specification of direction		
4	DI1(6)=Countin / DI2(7)=In	DI1/6 = counter input DI2/7 = digital input		
Subcodes	Lenze setting	Info		
C00115/1	0: DI1(6)=In / DI2(7)=In	Function assignment of DI1 and DI2		
C00115/2	0: DI1(6)=In / DI2(7)=In	Function assignment of DI6 and DI7		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

C00117

Parameter | Name:

C00117 | Status of brake output BD

Data type: UNSIGNED_8
Index: 24458_d = 5F8A_h

Status message of brake output

Selection list (read only)		Info	
0 Inactive		Brake output is inactive	
1 Active		Brake output is active	
☑ Pead access ☐ Write	e access	COM D MOT Scaling factor: 1	

C00118

Parameter | Name:

C00118 | DigOutX: Inversion

Data type: UNSIGNED_8
Index: 24457_d = 5F89_h

The polarity of each digital output of the device can be inverted via this bit field.

▶ <u>Digital output terminals</u>

Setting range (min.	hex value max. hex value)	Lenze setting			
0x00	0xFF	0x00 (decimal: 0)			
Value is bit-coded	: (☑ = bit set)	Info			
Bit 0 □	Relay inverted	Relay inversion			
Bit 1 □	DO1 inverted	Inversion of digital output 1			
Bit 2 □	DO2 inverted	Inversion of digital output 2			
Bit 3 □	DO3 inverted	Inversion of digital output 3			
Bit 4 □	High current inverted	Inversion of high-current output			
Bit 5 □	Reserved				
Bit 6 □	Reserved				
Bit 7 □	Reserved				
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT				

Parameter | Name:

C00120 | Setting of motor overload (l²xt)

Data type: INTEGER_16
Index: 24455_d = 5F87_h

Operating threshold for the "OC6: Motor overload (I2xt)" error message

- The response for reaching the threshold can be selected in C00606.
- The current thermal motor load is displayed in C00066.

Setting range (min. value unit max. value)			Lenze setting
0.00	%	250.00	100.00 %
☑ Read access ☑ Wri	te access 🗆 CINH 🗆 PL	STOP No transfer	□ COM □ MOT Scaling factor: 100

C00121

Parameter | Name:

C00121 | Warning threshold motor temperature

Operating threshold for error message "Motor: Temperature at Res./Enc. > C121"

- The response for reaching the threshold can be selected in C00583.
- The current motor temperature is displayed in C00063.
 - ► Encoder/feedback system: Motor temperature monitoring (KTY)

Setting range (min. value unit max. value)				
0	°C	250		
Subcodes	Lenze setting		Info	
C00121/1	120 °C		Warning threshold motor temperature resolver	
C00121/2	120 °C		Warning threshold motor temperature MultiEncoder	
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C00123

Parameter | Name:
C00123 | Device utilisation threshold (Ixt)

Data type: INTEGER_16 Index: 24452_d = 5F84_h

Data type: UNSIGNED_16 Index: 24454_d = 5F86_h

Operating threshold for the "OC5: Device overload (Ixt)" error message

- The response for reaching the threshold can be selected in C00604.
- The current device utilisation is displayed in C00064.

Setting range (min. value unit max. value)			Lenze setting
0.00	0.00 % 200.00		100.00 %
☑ Read access ☑ Write	e access	TOP □ No transfer □	COM MOT Scaling factor: 100

C00129

Parameter | Name:

C00129 | Brake resistance value

Data type: UNSIGNED_16
Index: 24446_d = 5F7E_h

Resistance value of the connected brake resistor

• The value to be entered can be obtained from the nameplate of the brake resistor.

Setting range (min. value unit max. value)			Lenze setting
0.0	Ohm	500.0	39.0 Ohm
☑ Read access ☑ Write	e access	STOP □ No transfer □	☐ COM ☑ MOT Scaling factor: 10

C00130

Parameter | Name:

C00130 | Rated power - brake resistor

Data type: UNSIGNED_16
Index: 24445_d = 5F7D_h

Rated power of the connected brake resistor

• The value to be entered can be obtained from the nameplate of the brake resistor.

Setting range (min. value unit max. value)			Lenze setting
0 W 65535		65535	100 W
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP 🗆 No transfer 🗆	COM ☑ MOT Scaling factor: 1

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00131

C00131	Parameter Name: C00131 Thermal	capacity - brake res	istor			Data type: UNSIGNED_16 Index: 24444 _d = 5F7C _h
		of the connected bra entered can be obt	ake resistor ained from the nan	neplate of the	e brake resistor.	
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0.0	kWs	6553.5	10.0 kWs		
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM ☑ MOT	Scaling factor: 10	
C00133						
C00133	Parameter Name: C00133 Brake res	istor utilisation				Data type: UNSIGNED_16 Index: 24442 _d = 5F7A _h
	Display of the utili	sation of the conne	cted brake resistor			
	Display range (min.	value unit max. value)				
	0	%	65535			
	☑ Read access ☐ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	COM ☑ MOT	Scaling factor: 1	
C00134						
C00134	Parameter Name: C00134 L_NSet_3	L: Ramp smoothing				Data type: UNSIGNED_8 Index: 24441 _d = 5F79 _h
	The <u>L_NSet_1</u> FB:	Configuration of the	e ramp rounding fo	r the main se	tpoint	
	Selection list (Lenze	setting printed in bold)		Info		
	0	Off		Ramp round	ling deactivated	
	1	PT1 behaviour			ling with PT1 behavio esponding S-ramp tim	
	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1					

Parameter reference Parameter list | C00136

Parameter Name: C00136 Communication control words			Data type: UNSIGNED_16 Index: 24439 _d = 5F77 _h
Control words of t	he communication	interfaces	
Display area (min. h	ex value max. hex value)	
0x0000		0xFFFF	
Value is bit-coded:			
Bit 0	SwitchOn		
Bit 1	DisableVoltage		
Bit 2	SetQuickStop		
Bit 3	EnableOperation		
Bit 4	ModeSpecific_1		
Bit 5	ModeSpecific_2		
Bit 6	ModeSpecific_3		
Bit 7	ResetFault		
	SetHalt		
	Reserved_1		
Bit 10	Reserved_2		
Bit 11	LenzeSpecific_1		
Bit 12	LenzeSpecific_2		
Bit 13	LenzeSpecific_3		
Bit 14	SetFail		
	LenzeSpecific_4		
Subcodes			Info
C00136/1			MCI control word Control word of the MCI communication interface (communication module)
C00136/2			CAN control word Control word of the CAN communication interface (CAN on board)
☑ Read access ☐ Write	e access □ CINH □ PLC	STOP ☑ No transfer ☐	СОМ □МОТ

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00137

Parameter Name: C00137 Device st	atus		Data type: UNSIGNED_16 Index: 24438 _d = 5F76 _h
Display of the curr	ent device status		
Selection list (read of	only)		
0	FirmwareUpdate		
1	Init		
2	MotorIdent		
3	ReadyToSwitchON		
4	SwitchedON		
5	OperationEnable		
6	Warning		
7	Trouble		
8	Fault		
9	TroubleQSP		
10	SafeTorqueOff		
11	SystemFail		
12	Reserved_1		
13	Reserved_2		
14	Reserved_3		
15	Reserved_4		
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer □	СОМ □МОТ	Scaling factor: 1

Parameter Name: C00138 Internal o	control signals	Data type: UNSIGNED_16 Index: 24437 _d = 5F75 _h
Bit coded display o	f internal control signals of different so	ources
Display area (min. h	ex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:		
Bit 0	Reserved	
Bit 1	DisableVoltage	
Bit 2	SetQuickStop	
Bit 3	EnableOperation	
Bit 4	InitFinishedOK	
Bit 5	ModeSpecific_2	
Bit 6	ModeSpecific_3	
Bit 7	ResetFault	
Bit 8	SetHalt	
Bit 9	FirmwareUpdate	
Bit 10	MotorIdent	
Bit 11	SetMessage	
Bit 12	SetIMP	
Bit 13	SetSystemFail	
Bit 14	SetFail	
Bit 15	SetFailQSP	
Subcodes		Info
C00138/1		SYS control signals
C00138/2		MCK control signals
C00138/3		FWM control signals
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer □	СОМ □МОТ

C00142

Parameter | Name: C00142 | Auto-start option

Data type: UNSIGNED_8 Index: 24433_d = 5F71_h

Starting performance of the controller after mains connection, undervoltage, loading of the Lenze setting as well as a reset of "Trouble" or "Fault" can be parameterised individually.

▶ <u>Automatic restart after mains connection/fault...</u>

Setting range (min. hex value max. hex value)			Lenze setting
0x00		0xFF	0x19 (decimal: 25)
Value is bit-coded	: (☑ = bit set)		
Bit 0 ☑	Inhibit at power-o	n	
Bit 1 □	Inhibit at trouble		
Bit 2 □	Inhibit at fault		
Bit 3 ☑	Inhibit at undervo	ltage	
Bit 4 ☑ Inhibit at Lenze setting			
Bit 5 □	Reserved		
Bit 6 □	Reserved		
Bit 7 □	Reserved		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT			

Parameter reference Parameter list | C00144

C00144

	ata type: UNSIGNED_8 Index: 24431 _d = 5F6F _h
Activation of the automatic switching frequency reduction if the temperature is too high	
Selection list (Lenze setting printed in bold) Info	
0 Off Automatic switching frequency reducti	on deactivated
1 On Automatic switching frequency reducti	on activated
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1	

C00148

	5 / / / / / / / / / / / / / / / / / / /
Parameter Name:	Data type: UNSIGNED_16
C00148 LS_DriveInterface: Error message config.	Index: 24427 _d = 5F6B _h

Selection of the device statuses for which the bCollectedFail group error output of SB <u>LS_DriveInterface</u> is to be set to TRUE.

Setting range (min. hex value max. hex value)			Lenze setting
0x0000		0xFFFF	0x0030 (decimal: 48)
Value is bit-coded:	(☑ = bit set)		Info
Bit 0 □	SafeTorqueOff		
Bit 1 □	ReadyToSwitchOn		
Bit 2 □	SwitchedOn		
Bit 3 □	TroubleQSP		
Bit 4 ☑	Trouble		
Bit 5 ☑	Fault		
Bit 6 □	Warning		
Bit 7 □	ImplsActive		
Bit 8 □	CInhisActive		
Bit 9 □	Fail CAN_Manage	ment	
Bit 10 □	Reserved		
Bit 11 □	Reserved		
Bit 12 □	Reserved		
Bit 13 □	Reserved		
Bit 14 □	Lock bFail at Troub	oleQSP	From version 02.00.00 If this bit is set, the <i>bFail</i> output of the SB <u>LS DriveInterface</u> is also set in the "TroubleQSP" status. • Advantage: Even in the "TroubleQSP" status, an error occurred before can still be recognised.
	Use 16BitFailNo.	STOP □ No transfer □	If this bit is set, the short 16-bit error number (wStateDetermFailNoShort) is also provided at the wStateDetermFailNoLow output of the SB LS DriveInterface. In this case, the wStateDetermFailNoHigh output is "0". Advantage: The bus transfer of the error numbers is possible via a data word without changing the interconnection of the technology application.

Parameter reference Parameter list | C00150

Parameter Name:	ord	Data type: UNSIGNED_16 Index: 24425 _d = 5F69 _h		
Bit coded device st	Bit coded device status word			
Display area (min. h	ex value max. hex value)			
0x0000	0xffff			
Value is bit-coded:	•	Info		
Bit 0	FreeStatusBit0	Free status bit 0		
Bit 1	PowerDisabled	Power switched off		
Bit 2	FreeStatusBit2	Free status bit 2		
Bit 3	FreeStatusBit3	Free status bit 3		
Bit 4	FreeStatusBit4	Free status bit 4		
Bit 5	FreeStatusBit5	Free status bit 5		
Bit 6	ActSpeedIsZero	Current speed is 0		
Bit 7	ControllerInhibit	Controller is inhibited		
Bit 8	StatusCodeBit0	Status code bit 0		
Bit 9	StatusCodeBit1	Status code bit 1		
Bit 10	StatusCodeBit2	Status code bit 2		
Bit 11	StatusCodeBit3	Status code bit 3		
Bit 12	Warning	Warning		
Bit 13	Trouble	Trouble		
Bit 14	FreeStatusBit14	Free status bit 14		
Bit 15	FreeStatusBit15	Free status bit 15		
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT				

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00155

Parameter Name: C00155 Extended	l status word	Data type: UNSIGNED_16 Index: 24420 _d = 5F64 _h	
Bit coded device st	atus word 2		
Display area (min. h	ex value max. hex value)		
0x0000	0xFFFF		
Value is bit-coded		Info	
Bit 0	Fail	Error	
Bit 1	M_max	Maximum torque	
Bit 2	I_max	Maximum current	
Bit 3	PowerDisabled	Power switched off	
Bit 4	Ready	Controller is ready for operation	
Bit 5	ControllerInhibit	Controller is inhibited	
Bit 6	Trouble	Trouble	
Bit 7	InitState	Initialisation	
Bit 8	CwCcw	CW/CCW rotation	
Bit 9	TroubleQSP	Quick stop due to fault is active	
Bit 10	SafeTorqueOff	Safe torque off	
Bit 11	AplicationRunning	Application is running	
Bit 12	AplParSetBit0	Application parameter set - bit 0	
Bit 13	AplParSetBit1	Application parameter set - bit 1	
Bit 14	Quick stop	Quick stop is active	
Bit 15	Motor parameter identification	Motor parameter identification is active	
☑ Read access □ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT			

Parameter reference Parameter list | C00158

Parameter Name: C00158 Cause of	controller inhibit	Data type: UNSIGNED_16 Index: 24417 _d = 5F61 _h
Bit coded display o	of the cause/source of the controller inh	ibit
Display area (min. h	ex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:	:	
Bit 0	Terminal controller enable	
Bit 1	CAN control word	
Bit 2	MCI control word	
Bit 3	SwitchOn	
Bit 4	Application	
Bit 5	Device command	
Bit 6	Error response	
Bit 7	Internal signal	
Bit 8	Reserved	
Bit 9	Reserved	
Bit 10	AutoStartLock	
Bit 11	Motor parameter identification	
Bit 12	Automatic brake operation	
Bit 13	DCB-IMP	
Bit 14	Reserved	
Bit 15	Reserved	
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer □	сом □мот

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00159

C00159

Parameter Name: C00159 Cause of	quick stop QSP	Data type: UNSIGNED_16 Index: 24416 _d = 5F60 _h
Bit coded display o	of the cause/source of the quick stop	
Display area (min. h	ex value max. hex value)	
0x0000	0xFFI	F
Value is bit-coded		
Bit 0	Reserved	
Bit 1	CAN control word	
Bit 2	MCI control word	
Bit 3	Reserved	
Bit 4	Application	
Bit 5	Device command	
Bit 6	Error response	
Bit 7	Internal signal	
Bit 8	Reserved	
Bit 9	Reserved	
Bit 10	Operating system	
Bit 11	Reserved	
Bit 12	MCK	
Bit 13	Reserved	
Bit 14	Reserved	
Bit 15	Reserved	
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer	□сом □мот

Parameter Name: C00160 Status determining error (16bit)		Data type: UNSIGNED_16 Index: 24415 _d = 5F5F _h
Display of the status determining erro	or as short 16-bit err	or number
Display range (min. value unit max. value)	
0	65535	
Subcodes		Info
C00160/1		Status determining error (16-bit)
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1		

Parameter Name: C00161 LS_SetEr	ror_x: Error numbe	r	Data type: UNSIGNED_16 Index: 24414 _d = 5F5E _h
Setting of the erro	r number for user e	rror messages	
Setting range (min.	value unit max. value)		
0		65535	
Subcodes	Lenze setting		Info
C00161/1	1		<u>LS_SetError_1</u> : Error no.1
C00161/2	2		<u>LS_SetError_1</u> : Error no.2
C00161/3	3		<u>LS_SetError_1</u> : Error no.3
C00161/4	4		<u>LS_SetError_1</u> : Error no.4
C00161/5	1		<u>LS_SetError_2</u> : Error no.1
C00161/6	2		<u>LS_SetError_2</u> : Error no.2
C00161/7	3		<u>LS_SetError_2</u> : Error no.3
C00161/8	4		<u>LS_SetError_2</u> : Error no.4
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C00163

Parameter Name: C00163 Logbook - binary elements	Data type: UNSIGNED_16 Index: 24412 _d = 5F5C _h
--	---

Selection of two binary signals to be logged in the logbook

Selection list		Info
0	No signal	
1	DI1: Input signal	
2	DI2: Input signal	
3	DI3: Input signal	
4	DI4: Input signal	
5	Controller inhibit signal	
6	Digital counter: Comparison bit	
7	CAN1 input bit 0	
8	CAN1 input bit 1	
9	CAN1 input bit 2	
10	CAN1 input bit 3	
11	CAN1 input bit 4	
12	CAN1 input bit 5	
13	CAN1 input bit 6	
14	CAN1 input bit 7	
15	CAN1 input bit 8	
16	CAN1 input bit 9	
17	CAN1 input bit 10	
18	CAN1 input bit 11	
19	CAN1 input bit 12	
20	CAN1 input bit 13	
21	CAN1 input bit 14	
22	CAN1 input bit 15	
23	CAN2 input bit 0	
24	CAN2 input bit 1	
25	CAN2 input bit 2	

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00163

Parameter Name: C00163 Logbook	- binary elements	Data type: UNSIGNED_16 Index: 24412 _d = 5F5C _h
26	CAN2 input bit 3	
27	CAN2 input bit 4	
28	CAN2 input bit 5	
29	CAN2 input bit 6	
30	CAN2 input bit 7	
31	CAN2 input bit 8	
32	CAN2 input bit 9	
33	CAN2 input bit 10	
34	CAN2 input bit 11	
35	CAN2 input bit 12	
36	CAN2 input bit 13	
37	CAN2 input bit 14	
38	CAN2 input bit 15	
39	CAN3 input bit 0	
40	CAN3 input bit 1	
41	CAN3 input bit 2	
42	CAN3 input bit 3	
43	CAN3 input bit 4	
44	CAN3 input bit 5	
45	CAN3 input bit 6	
46	CAN3 input bit 7	
47	CAN3 input bit 8	
48	CAN3 input bit 9	
49	CAN3 input bit 10	
50	CAN3 input bit 11	
51	CAN3 input bit 12	
52	CAN3 input bit 13	
53	CAN3 input bit 14	
54	CAN3 input bit 15	
55	MCI word1 input bit0	
56	MCI word1 input bit1	
57	MCI word1 input bit2	
58	MCI word1 input bit3	
59		
60	MCI word1 input bit5	
	MCI word1 input bit6	
62	· .	
63	·	
64		
	MCI word1 input bit10	
	MCI word1 input bit11	
67		
	MCI word1 input bit13	
69		

70 MCI word2 input bit0 71 MCI word2 input bit0 72 MCI word2 input bit1 73 MCI word2 input bit2 74 MCI word2 input bit3 75 MCI word2 input bit3 76 MCI word2 input bit5 77 MCI word2 input bit6 78 MCI word2 input bit6 78 MCI word2 input bit7 79 MCI word2 input bit8 80 MCI word2 input bit9 81 MCI word2 input bit10 82 MCI word2 input bit11 83 MCI word2 input bit11 83 MCI word2 input bit12 84 MCI word2 input bit12 85 MCI word2 input bit12 86 MCI word2 input bit14 87 MCI word2 input bit15 88 MCI word2 input bit14 89 MCI word2 input bit15 80 MCI word2 input bit15 81 MCI word2 input bit15 82 MCI word2 input bit16 83 MCI word2 input bit16 84 MCI word2 input bit17 85 Speed controller: Limit 86 MCI word2 input bit16 87 Position controller: Limit 88 Speed controller: Limit 89 Controller: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out L_DFlipFlop_1: Out L_DFlipFlop_1: Out L_Compare_1: Out L_Compare_2: Out L_SignalMonitor_b: Out1	Parameter Name: C00163 Logbook	- binary elements	Data type: UNSIGNED_16 Index: 24412 _d = 5F5C _h
72 MCI word2 input bit 2 73 MCI word2 input bit 2 74 MCI word2 input bit 3 75 MCI word2 input bit 5 77 MCI word2 input bit 5 77 MCI word2 input bit 6 78 MCI word2 input bit 6 78 MCI word2 input bit 7 79 MCI word2 input bit 8 80 MCI word2 input bit 9 81 MCI word2 input bit 10 82 MCI word2 input bit 11 83 MCI word2 input bit 12 84 MCI word2 input bit 13 85 MCI word2 input bit 14 86 MCI word2 input bit 15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_2: Out 104 L_Nset_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	70	MCI word1 input bit15	
73 MCI Word 2 input bit 2 74 MCI word2 input bit3 75 MCI word2 input bit4 76 MCI word2 input bit5 77 MCI word2 input bit6 78 MCI word2 input bit7 79 MCI word2 input bit8 80 MCI word2 input bit9 81 MCI word2 input bit10 82 MCI word2 input bit11 83 MCI Word2 input bit11 83 MCI Word2 input bit13 85 MCI word2 input bit14 86 MCI word2 input bit15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_2: Out 104 L_Neet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	71	MCI word2 input bit0	
74 MCI word2 input bit3 75 MCI word2 input bit5 77 MCI word2 input bit6 78 MCI word2 input bit6 78 MCI word2 input bit8 80 MCI word2 input bit8 80 MCI word2 input bit9 81 MCI word2 input bit10 82 MCI word2 input bit11 83 MCI word2 input bit11 83 MCI word2 input bit12 84 MCI word2 input bit14 85 MCI word2 input bit14 86 MCI word2 input bit15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_2: Out 104 L_Next_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	72	MCI word2 input bit1	
75 MCI word2 input bit5 76 MCI word2 input bit5 77 MCI word2 input bit6 78 MCI word2 input bit7 79 MCI word2 input bit8 80 MCI word2 input bit9 81 MCI word2 input bit10 82 MCI word2 input bit10 83 MCI word2 input bit11 83 MCI word2 input bit11 84 MCI word2 input bit13 85 MCI word2 input bit14 86 MCI word2 input bit15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_2: Out 104 L_Nset_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	73	MCI Word 2 Input bit 2	
76 MCI word2 input bit5 77 MCI word2 input bit6 78 MCI word2 input bit7 79 MCI word2 input bit8 80 MCI word2 input bit9 81 MCI word2 input bit10 82 MCI word2 input bit11 83 MCI word2 input bit11 83 MCI word2 input bit13 84 MCI word2 input bit13 85 MCI word2 input bit13 86 MCI word2 input bit14 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_2: Out 103 L_Compare_2: Out 104 L_SignalMonitor_b: Out1	74	MCI word2 input bit3	
77 MCI word2 input bit6 78 MCI word2 input bit 7 79 MCI word2 input bit8 80 MCI word2 input bit9 81 MCI word2 input bit10 82 MCI word2 input bit11 83 MCI word2 input bit11 83 MCI word2 input bit13 85 MCI word2 input bit14 86 MCI word2 input bit15 87 Position controller: Limit 88 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DiigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_SignalMonitor_b: Out1 106 L_SignalMonitor_b: Out1	75	MCI word2 input bit4	
## MCI word 2 input bit 7 ## MCI word 2 input bit 8 ## MCI word 2 input bit 9 ## MCI word 2 input bit 10 ## MCI word 2 input bit 11 ## MCI word 2 input bit 12 ## MCI word 2 input bit 13 ## MCI word 2 input bit 13 ## MCI word 2 input bit 14 ## MCI word 2 input bit 15 ## MCI word 2 input bit 15 ## Position controller: Limit ## Speed controller: Limit ## Speed controller: Limit ## Speed setpoint: Limit ## Or input setpoint: Limit ## Or injection brake active ## Quick stop is active ## Pulse inhibit is active ## Pulse inhibit is active ## Or input inhibit in	76	MCI word2 input bit5	
## MCI word2 input bit8 ## MCI word2 input bit9 ## MCI word2 input bit10 ## MCI word2 input bit11 ## MCI Word2 input bit12 ## MCI word2 input bit13 ## MCI word2 input bit13 ## MCI word2 input bit14 ## MCI word2 input bit15 ## MCI word2 input bit15 ## Position controller: Limit ## Speed controller: Limit ## Speed setpoint: Limit ## OT orque setpoint: Limit ## OT input bit14 ## DC injection brake active ## Quick stop is active ## Pulse inhibit is active ## Pulse inhibit is active ## OT input input bit14 ## OT input input bit15 ## OT input input bit14 ## OT input input bit15 ## OT input input bit14 ##	77	MCI word2 input bit6	
80 MCI word2 input bit9 81 MCI word2 input bit10 82 MCI word2 input bit11 83 MCI Word 2 Input bit12 84 MCI word2 input bit13 85 MCI word2 input bit14 86 MCI word2 input bit15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	78	MCI word 2 input bit 7	
## MCI word2 input bit10 ## MCI word2 input bit11 ## MCI word2 input bit12 ## MCI word2 input bit13 ## MCI word2 input bit14 ## MCI word2 input bit14 ## MCI word2 input bit15 ## Position controller: Limit ## Speed controller: Limit ## Speed setpoint: Limit ## Speed setpoint: Limit ## Orange setpoint: Limit ## Orange setpoint: Limit ## DC injection brake active ## Quick stop is active ## Pulse inhibit is active ## Pulse inhibit is active ## Other inhibit is active ## Other inhibit is active ## Direction of rotation ccw ## Actual speed = 0 ## Direction of rotation ccw ## Actual speed = 0 ## Direction of rotation ccw ## Actual speed = 0 ## L_Or_: Out ## Direction of rotation ccw ## Direction o	79	MCI word2 input bit8	
MCI word2 input bit 12 MCI word2 input bit 12 MCI word2 input bit 13 MCI word2 input bit 14 MCI word2 input bit 15 MCI word2 input bit 15 Position controller: Limit Speed controller: Limit Speed setpoint: Limit Ourrent setpoint: Limit Current setpoint: Limit Current setpoint: Limit DC injection brake active Active Active Safe status active Controller inhibit is active Safe status active Controller inhibit is active Controller inhibit is active L_Dijetion of rotation ccw Actual speed = 0 PULOT_1: Out L_DElipFlop_1: Out L_DigitalDelay_1: Out L_Compare_1: Out L_NSet_1: Setpoint reached L_DigitalLogic_1: Out L_SignalMonitor_b: Out1 L_SignalMonitor_b: Out1	80	MCI word2 input bit9	
83 MCI Word 2 Input bit 12 84 MCI word2 input bit 13 85 MCI word2 input bit 15 86 MCI word2 input bit 15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	81	MCI word2 input bit10	
MCI word2 input bit13 85 MCI word2 input bit14 86 MCI word2 input bit15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	82	MCI word2 input bit11	
MCI word2 input bit14 86 MCI word2 input bit15 87 Position controller: Limit 88 Speed controller: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	83	MCI Word 2 Input bit 12	
MCI word2 input bit15 87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	84	MCI word2 input bit13	
87 Position controller: Limit 88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	85	MCI word2 input bit14	
88 Speed controller: Limit 89 Speed setpoint: Limit 90 Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	86	MCI word2 input bit15	
Speed setpoint: Limit Torque setpoint: Limit Current setpoint: Limit DC injection brake active Quick stop is active Pulse inhibit is active Safe status active Safe status active Direction of rotation ccw Actual speed = 0 LOr_1: Out LDFlipFlop_1: Out L_DigitalDelay_1: Out L_Compare_1: Out L_NSet_1: Setpoint reached L_DigitalLogic_1: Out L_SignalMonitor_b: Out1	87	Position controller: Limit	
Torque setpoint: Limit 91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	88	Speed controller: Limit	
91 Current setpoint: Limit 92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	89	Speed setpoint: Limit	
92 DC injection brake active 93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	90	Torque setpoint: Limit	
93 Quick stop is active 94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	91	Current setpoint: Limit	
94 Pulse inhibit is active 95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	92	DC injection brake active	
95 Controller inhibit is active 96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	93	Quick stop is active	
96 Safe status active 97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	94	Pulse inhibit is active	
97 Direction of rotation ccw 98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	95	Controller inhibit is active	
98 Actual speed = 0 99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	96	Safe status active	
99 L_Or_1: Out 100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	97	Direction of rotation ccw	
100 L_DFlipFlop_1: Out 101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	98	Actual speed = 0	
101 L_DigitalDelay_1: Out 102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	99	L_Or_1: Out	
102 L_Compare_1: Out 103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	100	L_DFlipFlop_1: Out	
103 L_Compare_2: Out 104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	101	L_DigitalDelay_1: Out	
104 L_NSet_1: Setpoint reached 105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	102	L_Compare_1: Out	
105 L_DigitalLogic_1: Out 106 L_SignalMonitor_b: Out1	103	L_Compare_2: Out	
106 L_SignalMonitor_b: Out1	104	L_NSet_1: Setpoint reached	
	105	L_DigitalLogic_1: Out	
	106	L_SignalMonitor_b: Out1	
107 L_SignalMonitor_b: Out2	107	L_SignalMonitor_b: Out2	
108 L_SignalMonitor_b: Out3	108	L_SignalMonitor_b: Out3	
109 L_SignalMonitor_b: Out4	109	L_SignalMonitor_b: Out4	
110 L_PCTRL_1: act=set	110	L_PCTRL_1: act=set	

Parameter list | C00164

Parameter Name: C00163 Logbook	- binary elements	Data type: UNSIGNED_16 Index: 24412 _d = 5F5C _h
Subcodes	Lenze setting	Info
C00163/1	0: No signal	Logbook - binary element 1
C00163/2	0: No signal	Logbook - binary element 2
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

Parameter Name: C00164 Logbook - analog elements		Data type: UNSIGNED_16 Index: 24411 _d = 5F5B _h
Selection of an analog signal to be logged in th	e logbook	
Selection list	Info	
0 No signal		

Selection list		Info
0	No signal	
1	AIN1	
2	CAN1 control word	
3	CAN1 input word 2	
4	CAN1 input word 3	
5	CAN1 input word 4	
6	CAN2 input word 1	
7	CAN2 input word 2	
8	CAN2 input word 3	
9	CAN2 input word 4	
10	CAN3 input word 1	
11	CAN3 input word 2	
12	CAN3 input word 3	
13	CAN3 input word 4	
14	Digital counter LowWord	
15	Digital counter HighWord	
16	MCI word 1	
17	MCI word 2	
18	MCI word 3	
19	MCI word 4	
20	MCI word 5	
21	MCI word 6	
22	MCI word 7	
23	MCI word 8	
24	MCI word 9	
25	MCI word 10	
26	MCI word 11	
27	MCI word 12	
28	MCI word 13	
29	MCI word 14	
30	MCI word 15	
31	MCI word 16	
32	Current motor speed	
33	Current motor torque	
34	DC-bus voltage	

Parameter reference Parameter list | C00165

Parameter Name: C00164 Logbook	- analog elements	Data type: UNSIGNED_16 Index: 24411 _d = 5F5B _h
35	Current motor current	
36	Current motor voltage	
37	Current motor frequency	
38	Effective speed setpoint	
39	Device utilisation	
40	Motor utilisation	
41	L_OffsetGainPar_1: Out	
42	L_OffsetGainPar_2: Out	
43	L_OffsetGainPar_3: Out	
44	L_Aritmethik_1: Out	
45	L_AnalogSwitch_1: Out	
46	L_NSet_1: Out	
47	L_MotorPoti_1: Out	
48	L_PCTRL_1: Out	
49	L_SignalMonitor_a: Out1	
50	L_SignalMonitor_a: Out2	
51	L_SignalMonitor_a: Out3	
52	L_SignalMonitor_a: Out4	
53	L_MulDiv_1: Out	
54	L_NSet_1: Target setpoint	
Subcodes	Lenze setting	Info
C00164/1	0: No signal	Logbook - analog element 1
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C00165

Parameter Name:	Data type: VISIBLE_STRING
C00165 Error information	Index: 24410 _d = 5F5A _h

Display of the error number divided into sectors in the event of an error

Subcodes	Info
C00165/1	Status determining error
C00165/2	Current error
☑ Read access ☐ Write access ☐ CINH ☐ PLC-STOP ☑ No transfer ☐	□ COM □ MOT Character length: 14

Parameter reference Parameter list | C00166

C00166

C00167

Parameter Name: C00166 Error information text	Data type: VISIBLE_STRING Index: 24409 _d = 5F59 _h
Display of details on the status determining error and on the currently pending error	
Subcodes	Info
C00166/1	Resp. to status det. error Response to the status determining error
C00166/2	Subj status det. error • Subject area of the status determining error
C00166/3	Mess status det. error • Textual message of the status determining error
C00166/4	Resp. to curr. error • Response of the currently pending error
C00166/5	Subj curr. error • Subject area of the currently pending error
C00166/6	Mess curr. error • Textual message of the currently pending error
☑ Read access ☐ Write access ☐ CINH ☐ PLC-STOP ☑ No transfer ☐ COM ☐ MOT Character length: 30	
Parameter Name: C00167 Logbook data	Data type: OCTET_STRING Index: 24408 _d = 5F58 _h
This code is for device-internal use only and must not be written to by the user!	
Parameter Name: C00168 Status determining error	Data type: UNSIGNED_32 Index: 24407 _d = 5F57 _h
Display of the internal error number for the status determining error	
Display range (min. value unit max. value)	
0 4294967295	
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1	

C00170

C00171

Parameter Name: C00169 Logbook	setting			Data type: UNSIGNED_16 Index: 24406 _d = 5F56 _h
Configuration whi	ch message types are to b	e logged in tl	he logbook.	
Setting range (min.	hex value max. hex value)		Lenze setting	
0x0000		0xFFFF	0x067E (decimal: 1662)	
Value is bit-coded	: (☑ = bit set)			
Bit 0 □	Reserved			
Bit 1 ☑	Log entry: Fault			
Bit 2 ☑	Log entry: Trouble			
Bit 3 ☑	Log entry: TroubleQuicks	top		
Bit 4 ☑	Log entry: WarningLocke	d		
Bit 5 ☑	Log entry: Warning			
Bit 6 ☑	Log entry: Information			
Bit 7 □	Reserved			
Bit 8 □	Reserved			
Bit 9 ☑	Activation: Error counter			
Bit 10 ☑	Activation: Log line refre	sh		
	Reserved			
Bit 12 □	Reserved			
Bit 13 □	Reserved			
Bit 14 □	Reserved			
Bit 15 □	Reserved			
☑ Read access ☑ Write	□ access □ CINH □ PLC STOP [□ No transfer □	□ COM □ MOT	
Parameter Name: C00170 Current 6	error			Data type: UNSIGNED_32 Index: 24405 _d = 5F55 _h
Display of the inte	rnal error number of the c	urrently pend	ding error	
Display range (min.	value unit max. value)			
0	4	1294967295		
☑ Read access ☐ Write	e access	☑ No transfer □	☐ COM ☐ MOT Scaling factor: 1	
Parameter Name:				Data type: UNSIGNED_8
C00171 Logbook	access index			Index: 24404 _d = 5F54 _h
This code is for de	vice-internal use only and	must not be	written to by the user!	
Parameter Name: C00173 Mains vo	ltage			Data type: UNSIGNED_8 Index: 24402 _d = 5F52 _h
Selection of the m	ains voltage for operating	the device.		
Selection list (Lenze	setting printed in bold)		Info	
0	3ph 400V / 1ph 230V		3-phase 400 V or 1-phase 230 V	
	3ph 440V / 1ph 230V		3-phase 440 V or 1-phase 230 V	
1	3ph 440V / 1ph 230V 3ph 480V / 1ph 230V		3-phase 440 V or 1-phase 230 V 3-phase 480 V or 1-phase 230 V	
1	3ph 480V / 1ph 230V			
1 2 3	3ph 480V / 1ph 230V		3-phase 480 V or 1-phase 230 V	

Parameter reference Parameter list | C00174

C00174							
C00174	Parameter Name: C00174 Reduc. bi	ake chopper thresh	nold			Data type: UNSIGNED_8 Index: 24401 _d = 5F51 _h	
	The threshold fron	n which on the brak	e chopper is control	led is reduce	d by the voltage value se	et here.	
	Setting range (min.	value unit max. value)		Lenze settin	g		
	0	V	150	0 V			
	☑ Read access ☑ Write	access	STOP No transfer	сом 🗆 мот	Scaling factor: 1		
C00175							
C00173	Parameter Name: C00175 Brake en	ergy management				Data type: UNSIGNED_8 Index: 24400 _d = 5F50 _h	
	Selection of the br	aking procedure		▶ <u>Sele</u>	ect response if the brake	resistor is controlled	
	Selection list (Lenze	setting printed in bold)		Info			
	0	R_Brems			esistor is used. When the exceeded, the brake resis		
	1	RfgStop		(MCTRL_bRf	function generator stop" [gStop] is used. When the 00174], the ramp function	threshold voltage is	
	2	R_Brems + HlgStop	p	stop" signal exceeded (C	esistor and the "Ramp fur are used. When the thre (00174), the brake resiston nction generator is stopp	shold voltage is or is energised and	
	3	FI_MotBrk + RfgSto	ор		erformed by a superimpo conjunction with "Ramp		
	4	R_Brems + FU_Mo	tBrk + HlgStop	Braking is perprocedures.	erformed by combining a	all three braking	
	☑ Read access ☑ Write	access ☑ CINH ☐ PLC	STOP 🗆 No transfer 🗆	сом 🗆 мот	Scaling factor: 1		
C00474							
C00176	Parameter Name: C00176 Undervo	tage threshold for 1	mains OFF			Data type: UNSIGNED_16 Index: 24399 _d = 5F4F _h	
	This code is for dev	vice-internal use on	ly and must not be	written to by	the user!		
C00177	Parameter Name: C00177 Switching	g cycles				Data type: UNSIGNED_32 Index: 24398 _d = 5F4E _h	
	Counter of differen	nt switching cycles a	and stressful situation	ons			
	Display range (min.	value unit max. value)					
	0		2147483647				
	Subcodes			Info			
	C00177/1			Number of r	mains switching cycles		
	C00177/2			Number of s	switching cycles of the or	utput relay	
	C00177/3			Short circuit counter			

Earth fault counter

"Clamp" counter

C00177/4

C00177/5

Parameter reference Parameter list | C00178

C00178 Data type: UNSIGNED_32 Index: 24397_d = 5F4D_h Parameter | Name: C00178 | Elapsed-hour meter Display of operating hours in seconds Display range (min. value | unit | max. value) 0 s 2147483647 ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1 C00179 Data type: UNSIGNED_32 Parameter | Name: Index: $24396_d = 5F4C_h$ C00179 | Power-on time meter Display of the power-on time in seconds Display range (min. value | unit | max. value) 0 2147483647 s ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1 C00180 Data type: UNSIGNED_32 Parameter | Name: Index: $24395_d = 5F4B_h$ C00180 | Running time Display of various running times in seconds Display range (min. value | unit | max. value) 2147483647 **Subcodes** Info C00180/1 Running time - control card C00180/2Running time - heatsink fan C00180/3 Running time - internal fan ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1 C00181 Parameter | Name: Data type: UNSIGNED_16 Index: $24394_d = 5F4A_h$ C00181 | Time settings Time for device search function (optical location) ▶ Device search function Setting range (min. value | unit | max. value) 6000 s Info **Subcodes** Lenze setting C00181/1 5 s Time - device search function ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1 C00182 Data type: INTEGER_16 Index: 24393_d = 5F49_h Parameter | Name: C00182 | L_NSet_1: S-ramp time PT1 FB L NSet 1: PT1 S-ramp time for the main setpoint ramp function generator Only effective with activated ramp rounding (<u>C00134</u> = "1"). Setting range (min. value | unit | max. value) Lenze setting

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100

50.00 **20.00** s

0.01

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00184

	Parameter Name: C00184 AutoFailF	Reset repetition	time					Data type: UNSIGNED_16 Index: 24391 _d = 5F47 _h
	After the time set I "AutoFailReset" ha	here has expired d been configu	d, an error red corres	r message of pondingly ir	an erro	or that I	nas occurred w	ill be reset automatically if
								► <u>AutoFailReset function</u>
	Setting range (min.	value unit max. v	alue)		Lenz	e settin	g	
	1	S		600	3 s			
	☑ Read access ☑ Write	access CINH	□ PLC STOP	□ No transfer	□ сом	□ МОТ	Scaling factor: 1	
C00185								
C00193	Parameter Name: C00185 AutoFailR	Reset remaining	g time					Data type: UNSIGNED_16 Index: 24390 _d = 5F46 _h
	Display of the resid	dual runtime of	the "Auto	FailReset" fu	unction			► <u>AutoFailReset function</u>
	Display range (min.	value unit max. v	alue)					
	0	S		600)			
	☑ Read access ☐ Write	access 🗆 CINH 🛭	□ PLC STOP	□ No transfer	□сом	□ мот	Scaling factor: 1	
C00186	Parameter Name: C00186 Max. nun	nber of AutoFai	lReset pro	ocesses				Data type: UNSIGNED_8 Index: 24389 _d = 5F45 _h
	Maximum number	r of "AutoFailRe	set" proce	dures				
								► <u>AutoFailReset function</u>
	Setting range (min.	value unit max. va	alue)		Lenz	e settin	g	
	1			10	5 4			
	☑ Read access ☑ Write	access 🗆 CINH 🗆	□ PLC STOP	☐ No transfer	□сом	□ мот	Scaling factor: 1	
C00187	☑ Read access ☑ Write	access 🗆 CINH 🛭	□ PLC STOP	□ No transfer	□ сом	□ МОТ	Scaling factor: 1	
C00187	☑ Read access ☑ Write Parameter Name: C00187 Current A			□ No transfer	СОМ	□МОТ	Scaling factor: 1	Data type: UNSIGNED_8 Index: 24388 _d = 5F44 _h
C 00187	Parameter Name:	utoFailReset pi	rocesses			□МОТ	Scaling factor: 1	
C 00187	Parameter Name: C00187 Current A	NutoFailReset pi t number of "Au	r ocesses utoFailRes			□МОТ	Scaling factor: 1	Index: 24388 _d = 5F44 _h
C 00187	Parameter Name: C00187 Current A Data of the current	NutoFailReset pi t number of "Au	r ocesses utoFailRes		es	□ МОТ	Scaling factor: 1	Index: 24388 _d = 5F44 _h
C 00187	Parameter Name: C00187 Current A Data of the current Display range (min.	AutoFailReset pi t number of "Au value unit max. v	r ocesses utoFailRes	et" procedui 10	res		j	Index: 24388 _d = 5F44 _h
	Parameter Name: C00187 Current A Data of the current Display range (min.	AutoFailReset pi t number of "Au value unit max. v	r ocesses utoFailRes	et" procedui 10	res			Index: 24388 _d = 5F44 _h
C00187	Parameter Name: C00187 Current A Data of the current Display range (min.	AutoFailReset pi t number of "Au value unit max. v	rocesses utoFailRes alue)	et" procedui 10	res			Index: 24388 _d = 5F44 _h
	Parameter Name: C00187 Current A Data of the current Display range (min. 0 Read access Write	AutoFailReset protection to number of "Auvalue unit max. veraccess	rocesses utoFailRes alue) PLC STOP	et" procedui 10 □ No transfer	res 5			Index: 24388 _d = 5F44 _h • AutoFailReset function Data type: UNSIGNED_8
	Parameter Name: C00187 Current A Data of the current Display range (min. Read access Write Parameter Name: C00188 AutoFailF	t number of "Au value unit max. v access	rocesses utoFailRes alue) PLC STOP tion to be rese	et" procedui 10 □ No transfer	res 5			Index: 24388 _d = 5F44̄ _h ▶ <u>AutoFailReset function</u> Data type: UNSIGNED_8 Index: 24387 _d = 5F43̄ _h
	Parameter Name: C00187 Current A Data of the current Display range (min. 0 Read access	t number of "Au value unit max. v access	rocesses utoFailRes alue) PLC STOP tion to be rese	et" procedui 10 □ No transfer	ces COM ally.	□ МОТ		Data type: UNSIGNED 8 Index: 24387d = 5F44h Data type: UNSIGNED 8 Index: 24387d = 5F43h
	Parameter Name: C00187 Current A Data of the current Display range (min. 0 Read access	t number of "Au value unit max. v caccess	rocesses utoFailRes alue) PLC STOP tion to be rese	et" procedui 10 □ No transfer	ally. Info No a Error	□ MOT utomat	Scaling factor: 1	Data type: UNSIGNED_8 Index: 24387d = 5F43h Data type: UNSIGNED_8 Index: 24387d = 5F43h AutoFailReset function ge reset sponse "Fault" and
	Parameter Name: C00187 Current A Data of the current Display range (min. 0 Parameter Name: C00188 AutoFailR Setting which erro Selection list (Lenze 0	t number of "Au value unit max. v caccess	rocesses atoFailRes alue) PLC STOP tion to be rese ald)	et" procedui 10 □ No transfer	ally. Info No a Error "Trou	utomat messa ubleQSF messa;	Scaling factor: 1 ic error messag ges with the re " are reset auto	Data type: UNSIGNED_8 Index: 24387d = 5F43h Data type: UNSIGNED_8 Index: 24387d = 5F43h AutoFailReset function ge reset sponse "Fault" and
	Parameter Name: C00187 Current A Data of the current Display range (min. 0 Read access	value unit max. value unit max. value unit max. value unit max. value configuration config	rocesses atoFailRes alue) PLC STOP tion to be rese ald)	et" procedui 10 □ No transfer	ally. Info No a Error "Trou	utomat messa ubleQSF messa t autom	ic error messag ges with the re " are reset auto ges with the re atically	Data type: UNSIGNED_8 Index: 24388_d = 5F44_h Data type: UNSIGNED_8 Index: 24387_d = 5F43_h AutoFailReset function ge reset sponse "Fault" and omatically

	Parameter Name: C00189 Resp. to t	oo frequent AutoFailRes	et				Data type: UNSIGNED_8 Index: 24386 _d = 5F42 _h
	Response to excee	ding the maximum num	ber of "AutoF	ailRese	t" proce	esses set in <u>C00186</u>	
							► <u>AutoFailReset function</u>
	Selection list (Lenze						
	0	No Reaction		_			
	1	Fault					
	2	Trouble					
	3	TroubleQuickStop					
	4	WarningLocked					
	5	Warning					
	6	Information					
	☑ Read access ☑ Write	access CINH PLC STOP	☐ No transfer	□ сом	□ мот	Scaling factor: 1	
500100							
C00190	Parameter Name: C00190 L_NSet_1	L: Setpoint arithmetic					Data type: UNSIGNED_8 Index: 24385 _d = 5F41 _h
		Selection of arithmetics fluence the main setpoin	t (NSet) by a	n additi	ional se	tpoint (NAdd).	
	Selection list (Lenze	setting printed in bold)					
	0	Out = Set					
	1	Out = Set + Add					
	2	NOut = NSet - NAdd					
	3	NOut = (NSet * NAdd) /	100%				
	4	NOut = (NSet * 1%) / NA	Add				
	5	Out = (Set*100%)/(100%	6-Add)				
		access CINH PLC STOP		□ сом	□ мот	Scaling factor: 1	
C00199	Parameter Name: C00199 Description	on data					Data type: VISIBLE_STRING Index: 24376 _d = 5F38 _h
	Parameters for sto	ring decription data for t	he controller				
	Subcodes	Lenze setting		Info			
	C00199/1			Devi	ce name	e	
	☑ Read access ☑ Write	access CINH PLC-STOP	☐ No transfer	□ сом	□ мот	Character length: 24	
C00200	Parameter Name: C00200 Firmware	product type					Data type: VISIBLE_STRING Index: 24375 _d = 5F37 _h
	Display of the firm	ware product type					
	☑ Read access ☐ Write	access CINH PLC-STOP	☑ No transfer	□ сом	□ мот	Character length: 19	

Parameter reference Parameter list | C00201

C00201

Parameter Name: C00201 Firmware	Data type: VISIBLE_STRING Index: 24374 _d = 5F36 _h

Display of the firmware data of the control card and the power section

Subcodes	Info
C00201/1	Firmware type - ctrl card
C00201/2	Firmware version - ctrl card
C00201/3	Firmware comp. file - ctrl card
C00201/4	Firmware type - power section
C00201/5	Firmware version - power sect.
C00201/6	Firmw. comp. file - power sect.
C00201/7	Firmware type CU2
C00201/8	Firmware version CU2
C00201/9	Firmware comp. dat. CU2
☑ Read access ☐ Write access ☐ CINH ☐ PLC-STOP ☑ No transfer	□ COM □ MOT Character length: 22

C00203

Parameter | Name:

C00203 | Product type code

Data type: VISIBLE_STRING
Index: 24372_d = 5F34_h

Display of the types of the individual device components

Subcodes	Info
C00203/1	Type: Control card
C00203/2	Type: Power section
C00203/3	Type: MCI module
C00203/4	Reserved
C00203/5	Type: Memory module
C00203/6	Type: Safety card
C00203/7	Type: Standard device
C00203/8	Type: Complete device
C00203/9	Reserved
☑ Read access ☐ Write access ☐ CINH ☐ PLC-STOP ☑ No transfer	□ COM □ MOT Character length: 24

C00204

Parameter | Name:

C00204 | Serial number

Data type: VISIBLE_STRING
Index: 24371_d = 5F33_h

Display of the serial numbers of the individual device components

Subcodes	Info
C00204/1	Serial no.: Control card
C00204/2	Serial no.: Power section
C00204/3	Serial no.: MCI module
C00204/4	Reserved
C00204/5	Serial no.: Memory module
C00204/6	Serial no.: Safety card
C00204/7	Serial no.: Standard device
C00204/8	Serial no.: Complete device
C00204/9	Reserved
☑ Read access ☐ Write access ☐ CINH ☐ PLC-STOP ☑ No transfer ☐	□ COM □ MOT Character length: 24

Parameter reference
Parameter list | C00205

C00205	Parameter Name: C00205 Info					Data type: VISIBLE_STRING Index: 24370 _d = 5F32 _h
	This code is for de	vice-internal use on	ly and must not be	written to by	the user!	
C00206						
C00200	Parameter Name: C00206 Producti	on date				Data type: VISIBLE_STRING Index: 24369 _d = 5F31 _h
	This code is for de	vice-internal use on	ly and must not be	written to by	the user!	
C00210						
C00210	Parameter Name: C00210 HW vers	ion				Data type: VISIBLE_STRING Index: 24365 _d = 5F2D _h
	This code is for de	vice-internal use on	ly and must not be	written to by	the user!	
500000						
C00220	Parameter Name: C00220 L_NSet_	1: Acceleration time	- add. setpoint			Data type: UNSIGNED_32 Index: 24355 _d = 5F23 _h
	The <u>L_NSet_1</u> FB:	Acceleration time fo	r the additional set	point <i>nNAdd</i>	_a	
	Setting range (min.	. value unit max. value)		Lenze settin	g	
	0.000	S	999.999	0.000 s		
	☑ Read access ☑ Writ	e access □ CINH □ PLC	STOP □ No transfer □	сом 🗆 мот	Scaling factor: 1000	
C00221						
C00221	Parameter Name: C00221 L_NSet_	1: Deceleration time	- add. setpoint			Data type: UNSIGNED_32 Index: 24354 _d = 5F22 _h
	The <u>L_NSet_1</u> FB:	Deceleration time fo	or the additional set	point <i>nNAda</i>	<u> _</u> a	
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0.000	S	999.999	0.000 s		
	☑ Read access ☑ Writ	e access □ CINH □ PLC	STOP □ No transfer □	сом 🗆 мот	Scaling factor: 1000	
C00222						
	Parameter Name: C00222 L_PCTRL	_1: Vp				Data type: INTEGER_16 Index: 24353 _d = 5F21 _h
	The <u>L_PCTRL_1</u> FB	: Gain factor Vp for t	the PID process cont	troller		
	Setting range (min.	. value unit max. value)		Lenze settin	g	
	0.1		500.0			
	☑ Read access ☑ Writ	e access	STOP □ No transfer □	сом 🗆 мот	Scaling factor: 10	
C00223						
	Parameter Name: C00223 L_PCTRL	_1: Tn				Data type: UNSIGNED_16 Index: 24352 _d = 5F20 _h
	The <u>L_PCTRL_1</u> FB	: Reset time Tn for t	he PID process cont			
	Setting range (min.	. value unit max. value)		Lenze settin	g	
	20	ms		400 ms		
	☑ Read access ☑ Writ	e access	STOP LI No transfer LI	COM LI MOI	Scaling factor: 1	
C00224						
	Parameter Name: C00224 L_PCTRL					Data type: UNSIGNED_16 Index: 24351 _d = 5F1F _h
		: Derivative-action c	oefficient Kd for the	·		
		. value unit max. value)		Lenze settin	g	
	0.0		5.0			
	☑ Read access ☑ Writ	e access □ CINH □ PLC	SIOP □ No transfer □	COM MOT	Scaling factor: 10	

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00225

Parameter Name: C00225 L_PCTRL_	_1: MaxLimit			Data type: INTEGER_16 Index: 24350 _d = 5F1E _h	
The <u>L_PCTRL_1</u> FB:	: Maximum output	value of the PID pro	cess controll	er	
Setting range (min.	value unit max. value)		Lenze settin	g	
-199.99	%	199.99	199.99 %		
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	СОМ □МОТ	Scaling factor: 100	
Parameter Name: C00226 L_PCTRL_	_1: MinLimit				Data type: INTEGER_16 Index: 24349 _d = 5F1D _h
The <u>L_PCTRL_1</u> FB:	: Minimum output v	value of the PID prod	cess controlle	er	
Setting range (min.	value unit max. value)		Lenze settin	g	
-199.99	%	199.99	-199.99 %		
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP No transfer	СОМ □МОТ	Scaling factor: 100	
Parameter Name: C00227 L_PCTRL_	_1: Acceleration tim	ıe			Data type: UNSIGNED_32 Index: 24348 _d = 5F1C _h
The <u>L_PCTRL_1</u> FB:	: Acceleration time t	for the output value	of the PID p	rocess controller	
Setting range (min.	value unit max. value)		Lenze settin	g	
		222 222			
0.000	S	999.999	0.010 s		
		999.999 STOP □ No transfer □		Scaling factor: 1000	
				Scaling factor: 1000	
☑ Read access ☑ Write Parameter Name:		STOP □ No transfer □		Scaling factor: 1000	Data type: UNSIGNED_32 Index: 24347 _d = 5F1B _h
Parameter Name: C00228 L_PCTRL	1: Deceleration tim	STOP □ No transfer □	1сом □мот	·	
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB	1: Deceleration tim	STOP □ No transfer □ ne for the output value	1сом □мот	rocess controller	
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB	1: Deceleration time	STOP □ No transfer □ ne for the output value	e of the PID p	rocess controller	
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB: Setting range (min. 0.000	_1: Deceleration time Deceleration time value unit max. value)	STOP □ No transfer □ ne for the output value	e of the PID p Lenze settin 0.010 s	rocess controller g	
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB: Setting range (min. 0.000	_1: Deceleration time Deceleration time value unit max. value)	ne for the output value	e of the PID p Lenze settin 0.010 s	rocess controller g	
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB Setting range (min. 0.000 Read access Write Parameter Name:	_1: Deceleration time Deceleration time value unit max. value)	ne for the output value 999.999	e of the PID p Lenze settin 0.010 s	rocess controller g	
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB: Setting range (min. 0.000 Read access Write Parameter Name: C00231 L_PCTRL	_1: Deceleration time Deceleration time value unit max. value) s e access	ne for the output value 999.999	e of the PID p Lenze settin 0.010 s	rocess controller g	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
Parameter Name: C00228 L_PCTRL_ The L_PCTRL 1 FB: Setting range (min. 0.000 Read access Write Parameter Name: C00231 L_PCTRL_ The L_PCTRL 1 FB:	_1: Deceleration time Deceleration time value unit max. value) s e access	ne for the output value 999.999 STOP □ No transfer □	e of the PID p Lenze settin 0.010 s	rocess controller g	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
Parameter Name: C00228 L_PCTRL_ The L_PCTRL 1 FB: Setting range (min. 0.000 Read access Write Parameter Name: C00231 L_PCTRL_ The L_PCTRL 1 FB:	1: Deceleration time Deceleration time Deceleration time value unit max. value) s access CINH PLC	ne for the output value 999.999 STOP □ No transfer □	e of the PID p Lenze settin 0.010 s	rocess controller g	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB. Setting range (min. 0.000 Read access Write Parameter Name: C00231 L_PCTRL The L_PCTRL 1 FB. Setting range (min.	1: Deceleration time value unit max. value) s e access	ne for the output value 999.999 STOP No transfer	e of the PID p Lenze settin 0.010 s	rocess controller g	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
Parameter Name: C00228 L_PCTRL_ The L_PCTRL 1 FB: Setting range (min. 0.000 Parameter Name: C00231 L_PCTRL_ The L_PCTRL 1 FB: Setting range (min. 0.000	1: Deceleration time Deceleration time Deceleration time value unit max. value) Seraccess	ne for the output value 999.999 STOP No transfer	e of the PID p Lenze settin 0.010 s COM MOT	rocess controller g	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
Parameter Name: C00228 L_PCTRL_ The L_PCTRL 1 FB. Setting range (min. 0.000 Read access Write Parameter Name: C00231 L_PCTRL The L_PCTRL 1 FB. Setting range (min. 0.00 Subcodes	1: Deceleration time: Deceleration time: Deceleration time: value unit max. value) s eaccess CINH PLC 1: Operating range for value unit max. value) % Lenze setting	ne for the output value 999.999 STOP No transfer	e of the PID p Lenze settin 0.010 s COM MOT	rocess controller g Scaling factor: 1000	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
Parameter Name: C00228 L_PCTRL The L_PCTRL 1 FB. Setting range (min. 0.000 Parameter Name: C00231 L_PCTRL The L_PCTRL 1 FB. Setting range (min. 0.00 Subcodes C00231/1	1: Deceleration time Deceleration time Deceleration time value unit max. value) s access	ne for the output value 999.999 STOP No transfer	e of the PID p Lenze settin 0.010 s COM MOT	rocess controller g Scaling factor: 1000 Pos. maximum	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
Parameter Name: C00228 L_PCTRL_ The L_PCTRL 1 FB: 0.000 Read access Write Parameter Name: C00231 L_PCTRL_ The L_PCTRL 1 FB: Setting range (min. 0.00 Subcodes C00231/1 C00231/2	1: Deceleration time Deceleration time Deceleration time value unit max. value) s access	ne for the output value 999.999 STOP No transfer	e of the PID p Lenze settin 0.010 s COM MOT	rocess controller g Scaling factor: 1000 Pos. maximum Pos. minimum	Index: 24347 _d = 5F1B _h Data type: INTEGER_16
	The L PCTRL 1 FB. Setting range (min199.99 Read access Write Parameter Name: C00226 L PCTRL The L PCTRL 1 FB. Setting range (min199.99 Read access Write Parameter Name: C00227 L PCTRL The L PCTRL 1 FB.	The L_PCTRL_1 FB: Maximum output Setting range (min. value unit max. value) -199.99 % Read access Write access CINH PLC Parameter Name: C00226 L_PCTRL_1: MinLimit The L_PCTRL 1 FB: Minimum output value) -199.99 % Read access Write access CINH PLC Parameter Name: C00227 L_PCTRL_1: Acceleration time	The L_PCTRL_1 FB: Maximum output value of the PID prosecting range (min. value unit max. value) -199.99	The L PCTRL 1 FB: Maximum output value of the PID process controll Setting range (min. value unit max. value) -199.99	The L PCTRL 1 FB: Maximum output value of the PID process controller Setting range (min. value unit max. value) -199.99

00233	Parameter Name: C00233 L PCTRL	1: Root function				Data type: UNSIGNED_8 Index: 24342 _d = 5F16 _h	
	The L PCTRL 1 FB:	The L PCTRL 1 FB: Use of the root function at the actual value input					
	Selection list (Lenze	setting printed in bold)		Info			
	0	Off			on inactive al value <i>nAct_a</i> rema processing	ains unchanged for	
	1	On				ctual value <i>nAct_a</i> for	
	☑ Read access ☑ Write	e access	STOP 🗆 No transfer 🗆	COM □ MOT	Scaling factor: 1		
C00234	Parameter Name: C00234 Oscillation	on damping influen	ce			Data type: UNSIGNED_16 Index: 24341 _d = 5F15 _h	
						► Oscillation damping	
	Setting range (min.	value unit max. value)		Lenze settin	g		
	0.00	%	250.00	5.00 %			
	☑ Read access ☑ Write	e access □ CINH □ PLC	STOP No transfer	COM □ MOT	Scaling factor: 100		
C00235	Parameter Name: C00235 Oscillation	on damping filter ti	me			Data type: UNSIGNED_8 Index: 24340 _d = 5F14 _h	
						Oscillation damping	
	Setting range (min.	value unit max. value)		Lenze settin	g		
	2	ms	250	32 ms			
	☑ Read access ☑ Write	e access	STOP No transfer	СОМ □МОТ	Scaling factor: 1		
C00236	Parameter Name: C00236 Field wea	akening oscillation	damping			Data type: UNSIGNED_8 Index: 24339 _d = 5F13 _h	
	Oscillation dampir	ng for idling machir	nes			► Oscillation damping	
	Setting range (min.	value unit max. value)		Lenze settin	ıg		
	0		40	14			
	☑ Read access ☑ Write	□ access □ CINH □ PLC	STOP No transfer	COM MOT	Scaling factor: 1		
C00241	Parameter Name: C00241 L_NSet_1	1: Hyst. NSet reache	ed			Data type: INTEGER_16 Index: 24334 _d = 5F0E _h	
C00241	C00241 L_NSet_1 The L_NSet_1 FB:	-	for the zero detection	on of the spe	ed output setpoint		
C00241	The L NSet 1 FB: 1 The speed three	Hysteresis window	for the zero detection to the control of the contro	on of the spe			
C00241	The L NSet 1 FB: 1 The speed three	Hysteresis window shold for the zero d	for the zero detection to the control of the contro	Lenze settin			

Parameter reference Parameter list | C00242

C00242

Data type: UNSIGNED_8 Index: 24333_d = 5F0D_h Parameter | Name: C00242 | L_PCTRL_1: Operating mode

The L PCTRL 1 FB: Selection of the operating mode

• Depending on the selection, the blue switches in the displayed signal flow are set accordingly in the Engineer on the **Application parameters** tab for the <u>L_PCTRL_1</u> FB.

setting printed in bold)	Info
Off	The input setpoint <i>nNSet_a</i> is output without any changes at the output <i>nOut_a</i> .
nNSet + nNSet_PID	nNSet_a and nAct_a are used as PID input values. The arriving nNSet_a is additively linked to the value output by the PID element.
nSet_PID	nSet_a and nAct_a are used as PID input values. The input nNSet_a is not considered.
nNSet_PID	nNSet_a and nAct_a are used as PID input values. The input nSet_a is not considered.
nNSet + nSet_PID	nSet_a and nAct_a are used as PID input values. The arriving nNSet_a setpoint is additively linked to the value output by the PID element.
nNSet nSet_PID	nSet_a and nAct_a are used as PID input values. The setpoint nNSet_a is output at the output nOut_a. The PID output value is output at the output nPIDOut_a.
	Off nNSet + nNSet_PID nSet_PID

C00243

Data type: UNSIGNED_32 Index: 24332_d = 5F0C_h Parameter | Name: C00243 | L_PCTRL_1: Acceleration time influence

The L PCTRL 1 FB: Acceleration time for showing the PID output value

Setting range (min.	value unit max. value		Lenze setting
0.000	S	999.999	5.000 s
☑ Read access ☑ Write	e access	STOP No transfer	□ COM □ MOT Scaling factor: 1000

C00244

Parameter Name: C00244 L_PCTRL	Parameter Name: Data type: UNSIGNED_: C00244 L_PCTRL_1: Deceleration time influence Index: 24331 _d = 5F00				
The <u>L_PCTRL_1</u> FB	The L_PCTRL_1 FB: Deceleration time for masking out the PID output value				
Setting range (min.	value unit max. value)		Lenze setting		
0.000 s 999.999 5.000 s					
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	☐ COM ☐ MOT Scaling factor: 1000		

C00245

Parameter Name: C00245 L_PCTRL	Parameter Name: C00245 L_PCTRL_1: PID output value				Data type: INTEGER_16 Index: 24330 _d = 5F0A _h
The <u>L_PCTRL_1</u> FB	: Display of the out	out value of the PID	process conti	roller	
Display range (min. value unit max. value)					
-199.99 % 199.99					
☑ Read access ☐ Writ	☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☐ No transfer ☐ COM ☐ MOT Scaling factor: 100				

Parameter Name: C00246 L_PCTRL_1: nAct_a internal	Data type: INTEGER_16 Index: 24329 _d = 5F09 _h
FB <u>L_PCTRL_1</u> : Display of the internal actual value	
Display range (min. value unit max. value)	
-199.99 % 199.99	
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☐ No transfer	□ COM □ MOT Scaling factor: 100

Parameter reference Parameter list | C00247

C00247	Parameter Name: C00247 L_PCTRL	_1: Window setpoin		Data type: INTEGER_16 Index: 24328 _d = 5F08 _h		
	FB L PCTRL 1: Win	ndow for compariso	on operation "actual	value = setpoint"		
	Setting range (min.	value unit max. value)		Lenze setting		
	0.00	%	100.00	2.00 %		
	☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 10	0	
C00249	Parameter Name: C00249 L_PT1_1:	: Time constant			Data type: UNSIGNED_16 Index: $24326_d = 5F06_h$	
	FB <u>L_PT1_1</u> : Time	constant Tn				
	Setting range (min.	value unit max. value)		Lenze setting		
	0	ms	5000	2000 ms		
	☑ Read access ☑ Write	e access	STOP No transfer	COM MOT Scaling factor: 1		
500000						
C00250	Parameter Name: C00250 L_PT1 2-:	3: Time constant			Data type: INTEGER_16 Index: 24325 _d = 5F05 _h	
	Setting range (min.	value unit max. value)				
	0	ms	5000			
	Subcodes	Lenze setting		Info		
	C00250/1	2000 ms		L_PT1_2: Time constant		
	C00250/2	2000 ms		L_PT1_3: Time constant		
	☑ Read access ☑ Write	e access	STOP No transfer	COM MOT Scaling factor: 1		
C00251	Parameter Name: C00251 L_DT1_1	: Time constant			Data type: INTEGER_16 Index: 24324 _d = 5F04 _h	
	FB <u>L_DT1_1</u> : Time	constant Tn				
	Setting range (min.	value unit max. value)		Lenze setting		
	10	ms	5000	1000 ms		
	☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM ☐ MOT Scaling factor: 1		
600353						
C00252	Parameter Name: C00252 L_DT1_1	: Gain			Data type: INTEGER_16 Index: 24323 _d = 5F03 _h	
	FB <u>L_DT1_1</u> : Gain	factor Vp				
	Setting range (min.	value unit max. value)		Lenze setting		
	-320.00		320.00	1.00		

Parameter reference Parameter list | C00253

C00253

 Parameter | Name:
 Data type: UNSIGNED_8

 C00253 | L_DT1_1: Sensitivity
 Index: 24322_d = 5F02_h

FB L DT1 1: Selection of sensitivity

• Depending on the selection, the number of indicated higher-order bits is evaluated.

Note:

The most significant bit determines the sign of the value, the remaining bits determine the numerical value.

Selection list (Lenze	setting printed in bold)	Info
1	15 bits	Bit 0 bit 14 are evaluated
2	14 bits	Bit 0 bit 13 are evaluated
3	13 bits	Bit 0 bit 12 are evaluated
4	12 bits	Bit 0 bit 11 are evaluated
5	11 Bit	Bit 0 bit 10 are evaluated
6	10 Bit	Bit 0 bit 9 are evaluated
7	9 Bit	Bit 0 bit 8 are evaluated
☑ Read access ☑ Write	e access	I COM ☐ MOT Scaling factor: 1

C00254

Gain for following error compensation

Setting range (min. value unit max. value)			Lenze setting
0.00	1/s	500.00	5.00 1/s
☑ Read access ☑ Write	e access	STOP No transfer	□ COM □ MOT Scaling factor: 100

C00265

Parameter | Name:

C00265 | SLVC: Tn torque controller

Data type: UNSIGNED_8
Index: 24310_d = 5EF6_h

C00270

Parameter | Name:

C00270 | SC: Freq. current setpoint filter

Data type: UNSIGNED_16
Index: 24305_d = 5EF1_h

Frequency to be inhibited by the current setpoint filter at servo control (<u>SC</u>) and sensorless control for synchronous motors (<u>SLPSM</u>).

Setting range (min. value unit max. value)		Lenze setting		
40.0	Hz	1000.0	200.0 Hz	
☑ Read access ☑ Wri	te access 🗆 CINH 🗆 PLO	STOP No transfer	COM ☑ MOT	Scaling factor: 10

C00271

Parameter | Name:

C00271 | SC: Width of current setpoint filter

Data type: UNSIGNED_16
Index: 24304_d = 5EF0_h

Frequency width of the current setpoint filter at servo control (<u>SC</u>) and sensorless control for synchronous motors (<u>SLPSM</u>)

• Width around the frequency to be inhibited (C00270).

Setting range (min. value unit max. value)			Lenze setting
0.0 Hz 500.0		500.0	0.0 Hz
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP □ No transfer □	☐ COM ☑ MOT Scaling factor: 10

Parameter reference Parameter list | C00272

C00272					
	Parameter Name: C00272 SC: Dept	n of current setpoin	t filter		Data type: UNSIGNED_16 Index: 24303 _d = 5EEF _h
		•		and sensorless con	trol for synchronous motors (SLPSM)
	Setting range (min.	· ·		Lenze setting	,
	0	db	100	0 db	
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	COM ☑ MOT Scaling f	actor: 1
C00273	Parameter Name: C00273 Moment	of inertia			Data type: UNSIGNED_32 Index: 24302 _d = 5EEE _h
	Moment of inertia	for setpoint feedfo	rward control at ser	vo control (<u>SC</u>) and s	ensorless vector control (<u>SLVC</u>)
	Setting range (min.	value unit max. value)		Lenze setting	
	0.00	kg cm^2	600000.00	0.00 kg cm^2	
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP INo transfer I	COM ☑ MOT Scaling f	actor: 100
600274					
C00274	Parameter Name: C00274 SC: Max.	change in accelerat	ion		Data type: UNSIGNED_16 Index: 24301 _d = 5EED _h
	Limitation of the a • Setting in % of I		at servo control (<u>SC</u>) and sensorless cont	erol for synchronous motors (<u>SLPSM</u>)
	Setting range (min.	value unit max. value)		Lenze setting	
	0.0	%/ms	400.0	400.0 %/ms	
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling f	actor: 10
50007					
C00275	Parameter Name:				Data type, LINGICNED 16
	C00275 Filter set	point feedforward o	control		Data type: UNSIGNED_16 Index: 24300 _d = 5EEC _h
	Filter time of setpo	oint feedforward co	ntrol at servo contro	ol (<u>SC</u>) and sensorless the moment of iner	Index: $24300_d = 5\overline{EEC_h}$ s vector control (SLVC)
	Filter time of setpo • The setpoint fee	oint feedforward co	ntrol at servo contro equires the entry of		Index: $24300_d = 5\overline{EEC_h}$ s vector control (SLVC)
	Filter time of setpo • The setpoint fee	oint feedforward co edforward control r	ntrol at servo contro equires the entry of	the moment of iner	Index: $24300_d = 5\overline{EEC_h}$ s vector control (SLVC)
	Filter time of setpo • The setpoint fee Setting range (min. 0.0	oint feedforward co edforward control r value unit max. value) ms	ntrol at servo contro equires the entry of	the moment of iner Lenze setting 1.0 ms	Index: 24300 _d = 5EEC _h s vector control (<u>SLVC</u>) tia in <u>C00273</u> .
	Filter time of setpo • The setpoint fee Setting range (min. 0.0	oint feedforward co edforward control r value unit max. value) ms	ntrol at servo contro equires the entry of 1000.0	the moment of iner Lenze setting 1.0 ms	Index: 24300 _d = 5EEC _h s vector control (<u>SLVC</u>) tia in <u>C00273</u> .
C00276	Filter time of setpo • The setpoint fee Setting range (min. 0.0	oint feedforward co edforward control r value unit max. value) ms eaccess	ntrol at servo contro equires the entry of 1000.0	the moment of iner Lenze setting 1.0 ms	Index: 24300 _d = 5EEC _h s vector control (<u>SLVC</u>) tia in <u>C00273</u> .
C00276	Filter time of setpo • The setpoint fee Setting range (min. 0.0 Read access Write Parameter Name: C00276 SC: Max. Maximum output	oint feedforward co edforward control r value unit max. value) ms eaccess	ntrol at servo contro equires the entry of 1000.0 STOP No transfer	the moment of iner Lenze setting 1.0 ms	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. actor: 10 Data type: UNSIGNED_8
C00276	Filter time of setpo • The setpoint fee Setting range (min. 0.0 Read access Write Parameter Name: C00276 SC: Max. Maximum output • Regarding the co	oint feedforward co edforward control r value unit max. value) ms e access	ntrol at servo control equires the entry of 1000.0 STOP No transfer ntrol (SC)	the moment of iner Lenze setting 1.0 ms	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. actor: 10 Data type: UNSIGNED_8
C00276	Filter time of setpo • The setpoint fee Setting range (min. 0.0 Read access Write Parameter Name: C00276 SC: Max. Maximum output • Regarding the co	oint feedforward co edforward control r value unit max. value) ms eaccess	ntrol at servo contro equires the entry of 1000.0 STOP No transfer natrol (SC)	the moment of iner Lenze setting 1.0 ms COM MOT Scaling f	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. actor: 10 Data type: UNSIGNED_8
C00276	Filter time of setpo • The setpoint fee Setting range (min. 0.0 Read access Write Parameter Name: C00276 SC: Max. Maximum output • Regarding the constant of the con	oint feedforward co edforward control r value unit max. value) ms eaccess	ntrol at servo contro equires the entry of 1000.0 STOP No transfer natrol (SC)	the moment of iner Lenze setting 1.0 ms COM MOT Scaling f Lenze setting 95 %	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. actor: 10 Data type: UNSIGNED_8 Index: 24299 _d = 5EEB _h
	Filter time of setpo • The setpoint fee Setting range (min. 0.0 Read access Write Parameter Name: C00276 SC: Max. Maximum output • Regarding the constant of the con	oint feedforward co edforward control r value unit max. value) ms eaccess	ntrol at servo control equires the entry of 1000.0 STOP No transfer ntrol (SC) age.	the moment of iner Lenze setting 1.0 ms COM MOT Scaling f Lenze setting 95 %	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. actor: 10 Data type: UNSIGNED_8 Index: 24299 _d = 5EEB _h
C00276	Filter time of setpo • The setpoint fee Setting range (min. 0.0 Read access Write Parameter Name: C00276 SC: Max. Maximum output • Regarding the company of the c	oint feedforward co edforward control r value unit max. value) ms eaccess	ntrol at servo control equires the entry of 1000.0 STOP No transfer ntrol (SC) age.	the moment of iner Lenze setting 1.0 ms COM MOT Scaling f Lenze setting 95 %	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. actor: 10 Data type: UNSIGNED_8 Index: 24299 _d = 5EEB _h
	Filter time of setpo • The setpoint fee • The setpoint fee Setting range (min. 0.0 □ Read access □ Write Parameter Name: C00276 SC: Max. Maximum output • Regarding the co Setting range (min. 80 □ Read access □ Write Parameter Name: C00280 SC: Filter Filter time constant	oint feedforward coedforward control redforward control revalue unit max. value ms caccess	ntrol at servo control equires the entry of 1000.0 STOP	the moment of iner Lenze setting 1.0 ms COM MOT Scaling f Lenze setting 95 %	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. Data type: UNSIGNED_8 Index: 24299 _d = 5EEB _h actor: 1 Data type: UNSIGNED_16 Index: 24295 _d = 5EE7 _h
	Filter time of setpo • The setpoint fee • The setpoint fee Setting range (min. 0.0 ☑ Read access ☑ Write C00276 SC: Max. Maximum output • Regarding the constant of the constant of the constant of the filter time constant of the setpoint of the constant of the filter time constant of the setpoint of the setpoin	oint feedforward coedforward control redforward control revalue unit max. value ms caccess	ntrol at servo control equires the entry of 1000.0 STOP	the moment of iner Lenze setting 1.0 ms COM MOT Scaling f Lenze setting 95 % COM MOT Scaling f	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. Data type: UNSIGNED_8 Index: 24299 _d = 5EEB _h actor: 1 Data type: UNSIGNED_16 Index: 24295 _d = 5EE7 _h
	Filter time of setpo • The setpoint fee • The setpoint fee Setting range (min. 0.0 ☑ Read access ☑ Write C00276 SC: Max. Maximum output • Regarding the constant of the constant of the constant of the filter time constant of the setpoint of the constant of the filter time constant of the setpoint of the setpoin	oint feedforward coedforward control redforward control revalue unit max. value ms caccess	ntrol at servo control equires the entry of 1000.0 STOP	Lenze setting 1.0 ms COM MOT Scaling for setting Lenze setting 95 % COM MOT Scaling for setting g control at servo core	Index: 24300 _d = 5EEC _h s vector control (SLVC) tia in C00273. Data type: UNSIGNED_8 Index: 24299 _d = 5EEB _h actor: 1 Data type: UNSIGNED_16 Index: 24295 _d = 5EE7 _h

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00290

C00290	Parameter Name: C00290 RCOM error counter	Data type: UNSIGNED_16 Index: 24285 _d = 5EDD _h
	This code is for device-internal use only and must not be written to by the user!	
C00291	Parameter Name: C00291 Error type RCOM This code is for device-internal use only and must not be written to by the user!	Data type: UNSIGNED_8 Index: 24284 _d = 5EDC _h
C00296	Parameter Name: C00296 ICOM error number This code is for device-internal use only and must not be written to by the user!	Data type: UNSIGNED_16 Index: 24279 _d = 5ED7 _h
C00297	Parameter Name: C00297 Counter Receive Error Isr This code is for device-internal use only and must not be written to by the user!	Data type: UNSIGNED_8 Index: 24278 _d = 5ED6 _h
C00301	Parameter Name: C00301 DebugAccess This code is for device-internal use only and must not be written to by the user!	Data type: UNSIGNED_16 Index: 24274 _d = 5ED2 _h
C00302	Parameter Name: C00302 Internal Commands This code is for device-internal use only and must not be written to by the user!	Data type: UNSIGNED_8 Index: 24273 _d = 5ED1 _h
C00304	Parameter Name: C00304 Password1 This code is for device-internal use only and must not be written to by the user!	Data type: UNSIGNED_32 Index: 24271 _d = 5ECF _h
C00305	Parameter Name: C00305 Password2	Data type: UNSIGNED_32 Index: 24270 _d = 5ECE _h
C00306	Parameter Name: C00306 Debug address	Data type: UNSIGNED_32 Index: 24269 _d = 5ECD _h
C00307	This code is for device-internal use only and must not be written to by the user! Parameter Name: C00307 Debug value	Data type: UNSIGNED_16 Index: 24268 _d = 5ECC _h
C00308	This code is for device-internal use only and must not be written to by the user! Parameter Name: C00308 PartitionOffset	Data type: UNSIGNED_16 Index: 24267 _d = 5ECB _h
C00309	This code is for device-internal use only and must not be written to by the user!	
	Parameter Name: C00309 PartitionSel This code is for device-internal use only and must not be written to by the user!	Data type: UNSIGNED_8 Index: 24266 _d = 5ECA _h

Parameter reference Parameter list | C00310

C00310					
	Parameter Name: C00310 Partitio	nValue			Data type: UNSIGNED_16 Index: 24265 _d = 5EC9 _h
	This code is for de	evice-internal use on	ly and must not be	written to by the user!	
C00311					
C00311	Parameter Name: C00311 Runtime	e measurement			Data type: UNSIGNED_32 Index: 24264 _d = 5EC8 _h
	This code is for do	evice-internal use on	ly and must not be	written to by the user!	
500010					
C00312	Parameter Name: C00312 System	runtimes			Data type: UNSIGNED_32 Index: 24263 _d = 5EC7 _h
	From version 02.0	00.00			
	Setting range (min	n. value unit max. value)			
	0.000	μs	1310.700		
	Subcodes	Lenze setting		Info	
	C00312/1	0.000 μs		System runtime reserve	
	☑ Read access ☑ Wr	te access 🗆 CINH 🗆 PLC	STOP IN No transfer	COM MOT Scaling factor: 1000	
C00313					
200313	Parameter Name: C00313 LS_Data	Access: Activation			Data type: UNSIGNED_8 Index: 24262 _d = 5EC6 _h
	This code is for de	evice-internal use on	ly and must not be	written to by the user!	
C00214					
C00314	Parameter Name: C00314 LS_Data	Access: Address acce	255		Data type: UNSIGNED_32 Index: 24261 _d = 5EC5 _h
	This code is for do	evice-internal use on	ly and must not be	written to by the user!	
C00315	Parameter Name: C00315 System	Fail-Adr			Data type: UNSIGNED_32 Index: 24260 _d = 5EC4 _h
	This code is for do	evice-internal use on	ly and must not be	written to by the user!	
C00316	Parameter Name: C00316 System	Fail-Info			Data type: UNSIGNED_16 Index: 24259 _d = 5EC3 _h
	This code is for do	evice-internal use on	ly and must not be	written to by the user!	
500047					
C00317	Parameter Name: C00317 Watchd	ogTimeMax			Data type: UNSIGNED_16 Index: 24258 _d = 5EC2 _h
	This code is for do	evice-internal use on	ly and must not be	written to by the user!	
50000-					
C00320	Parameter Name: C00320 Debug i	nformation			Data type: UNSIGNED_32 Index: 24255 _d = 5EBF _h
	This code is for de	evice-internal use on	ly and must not be	written to by the user!	

Parameter reference Parameter list | C00321

C00321

Parameter | Name:

C00321 | Main program runtime

Data type: UNSIGNED_16
Index: 24254_d = 5EBE_h

Display of the current and the maximum runtime of the main program in the controller

Setting range (min. value unit max. value)		
0	ms	65535

Subcodes	Lenze setting	Info
C00321/1	0 ms	Curr. runtime of main program
C00321/2	0 ms	Max. runtime of main program

☑ Read access ☑ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT Scaling factor: 1

C00322

Parameter | Name:

C00322 | Transmission mode CAN TxPDOs

Data type: UNSIGNED_8 Index: 24253_d = 5EBD_h

TPDO transmission type according to DS301 V4.02

- The following transmission modes are supported:
 - -0: Synchronous and acyclic
 - -1 ... 240: Synchronous and cyclic
 - -252: Synchronous RTR only
 - -253: Asynchronous RTR only
 - -254: Asynchronous manufacturer-specific
 - -255: Asynchronous device-profile specific
- The basic setting for all PDOs is "Asynchronous manufacturer-specific" (254).
- Illustration of the CANopen objects <u>I-1800/2</u> ... <u>I-1802/2</u> (see DS301 V4.02).

▶ System bus "CAN on board"

Setting range (min. value unit max. value)			
0		255	
Subcodes	Lenze setting		Info
C00322/1	254		Transmission mode CAN1 OUT
C00322/2	254		Transmission mode CAN2 OUT
C00322/3	254		Transmission mode CAN3 OUT
☑ Read access ☑ Writ	e access □CINH □PIC	STOP No transfer	1 COM □ MOT Scaling factor: 1

C00323

Parameter | Name: C00323 | Transmission mode CAN Rx PDOs

Data type: UNSIGNED_8 Index: 24252_d = 5EBC_h

RPDO transmission type according to DS301 V4.02

- In the case of the RPDO serves as monitoring setting in the case of sync-controlled PDOs.
- The following transmission modes are supported:
 - -0: Synchronous and acyclic
 - -1 ... 240: Synchronous and cyclic
 - -252: Synchronous RTR only
 - -253: Asynchronous RTR only
 - -254: Asynchronous manufacturer-specific
 - -255: Asynchronous device-profile specific
- The basic setting for all PDOs is "Asynchronous manufacturer-specific" (254).
- Illustration of the CANopen objects <u>I-1400/2</u> ... <u>I-1402/2</u> (see DS301 V4.02).

Setting range (min. value unit max. value)			
0	255		
Subcodes	Lenze setting		Info
C00323/1	254		Transmission mode CAN1 IN
C00323/2	254		Transmission mode CAN2 IN
C00323/3	254		Transmission mode CAN3 IN
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer ☑ COM □ MOT Scaling factor: 1		

Parameter | Name:

C00324 | CAN transmission blocking time

Data type: UNSIGNED_16
Index: 24251_d = 5EBB_h

Blocking time for the transmission of the emergency telegram and the process data

Note:

If the "Asynchronous - manufacturer-specific/device profile-specific" transmisson type is set, the transmission cycle timer is reset to 0 if event-controlled transmission has been triggered.

Example: Cycle time (C00356/x) = 500 ms, blocking time = 100 ms, data change sporadically:

- In the case of a sporadic data change < 500 ms, due to the blocking time set, transmission takes place every 100 ms (event-controlled transmission) as quickly as possible.
- In the case of a sporadic data change > 500 ms, due to the cycle time set, transmission takes place every 500 ms (cyclic transmission).

▶ System bus "CAN on board"

Setting range (min. value unit max. value)			
0	ms	6500	
Subcodes	Lenze setting		Info
C00324/1	0 ms		CAN emergency blocking time
C00324/2	0 ms		CAN1_OUT blocking time
C00324/3	0 ms		CAN2_OUT blocking time
C00324/4	0 ms		CAN3_OUT blocking time
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP □ No transfer ☑	I COM ☐ MOT Scaling factor: 1

C00338

Parameter | Name: Data type: UNSIGNED_8
C00338 | L_Arithmetik_1: Function
Index: $24237_d = 5EA\overline{D}_h$

The L Arithmetik 1 FB: Selection of internal arithmetics

Selection list (Lenze setting printed in bold)		
0	Out = In1	
1	Out = In1 + In2	
2	nOut_a = nln1_a - nln2_a	
3	Out = (In1 * In2) / 100%	
4	nOut_a = (nIn1_a * 1%) / nIn2_a	
5	nOut_a = (nln1_a * 100%) / (100% - nln2_a)	

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00339

Parameter | Name:

C00339 | L_Arithmetik_2: Function

Data type: UNSIGNED_8
Index: 24236_d = 5EAC_h

The <u>L_Arithmetik_2</u> FB: Selection of internal arithmetics **Selection list** (Lenze setting printed in bold)

0	nOut_a = nIn1_a
1	nOut_a = nIn1_a + nIn2_a
2	nOut_a = nIn1_a - nIn2_a
3	nOut_a = (nln1_a * nln2_a) / 100%
4	nOut_a = (nIn1_a * 1%) / nIn2_a
5	nOut_a = (nIn1_a * 100%) / (100% - nIn2_a)

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00341

Parameter Name: C00341 CAN management - error configuration Data type: UNSIGI Index: 24234d = 1		
Selection of the events for which the <i>bFail</i> error output of the <u>LS_CANMAnagement</u> SB must be set to TRUE.		
Setting range (min.	hex value max. hex value)	Lenze setting
0x0000	0xFFFF	0x0000 (decimal: 0)
Value is bit-coded	: (☑ = bit set)	
Bit 0 □	BusOff_MsgErr	
Bit 1 □	Warning	
Bit 2 □	NodeStopped	
Bit 3 □	HeartBeatEvent	
Bit 4 □	CAN1_In_Überw.	
Bit 5 □	CAN2_In_Überw.	
Bit 6 □	CAN3_In_Überw.	
Bit 7 □	Reserved	
Bit 8 □	Reserved	
Bit 9 □	Reserved	
Bit 10 □	Reserved	
Bit 11 □	Reserved	
Bit 12 □	Reserved	
Bit 13 □	Reserved	
Bit 14 □	Reserved	
Bit 15 □	Reserved	
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	сом 🗆 мот

Parameter Name: C00342 CAN decoupling PDOInOut Data type: UN Index: 242				
Configuration defi	ning the events tha	t lead to a decoupli	ng of the process data words. • Configuring exception handling of the CAN PDOs	
Setting range (min.	hex value max. hex valu	ie)		
0x0000		0xFFFF		
Value is bit-coded:	: (☑ = bit set)			
Bit 0 □	BusOff_MsgErr			
Bit 1 □	Warning			
Bit 2 □	NodeStopped			
Bit 3 □	HeartBeatEvent			
Bit 4 □	CAN1_In_Überw.			
Bit 5 □	CAN2_In_Überw.			
Bit 6 □	CAN3_In_Überw.			
Bit 7 □	Reserved			
Bit 8 □	Reserved			
Bit 9 □	Reserved			
Bit 10 □	Reserved			
Bit 11 □	Reserved			
Bit 12 □	Reserved			
Bit 13 □	Reserved			
Bit 14 □	Trouble			
Bit 15 □	Fault			
Subcodes	Lenze setting		Info	
C00342/1	0		CAN decoupling PDO_In from the bus	
C00342/2	0		CAN decoupling PDO_Out from the appl.	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	ЈСОМ □МОТ	

Parameter reference Parameter list | C00343

C00343

Parameter | Name: C00343 | LP_CanIn decoupling value

Data type: UNSIGNED_16 Index: 24232_d = 5EA8_h

Definition of the value the process data words are to have in the decoupled state.

▶ Configuring exception handling of the CAN PDOs

Setting range (min. value unit max. value)					
0		65535			
Subcodes	Lenze setting		Info		
C00343/1	0		LP_CanIn1:wCtrl DiscVal		
C00343/2	0		LP_CanIn1:wIn2 DiscVal		
C00343/3	0		LP_CanIn1:wIn3 DiscVal		
C00343/4	0		<u>LP_CanIn1</u> :wIn4 DiscVal		
C00343/5	0		LP_CanIn2:wIn1 DiscVal		
C00343/6	0		LP_CanIn2:wIn2 DiscVal		
C00343/7	0		LP_CanIn2:wIn3 DiscVal		
C00343/8	0		LP_CanIn2:wIn4 DiscVal		
C00343/9	0		LP_CanIn3:wIn1 DiscVal		
C00343/10	0		LP_CanIn3:wIn2 DiscVal		
C00343/11	0		LP_CanIn3:wIn3 DiscVal		
C00343/12	0		LP_CanIn3:wIn4 DiscVal		
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 1		

C00344

Parameter | Name: C00344 | LP_CanOut decoupling value

Data type: UNSIGNED_16 Index: 24231_d = 5EA7_h

Definition of the value the process data words are to have in the decoupled state.

• Configuring exception handling of the CAN PDOs

Setting range (min.	value unit max. value)		
0	65535		
Subcodes	Lenze setting	Info	
C00344/1	0	LP_CanOut1:wState DiscVal	
C00344/2	0	LP_CanOut1:wOut2 DiscVal	
C00344/3	0	LP_CanOut1:wOut3 DiscVal	
C00344/4	0	LP_CanOut1:wOut4 DiscVal	
C00344/5	0	LP_CanOut2:wOut1 DiscVal	
C00344/6	0	LP_CanOut2:wOut2 DiscVal	
C00344/7	0	LP_CanOut2:wOut3 DiscVal	
C00344/8	0	LP_CanOut2:wOut4 DiscVal	
C00344/9	0	LP_CanOut3:wOut1 DiscVal	
C00344/10	0	LP_CanOut3:wOut2 DiscVal	
C00344/11	0	LP_CanOut3:wOut3 DiscVal	
C00344/12	0	LP_CanOut3:wOut4 DiscVal	
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer [□ COM □ MOT Scaling factor: 1	

Parameter reference Parameter list | C00345

C00345

C00345 CAN erro	or status					Data type: UNSIGNED_8 Index: 24230 _d = 5EA6 _l
						System bus "CAN on board"
Selection list (read o	only)					
0	No Error					
1	Warning ErrA	Active				
2	Warning ErrP	assive				
3	Bus off					
4	Reserved					
5	Reserved					
☑ Read access ☐ Write	e access	□ PLC STOP	☑ No transfer	□сом □мот	Scaling factor: 1	1
	us HeartBeat p	producer				Index: 24228 _d = 5EA
Parameter Name: C00347 CAN stat	us HeartBeat բ	producer				Index: 24228 _d = 5EA ²
C00347 CAN stat		producer				Index: 24228 _d = 5EA4
C00347 CAN stat	Boot-up Stopped	producer				Index: 24228 _d = 5EA4
C00347 CAN stat Selection list 0 4	Boot-up	producer				Index: 24228 _d = 5EA4
C00347 CAN stat Selection list 0 4 5	Boot-up Stopped	producer				Data type: UNSIGNED_ Index: 24228 _d = 5EA4 ▶ <u>Heartbeat protoco</u>
C00347 CAN stat Selection list 0 4 5 127	Boot-up Stopped Operational	producer				Index: 24228 _d = 5EA4
C00347 CAN stat Selection list 0 4 5 127 250	Boot-up Stopped Operational Pre-Operat.	producer				Index: 24228 _d = 5EA4
C00347 CAN stat Selection list 0 4 5 127 250	Boot-up Stopped Operational Pre-Operat. Failed	producer		Info		Index: 24228 _d = 5EA4
C00347 CAN stat	Boot-up Stopped Operational Pre-Operat. Failed	producer		Info Status node	: 1 15	Index: 24228 _d = 5EA4
C00347 CAN stat Selection list 0 4 5 127 250 255 Subcodes	Boot-up Stopped Operational Pre-Operat. Failed	producer			:115	Index: 24228 _d = 5EA ²
C00347 CAN state Selection list 0 4 5 127 250 255 Subcodes C00347/1	Boot-up Stopped Operational Pre-Operat. Failed	producer			· 1 15	Index: 24228 _d = 5EA4

Parameter reference Parameter list | C00349

C00349

Parameter Name: C00349 CAN setti	ing - DIP switch	Data type: UNSIGNED_16 Index: 24226 _d = 5EA2 _h
DIP switch setting	during last mains power-on	▶ System bus "CAN on board"
Display area (min. he	ex value max. hex value)	-
0x0000	0xFFF	
Value is bit-coded:		
Bit 0	Node address 1	
Bit 1	Node address 2	
Bit 2	Node address 4	
Bit 3	Node address 8	
Bit 4	Node address 16	
Bit 5	Node address 32	
Bit 6	Node address 64	
Bit 7	Baud rate 1	
Bit 8	Baud rate 2	
Bit 9	Baud rate 4	
Bit 10	Reserved	
Bit 11	Reserved	
Bit 12	Reserved	
Bit 13	Reserved	
Bit 14	Reserved	
Bit 15	DIP switch at 24V-ON accepted	
☑ Read access ☐ Write	access □ CINH □ PLC STOP ☑ No transfer	□сом □мот

C00350

Parameter | Name:

C00350 | CAN node address

Data type: UNSIGNED_8
Index: 24225_d = 5EAĪ_h

Setting of the node address via parameters

- The node address can only be parameterised if the node address "0" is set via the DIP switches.
- A change in the node address will not be effective until a CAN Reset Node is performed.

Setting range (min. value unit max. value)			setting
1		127 1	
☑ Read access ☑ Write	access CINH PLC STOP	No transfer ☑ COM □	MOT Scaling factor: 1

Parameter | Name:

C00351 | CAN baud rate

Data type: UNSIGNED_8
Index: 24224_d = 5EA0_h

Setting of the baud rate via parameters

- The baud rate can only be parameterised if the baud rate "0" is set via the DIP switches.
- A change in the baud rate will not be effective until a CAN Reset Node is performed.

▶ System bus "CAN on board"

Selection list (Lenze	Selection list (Lenze setting printed in bold)				
0	500 kbps				
1	250 kbps				
2	125 kbps				
3	50 kbps				
4	1000 kbps				
5	20 kbps				
☑ Read access ☑ Writ	e access	□ PLC STOP	☐ No transfer	V	т сом

C00352

Parameter | Name:

C00352 | CAN slave/master

Data type: UNSIGNED_8 Index: 24223_d = 5E9F_h

The drive starts as CAN master after mains switching if a value of "1" has been entered and saved here.

▶ System bus "CAN on board"

Selection list (Lenze setting printed in bold)						
0	Slave					
1	Master					
☑ Read access ☑ Writ	e access	□ PLC STOP	☐ No transfer	☑ COM	□мот	Scaling factor: 1

C00353

Parameter | Name:

C00353 | CAN IN/OUT COBID source

Data type: UNSIGNED_8
Index: 24222_d = 5E9E_h

Identifier assignment procedure for the CANx In/Out process data

Selection list		Info		
0	COBID = C0350 + LenzeBaseID	COBID = device address + LenzeBaseID		
1	COBID = C0350 + CANBaseID	COBID = device address + CANBaseID (C00354/x)		
2	COBID = C0354/x	COBID = direct setting from $\underline{\text{C00354/x}}$		
Subcodes	Lenze setting	Info		
C00353/1	1: COBID = C0350 + CANBaseID	COBID source CAN1_IN/OUT		
C00353/2	1: COBID = C0350 + CANBaseID	COBID source CAN2_IN/OUT		
C00353/3	1: COBID = C0350 + CANBaseID	COBID source CAN3_IN/OUT		
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer ☑	I COM □ MOT Scaling factor: 1		

Parameter reference Parameter list | C00354

C00354

 Parameter | Name:
 Data type: UNSIGNED_32

 C00354 | COBID
 Index: 24221_d = 5E9D_h

Setting of the default COBID according to CANopen

• A change in the COBID will not be effective until a CAN reset node is performed.

▶ System bus "CAN on board"

Setting range (min. hex value max. hex value)			
0x00000000		0xFFFFFFF	
Value is bit-coded			Info
Bit 0	COBID Bit0		• Bit 0 10: COB-ID
			Bit 11 30: Reserved Bit 31: PDO invalid (is not transmitted)
Bit 31	PDO invalid		Die 31. 1 Do invalia (is not transmitted)
Subcodes	Lenze setting		Info
C00354/1	513		COBID CAN1_IN
C00354/2	385		COBID CAN1_OUT
C00354/3	769		COBID CAN2_IN
C00354/4	641		COBID CAN2_OUT
C00354/5	1025		COBID CAN3_IN
C00354/6	897		COBID CAN3_OUT
☑ Read access ☑ Write	e access	STOP □ No transfer ☑	ICOM □ MOT

C00355

Parameter Name:	Data type: UNSIGNED_16
C00355 Active COBID	Index: 24220 _d = 5E9C _h

Display of the COBID of the PDOs that is active in the CAN stack

Display range (min. value unit max. value)	
0	047
Subcodes	Info
C00355/1	Active COBID CAN1_IN
C00355/2	Active COBID CAN1_OUT
C00355/3	Active COBID CAN2_IN
C00355/4	Active COBID CAN2_OUT
C00355/5	Active COBID CAN3_IN
C00355/6	Active COBID CAN3_OUT
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No trans	fer ☑ COM ☐ MOT Scaling factor: 1

Parameter | Name:

C00356 | CAN time settings

Data type: UNSIGNED_16
Index: 24219_d = 5E9B_h

Different time settings for the CAN interface

▶ System bus "CAN on board"

Setting range (min.	value unit max. value)			
0	ms 65000			
Subcodes	Lenze setting	Info		
C00356/1	3000 ms	CAN delay during status change from "Boot-up" to "Operational"		
C00356/2	0 ms	CAN2_OUT cycle time		
C00356/3	0 ms	CAN3_OUT cycle time		
C00356/4	0 ms	CANx_OUT time "Operational" until "first transmission"		
C00356/5	0 ms	CAN1_OUT cycle time		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer ☑ COM □ MOT Scaling factor: 1				

C00357

Parameter | Name:

C00357 | CAN monitoring times

Data type: UNSIGNED_16
Index: 24218_d = 5E9A_h

Mapping of the RPDO event time (see DS301 V4.02)

- If a value unequal to "0" is entered, the RPDO is not expected before the set time has expired.
- If the RPDO is not received within the expected time, the response set in C00593/1...3 will be triggered.

▶ System bus "CAN on board"

Setting range (min. value unit max. value)				
0	ms	65000		
Subcodes	Lenze setting		Info	
C00357/1	3000 ms		CAN1_IN monitoring time	
C00357/2	3000 ms		CAN2_IN monitoring time	
C00357/3	3000 ms		CAN3_IN monitoring time	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer ☑ COM □ MOT Scaling factor: 1				

C00358

Parameter | Name:

C00358 | CANx_OUT data length

Data type: UNSIGNED_8
Index: 24217_d = 5E99_h

Setting of the data length for TX PDOs

Setting range (min.	value unit max. value)			
1	8			
Subcodes	Lenze setting	Info		
C00358/1	8	CAN1_OUT data length		
C00358/2	8	CAN2_OUT data length		
C00358/3	8	CAN3_OUT data length		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer ☑ COM □ MOT Scaling factor: 1				

Parameter reference Parameter list | C00359

C00359

Parameter | Name:
C00359 | CAN status

Selection list (read only)

0 Operational
1 Pre-Operat.
2 Reserved
3 Reserved
4 BootUp
5 Stopped
6 Reserved
7 Reset

■ Read access □ Write access □ CINH □ PLC STOP ■ No transfer ■ COM □ MOT Scaling factor: 1

C00360

Parameter | Name:

C00360 | CAN telegram counter

Data type: UNSIGNED_16
Index: 24215_d = 5E97_h

Display range (min.	. value unit max. value)	
0	65535	
Subcodes		Info
C00360/1		All PDO/SDO sent
C00360/2		All PDO/SDO received
C00360/3		Telegram counter CAN1_OUT
C00360/4		Telegram counter CAN2_OUT
C00360/5		Telegram counter CAN3_OUT
C00360/6		Telegram counter SDO1 OUT
C00360/7		Telegram counter SDO2 OUT
C00360/8		Telegram counter CAN1_IN
C00360/9		Telegram counter CAN2_IN
C00360/10		Telegram counter CAN3_IN
C00360/11		Telegram counter SDO1 IN
C00360/12		Telegram counter SDO2 IN
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer ☑	COM MOT Scaling factor: 1

Parameter reference Parameter list | C00364

C00364

Parameter Name: C00364 CAN Mes	sageError		Data type: UNSIGNED_8 Index: 24211 _d = 5E93 _h
			▶ System bus "CAN on board"
Selection list (read of	only)		
0	No Error		
1	StuffError		
2	FormError		
3	AckError		
4	Bit1Error		
5	Bit0Error		
6	CRCError		
7	Reserved		
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer ☑ (сом 🗆 мот	Scaling factor: 1

C00366

Parameter | Name:

C00366 | Number of CAN SDO channels

Data type: UNSIGNED_8
Index: 24209_d = 5E91_h

Selection of the number of active parameter data channels

- In the Lenze setting, only the parameter data channel 1 is activated according to CANopen.
- In order to activate both parameter data channels, set the selection "2 SDO Lenze".

Selection list (Lenze setting printed in bold)		
0 1 SDO CANOpen		
1 2 SDO Lenze		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer ☑		

Parameter reference Parameter list | C00367

C00367

Parameter | Name:

C00367 | CAN Sync-Rx-Identifier

Data type: UNSIGNED_16
Index: 24208_d = 5E90_h

Identifier by means of which the sync slave is to receive sync telegrams.

- Mapping of the CANopen object <u>I-1005</u> (see DS301 V4.02).
- ▶ System bus "CAN on board"

Setting range (min.	hex value max. hex valu	ıe)	Lenze s	etting
0x0000				(decimal: 128)
Value is bit-coded:	: (☑ = bit set)			
Bit 0 □	COBID Bit0			
Bit 1 □	COBID Bit1			
Bit 2 □	COBID Bit2			
Bit 3 □	COBID Bit3			
Bit 4 □	COBID Bit4			
Bit 5 □	COBID Bit5			
Bit 6 □	COBID Bit6			
Bit 7 ☑	COBID Bit7			
Bit 8 □	COBID Bit8			
Bit 9 □	COBID Bit9			
Bit 10 □	COBID Bit10			
Bit 11 □	Reserved			
Bit 12 □	Reserved			
Bit 13 □	Reserved			
Bit 14 □	Reserved			
Bit 15 □	Reserved			
☑ Read access ☑ Write	e access	STOP INotransfer	om □	мот

Parameter | Name:

C00368 | CAN Sync-Tx-Identifier

Data type: UNSIGNED_16
Index: 24207_d = 5E8F_h

Identifier by means of which the sync master is to transmit sync telegrams.

• Mapping of the CANopen object <u>I-1005</u> (see DS301 V4.02).

▶ System bus "CAN on board"

Setting range (min.	hex value max. hex value)	Lenze setting
0x0000	0xFFF	0x0080 (decimal: 128)
Value is bit-coded	: (☑ = bit set)	
Bit 0 □	COBID Bit0	
Bit 1 □	COBID Bit1	
Bit 2 □	COBID Bit2	
Bit 3 □	COBID Bit3	
Bit 4 □	COBID Bit4	
Bit 5 □	COBID Bit5	
Bit 6 □	COBID Bit6	
Bit 7 ☑	COBID Bit7	
Bit 8 □	COBID Bit8	
Bit 9 □	COBID Bit9	
Bit 10 □	COBID Bit10	
Bit 11 □	Reserved	
Bit 12 □	Reserved	
Bit 13 □	Reserved	
Bit 14 □	Reserved	
Bit 15 □	Sync-transmit off	
☑ Read access ☑ Write	e access CINH PLC STOP No transfer	☑ COM □ MOT

C00369

Parameter | Name:

C00369 | CAN sync transmission cycle time

Data type: UNSIGNED_16
Index: 24206_d = 5E8E_h

Cycle during which the sync master is to transmit sync telegrams.

- If "0 ms" is set (Lenze setting), no sync telegrams are generated.
- Mapping of the CANopen object <u>I-1006</u> (see DS301 V4.02).

Display range (min. value | unit | max. value)

▶ System bus "CAN on board"

Setting range (min. value unit max. value)			Lenze setting	
0 ms 65000			0 ms	
☑ Read access ☑ Wri	e access	PLC STOP □ No transfer	☑ COM □ MOT Scaling factor: 1	

C00370

Parameter Name: C00370 SyncTxRxTimes	Data type: INTEGER_16 Index: 24205 _d = 5E8D _h
--	--

-1310		μs		131	0	
Subcodes					Info	
C00370/1					CAN Sync instant of transmission	
C00370/2					Sync instant of reception	
☑ Read access	☐ Write access	□ CINH	\square PLC STOP	☑ No transfer	□ COM □ MOT Scaling factor: 1	

Parameter reference Parameter list | C00372

C00372

Parameter | Name:

C00372 | CAN_Tx_Rx_Error

Data type: UNSIGNED_8
Index: 24203_d = 5E8B_h

▶ System bus "CAN on board"

		bystem bus eart on bourd	
Display range (min. value unit max. value)			
0	255		
Subcodes		Info	
C00372/1		CAN Tx_Error	
C00372/2		CAN Rx_Error	
C00372/3		CAN Tx_Overflow	
C00372/4		CAN Rx_Overflow	
☑ Read access ☐ Write access ☐ CINH ☐ PLC	STOP Motransfer	I COM ☐ MOT Scaling factor: 1	

C00381

Parameter | Name:

C00381 | CAN Heartbeat producer time

Data type: UNSIGNED_16
Index: 24194_d = 5E82_h

Time interval for the transmission of the heartbeat telegram to the consumer(s).

- The heartbeat telegram is sent automatically as soon as a time > 0 ms is set.
- Mapping of the CANopen object I-1017 (see DS301 V4.02).

▶ Heartbeat protocol

Setting range (min. value unit max. value)		Lenze setting		
0	ms	65535	0 ms	
☑ Read access ☑ Write	e access	.C STOP □ No transfer ☑	COM MOT Scaling factor: 1	

C00385

Parameter | Name:

C00385 | CAN node addr. HeartBeat producer

Data type: UNSIGNED_8
Index: 24190_d = 5E7E_h

The subcodes represent the nodes to be monitored by heartbeat.

▶ <u>Heartbeat protocol</u>

Setting range (min	. value unit max. value)			
0		127		
Subcodes	Lenze setting		Info	
C00385/1	0		CAN node a	ddress HeartBeat producer 1 15
C00385/				
C00385/15				
☑ Read access ☑ Writ	e access	STOP INotransfer I	ом □мот	Scaling factor: 1

C00386

Parameter | Name:

C00386 | CAN HeartBeat ConsumerTime

Data type: UNSIGNED_16
Index: 24189_d = 5E7D_h

The subcodes represent the nodes to be monitored by heartbeat.

▶ <u>Heartbeat protocol</u>

Setting range (min. value unit max. value)			
0	ms	60000	
Subcodes	Lenze setting		Info
C00386/1	0 ms		ConsumerTime HeartBeat producer 1 15
C00386/			
C00386/15			
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

Parameter Name: C00400 LS_PulseGenerator	Data type: UNSIGNED_16 Index: 24175 _d = 5E6F _h

Time setting of the pulse to be output by the SB LS PulseGenerator

Setting range (min. value unit max. value)			
0	ms	60000	
Subcodes	Lenze setting		Info
C00400/1	1000 ms		Length of LOW level (break)
C00400/2	1000 ms		Length of HIGH level
C00400/3	100 ms		 Delay time for status signal bFirstCycleDone The bFirstCycleDone status signal is set to TRUE when the first task cycle is complete and the time set here has expired.

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00401

Parameter | Name:

C00401 | CANXInOut: Inversion

Data type: UNSIGNED_16
Index: 24174_d = 5E6E_h

This parameter serves to invert the control/status bits of the CAN port blocks.

► CAN port block

		CAN port block
Setting range (min.	hex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded		Info
Bit 0	Active	Bit set = bit is inverted
Bit 15	Active	
Subcodes	Lenze setting	Info
Subcodes C00401/1	Lenze setting 0	Info Inversion of LP_CanIn1.bCtrl1_B015
C00401/1	0	Inversion of LP_CanIn1.bCtrl1_B015
C00401/1 C00401/2	0	Inversion of LP_CanIn1.bCtrl1_B015 Inversion of LP_CanOut1.bState1_B015

C00408

Parameter Name:	Data type: UNSIGNED_8
C00408 LP_CanIn mapping selection	Index: 24167 _d = 5E67 _h

Inversion of LP CanOut3.bOut1 B0...15

Selection of the mapping source for port blocks LP_CanIn1...3

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT

0

► CAN port block

Selection list		Info
0	CanIn	Canln
1	Par.C409	Mapping configured in C00409
Subcodes	Lenze setting	Info
C00408/1	0: Canln	Mapping selection LP_CanIn1
C00408/2	0: Canln	Mapping selection LP_CanIn2
C00408/3	0: Canln	Mapping selection LP_CanIn3
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

C00401/6

Parameter reference Parameter list | C00409

C00409

Parameter | Name:

C00409 | LP_CanIn Mapping

Data type: UNSIGNED_16
Index: 24166_d = 5E66_h

Mapping for port blocks LP_CanIn1...3

► CAN port block

Setting range (min.	value unit max. value)		
0		65535	
Subcodes	Lenze setting		Info
C00409/1	0		LP_CanIn1:wCtrl MapVal
C00409/2	0		LP_CanIn1:wIn2 MapVal
C00409/3	0		LP_CanIn1:wIn3 MapVal
C00409/4	0		LP_CanIn1:wIn4 MapVal
C00409/5	0		LP_CanIn2:wIn1 MapVal
C00409/6	0		LP_CanIn2:wIn2 MapVal
C00409/7	0		LP_Canin2:win3 MapVal
C00409/8	0		LP_CanIn2:wIn4 MapVal
C00409/9	0		LP_CanIn3:wIn1MapVal
C00409/10	0		LP_CanIn3:wIn2 MapVal
C00409/11	0		LP_CanIn3:wIn3 MapVal
C00409/12	0		LP_CanIn3:wIn4 MapVal
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C00410

C00410 | L_SignalMonitor_a: Signal sources

Data type: UNSIGNED_16 Index: 24165_d = 5E65_h

The L Signal Monitor a FB: Selection of the signal sources

Selection list

See selection list - analog signals

Subcodes	Lenze setting	Info
C00410/1	0: Not connected	Signal source for output nOut1_a
C00410/2	0: Not connected	Signal source for output nOut2_a
C00410/3	0: Not connected	Signal source for output nOut3_a
C00410/4	0: Not connected	Signal source for output nOut4_a
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 1

C00411

Parameter | Name:

C00411 | L_Signal Monitor_b: Signal sources

Data type: UNSIGNED_16

Index: 24164_d = 5E64_h

The <u>L_SignalMonitor_b</u> FB: Selection of the signal sources

Selection list	, and the second
See selection list - digita	al signals

Subcodes	Lenze setting	Info	
C00411/1	0: Not connected	Signal source for output bOut1	
C00411/2	0: Not connected	Signal source for output bOut2	
C00411/3	0: Not connected	Signal source for output bOut3	
C00411/4	0: Not connected	Signal source for output bOut4	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C00413

C00417

Parameter Name:			Data type: UNSIGNED_8	
	Monitor_b: Inversion		Index: 24163 _d = 5E63 _h	
	hex value max. hex value	of the binary output	Lenze setting	
0x00	nex value max. nex valu		0x00 (decimal: 0)	
Value is bit-coded:	· (1√ = hit sat)	OALI	Info	
	bOut1 inverted		Bit set = inversion active	
	bOut2 inverted		bit set - inversion delive	
-	bOut3 inverted			
-	bOut4 inverted			
	Reserved			
-	Reserved			
Bit 6	Reserved			
	Reserved			
-		STOP □ No transfer □	I ICOM □MOT	
Parameter Name: C00413 L_Signal	Monitor_a: Offs./ga	ain	Data type: INTEGER_16 Index: 24162 _d = 5E62 _h	
The <u>L_SignalMonit</u>	tor_a FB: Gain and o	offset of the analog	signals	
Setting range (min.	value unit max. value)			
-199.99	%	199.99		
Subcodes	Lenze setting		Info	
C00413/1	0.00 %		Offset for output nOut1_a	
C00413/2	100.00 %		Gain for output nOut1_a	
C00413/3	0.00 %		Offset for output nOut2_a	
C00413/4	100.00 %		Gain for output nOut2_a	
C00413/5	0.00 %		Offset for output nOut3_a	
C00413/6	100.00 %		Gain for output nOut3_a	
C00413/7	0.00 %		Offset for output nOut4_a	
C00413/8	100.00 %		Gain for output nOut4_a	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP INo transfer	COM MOT Scaling factor: 100	
Parameter Name: C00417 Activate	resolver error comp) .	Data type: UNSIGNED_8 Index: 24158 _d = 5E5E _h	
			► Encoder/feedback system: Resolver	
Selection list (Lenze	setting printed in bold)			
0	Resolver error com	ıp. act.		
1	Resolver error com	ıp. deact.		

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C00420

C00420

Parameter Name:	Data type: UNSIGNED_16
C00420 Number of encoder increments	Index: 24155 _d = 5E5B _h

Indication of the encoder constant

▶ Encoder/feedback system: Multi-Encoder

Setting range (min.	value unit max. value)		
1	Incr./rev.	32768	
Subcodes	Lenze setting		Info
C00420/1	128 incr./rev.		FreqIn12: Encoder increment
C00420/2	128 incr./rev.		FreqIn67: Encoder increment
C00420/3	512 incr./rev.		LS_Multi-Encoder: Encoder increment
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 1

C00421

Parameter | Name:

C00421 | LS_Multi-Encoder: Supply voltage

Data type: UNSIGNED_16

Index: 24154_d = 5E5A_h

Stop!

Before connecting an encoder, make sure that the encoder supply voltage is set correctly! If the set supply voltage exceeds the permissible supply voltage of the connected encoder, the encoder may be destroyed!

▶ Encoder/feedback system: Multi-Encoder

Setting range (min.	value unit max. value)		Lenze setting
5.0	V	12.0	5.0 V
☑ Read access ☑ Write	e access	TOP INotransfer I	□ COM □ MOT Scaling factor: 10

C00422

Parameter | Name:

C00422 | LS_Multi-Encoder: Encoder type

Data type: UNSIGNED_8
Index: 24153_d = 5E59_h

▶ Encoder/feedback system: Multi-Encoder

Selection list (Lenze	setting printed in bold)		
0	Incremental encoder (TTL)		
1	Sine/cosine encoder		
2	Absolute value encoder (hiperface)		
4	Absolute value encoder (SSI)		
☑ Read access ☑ Write	e access ☑ CINH ☐ PLC STOP ☐ No transfer ☐	COM □ MOT	Scaling factor: 1

Parameter | Name:

C00423 | DOx: Delay times

Data type: UNSIGNED_16
Index: 24152_d = 5E58_h

Delay times for the digital output terminals

▶ <u>Digital output terminals</u>

Setting range (min.	value unit max. value)		
0.000	s	65.000	
Subcodes	Lenze setting		Info
C00423/1	0.000 s		Relay ON delay
C00423/2	0.000 s		Relay OFF delay
C00423/3	0.000 s		DO1 ON delay
C00423/4	0.000 s		DO1 OFF delay
C00423/5	0.000 s		DO2 ON delay
C00423/6	0.000 s		DO2 OFF delay
C00423/7	0.000 s		DO3 ON delay
C00423/8	0.000 s		DO3 OFF delay
C00423/9	0.000 s		DO "High Current" ON delay
C00423/10	0.000 s		DO "High Current" OFF delay
☑ Read access ☑ Write	e access	STOP No transfer	COM MOT Scaling factor: 1000

C00424

Parameter | Name: Data type: UNSIGNED_8
C00424 | Pulse form TTL encoder Index: $24151_d = 5E57_h$

▶ Encoder/feedback system: Multi-Encoder

Selection list (Lenze setting printed in bold)

0 4x evaluation A/B

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00425

Parameter | Name:

C00425 | Encoder scanning time

Data type: UNSIGNED_8 Index: 24150_d = 5E56_h

Encoder sample time for the digital input terminals when configured as frequency inputs

▶ Using DI1(6) and DI2(7) as frequency inputs

Selection list	
0	1 ms
1	2 ms
2	5 ms
3	10 ms
4	20 ms
5	50 ms
6	100 ms
7	200 ms
8	500 ms
9	1000 ms
Culanadan	Laura auttina

Subcodes	Lenze setting	Info
C00425/1	3: 10 ms	 FreqIn12: Encoder scanning time Only active with edge-counting procedure (C00496 = 3).
C00425/2	3: 10 ms	FreqIn67: Encoder scanning time
☑ Read access ☑ Write	e access ☑ CINH ☐ PLC STOP ☐ No transfer [□ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C00426

C00426

Data type: UNSIGNED_8 Index: 24149_d = 5E55_h Parameter | Name: C00426 | SSI encoder: Data bits

Example: Setting for an SSI encode with the coding "8192x4096":

- $8192 = 2^{13} = 13$ bits Multiturn \rightarrow C00426/4 = 13 $4096 = 2^{12} = 12$ bits Singleturn \rightarrow C00426/2 = 12
- This results in a data word length of 25 bits → C00426/1 = 25
- Start bit Singleturn = bit 0 → C00426/3 = 0
- Start bit Multiturn = bit 12 → C00426/5 = 12

► Encoder/feedback system: SSI encoder

Setting range (min.	value unit max. value)		
0		32	
Subcodes	Lenze setting		Info
C00426/1	25		SSI encoder: Data word length
C00426/2	13		SSI encoder: Bits SingleTurn
C00426/3	0		SSI encoder: Start bit Singleturn
C00426/4	12		SSI encoder: Bits Multiturn
C00426/5	13		SSI encoder: Start bit Multiturn
C00426/6	0		SSI encoder: Status bit From version 02.00.00
C00426/7	0		SSI encoder: Left shift of raw value • From version 02.00.00
☑ Read access ☑ Write	e access ☑ CINH ☐ PLC	STOP No transfer	COM MOT Scaling factor: 1

C00427

Data type: UNSIGNED_8 Index: 24148_d = 5E54_h Parameter | Name: C00427 | SSI encoder: Bit rate

▶ Encoder/feedback system: SSI encoder

Selection list (Lenz	e setting printed in bold)
1	100 kbps
2	200 kbps
3	300 kbps
4	400 kbps
5	500 kbps
6	750 kbps
7	1000 kbps
☑ Read access ☑ Wri	te access ☑ CINH ☐ PLC STOP ☐ No transfe

C00428

Data type: UNSIGNED_8 Index: 24147_d = 5E53_h Parameter | Name: C00428 | SSI encoder: Coding

▶ Encoder/feedback system: SSI encoder

							Lilcouely
Selection list (L	Lenze sett	ing printed in	bold)				
	0 Bi	nary code					
	1 G	ay code					
☑ Read access ☑	Write acc	ess 🗹 CINH	□ PLC STOP	☐ No transfer	□сом	□мот	Scaling factor: 1

Gain of the ana	alog outputs				► Analog termina
Setting range (min. value unit max. value)				Analog termina
-199.99	%	199.99			
Subcodes	Lenze setting		Info		
C00434/1	100.00 %		O1U: Gain		
C00434/2	100.00 %		O2U: Gain		
C00434/3	100.00 %		O1I: Gain		
C00434/4	100.00 %		O2I: Gain		
☑ Read access ☑ '	Write access □ CINH □ PLC	STOP No transfer	□сом □мот	Scaling factor: 100	
Parameter Name: C00435 OxU/	I: Offset				Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the a	I: Offset				Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the al Setting range ('I: Offset nalog outputs	199.99			Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the a Setting range (-199.99	(I: Offset nalog outputs min. value unit max. value)		Info		Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the al Setting range (-199.99 Subcodes	(I: Offset nalog outputs min. value unit max. value) %				Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the a Setting range (-199.99 Subcodes C00435/1	(I: Offset nalog outputs min. value unit max. value) % Lenze setting		Info		Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the al Setting range (-199.99 Subcodes C00435/1 C00435/2	(I: Offset nalog outputs min. value unit max. value) % Lenze setting 0.00 %		Info O1U: Offset		Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the al Setting range (-199.99 Subcodes C00435/1 C00435/2 C00435/3	It: Offset nalog outputs min. value unit max. value) % Lenze setting 0.00 % 0.00 %		Info O1U: Offset O2U: Offset		Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the al Setting range (-199.99 Subcodes C00435/1 C00435/2 C00435/3 C00435/4	It: Offset nalog outputs min. value unit max. value) % Lenze setting 0.00 % 0.00 % 0.00 %	199.99	Info O1U: Offset O2U: Offset O1I: Offset O2I: Offset	Scaling factor: 100	Index: 24140 _d = 5E
Parameter Name: C00435 OxU/ Offset of the al Setting range (-199.99 Subcodes C00435/1 C00435/2 C00435/3 C00435/4	It: Offset nalog outputs min. value unit max. value)	199.99	Info O1U: Offset O2U: Offset O1I: Offset O2I: Offset	Scaling factor: 100	Data type: INTEGER Index: 24140 _d = 5E • Analog termin

C00436

C00435

Display of the voic	ange at the allange		► Analog terminals
Display range (min.	. value unit max. value])	
0.00	V	10.00	
Subcodes			Info
C00436/1			O1U: Voltage
C00436/2			O2U: Voltage
☑ Read access ☐ Writ	e access □ CINH □ PLC	STOP Motransfer	COM MOT Scaling factor: 100

C00437

Display of the cur	rent at the analog o	utputs	➤ Analog terminals
Display range (min	n. value unit max. value)		
0.000	mA	20.000	
Subcodes			Info
C00437/1			O1I: Current
C00437/2			O2I: Current
☑ Read access ☐ Wri	te access □ CINH □ PLC	STOP Motransfer	COM MOT Scaling factor: 1000

Parameter | Name:
C00437 | Oxl: Current

Data type: INTEGER_32 Index: 24138_d = 5E4A_h

Parameter reference Parameter list | C00439

C00439

Parameter Name: C00439 OxU/I: In	nput value		Data type: INTEGER_16 Index: 24136 _d = 5E48 _h
Display of the inp	ut values for the an	alog outputs	
			► <u>Analog terminals</u>
Display range (min	. value unit max. value)	
-199.99	%	199.99	
Subcodes			Info
C00439/1			O1U: Input value
C00439/2			O2U: Input value
C00439/3			O1I: Input value
C00439/4			O2I: Input value
☑ Read access ☐ Writ	e access 🗆 CINH 🗆 PLO	STOP ☑ No transfer □	COM MOT Scaling factor: 100

C00440

Parameter Name:	Data type: UNSIGNED_16
C00440 LS_AnalogIn1: PT1 time constant	Index: 24135 _d = 5E47 _h

PT1 time constant (S-ramp time) for the analog inputs

▶ Analog terminals

Setting range (m	in. value unit max. value)		
0	ms	1000	
Subcodes	Lenze setting		Info
C00440/1	10 ms		PT1 rounding AnalogIn1
C00440/2	10 ms		PT1 rounding AnalogIn2
☑ Read access ☑ W	rite access □ CINH □ PLC	STOP □ No transfer □	COM ☐ MOT Scaling factor: 1

Parameter | Name:

C00441 | Decoupling AnalogOut

Data type: UNSIGNED_16
Index: 24134_d = 5E46_h

Configuration defining the events that lead to a decoupling of the analog output terminals.

▶ Configuring exception handling of the output terminals

Setting range (min.	hex value max. hex value)	Lenze setting
0x0000	0xFFFI	0x0000 (decimal: 0)
Value is bit-coded:	: (☑ = bit set)	
Bit 0 □	SafeTorqueOff	
Bit 1 □	ReadyToSwitchOn	
Bit 2 □	SwitchedOn	
Bit 3 □	Reserved	
Bit 4 □	Trouble	
Bit 5 □	Fault	
Bit 6 □	Reserved	
Bit 7 □	Reserved	
Bit 8 □	Reserved	
Bit 9 □	Fail CAN_Management	
Bit 10 □	Reserved	
Bit 11 □	Reserved	
Bit 12 □	Reserved	
Bit 13 □	Reserved	
Bit 14 □	Reserved	
Bit 15 □	Reserved	
☑ Read access ☑ Write	e access CINH PLC STOP No transfer	□ сом □ мот

C00442

Parameter | Name:

C00442 | AOutx: Decoupling value

Data type: INTEGER_16 Index: 24133_d = 5E45_h

Definition of the value the analog output terminals are to have in the decoupled state.

▶ Configuring exception handling of the output terminals

Setting range (min. value unit max. value)			
0.00	%	100.00	
Subcodes	Lenze setting		Info
C00442/1	0.00 %		AOut1_U: Decoupling value
C00442/2	0.00 %		AOut2_U: Decoupling value
C00442/3	0.00 %		AOut1_I: Decoupling value
C00442/4	0.00 %		AOut2_I: Decoupling value
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM MOT Scaling factor: 100

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00443

C00443

Parameter Name: C00443 Dlx: Leve	I		Data type: UNSIGNED_16 Index: 24132 _d = 5E44 _h
Bit coded display o	of the level of the dig	gital inputs	▶ <u>Digital input terminals</u>
Display area (min. h	ex value max. hex value)	
0x0000		0xFFFF	
Value is bit-coded:			Info
Bit 0	DI1		Bit set = HIGH level
Bit 1	DI2		
Bit 2	DI3		
Bit 3	DI4		
Bit 4	DI5		
Bit 5	DI6		
Bit 6	DI7		
Bit 7	Reserve		
Bit 8	Reserve		
Bit 9	Reserve		
	Reserve		
Bit 11	Reserve		
Bit 12	Reserve		
Bit 13	Reserve		
Bit 14	Reserve		
Bit 15	CINH		
Subcodes			Info
C00443/1			DIx: Terminal level
C00443/2			Dlx: Output level
☑ Read access ☐ Write	e access	STOP ☑ No transfer ☐	I COM □ MOT

Data type: UNSIGNED_16

C00444

Parameter | Name:

C00444 DOx: Lev	el	Index: 24131 _d = 5E43 _h
Bit coded display o	of the level of the digital outputs	No. of the state o
Diameter		▶ <u>Digital output terminals</u>
	ex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:		Info
	Relay	Bit set = HIGH level
	D01	
	DO2	
	DO3	
Bit 4	High current	
	Reserve	
Bit 6	Reserve	
Bit 7	Reserve	
Bit 8	Reserve	
Bit 9	Reserve	
Bit 10	Reserve	
Bit 11	Reserve	
Bit 12	Reserve	
Bit 13	Reserve	
Bit 14	Reserve	
Bit 15	Reserve	
Subcodes		Info
C00444/1		DOx: Input level
C00444/2		DOx: Terminal level
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer □	□сом □мот

C00445

Parameter | Name:

C00445 | FreqInxx_nOut_v

Data type: INTEGER_16
Index: 24130_d = 5E42_h

Display of the frequency input signals which are fed into the application.

▶ <u>Using DI1(6) and DI2(7) as frequency inputs</u>

Display range (min. value unit max. value)		2)	
-32767	Incr/ms	32767	
Subcodes			Info
C00445/1			FreqIn12_nOut_v
C00445/2			FreqIn67_nOut_v
☑ Read access ☐ Wri	te access □ CINH □ PL	.C STOP ☑ No transfer □	☐ COM ☐ MOT Scaling factor: 1

Parameter reference Parameter list | C00446

C00446

Parameter | Name:

C00446 | FreqInxx_nOut_a

Data type: INTEGER_16
Index: 24129_d = 5E41_h

Display of the frequency input signals which are fed into the application.

▶ <u>Using DI1(6) and DI2(7) as frequency inputs</u>

Display range (min. value unit max. value)			
-199.99	%	199.99	
Subcodes			Info
C00446/1		FreqIn12_nOut_a	
C00446/2			FreqIn67_nOut_a
☑ Read access ☐ Writ	e access 🗆 CINH 🗆 PL	C STOP ☑ No transfer □	COM MOT Scaling factor: 100

C00447

Parameter | Name:

C00447 | DigOut decoupling

Data type: UNSIGNED_16
Index: 24128_d = 5E40_h

Configuration defining the events that lead to a decoupling of the digital output terminals.

▶ Configuring exception handling of the output terminals

Setting range (min.	hex value max. hex value)	Lenze setting
0x0000	0xFFFF	0x0000 (decimal: 0)
Value is bit-coded	: (☑ = bit set)	
Bit 0 □	SafeTorqueOff	
Bit 1 □	ReadyToSwitchOn	
Bit 2 □	SwitchedOn	
Bit 3 □	Reserved	
Bit 4 □	Trouble	
Bit 5 □	Fault	
Bit 6 □	Reserved	
Bit 7 □	Reserved	
Bit 8 □	Reserved	
Bit 9 □	Fail CAN_Management	
Bit 10 □	Reserved	
Bit 11 □	Reserved	
Bit 12 □	Reserved	
Bit 13 □	Reserved	
Bit 14 □	Reserved	
Bit 15 □	Reserved	
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	I COM □ MOT

C00449

C00455

C00456

C00458

Data type: UNSIGNED_16 Index: 24127_d = 5E3F_h Parameter | Name: C00448 | DigOut decoupling value Definition of the value the digital output terminals are to have in the decoupled state. • Bit set = HIGH level ▶ Configuring exception handling of the output terminals Lenze setting Setting range (min. hex value | max. hex value) 0x0000 0xFFFF 0x0000 (decimal: 0) Value is bit-coded: (☑ = bit set) Bit 0 □ Relay ON Bit 1 □ DigOut1 ON Bit 2 DigOut2_ON Bit 3 □ DigOut3_ON Bit 4 □ DigOut4 ON Bit 5 ☐ HighCurrent_ON Bit 6 ☐ Reserved Bit 7 □ Reserved Bit 8 ☐ Reserved Bit 9 □ Reserved Bit 10 □ Reserved Bit 11 | Reserved Bit 12 | Reserved Bit 13 ☐ Reserved Bit 14 □ Reserved Bit 15 ☐ Reserved ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Data type: INTEGER_32 Index: 24126_d = 5E3E_h Parameter | Name: C00449 | FreqInxx dnOut p ▶ Output of the encoder position of the DI1/DI2 frequency input Display range (min. value | unit | max. value) -2147483647 2147483647 Incr. Subcodes Info C00449/1 FreqIn12_dnOut_p ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1 Parameter | Name: Data type: UNSIGNED_16 Index: $24120_d = 5E38_h$ C00455 | FB call table This code is for device-internal use only and must not be written to by the user! Data type: UNSIGNED_8 Index: $24119_d = 5E37_h$ C00456 | Editor level This code is for device-internal use only and must not be written to by the user! Data type: UNSIGNED 16 Parameter | Name: Index: $24117_d = 5E35_h$ C00458 | SYS_call table This code is for device-internal use only and must not be written to by the user!

Parameter reference Parameter list | C00459

Parameter Name: C00459 SYS_Output table	Data type: UNSIGNED_16 Index: 24116 _d = 5E34 _h
This code is for device-internal use only and must not be written to by the user!	

C00461

Parameter Name: C00461 Remote: Acceleration/deceleration time	Data type: UNSIGNED_32 Index: 24114 _d = 5E32 _h
	▶ <u>PC manual control</u>

Setting range (min. value unit max. value)			
000	s 999.999		
ıbcodes	Lenze setting		Info
0461/1	2.000 s		Remote: Acceleration/deceleration time
	anner DCINII DDC	CTOD No transfer	COM DIMOT Scaling factor, 1000

C00462

Data type: UNSIGNED_16
Index: 24113 _d = 5E31 _h

▶ <u>PC manual control</u>

Setting range (min. value unit max. value)		
0	65535	
Subcodes	Lenze setting	Info
C00462/1	0	Remote: Control mode
C00462/2	0	Remote: Monitoring counter
☑ Read access ☑ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT Scaling factor: 1		

Parameter Name: C00463 Remote:	MCK control		Data type: UNSIGNED_32 Index: 24112 _d = 5E30 _h
This parameter ser	rves to control the functions o	ion Control Kernel for <u>PC manual control</u> .	
Setting range (min.	hex value max. hex value)		
0x00000000	0x	(FFFFFFF	
Value is bit-coded:	: (☑ = bit set)		
Bit 0 □	OpMode_Bit0		
Bit 1 □	OpMode_Bit1		
Bit 2 □	OpMode_Bit2		
Bit 3 □	OpMode_Bit3		
Bit 4 □	ManJogPos		
Bit 5 □	ManJogNeg		
Bit 6 □	ManExecute2ndSpeed		
Bit 7 □	ReleaseLimitSwitch		
Bit 8 □	HomStartStop		
Bit 9 □	HomSetPos		
Bit 10 □	HomResetPos		
Bit 11 □	EnableSpeedOverride		
Bit 12 □	EnableAccOverride		
Bit 13 □	EnableSRampOverride		
Bit 14 □	PosTeachSetPos		
Bit 15 □	PosTeachActPos		
Bit 16 □	PosExecute		
Bit 17 □	PosFinishTarget		
Bit 18 □	PosDisableFollowProfile		
Bit 19 □	PosStop		
Bit 20 □	PosModeBit0		
Bit 21 □	PosModeBit1		
Bit 22 □	PosModeBit2		
Bit 23 □	PosModeBit3		
Bit 24 □	ProfileNo_Bit0		
Bit 25 □	ProfileNo_Bit1		
Bit 26 □	ProfileNo_Bit2		
Bit 27 □	ProfileNo_Bit3		
Bit 28 □	ProfileNo_Bit4		
Bit 29 □	ProfileNo_Bit5		
Bit 30 □	ProfileNo_Bit6		
Bit 31 □	ProfileNo_Bit7		
Subcodes	Lenze setting		Info
C00463/1	0		Remote: MCK control
☑ Read access ☑ Write	e access □ CINH □ PLC STOP ☑ No	o transfer 🗆	СОМ □МОТ

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00464

C00464						
	Parameter Name: C00464 Remote:	Monitoring timeou	t		ı	Data type: UNSIGNED_16 Index: 24111 _d = 5E2F _h
					•	PC manual control
	Setting range (min.	value unit max. value)				
	200	ms	5000			
	Subcodes	Lenze setting		Info		
	C00464/1	2000 ms		Remote: Mo	nitoring timeout	
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	ГСОМ □ МОТ	Scaling factor: 1	
C00465						
C00465	Parameter Name: C00465 Keypad:	Timeout welcome s	creen			Data type: INTEGER_32 Index: 24110 _d = 5E2E _h
	Time setting for th	e automatic chang	e of the keypad disp	lay to the we	lcome screen	
	Selection list (Lenze	setting printed in bold)				
	0	Never display weld	come screen			
	5	5 min				
	15	15 min				
	30	30 min				
	60	60 min				
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	ГСОМ □МОТ	Scaling factor: 1	
C00466	Parameter Name: C00466 Keypad:	Default parameter				Data type: INTEGER_32 Index: 24109 _d = 5E2D _h
	Setting of the defa	ult parameter for t	he keypad			
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0		65535	51		
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	ГСОМ □МОТ	Scaling factor: 1	
C00467						
C00467	Parameter Name: C00467 Keypad:	Default welcome sc	reen			Data type: INTEGER_32 Index: 24108 _d = 5E2C _h
	Selection of the we	elcome screen for th	ne keypad			
	Selection list (Lenze	setting printed in bold)				
	0	Main menu				
	1	Parameter list				
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	ГСОМ □ МОТ	Scaling factor: 1	
C00468						
C00408	Parameter Name: C00468 Service co	ode				Data type: INTEGER_32 Index: 24107 _d = 5E2B _h
	This code is for dev	vice-internal use on	ly and must not be	written to by	the user!	
C00460						
C00469	Parameter Name: C00469 Keypad: S	STOP key function				Data type: INTEGER_32 Index: 24106 _d = 5E2A _h
C00469	C00469 Keypad:	STOP key function nction for the STOP	key on the keypad			
C00469	C00469 Keypad:	nction for the STOP	key on the keypad	Info		
C00469	C00469 Keypad: Selection of the fu Selection list (Lenze	nction for the STOP	key on the keypad		es not have any function	
C00469	C00469 Keypad: Selection of the fu Selection list (Lenze	nction for the STOP setting printed in bold)	key on the keypad	STOP key do	es not have any function is controller inhibit in the	Index: 24106 _d = 5EZA _h
C00469	C00469 Keypad: Selection of the fu Selection list (Lenze 0	nction for the STOP setting printed in bold) No function		STOP key do		Index: 24106 _d = 5EZA _h

Parameter reference Parameter list | C00470

C00470

C00471

Parameter Name: C00470 LS_ParFre	ee_b	Data type: UNSIGNED_8 Index: 24105 _d = 5E29 _h
The LS ParFree b	SB: Setting of the signal level to be out	put
Selection list		
0	False	
1	True	
Subcodes	Lenze setting	Info
C00470/1	0: FALSE	Signal level for output bPar1 bPar32
C00470/		
C00470/32		
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC STOP 🗆 No transfer 🗆	COM MOT Scaling factor: 1
Parameter Name: C00471 LS_ParFree		Data type: UNSIGNED_16 Index: 24104 _d = 5E28 _h
The LS ParFree SB: Setting of the words to be output		
Setting range (min.	hex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:	•	
Bit 0	Bit0	
Bit 15	Bit15	
Subcodes	Lenze setting	Info
C00471/1	0	Value for output wPar1 wPar32
C00471/		
C00471/32		
☑ Read access ☑ Write	e access	I COM □ MOT

Parameter reference Parameter list | C00472

C00472

Parameter Name: C00472 LS_ParFr	Data type: INTEGER_16 Index: 24103 _d = 5E27 _h				
The LS ParFree a	SB: Setting of the a	nalog signals to be o	output		
Setting range (min. value unit max. value)					
-199.99	%	199.99			
Subcodes	Lenze setting		Info		
C00472/1	0.00 %		Value for output nPar1_a		
C00472/2	0.00 %		Value for output nPar2_a		
C00472/3	100.00 %		Value for output <i>nPar3_a</i>		
C00472/4	100.00 %		Value for output nPar4_a		
C00472/5	0.00 %		Value for output <i>nPar5_a</i>		
C00472/6	0.00 %		Value for output nPar6_a		
C00472/7	0.00 %		Value for output nPar7_a		
C00472/8	0.00 %		Value for output nPar8_a		
C00472/9	0.00 %		Value for output <i>nPar9_a</i>		
C00472/10	0.00 %		Value for output nPar10_a		
C00472/11	0.00 %		Value for output nPar11_a		
C00472/12	0.00 %		Value for output nPar12_a		
C00472/13	0.00 %		Value for output <i>nPar13_a</i>		
C00472/14	0.00 %		Value for output nPar14_a		
C00472/15	0.00 %		Value for output <i>nPar15_a</i>		
C00472/16	0.00 %		Value for output nPar16_a		
☑ Read access ☑ Write	e access	STOP No transfer	COM MOT Scaling factor: 100		
Parameter Name:				Data type: INTEGER 16	
C00473 LS_ParFr	ee_v			Index: 24102 _d = 5E26 _h	
The LS ParFree v	SB: Setting of the sp	peed signals to be o	utput		
Setting range (min.	value unit max. value)				
-32767	Incr./ms	32767			
Subcodes	Lenze setting		Info		
C00473/1	0 incr./ms		Values for output nPar1_v nPar8_v		
C00473/					
C00473/8					

C00474

C00473

Data type: INTEGER_32 Index: 24101_d = 5E25_h Parameter | Name: C00474 | LS_ParFree_p SB <u>LS_ParFree_p</u>: Setting of the position signals to be output Setting range (min. value | unit | max. value) 2147483647 -2147483647 Incr. Subcodes Lenze setting Info C00474/1 0 incr. Values for output dnPar1 p ... dnPar8 p C00474/... C00474/8 $\ \square$ Read access $\ \square$ Write access $\ \square$ CINH $\ \square$ PLC STOP $\ \square$ No transfer $\ \square$ COM $\ \square$ MOT $\$ Scaling factor: 1

Scaling factor: 1

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT

Parameter | Name:

C00475 | LS_ParFreeUnit_1_2

Data type: INTEGER_32
Index: 24100_d = 5E24_h

From version 02.00.00

SB LS_ParFreeUnit / LS_ParFreeUnit 2: Setting of the position signals to be output

Setting range (mi	n. value unit max. value)		
-214748.3647	units	214748.3647	
Subcodes	Lenze setting		Info
C00475/1	0.0000 units		Values for output dnC475_1 dnC475_32
C00475/			
C00475/32			

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10000

C00476

 Parameter | Name:
 Data type: INTEGER_16

 C00476 | LS_ParFree_a_2
 Index: 24099_d = 5E23_h

From version 02.00.00

SB LS ParFree a 2: Setting of the analog signals to be output

Setting range (min. v	Setting range (min. value unit max. value)				
-199.99	%	199.99			
Subcodes	Lenze setting		Info		
C00476/1	0.00 %		Value for output		
C00476/2	0.00 %		Value for output i		
C00476/3	0.00 %		Value for output r		
C00476/4	0.00 %		Value for output n		
C00476/5	0.00 %		Value for output n		
C00476/6	0.00 %		Value for output n		
C00476/7	0.00 %		Value for output n		
C00476/8	0.00 %		Value for output no		
C00476/9	0.00 %		Value for output nC		
C00476/10	0.00 %		Value for output nC4		
C00476/11	0.00 %		Value for output nC42		
C00476/12	0.00 %		Value for output nC47		
C00476/13	0.00 %		Value for output nC476		
C00476/14	0.00 %		Value for output nC476		
C00476/15	0.00 %		Value for output nC476		
C00476/16	0.00 %		Value for output nC476_		
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ CC				

Parameter reference Parameter list | C00477

C00477

Parameter Name: C00477 LS_ParFr	ee_2		Data type: UNSIGNED_16 Index: 24098 _d = 5E22 _h			
From version 02.0 SB LS_ParFree_2:	0.00 Setting of the words	s to be output				
Setting range (min.	hex value max. hex valu	ie)				
0x0000		0xFFFF				
Value is bit-coded						
Bit 0	Bit0					
Bit 15	Bit15					
Subcodes	Lenze setting		Info			
C00477/1	0		Value for output wC477_1 wC477_32			
C00477/						
C00477/32						
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM □ MOT			
Parameter Name: C00478 LS_ParFr	Parameter Name: C00478 LS_ParFree_v_2 Data type: INTEGER_16 Index: 24097 _d = 5E21 _h					
	From version 02.00.00 SB LS ParFree v 2: Setting of the speed signals to be output					
Setting range (min.	value unit max. value)					
-32767	Incr./ms	32767				
Subcodes	Lenze setting		Info			
C00478/1	0 incr./ms		Values for output <i>nC478_1_v nC478_8_v</i>			

C00479

C00478/... C00478/8

C00478

Parameter Name: C00479 LS_ParFree32	Data type: INTEGER_32 Index: 24096 _d = 5E20 _h
From version 02.00.00	

SB LS_ParFree32: Setting of the 32-bit values to be output

 \blacksquare Read access \blacksquare Write access \square CINH \square PLC STOP \square No transfer \square COM \square MOT Scaling factor: 1

Setting range (min. value unit max. value)			
-2147483647		2147483647	
Subcodes	Lenze setting		Info
0479/1	0		Values for output dnC479_1 dnC479_8
0479/			
0479/8			
ad access 🗹	Write access	□ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

Data type: UNSIGNED_16 Index: 24095_d = 5E1F_h Parameter | Name: C00480 | LS_DisFree_b The LS DisFree b SB: Display of the input values Display area (min. hex value | max. hex value) 0x0000 0xFFFF Value is bit-coded: Info Bit 0 bDis1 Signal level input bDis1 ... bDis16 Bit 15 bDis16 ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT C00481 Parameter | Name: Data type: UNSIGNED_16 C00481 | LS_DisFree Index: $24094_d = 5E1E_h$ The LS_DisFree SB: Display of the input values Display area (min. hex value | max. hex value) 0x0000 0xFFFF Value is bit-coded: Bit 0 Active Bit 15 Active Subcodes Info C00481/1 Input values wDis1 ... wDis8 C00481/... C00481/8 ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT C00482 Data type: INTEGER_16 Index: 24093_d = 5E1D_h Parameter | Name: C00482 | LS_DisFree_a The LS DisFree a SB: Display of the input values Display range (min. value | unit | max. value) -199.99 199.99 **Subcodes** Info C00482/1 Input values nDis1 a ... nDis8 a C00482/... C00482/8 ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 100 C00483 Data type: INTEGER_32 Index: 24092_d = 5E1C_h Parameter | Name C00483 | LS DisFree p SB LS DisFree p: Display of the input values Display range (min. value | unit | max. value) -2147483647 2147483647 Incr. Subcodes Info C00483/1 Input values dnDis1 p ... dnDis8 p C00483/... C00483/8 ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1

Parameter reference Parameter list | C00484

C00484

Parameter | Name:

C00484 | Application units: Offset

Data type: INTEGER_16
Index: 24091_d = 5E1B_h

The LS DisFree a SB: Offset for display of the input variables in application unit

▶ <u>Display of internal process factors in application units</u>

Setting range (min. value unit max. value)				
-199.99	%	199.99		
Subcodes	Lenze setting		Info	
C00484/1	0.00 %		Application unit 1: Offset	
C00484/2	0.00 %		Application unit 2: Offset	
C00484/3	0.00 %		Application unit 3: Offset	
C00484/4	0.00 %		Application unit 4: Offset	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100				

C00485

Parameter | Name:

Data type: INTEGER_32 Index: 24090_d = 5E1A_h

C00485 | Application units - display factor

The LS _DisFree _a SB: Display factor for display of the input variables in application unit

▶ Display of internal process factors in application units

Setting range (min. value unit max. value)			
-65536.0000		65536.0000	
Subcodes	Lenze setting		Info
C00485/1	1.0000		Application unit 1: Display factor
C00485/2	1.0000		Application unit 2: Display factor
C00485/3 1.0000		Application unit 3: Display factor	
C00485/4	1.0000		Application unit 4: Display factor
☑ Read access ☑ Writ	te access	I COM ☐ MOT Scaling factor: 10000	

C00486

Parameter | Name:

Data type: VISIBLE_STRING Index: 24089_d = 5E19_h

C00486 | Application units:
The LS DisFree a SB: Text for the display of the input variables in application unit

Display of internal process factors in application units

Subcodes	Lenze	esetting		Info
C00486/1				Application unit 1: Text
C00486/2				Application unit 2: Text
C00486/3				Application unit 3: Text
C00486/4				Application unit 4: Text
☑ Read access	☑ Write access	□ CINH □ PLC-STOP	☐ No transfer	□ COM □ MOT Character length: 7

Parameter | Name:

C00487 - Application units

Data type: INTEGER_32
Index: 24088_d = 5E18_h

SB LS DisFree a: Display of the input values in a configurable application unit

▶ <u>Display of internal process factors in application units</u>

Display range (min. value unit max. value)					
-21474836.4	7	units		21474836.47	
Subcodes					Info
C00487/1	C00487/1			Application	
C00487/2			Application		
C00487/3			Application		
C00487/4	C00487/4				Application
☑ Read access 〔	☐ Write access	□ CINH	□ PLC STOP	✓ No transfer	⊐сом □мот

C00488

Parameter | Name:
C00488 | L_JogCtrlEdgeDetect

Data type: UNSIGNED_8 Index: 24087_d = 5E17_h

The <u>L_JogCtrlExtension_1</u> FB: Signal methodology

• Selection whether the corresponding function is to be activated by edge or level.

Selection list		
0	Level	
1	Edge	
Subcodes	Lenze setting	I
C00400/1	O. Level	1

_	Lugc	
Subcodes	Lenze setting	Info
C00488/1	0: Level	InputSens.SlowDown1 • Selection of edge or level for starting slow-down function 1
C00488/2	0: Level	InputSens.Stop1 • Selection of edge or level for stop function 1
C00488/3	0: Level	InputSens.SlowDown2 • Selection of edge or level for starting slow-down function 2
C00488/4	0: Level	InputSens.Stop2 • Selection of edge or level for stop function 2
C00488/5	0: Level	InputSens.SlowDown3 • Selection of edge or level for starting slow-down function 3
C00488/6	0: Level	InputSens.Stop3 • Selection of edge or level for stop function 3

 $\ \square$ Read access $\ \square$ Write access $\ \square$ CINH $\ \square$ PLC STOP $\ \square$ No transfer $\ \square$ COM $\ \square$ MOT $\ \square$ Scaling factor: 1

Parameter reference Parameter list | C00490

C00490

Parameter Name:	Data type: UNSIGNED 8
C00490 Position encoder selection	Index: $24085_d = 5E1\overline{5}_h$

Selection of the feedback system for the generation of the actual position on the load

▶ Encoder/feedback system

Selection list (Lenze setting printed in bold)		Info	
0	No sensor	No encoder available on the load	
1	Sensor signal FreqIn12	Position encoder signal is fed via digital inputs DI1 and DI2	
2	Encoder signal FreqIn67	Position encoder signal is fed via digital inputs DI6 and DI7	
3	Multi encoder	Position encoder signal is supplied via multi-encoder interface	
4	Resolver	Position encoder signal is supplied via resolver interface	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C00492

Parameter | Name:

C00492 | Hiperface: Detected TypCode

Data type: UNSIGNED_8
Index: 24083_d = 5E13_h

From version 02.00.00

▶ Encoder/feedback system: Absolute value encoder (sin/cos encoder with hiperface)

Display range (min. value unit max. value)	
0	255
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No tr	ransfer

C00493

Parameter | Name:

C00493 | Hiperface: TypCode

Data type: UNSIGNED_8
Index: 24082_d = 5E12_h

From version 02.00.00

▶ Encoder/feedback system: Absolute value encoder (sin/cos encoder with hiperface)

Setting range (min. value unit max. value)		Lenze settin	g	
0		255	0	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLO	STOP INotransfer	ом □мот	Scaling factor: 1

C00494

Parameter | Name:

C00494 | Hiperface: Resolutions

Data type: UNSIGNED_32
Index: 24081_d = 5E11_h

From version 02.00.00

▶ Encoder/feedback system: Absolute value encoder (sin/cos encoder with hiperface)

Setting range (min.	value unit max. value)	
0	65536	
Subcodes	Lenze setting	Info
C00494/1	0	Hiperface: Number of revolutions
C00494/2	0	Hiperface: Steps per revolution
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

Parameter reference Parameter list | C00495

C00495

Parameter Name:	Data type: UNSIGNED_8
C00495 Speed sensor selection	Index: 24080 _d = 5E10 _h

Selection of the feedback system for the actual speed for motor control and display

▶ Encoder/feedback system

Selection list (Lenze	setting printed in bold)	Info
0	No sensor	No sensor available for the actual speed detection
1	Sensor signal FreqIn12	Speed sensor signal is fed via the digital DI1 and DI2 inputs
2	Encoder signal FreqIn67	Speed encoder signal is fed via digital inputs DI6 and DI7
3	Multi encoder	Speed encoder signal is supplied via multi-encoder interface
4	Resolver	Speed encoder signal is supplied via resolver interface
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		□ COM □ MOT Scaling factor: 1

C00496

Parameter | Name:

C00496 | Encoder evaluation method DigIn12

Data type: UNSIGNED_8 Index: 24079_d = 5E0F_h

▶ Encoder/feedback system

Selection list (Lenze setting printed in bold)		Info
0	High-resolution encoders	High-precision procedure for high-resolution encoders (>=512 increments)
1	Low-resolution encoder (StateLine)	High-precision procedure for low-resolution encoders (<=128 increments)
2	Comb. encoder procedure	Combination of the first two procedures as a function of the speed (recommended procedure)
3	Edge-counting procedure	Simple edge counting procedure with adjustable scanning time (C00425)
☑ Read access ☑ Write access ☑ CINH ☐ PLC STOP ☐ No transfer ☐ COM ☐ MOT Scaling factor: 1		

C00497

Parameter | Name:

C00497 | Nact filter time constant

Data type: UNSIGNED_16
Index: 24078_d = 5E0E_h

▶ Encoder/feedback system

Setting range (min.	value unit max. value)		
0.0	ms	500.0	
Subcodes	Lenze setting		Info
C00497/1	1.0 ms		FreqIn12: Encoder filter time
C00497/2	1.0 ms		FreqIn67: Encoder filter time
C00497/3	1.0 ms		LS_Multi-Encoder: Encoder filter time
C00497/4	2.0 ms		LS_Resolver: Encoder filter time
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10		

Parameter reference Parameter list | C00498

C00498

Parameter | Name:

C00498 | Open-circuit monitoring

Data type: UNSIGNED_8
Index: 24077_d = 5E0D_h

Configuration of open-circuit monitoring for encoder/feedback system

- We recommend using the Lenze setting.
- The settings 1 ... 3 make sense if the respective encoder is not to be used as speed encoder or position encoder but within the scope of the application. Moreover, a directed disconnection of the monitoring is possible.

▶ Encoder/feedback system

		Lincodel/Teedback system
Selection list		Info
0	Speed and position encoder	 Open-circuit monitoring is active for the speed encoder selected in <u>C00495</u> and the position encoder selected in <u>C00490</u>. Depending on whether a speed encoder or position encoder has been selected, the monitoring mode for the resolver and/or encoder is activated. If no speed encoder and position encoder have been selected, open-circuit monitoring is deactivated.
1	Resolver only	 Open-circuit monitoring is only active for the resolver, independent on the selection of the speed encoder and position encoder. Open-circuit monitoring for the encoder is deactivated. Open-circuit monitoring is active for the resolver and encoder, independent on the selection of the speed encoder and position encoder.
2	Encoder only	Open-circuit monitoring is only active for the encoder, independent on the selection of the speed encoder and position encoder. Open-circuit monitoring for the resolver is deactivated.
3	Resolver and encoder	
Subcodes	Lenze setting	Info
C00498/1	0: Speed encoder and position encoder	Open-circuit monitoring
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

C00505

Parameter | Name: Data type: VISIBLE_STRING C00505 | Password data Index: 24070 d = 5E06h

▶ <u>Device access protection</u>

Subcodes	Lenze setting	Info
C00505/1		MasterPin
C00505/2		Binding ID
C00505/3		Password
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC-STOP 🗹 No transfer	□ COM □ MOT Character length: 16

Parameter reference Parameter list | C00507

C00507

Parameter Name: C00507 Current p	password protection	Data type: UNSIGNED_16 Index: 24068 _d = 5E04 _h
Display of the curr	ently active device access protection	▶ <u>Device access protection</u>
Display area (min. h	ex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:		
Bit 0	Only access to user menu	
Bit 1	Parameter write protection	
Bit 2	Parameter read protection	
Bit 3	Reserved	
Bit 4	Reserved	
Bit 5	Reserved	
Bit 6	Reserved	
Bit 7	Reserved	
Bit 8	Reserved	
Bit 9	Reserved	
Bit 10	Reserved	
Bit 11	Reserved	
Bit 12	Reserved	
Bit 13	Reserved	
Bit 14	Reserved	
Bit 15	Memory module binding on	
Subcodes		Info
C00507/1		Password protection - all communication channels
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer [⊒сом □мот

C00516

Parameter | Name:

C00516 | Checksums

This code is for device-internal use only and must not be written to by the user!

Parameter reference Parameter list | C00517

C00517

Parameter | Name:
C00517 | User menu

Data type: INTEGER_32 Index: 24058_d = 5DFA_h

When a system is installed, parameters must be changed time and again until the system runs satisfactorily. The user menu of a device serves to create a selection of frequently used parameters to be able to access and change these parameters quickly.

- Format: <code number>,<subcode number>
- If "0.000" is set, no entry will be displayed in the user menu.

Setting range (min	. value unit max. value)		
0.000		16000.000	
Subcodes	Lenze setting		Info
C00517/1	51.000		C00051: Display of actual speed value
C00517/2	53.000		C00053: Display of DC-bus voltage
C00517/3	54.000		C00054: Display of motor current
C00517/4	61.000		C00061: Display of heatsink temperature
C00517/5	137.000		C00137: Display of device status
C00517/6	166.003		C00166/3: Display of current error message
C00517/7	0.000		User menu: Entry 7
C00517/8	11.000		C00011: Reference speed
C00517/9	39.001		<u>C00039/1</u> : Fixed setpoint 1
C00517/10	39.002		<u>C00039/2</u> : Fixed setpoint 2
C00517/11	12.000		C00012: Accel. time - main setpoint
C00517/12	13.000		C00013: Decel. time - main setpoint
C00517/13	15.000		C00015: V/f base frequency
C00517/14	16.000		C00016: Vmin boost
C00517/15	22.000		C00022: Imax in motor mode
C00517/16	120.000		C00120: Setting of motor overload (I ² xt)
C00517/17	87.000		C00087: Rated motor speed
C00517/18	99.000		C00099: Display of firmware version
C00517/19	200.000		C00200: Display of firmware product type
C00517/20	0.000		User menu: Entry 20
C00517/21	0.000		User menu: Entry 21
C00517/22	0.000		User menu: Entry 22
C00517/23	0.000		User menu: Entry 23
C00517/24	105.000		C00105: Decel. time - quick stop
C00517/25	173.000		C00173: Mains voltage
C00517/26	0.000		User menu: Entry 26
C00517/27	0.000		User menu: Entry 27
C00517/28	0.000		User menu: Entry 28
C00517/29	0.000		User menu: Entry 29
C00517/30	0.000		User menu: Entry 30
C00517/31	0.000		User menu: Entry 31
	0.000		User menu: Entry 32

C00561

C00565

C00566

Davamakar Marea	D-1- 1 11/2/2017
Parameter Name: C00560 Fan switching status	Data type: UNSIGNED_8 Index: 24015 _d = 5DCF _t
Display of the function status of the device fans	
Selection list	
0 Off	
1 On	
2 No fan	
Subcodes	Info
C00560/1	Switching status - internal fan
C00560/2	Switching status - heatsink fan
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	□ COM □ MOT Scaling factor: 1
Parameter Name: C00561 Failure indication	Data type: UNSIGNED_8 Index: 24014 _d = 5DCE _H
Failure display of device fans and motor phases	
Selection list	
0 No error	
1 Error	
Subcodes	Info
C00561/1	Internal fan
C00561/2	Heatsink fan
C00561/3	Motor phase U
C00561/4	Motor phase V
C00561/5	Motor phase W
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	□ COM □ MOT Scaling factor: 1
Parameter Name: C00565 Resp. to mains phase failure	Data type: UNSIGNED_8 Index: 24010 _d = 5DCA _t
Response to the failure of mains phases	
Selection list (Lenze setting printed in bold)	
0 No Reaction	
1 Fault	
5 Warning	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer	□ COM □ MOT Scaling factor: 1
Parameter Name: C00566 Resp. to fan failure	Data type: UNSIGNED_8 Index: 24009 _d = 5DC9 _t
Response to the detection of a fan failure	
Selection list (Lenze setting printed in bold)	
Selection list (Lenze setting printed in bold) 0 No Reaction	

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C00567

C00567

C00569

Parameter Name: C00567 Resp. to s	speed controller limited	Data type: UNSIGNED_8 Index: 24008 _d = 5DC8 _h
Response if speed	controller output is limited (bLimSpeed	//CtrlOut = TRUE)
Selection list (Lenze	setting printed in bold)	
0	No Reaction	
1	Fault	
5	Warning	
☑ Read access ☑ Write	access □ CINH □ PLC STOP □ No transfer □	COM ☐ MOT Scaling factor: 1
Parameter Name: C00569 Resp. to p Configuration of m	oeak current nonitoring of the motor control (group	Data type: UNSIGNED_8 Index: 24006 _d = 5DC6 _h
Selection list		
0	No Reaction	
1	Fault	
5	Warning	
Subcodes	Lenze setting	Info
C00569/1	0: No Reaction	Response for overcurrent detection and clamp operation

C00570

Parameter | Name:

C00570 | Resp. to controller limitations

Data type: UNSIGNED_8
Index: 24005_d = 5DC5_h

Configuration of monitoring of the motor control (group 2)

 \blacksquare Read access \blacksquare Write access \square CINH \square PLC STOP \square No transfer \square COM \square MOT Scaling factor: 1

Selection list	
0	No Reaction
1	Fault
5	Warning

Subcodes	Lenze setting	Info
C00570/1	0: No Reaction	Response if direct-axis current controller is limited • e.g. at servo control (SC)
C00570/2	0: No Reaction	Response if cross current controller is limited • e.g. at servo control (SC)
C00570/3	0: No Reaction	Response if torque setpoint is limited Limitation of the speed controller output, the differential setpoint precontrol, and of the additive torque at (SC) servo control and (SLVC) sensorless vector control.
C00570/4	0: No Reaction	Response if field controller is limited
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM □ MOT Scaling factor: 1

C00572

Parameter | Name:

C00572 | Brake resistor overload threshold

Data type: UNSIGNED_8 Index: 24003_d = 5DC3
h

Adjustable threshold for monitoring the brake resistor utilisation

• The response for reaching the threshold can be selected in <u>C00574</u>.

Setting range (min. value unit max. value)			Lenze setting
0	%	100	100 %
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP INo transfer	COM ☑ MOT Scaling factor: 1

Parameter reference Parameter list | C00574

C00574						
C00374	Parameter Name: C00574 Resp. to I	orake resist. overt	emp.			Data type: UNSIGNED_8 Index: 24001 _d = 5DC1 _h
	Response which is triggered if the threshold set in <u>C00572</u> for monitoring brake resistor utilisation is reached.					
	Selection list (Lenze	setting printed in bold)				
	0	No Reaction				
	1	Fault				
	5	Warning				
	☑ Read access ☑ Write	access \square CINH \square P	LC STOP	□сом □мот	Scaling factor: 1	
C00576	Parameter Name: C00576 SC: Field	feedforward cont	rol			Data type: UNSIGNED_16 Index: 23999 _d = 5DBF _h
	the acceleration be	ehaviour can be in	rent setpoint precor nproved in the field the asynchronous n	weakening ra	ly reduction of the field nge.	l current. In this way,
	Setting range (min.	value unit max. valu	e)	Lenze settin	ıg	
	0	%	600	200 %		
	☑ Read access ☑ Write	access CINH P	LC STOP	□ COM ☑ MOT	Scaling factor: 1	
C00577	Parameter Name: C00577 SC: Vp fie	eld weakening cor	ntroller			Data type: UNSIGNED_16 Index: 23998 _d = 5DBE _h
		, the P component	ning controller t of the controller is ne range between 0			
	Setting range (min.	value unit max. valu	e)	Lenze settin	ıg	
	0.0000		2.0000	0.0010		
	☑ Read access ☑ Write	access CINH DP	LC STOP	□сом □мот	Scaling factor: 10000	
C00578	Parameter Name: C00578 SC: Tn fie	ld weakening con	ntroller			Data type: UNSIGNED_16 Index: 23997 _d = 5DBD _h
	Time constant of t The recommend		g controller ne range between 10	and 30 ms		
	Setting range (min.	value unit max. valu	e)	Lenze settin	ıg	
	0.1	ms	6000.0	20.0 ms		
	☑ Read access ☑ Write	access \square CINH \square P	LC STOP	□сом □мот	Scaling factor: 10	
C00570						
C00579	Parameter Name: C00579 Resp. to a	nax. speed/outpເ	ut freq. reached			Data type: UNSIGNED_8 Index: 23996 _d = 5DBC _h
	Response when th	e max. speed limi	t (<u>C00909</u>) or output	frequency lin	nit (<u>C00910</u>) has been r	eached.
	Selection list (Lenze	setting printed in bold))			
	0	No Reaction				
	1	Fault				
	5	Warning				
	☑ Pead access ☑ Write	a access \square CINH \square D	ICSTOP Notransfer	ПСОМ ПМОТ	Scaling factor: 1	

Parameter reference Parameter list | C00580

C00580

Parameter | Name:

C00580 | Resp. to operating system error

Data type: UNSIGNED_8
Index: 23995_d = 5DBB_h

From version 02.00.00

Response if the required computing time of the application exceeds the available computing time.

Selection list		
0	No Reaction	
1	Fault	
5	Warning	
Subcodes	Lenze setting	Info
C00580/1	0: No Reaction	Resp. to runtime exceedance

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00581

Parameter | Name:
C00581 | Resp. to LS_SetError_x

Data type: UNSIGNED_8 Index: 23994_d = 5DBA_h

Selection of the error responses for application error messages

An application error message is tripped by a FALSE/TRUE edge at the binary inputs bSetError1...4.

· · · · · · · · · · · · · · · · · · ·		
Selection list		
0	No Reaction	
1	Fault	
2	Trouble	
3	TroubleQuickStop	
4	WarningLocked	
5	Warning	
6	Information	

Subcodes	Lenze setting	Info
C00581/1	0: No Reaction	LS_SetError_1: Resp. to bSetError1
C00581/2	0: No Reaction	LS_SetError_1: Resp. to bSetError2
C00581/3	0: No Reaction	LS_SetError_1: Resp. to bSetError3
C00581/4	0: No Reaction	LS_SetError_1: Resp. to bSetError4
C00581/5	0: No Reaction	LS_SetError_2: Resp. to bSetError1
C00581/6	0: No Reaction	LS_SetError_2: Resp. to bSetError2
C00581/7	0: No Reaction	LS_SetError_2: Resp. to bSetError3
C00581/8	0: No Reaction	LS_SetError_2: Resp. to bSetError4
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC STOP 🗀 No transfer 🗆	COM MOT Scaling factor: 1

C00582

Parameter | Name:

C00582 | Resp. to heatsink temp. > shutdown temp. -5°C

Data type: UNSIGNED_8
Index: 23993_d = 5DB9_h

Response if the heatsink temperature has reached the switch-off temperature threshold.

Selection list (Lenze	setting printed in bold)
0	No Reaction
1	Fault
5	Warning

 $\ \square$ Read access $\ \square$ Write access $\ \square$ CINH $\ \square$ PLC STOP $\ \square$ No transfer $\ \square$ COM $\ \square$ MOT $\$ Scaling factor: 1

Parameter | Name:

C00583 | Resp. to motor temperature KTY

Data type: UNSIGNED_8
Index: 23992_d = 5DB8_h

Response to motor overtemperature

• The motor temperature is measured via the resolver or encoder cable.

▶ Encoder/feedback system: Motor temperature monitoring (KTY)

Selection list		
	0	No Reaction
	1	Fault
	3	TroubleQuickStop
	4	WarningLocked
	5	Warning
	6	Information

Subcodes	Lenze setting	Info
C00583/1	1: Fault	Resp. to motor overtemp. KTY resolver
C00583/2	1: Fault	Resp. to motor overtemp. KTY MultiEncoder
C00583/3	5: Warning	Resp. to motor temp. > C00121 resolver
C00583/4	5: Warning	Resp. to motor temp. > C00121 encoder
C00583/5	1: Fault	Resp. to temp. sensor error KTY resolver
C00583/6	1: Fault	Resp. to temp. sensor error KTY MultiEncoder
☑ Read access ☑ Write	e access	COM □ MOT Scaling factor: 1

Executacess Explication Light Stop Line transfer Licens Line scaling factor

C00585

Parameter | Name:
C00585 | Resp. to motor overtemp. PTC

Data type: UNSIGNED_8 Index: 23990_d = 5DB6_h

Response to motor overtemperature

The motor temperature is measured by means of a PTC thermistor at terminal X106.

Selection list (Lenz	e setting printed in bold)
(No Reaction
1	I Fault
5	Warning
☑ Pead access ☑ Wri	te access

C00586

Parameter | Name:
C00586 | Resp. to encoder open circuit HTL

Data type: UNSIGNED_8 Index: 23989_d = 5DB5_h

Response to encoder feedback system failure or encoder feedback system track failure due to open circuit

Scaling factor: 1

Selection list (Selection list (Lenze setting printed in bold)		
	0	No Reaction	
	1	Fault	
	5	Warning	
☑ Read access ☑	Write	e access □ CINH □ PLC STOP □ No transfer □ COM □ MOT	

Parameter reference Parameter list | C00588

C00588

Parameter Name: C00588 Resp. to I	max. speed at switching freq.			Data type: UNSIGNED_8 Index: 23987 _d = 5DB3 _h
Response if the ma	aximum speed for the set inverter swit	ching frequer	ncy is reached (<u>C00018</u>)	
Selection list (Lenze	setting printed in bold)			
0	No Reaction			
1	Fault			
5	Warning			
☑ Read access ☑ Write	e access	□сом □мот	Scaling factor: 1	
Parameter Name: C00590 Resp. to 9	switching frequency red.			Data type: UNSIGNED_8 Index: 23985 _d = 5DB1 _h
Response to reduc	tion of the inverter switching frequenc	y (<u>C00018</u>)		
Selection list (Lenze	setting printed in bold)			
0	No Reaction			
1	Fault			
5	Warning			
☑ Read access ☑ Write	e access	□сом □мот	Scaling factor: 1	

C00592

C00590

Parameter | Name:

C00592 | Resp. to CAN bus connection

Configuration of monitoring of the CAN interface (group 1)

System bus "CAN on board"

Data type: UNSIGNED_8 Index: 23983_d = 5DAF_h

Selection list	
0	No Reaction
1	Fault
2	Trouble
3	TroubleQuickStop
4	WarningLocked
5	Warning
6	Information
0	mormation

Subcodes	Lenze setting	Info
C00592/1	0: No Reaction	Response to incorrect telegram for CAN communication
C00592/2	0: No Reaction	Response to "BusOff" (bus system switched off)
C00592/3	0: No Reaction	Response to warnings of the CAN controller
C00592/4	0: No Reaction	Response to communication stop of a CAN bus node
C00592/5	0: No Reaction	Response to an event in the case of monitoring via heartbeat protocol

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer ☑ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C00593

Data type: UNSIGNED_8

C00593

C00594

Parameter | Name:

C00593 Resp. to 0	CANx_IN monitoring	Index: $23982_d = 5DA\overline{E}_h$
Configuration of m	nonitoring of the CAN interface (group	
Selection list		➤ <u>System bus "CAN on board"</u>
	No Reaction	
	Fault	
	Trouble	
	TroubleQuickStop	
	WarningLocked	
	Warning	
	Information	
Subcodes	Lenze setting	Info
C00593/1	0: No Reaction	Response if the monitoring time set in <u>C00357/1</u> for the reception of the PDO CAN1_IN is exceeded.
C00593/2	0: No Reaction	Response if the monitoring time set in <u>C00357/2</u> for the reception of the PDO CAN2_IN is exceeded.
C00593/3	0: No Reaction	Response if the monitoring time set in <u>C00357/3</u> for the reception of the PDO CAN3_IN is exceeded.
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer 🗵	I COM □ MOT Scaling factor: 1
Parameter Name: C00594 Resp. to 0	control word error	Data type: UNSIGNED_8 Index: 23981 _d = 5DAD _h
Configuration of d	evice control monitoring	
Selection list		
0	No Reaction	
1	Fault	
2	Trouble	
3	TroubleQuickStop	
5	Warning	
Subcodes	Lenze setting	Info
C00594/1	1: Fault	Response if error bit 14 in the CAN control word is set.
C00594/2	1: Fault	Response if error bit 14 in the MCI control word is set.
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

Parameter reference Parameter list | C00595

C00595

Parameter | Name:

C00595 | MCK: Resp. to MCK error

Data type: UNSIGNED_8
Index: 23980_d = 5DAC_h

Configuration of monitoring of the Motion Control Kernel

		▶ <u>Basic drive functions</u>
Selection list		
0	No Reaction	
	Fault	
3	TroubleQuickStop	
4	WarningLocked	
5	Warning	
6	Information	
Subcodes	Lenze setting	Info
C00595/1	3: TroubleQuickStop	Response if the input <i>bLimitSwitchPos</i> for travel range monitoring is set to FALSE (fail-safe) by the positive hardware limit switch.
C00595/2	3: TroubleQuickStop	Response if the input <i>bLimitSwitchNeg</i> for travel range monitoring is set to FALSE (fail-safe) by the negative hardware limit switch.
C00595/3	3: TroubleQuickStop	Response for detection that the position is beyond the positive software limit position (C01229/1).
C00595/4	3: TroubleQuickStop	Response for detection that the position is beyond the negative software limit position (C01229/2).
C00595/5	5: Warning	Response if following error limit 1 is exceeded (C01215/1)
C00595/6	5: Warning	Response if following error limit 2 is exceeded (C01215/2)
C00595/7	3: TroubleQuickStop	Response if the maximum travel distance (display in <u>C01213/1</u>) is exceeded
C00595/8	4: WarningLocked	Response to start procedures with reference condition when the reference is not set
C00595/9	4: WarningLocked	Response to a non-supported positioning mode
C00595/10	4: WarningLocked	Response to implausible profile set data
C00595/11	5: Warning	Response to the selection of an invalid operating mode of the MCK
C00595/12	4: WarningLocked	Response to indicating an invalid profile data set
C00595/13	5: Warning	Response to an error of the FB L MckCtrlInterface 1
C00595/14	4: WarningLocked	Response to a profile start with a target position outside

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00597

Parameter | Name:
C00597 | Resp. to motor phase failure

1: Fault

Data type: UNSIGNED_8 Index: 23978_d = 5DAA_h

Response to motor phase failure

C00595/15

If a phase current does not exceed the threshold set in <u>C00599</u> for more than one period, the response set here
will be triggered.

Selection list (Lenze setting printed in bold)					
	0	No Reaction			
	1	Fault			
	5	Warning			
	□ D □ \A/-:+	DOINIL DRIGGTOR DN-tf D	7.0044	Пласт	

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

the software limit positions (C01229/1 and C01229/2).

MCK: Resp. to remote timeout

C00599

C00600

Data type: UNSIGNED_8 Index: 23977_d = 5DA9_h Parameter | Name: C00598 | Resp. to open circuit AINx Configuration of monitoring of the analog inputs Analog terminals **Selection list** 0 No Reaction 1 Fault 2 Trouble 3 TroubleQuickStop 5 Warning **Subcodes** Lenze setting Info C00598/1 3: TroubleQuickStop Response to open circuit at AIN1 if configured as 4 ... 20 mA current loop C00598/2 Response to open circuit at AIN2 when being configured 3: TroubleQuickStop as 4 ... 20 mA-current loop ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1 Data type: INTEGER_16 Index: 23976_d = 5DA8_h Parameter | Name: C00599 | Motor phase failure threshold Threshold for motor phase failure monitoring 100 % = rated inverter current (C00098) If a phase current does not exceed the threshold set here for more than one period, the response to motor phase failure set in C00597 will be triggered. Setting range (min. value | unit | max. value) Lenze setting 1.00 100.00 5.00 % ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100 Data type: UNSIGNED_8 Index: 23975_d = 5DA7_h Parameter | Name: C00600 | Resp. to DC bus voltage Configuration of monitoring of the motor control (group 3) Selection list 1 Fault 2 Trouble Subcodes Lenze setting Info C00600/1 Response to DC bus undervoltage 2: Trouble ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1 Data type: UNSIGNED_16 Parameter | Name: COOKOT | Dol rosp to fault. DC bus avaryaltage Index: 23974 = 5DA6h

C00601

COOODI Del. lesp. to lault: DC bus overvoltage			acx. 2557 .g 557.0n
Error response delay times			
Setting range (min. value unit max. value)			
0.000	s 65.000		
Subcodes	Lenze setting		Info
		 Delay time for triggering the "DC-bus overvoltage" error If a DC-bus overvoltage occurs, an error will not be triggered until the set delay time has elapsed. 	
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP □ No transfer □	COM MOT Scaling factor: 1000

Parameter reference Parameter list | C00602

C00602	Parameter Name:			Data type: UNSIGNED_8
	C00602 Resp. to 6			Index: 23973 _d = 5DA5 _h
	·	fault in the motor phase(s)		
	Selection list (Lenze			
	0	No Reaction		
	1	Fault		
	☑ Read access ☑ Write	e access	COM MOT Scaling factor: 1	
C00603	Parameter Name: C00603 Resp. to 1	feedhack		Data type: UNSIGNED_8 Index: 23972 _d = 5DA4 _h
		ent monitoring modes for the encoder,		er/feedback system
	Selection list			, , , , , , , , , , , , , , , , , , , ,
	0	No Reaction		
		Fault		
		Trouble		
		TroubleQuickStop		
	4			
		Warning		
		Information		
	Subcodes	Lenze setting	Info	
	C00603/1	1: Fault	Resp. to MultiEncoder open circuit	
	C00603/2	1: Fault	Resp. to resolver open circuit	
	C00603/3	1: Fault	Resp. to encoder comm. error	
	C00603/4	1: Fault	Resp. to encoder angular drift monit.	
		e access		
			,	
C00604	Parameter Name: C00604 Resp. to 6	device overload (Ixt)		Data type: UNSIGNED_8 Index: 23971 _d = 5DA3 _h
		justable device utilisation threshold (<u>C</u> vice utilisation is displayed in <u>C00064</u> .	00123) is reached.	
	Selection list (Lenze	setting printed in bold)		
	0	No Reaction		
	1	Fault		
	5	Warning		
	☑ Read access ☑ Write	e access	COM MOT Scaling factor: 1	
C00606	Parameter Name:	or show supplied (12stA)		Data type: UNSIGNED_8 Index: 23969 _d = 5DA1 _h
	Response if the ad	motor overload (l²xt) justable motor overload threshold (COC		
		rmal motor load is displayed in <u>C00066</u>	<u>o</u> .	
	Selection list (Lenze			
		No Reaction		
		Fault		
	5	Warning		

C00607				
20007	Parameter Name: C00607 Resp. to I	max freq. feedb. DIG12/67		Data type: UNSIGNED_8 Index: 23968 _d = 5DA0 _h
	Response when th	e maximum input frequency has been	reached via the digital inputs.	
	Selection list (Lenze	setting printed in bold)		
	0	No Reaction		
	1	Fault		
	5	Warning		
	☑ Read access ☑ Write	e access	COM MOT Scaling factor: 1	
C00608				
200008	Parameter Name: C00608 Resp. to I	maximum torque		Data type: UNSIGNED_8 Index: 23967 _d = 5D9F _h
	Response if the ma	aximum torque (<u>C00057</u>) is reached.		
	Selection list (Lenze	setting printed in bold)		
	0	No Reaction		
	1	Fault		
	5	Warning		
	☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1	
500500				
C00609	Parameter Name: C00609 Resp. to	maximum current		Data type: UNSIGNED_8 Index: 23966 _d = 5D9E _h
	Response if the ma	aximum current (<u>C00022</u> , <u>C00023</u>) is re	ached.	
	Selection list (Lenze	setting printed in bold)		
	0	No Reaction		
	1	Fault		
	5	Warning		
	☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1	
C00610	Parameter Name: C00610 16-bit co	nnection table		Data type: UNSIGNED_16 Index: 23965 _d = 5D9D _h
	This code is for dev	vice-internal use only and must not be	written to by the user!	
C00611	Parameter Name: C00611 Bool con	nection table		Data type: UNSIGNED_16 Index: 23964 _d = 5D9C _h
	This code is for dev	vice-internal use only and must not be	written to by the user!	
C00612	Parameter Name: C00612 32-bit co	nnection table		Data type: UNSIGNED_16 Index: 23963 _d = 5D9B _h
	This code is for dev	vice-internal use only and must not be	written to by the user!	
C00613	Parameter Name: C00613 16-bit co	nnection table AdditionalFBsHL		Data type: UNSIGNED_16 Index: 23962 _d = 5D9A _h
	This code is for dev	vice-internal use only and must not be	written to by the user!	
_				
C00615	Parameter Name: C00615 Bool cont	nection table AdditionalFBsHL		Data type: UNSIGNED_16 Index: 23960 _d = 5D98 _h
	This code is for dev	vice-internal use only and must not be	written to by the user!	

Parameter reference Parameter list | C00617

C00617

Parameter | Name:

C00617 | 32-bit connection table AdditionalFBsHL

Data type: UNSIGNED_16
Index: 23958_d = 5D96_h

This code is for device-internal use only and must not be written to by the user!

C00620

Parameter | Name:

C00620 | System connection list: 16-bit

Data type: UNSIGNED_16
Index: 23955_d = 5D93_h

Connection parameters: 16-bit inputs

- Selection of the 16 bit output signals to be connected to the 16 bit input signals
- The selection list contains all 16 bit output signals which can be assigned to the 16 bit inputs displayed by the subcodes.

Selection list		
See <u>selection list</u> -	analog signals	
Subcodes	Lenze setting	Info
C00620/1	1003: LA_nCtrl_nMotorSpeedAct_a	LS AnalogOutput: nOut1_a (V)
C00620/2	0: Not connected	<u>LP_CanOut1</u> : wState
C00620/3	0: Not connected	LP_CanOut1: wOut2
C00620/4	0: Not connected	LP_CanOut1: wOut3
C00620/5	0: Not connected	LP_CanOut1: wOut4
C00620/6	0: Not connected	LP_CanOut2: wOut1
C00620/7	0: Not connected	LP_CanOut2: wOut2
C00620/8	0: Not connected	LP_CanOut2: wOut3
C00620/9	0: Not connected	LP_CanOut2: wOut4
C00620/10	0: Not connected	LP_CanOut3: wOut1
C00620/11	0: Not connected	LP_CanOut3: wOut2
C00620/12	0: Not connected	LP_CanOut3: wOut3
C00620/13	0: Not connected	LP_CanOut3: wOut4
C00620/14	0: Not connected	LS_DisFree_a: nDis1_a
C00620/15	0: Not connected	LS_DisFree_a: nDis2_a
C00620/16	0: Not connected	LS_DisFree_a: nDis3_a
C00620/17	0: Not connected	LS_DisFree_a: nDis4_a
C00620/18	0: Not connected	LS_DisFree: wDis1
C00620/19	0: Not connected	LS_DisFree: wDis2
C00620/20	0: Not connected	LS_DisFree: wDis3
C00620/21	0: Not connected	LS_DisFree: wDis4
C00620/22	0: Not connected	LP_MciOut: wState
C00620/23	0: Not connected	LP_MciOut: wOut2
C00620/24	0: Not connected	LP_MciOut: wOut3
C00620/25	0: Not connected	LP_MciOut: wOut4
C00620/26	0: Not connected	LP_MciOut: wOut5
C00620/27	0: Not connected	LP_MciOut: wOut6
C00620/28	0: Not connected	LP_MciOut: wOut7
C00620/29	0: Not connected	LP_MciOut: wOut8
C00620/30	0: Not connected	LP_MciOut: wOut9
C00620/31	0: Not connected	LP_MciOut: wOut10
C00620/32	0: Not connected	LP_MciOut: wOut11
C00620/33	0: Not connected	LP_MciOut: wOut12
C00620/34	0: Not connected	LP_MciOut: wOut13

Parameter Name: C00620 System	m connection list: 16-bit	Data type: UNSIGNED_1 Index: 23955 _d = 5D93
C00620/35	0: Not connected	LP MciOut: wOut14
C00620/36	0: Not connected	LP_MciOut: wOut15
C00620/37	0: Not connected	LP_MciOut: wOut16
C00620/38	0: Not connected	LS_AnalogOutput: nOut2_a (V)
C00620/39	0: Not connected	LS_AnalogOutput: nOut1_a (I)
C00620/40	0: Not connected	LS_AnalogOutput: nOut2_a (I)
C00620/41	0: Not connected	LS_DisFree_a: nDis5_a
C00620/42	0: Not connected	LS_DisFree_a: nDis6_a
C00620/43	0: Not connected	LS_DisFree_a: nDis7_a
C00620/44	0: Not connected	LS_DisFree_a: nDis8_a
C00620/45	0: Not connected	LS DisFree: wDis5
C00620/46	0: Not connected	LS DisFree: wDis6
C00620/47	0: Not connected	LS_DisFree: wDis7
C00620/48	0: Not connected	LS DisFree: wDis8
C00620/49	0: Not connected	LS ParReadWrite 1: wParIndex
C00620/50	0: Not connected	LS ParReadWrite 1: wParSubindex
C00620/51	0: Not connected	LS ParReadWrite 1: wInHWord
C00620/52	0: Not connected	LS ParReadWrite 1: wInLWord
C00620/53	0: Not connected	LS ParReadWrite 2: wParIndex
C00620/54	0: Not connected	LS ParReadWrite 2: wParSubindex
C00620/55	0: Not connected	LS ParReadWrite 2: wInHWord
C00620/56	0: Not connected	LS ParReadWrite 2: wInLWord
C00620/57	0: Not connected	LS ParReadWrite 3: wParIndex
C00620/58	0: Not connected	LS ParReadWrite 3: wParSubindex
C00620/59	0: Not connected	LS ParReadWrite 3: wInHWord
C00620/60	0: Not connected	LS ParReadWrite 3: wInLWord
C00620/61	0: Not connected	LS ParReadWrite 4: wParIndex
C00620/62	0: Not connected	LS ParReadWrite 4: wParSubindex
C00620/63	0: Not connected	LS ParReadWrite 4: wInHWord
C00620/64	0: Not connected	LS ParReadWrite 4: wInLWord
C00620/65	0: Not connected	LS ParReadWrite 5: wParIndex
C00620/66	0: Not connected	LS ParReadWrite 5: wParSubindex
C00620/67	0: Not connected	LS ParReadWrite 5: wInHWord
C00620/68	0: Not connected	LS ParReadWrite 5: wInLWord
C00620/69	0: Not connected	LS ParReadWrite 6: wParIndex
C00620/70	0: Not connected	LS ParReadWrite 6: wParSubindex
C00620/71	0: Not connected	LS ParReadWrite 6: wInHWord
C00620/72	0: Not connected	LS ParReadWrite 6: wInLWord
C00620/73	0: Not connected	Reserved
C00620/74	0: Not connected	Reserved
C00620/75	0: Not connected	Reserved
C00620/76	0: Not connected	Reserved
C00620/77	0: Not connected	Reserved
C00620/78	0: Not connected	Reserved

Parameter Name: C00620 System	connection list: 16-bit	Data type: UNSIGNED_16 Index: 23955 _d = 5D93 _h	
C00620/79	0: Not connected	Reserved	
C00620/80	0: Not connected	Reserved	
C00620/81	0: Not connected	Reserved	
C00620/82	0: Not connected	Reserved	
C00620/83	0: Not connected	Reserved	
C00620/84	0: Not connected	Reserved	
C00620/85	0: Not connected	Reserved	
C00620/86	0: Not connected	Reserved	
C00620/87	0: Not connected	Reserved	
C00620/88	0: Not connected	Reserved	
C00620/89	0: Not connected	LS_RetainData: wIn1	
C00620/90	0: Not connected	LS_RetainData: wIn2	
C00620/91	0: Not connected	LS_RetainData: wIn3	
C00620/92	0: Not connected	LS_RetainData: wIn4	
C00620/93	0: Not connected	LS_AxisBusIn: wLine1	
C00620/94	0: Not connected	LS_AxisBusIn: wLine2	
C00620/95	0: Not connected	LS_AxisBusIn: wLine3	
C00620/96	0: Not connected	LS_AxisBusIn: wCas1	
C00620/97	0: Not connected	LS AxisBusIn: wCas2	
C00620/98	0: Not connected	LS_AxisBusIn: wCas3	
C00620/99	0: Not connected	LS_AxisBusIn: wCas4	
C00620/100	0: Not connected	LS_AxisBusAux: wAuxOut1	
C00620/101	0: Not connected	LS_AxisBusAux: wAuxOut2	
C00620/102	0: Not connected	LS_AxisBusAux: wAuxOut3	
C00620/103	0: Not connected	LS AxisBusAux: wAuxOut4	
C00620/104	0: Not connected	LS AxisBusAux: wSelectSlave	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

Parameter | Name:

C00621 | System connection list: Bool

Data type: UNSIGNED_16 Index: 23954_d = 5D92_h

Connection parameters: Binary inputs

- Selection of the binary output signals to be connected to the binary input signals
- The selection list contains all binary output signals which can be assigned to the binary inputs mapped by the subcodes.

Selection list		
See selection list - digital signals		
Subcodes	Lenze setting	Info
C00621/1	1001: LA_nCtrl_bDriveFail	LS_DigitalOutput: bRelay
C00621/2	1000: LA_nCtrl_bDriveReady	LS_DigitalOutput: bOut1
C00621/3	0: Not connected	LS_DigitalInput: bCountIn1_Reset
C00621/4	0: Not connected	LS_DigitalInput: bCountIn1_LoadStartValue
C00621/5	0: Not connected	LP_CanOut1: bState_B0
C00621/6	0: Not connected	LP_CanOut1: bState_B1
C00621/7	0: Not connected	LP_CanOut1: bState_B2
C00621/8	0: Not connected	LP_CanOut1: bState_B3

Parameter Name: C00621 System	connection list: Bool		Data type: UNSIGNED_16 Index: 23954 _d = 5D92 _h
C00621/9	0: Not connected	LP CanOut1: bState_B4	
C00621/10	0: Not connected	LP_CanOut1: bState_B5	
C00621/11	0: Not connected	LP_CanOut1: bState_B6	
C00621/12	0: Not connected	LP_CanOut1: bState_B7	
C00621/13	0: Not connected	LP_CanOut1: bState_B8	
C00621/14	0: Not connected	LP_CanOut1: bState_B9	
C00621/15	0: Not connected	LP_CanOut1: bState_B10	
C00621/16	0: Not connected	LP_CanOut1: bState_B11	
C00621/17	0: Not connected	LP_CanOut1: bState_B12	
C00621/18	0: Not connected	LP_CanOut1: bState_B13	
C00621/19	0: Not connected	LP_CanOut1: bState_B14	
C00621/20	0: Not connected	LP_CanOut1: bState_B15	
C00621/21	0: Not connected	LS DisFree b: bDis1	
C00621/22	0: Not connected	LS DisFree b: bDis2	
C00621/23	0: Not connected	LS DisFree b: bDis3	
C00621/24	0: Not connected	LS DisFree b: bDis4	
C00621/25	0: Not connected	LS DisFree b: bDis5	
C00621/26	0: Not connected	LS DisFree b: bDis6	
C00621/27	0: Not connected	LS DisFree b: bDis7	
C00621/28	0: Not connected	LS DisFree b: bDis8	
C00621/29	0: Not connected	LP CanOut2: bOut1_B0	
C00621/30	0: Not connected	LP CanOut2: bOut1_B1	
C00621/31	0: Not connected	LP_CanOut2: bOut1_B2	
C00621/32	0: Not connected	LP CanOut2: bOut1_B3	
C00621/33	0: Not connected	LP CanOut2: bOut1_B4	
C00621/34	0: Not connected	LP CanOut2: bOut1_B5	
C00621/35	0: Not connected	LP CanOut2: bOut1_B6	
C00621/36	0: Not connected	LP CanOut2: bOut1_B7	
C00621/37	0: Not connected	LP CanOut2: bOut1_B8	
C00621/38	0: Not connected	LP CanOut2: bOut1_B9	
C00621/39	0: Not connected	LP_CanOut2: bOut1_B10	
C00621/40	0: Not connected	LP_CanOut2: bOut1_B11	
C00621/41	0: Not connected	LP_CanOut2: bOut1_B12	
C00621/42	0: Not connected	LP_CanOut2: bOut1_B13	
C00621/43	0: Not connected	LP CanOut2: bOut1_B14	
C00621/44	0: Not connected	LP_CanOut2: bOut1_B15	
C00621/45	0: Not connected	LP CanOut3: bOut1_B0	
C00621/46	0: Not connected	LP CanOut3: bOut1_B1	
C00621/47	0: Not connected	LP CanOut3: bOut1_B2	
C00621/48	0: Not connected	LP CanOut3: bOut1_B3	
C00621/49	0: Not connected	LP CanOut3: bOut1_B4	
C00621/50	0: Not connected	LP CanOut3: bOut1_B5	
C00621/51	0: Not connected	LP CanOut3: bOut1_B6	
C00621/52	0: Not connected	LP CanOut3: bOut1 B7	
•	I		

Parameter Name: C00621 System	connection list: Bool		Data type: UNSIGNED_16 Index: 23954 _d = 5D92 _h
C00621/53	0: Not connected	LP CanOut3: bOut1_B8	
C00621/54	0: Not connected	LP_CanOut3: bOut1_B9	
C00621/55	0: Not connected	LP_CanOut3: bOut1_B10	
C00621/56	0: Not connected	LP_CanOut3: bOut1_B11	
C00621/57	0: Not connected	LP_CanOut3: bOut1_B12	
C00621/58	0: Not connected	LP_CanOut3: bOut1_B13	
C00621/59	0: Not connected	LP_CanOut3: bOut1_B14	
C00621/60	0: Not connected	LP_CanOut3: bOut1_B15	
C00621/61	0: Not connected	LP_MciOut: bState_B0	
C00621/62	0: Not connected	LP_MciOut: bState_B1	
C00621/63	0: Not connected	LP_MciOut: bState_B2	
C00621/64	0: Not connected	LP_MciOut: bState_B3	
C00621/65	0: Not connected	LP_MciOut: bState_B4	
C00621/66	0: Not connected	LP MciOut: bState_B5	
C00621/67	0: Not connected	LP_MciOut: bState_B6	
C00621/68	0: Not connected	LP MciOut: bState B7	
C00621/69	0: Not connected	LP MciOut: bState_B8	
C00621/70	0: Not connected	LP MciOut: bState B9	
C00621/71	0: Not connected	LP MciOut: bState B10	
C00621/72	0: Not connected	LP MciOut: bState B11	
C00621/73	0: Not connected	LP MciOut: bState B12	
C00621/74	0: Not connected	LP MciOut: bState B13	
C00621/75	0: Not connected	LP MciOut: bState B14	
C00621/76	0: Not connected	LP MciOut: bState B15	
C00621/77	0: Not connected	LP MciOut: bOut2 B0	
C00621/78	0: Not connected	LP MciOut: bOut2 B1	
C00621/79	0: Not connected	LP MciOut: bOut2 B2	
C00621/80	0: Not connected	LP MciOut: bOut2 B3	
C00621/81	0: Not connected	LP MciOut: bOut2 B4	
C00621/82	0: Not connected	LP MciOut: bOut2 B5	
C00621/83	0: Not connected	LP MciOut: bOut2 B6	
C00621/84	0: Not connected	LP MciOut: bOut2 B7	
C00621/85	0: Not connected	LP MciOut: bOut2 B8	
C00621/86	0: Not connected	LP MciOut: bOut2 B9	
C00621/87	0: Not connected	LP MciOut: bOut2 B10	
C00621/88	0: Not connected	LP MciOut: bOut2 B11	
C00621/89	0: Not connected	LP MciOut: bOut2 B12	
C00621/90	0: Not connected	LP MciOut: bOut2 B13	
C00621/91	0: Not connected	LP MciOut: bOut2 B14	
C00621/92	0: Not connected	LP MciOut: bOut2 B15	
C00621/93	0: Not connected	LS SetError 1: bSetError1	
C00621/94	0: Not connected	LS SetError 1: bSetError2	
C00621/95	0: Not connected	LS SetError 1: bSetError3	
C00621/96	0: Not connected	LS SetError 1: bSetError4	

Parameter Name: C00621 System	n connection list: Bool	Data type: UNSIGNED_16 Index: 23954 _d = 5D92 _h
C00621/97	0: Not connected	LS DigitalInput: bCountIn6_Reset
C00621/98	0: Not connected	LS_DigitalInput: bCountIn6_LoadStartValue
C00621/99	0: Not connected	LS_DigitalOutput: bOut2
C00621/100	0: Not connected	LS_DigitalOutput: bOut3
C00621/101	0: Not connected	LS_DigitalOutput: bOut HighCurrent
C00621/102	0: Not connected	LS_DisFree_b: bDis9
C00621/103	0: Not connected	LS DisFree b: bDis10
C00621/104	0: Not connected	LS_DisFree_b: bDis11
C00621/105	0: Not connected	LS DisFree b: bDis12
C00621/106	0: Not connected	LS DisFree b: bDis13
C00621/107	0: Not connected	LS DisFree b: bDis14
C00621/108	0: Not connected	LS DisFree b: bDis15
C00621/109	0: Not connected	LS DisFree b: bDis16
C00621/110	0: Not connected	Reserved
C00621/111	0: Not connected	LS ParReadWrite 1: bExecute
C00621/112	0: Not connected	LS ParReadWrite 1: bReadWrite
C00621/113	0: Not connected	LS ParReadWrite 2: bExecute
C00621/114	0: Not connected	LS ParReadWrite 2: bReadWrite
C00621/115	0: Not connected	LS ParReadWrite 3: bExecute
C00621/116	0: Not connected	LS ParReadWrite 3: bReadWrite
C00621/117	0: Not connected	LS ParReadWrite 4: bExecute
C00621/118	0: Not connected	LS ParReadWrite 4: bReadWrite
C00621/119	0: Not connected	LS ParReadWrite 5: bExecute
C00621/120	0: Not connected	LS ParReadWrite 5: bReadWrite
C00621/121	0: Not connected	LS ParReadWrite 6: bExecute
C00621/122	0: Not connected	LS ParReadWrite 6: bReadWrite
C00621/123	0: Not connected	LS WriteParamList: bExecute
C00621/124	0: Not connected	LS WriteParamList: bSelectWriteValue 1
C00621/125	0: Not connected	LS WriteParamList: bSelectWriteValue 2
C00621/126	0: Not connected	LS CANManagement: bResetNode
C00621/127	0: Not connected	LS CANManagement: bReInitCAN
C00621/128	0: Not connected	LS DigitalInput: bPosIn12 Load
C00621/129	0: Not connected	Reserved
C00621/130	0: Not connected	Reserved
C00621/131	0: Not connected	Reserved
C00621/132	0: Not connected	Reserved
C00621/133	0: Not connected	Reserved
C00621/134	0: Not connected	Reserved
C00621/135	0: Not connected	Reserved
C00621/136	0: Not connected	Reserved
C00621/137	0: Not connected	Reserved
C00621/138	0: Not connected	Reserved
C00621/139	0: Not connected	Reserved
C00621/140	0: Not connected	Reserved
,	*****	

Parameter list | C00621

Parameter Name: C00621 System	connection list: Bool	Data type: UNSIGNED_16 Index: 23954 _d = 5D92 _h
C00621/141	0: Not connected	Reserved
C00621/142	0: Not connected	Reserved
C00621/143	0: Not connected	Reserved
C00621/144	0: Not connected	Reserved
C00621/145	0: Not connected	Reserved
C00621/146	0: Not connected	Reserved
C00621/147	0: Not connected	LS_TouchProbe: bDisableTPDigIn3
C00621/148	0: Not connected	LS_TouchProbe: bDisableTPDigIn4
C00621/149	0: Not connected	LS_TouchProbe: bDisableTPDigIn5
C00621/150	0: Not connected	LS_TouchProbe: bDisableTPDigIn6
C00621/151	0: Not connected	LS_TouchProbe: bDisableTPDigIn7
C00621/152	0: Not connected	LS_TouchProbe: bDisableTPDigIn3_Rising
C00621/153	0: Not connected	LS_TouchProbe: bDisableTPDigIn3_Falling
C00621/154	0: Not connected	LS_TouchProbe: bDisableTPDigIn4_Rising
C00621/155	0: Not connected	LS_TouchProbe: bDisableTPDigIn4_Falling
C00621/156	0: Not connected	LS_TouchProbe: bDisableTPDigIn5_Rising
C00621/157	0: Not connected	LS_TouchProbe: bDisableTPDigIn5_Falling
C00621/158	0: Not connected	LS_TouchProbe: bDisableTPDigIn3Window
C00621/159	0: Not connected	LS_TouchProbe: bDisableTPDigIn4Window
C00621/160	0: Not connected	LS_TouchProbe: bDisableTPDigIn5Window
C00621/161	0: Not connected	LS_AxisBusIO: bSetFail
C00621/162	0: Not connected	LS_AxisBusIO: bResetFail
C00621/163	0: Not connected	Reserved
C00621/164	0: Not connected	LS_MultiEncoder: bSetRef
C00621/165	0: Not connected	LS_RetainData: bSetRetain_1
C00621/166	0: Not connected	LS_RetainData: bSetRetain_2
C00621/167	0: Not connected	LS_RetainData: bSetRetain_3
C00621/168	0: Not connected	LS_RetainData: bLoadParams
C00621/169	0: Not connected	LS_RetainData: bln1
C00621/170	0: Not connected	LS RetainData: bln2
C00621/171	0: Not connected	LS_RetainData: bln3
C00621/172	0: Not connected	LS RetainData: bln4
C00621/173	0: Not connected	LS_AxisBusAux: bReadWrite
C00621/174	0: Not connected	LS AxisBusAux: bExecute
C00621/175	0: Not connected	LS AxisBusAux: bStop
☑ Read access ☑ W	rite access	er COM MOT Scaling factor: 1

Parameter | Name:

C00622 | System connection list: Angle

Data type: UNSIGNED_16
Index: 23953_d = 5D91_h

Connection parameters: 32-bit inputs

- Selection of the 32-bit output signals for connection with the 32-bit input signals.
- The selection list contains all 32-bit output signals which can be assigned to the 32-bit inputs mapped by the subcodes.

Selection list		
See selection list	- angle signals	
Subcodes	Lenze setting	Info
C00622/1	0: Not connected	LS_DisFree_p: dnDis1_p
C00622/2	0: Not connected	LS_DisFree_p: dnDis2_p
C00622/3	0: Not connected	LS_DisFree_p: dnDis3_p
C00622/4	0: Not connected	LS_DisFree_p: dnDis4_p
C00622/5	0: Not connected	LS_DisFree_p: dnDis5_p
C00622/6	0: Not connected	LS_DisFree_p: dnDis6_p
C00622/7	0: Not connected	LS_DisFree_p: dnDis7_p
C00622/8	0: Not connected	LS_DisFree_p: dnDis8_p
C00622/9	0: Not connected	LP_CanOut1: dnOut34_p
C00622/10	0: Not connected	LP_CanOut2: dnOut34_p
C00622/11	0: Not connected	LP_CanOut3: dnOut34_p
C00622/12	0: Not connected	LP_MciOut: dnOut34_p
C00622/13	0: Not connected	LS_DigitalInput: dnPosIn12_Set_p
C00622/14	0: Not connected	Reserved
C00622/15	0: Not connected	Reserved
C00622/16	0: Not connected	LS RetainData: dnln1
C00622/17	0: Not connected	LS_RetainData: dnIn2
C00622/18	0: Not connected	LS RetainData: dnIn3
C00622/19	0: Not connected	LS_RetainData: dnIn4
C00622/20	0: Not connected	LS AxisBusOut: dnLine12
C00622/21	0: Not connected	LS_AxisBusOut: dnCas12
C00622/22	0: Not connected	LS_AxisBusOut: dnCas34
C00622/23	0: Not connected	LS AxisBusAux: dnAuxOut12
C00622/24	0: Not connected	LS_AxisBusAux: dnAuxOut34
☑ Read access ☑ Writ	te access	□ COM □ MOT Scaling factor: 1

C00630

Parameter | Name:
C00630 | L_Limit 1-2: Min/Max

Setting the limits

Setting range (min. value | unit | max. value)

Data type: INTEGER_16 Index: 23945d = 5D89h

-199.99	%	199.99	
Subcodes	Lenze setting		Info
C00630/1	-199.99 %		L_Limit_1: Min.Limit
C00630/2	199.99 %		L_Limit_1: Max.Limit
C00630/3	-199.99 %		<u>L_Limit_2</u> : Min.Limit
C00630/4	199.99 %		<u>L_Limit_2</u> : Max.Limit
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 100

Parameter reference Parameter list | C00631

C00631

Parameter Name: C00631 L_LimitP	Data type: INTEGER_32 Index: 23944 _d = 5D88 _h			
Setting the limits				
Setting range (min.	value unit max. value)			
-2147483647	Incr.	2147483647		
Subcodes	Lenze setting		Info	
C00631/1	-2147483647 incr.		L_LimitPhi_1: Min.Limit	
C00631/2	2147483647 incr.		L_LimitPhi_1: Max.Limit	
C00631/3	-2147483647 incr.		L_LimitPhi_2: Min.Limit	
C00631/4	2147483647 incr.		L_LimitPhi_2: Max.Limit	
C00631/5	-2147483647 incr.		L_LimitPhi_3: Min.Limit	
C00631/6	2147483647 incr.		L_LimitPhi_3: Max.Limit	
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM MOT Scaling factor: 1	

C00632

Parameter | Name:
C00632 | L_NSet_1: Max.SkipFrq.

Maximum limit values for the speed blocking zones

• Selection of the maximum limit values for the blocking zones in which the speed must not be constant.

Setting range (min.	. value unit max. value)			
0.00	%	199.99		
Subcodes	Lenze setting			Info
C00632/1	0.00 %			L_NSet_1: I
C00632/2	0.00 %			L_NSet_1: I
C00632/3	0.00 %			L_NSet_1: I
☑ Read access ☑ Writ	e access □ CINH □ PLC	STOP No transfer	1	сом 🗆 мот

C00633

 Parameter | Name:
 Data type: INTEGER_16

 C00633 | L_NSet_1: Min.SkipFrq.
 Index: 23942_d = 5D86_h

Minimum limit values for the speed blocking zones

· Selection of the minimum limit values for the blocking zones in which the speed must not be constant.

Setting range (min.	value unit max. value)		
0.00	%	199.99	
Subcodes	Lenze setting		Info
C00633/1	0.00 %		L_NSet_1: Min. skip freq.1
C00633/2	0.00 %		L_NSet_1: Min. skip freq.2
C00633/3	0.00 %		L_NSet_1: Min. skip freq.3
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP No transfer	COM MOT Scaling factor: 100

Data type: INTEGER_16 Index: 23943_d = 5D87_h

C00635

C00636

C00637

Parameter Name: C00634 L NSet :	1· wState				Data type: UNSIGNED_16 Index: 23941 _d = 5D85 _f
	Bit coded status dis	nlav			
	ex value max. hex value	. ,			
0x0000		0xFFFF			
Value is bit-coded:			Info		
Bit 0	No blocking zone	active	"1" ≡ No blo	cking zone set for cons	tant speeds
Bit 1	Blocking zone 1 active			ession of constant spee mits of blocking zone 1	
Bit 2	Blocking zone 2 active			ession of constant spee mits of blocking zone 2	
Bit 3	Blocking zone 3 ac	tive		ession of constant spee mits of blocking zone 3	
Bit 4	Jog in blocking zo	ne	"1" ≡ A ramp speed blocki	is used to keep the sping zone	eed setpoint within a
Bit 5	MaxLimit active		"1" ≡ Speed	setpoint is at the maxi	mum speed limit
Bit 6	MinLimit active		"1" ≡ Speed	setpoint is at the minir	num speed limit
Bit 7	Reserved				
Bit 8	Reserved				
Bit 9	Reserved				
Bit 10	Reserved				
Bit 11	Reserved				
Bit 12	Reserved				
Bit 13	Reserved				
Bit 14	Reserved				
Bit 15	Reserved				
☑ Read access ☐ Write	e access	STOP ☑ No transfer ☐	COM MOT		
Parameter Name:	1				Data type: INTEGER_1 Index: 23940 _d = 5D84
C00635 L_NSet_:		theint for speed set	naint limitati	ion	ilidex. 23340d – 3064
	value unit max. value)	tpoint for speed set	Lenze settin		
-199.99	value unit max. value) %		199.99 %	В	
		STOP No transfer		Scaling factor: 100	
E Read access E Wille	access Element Element	STOLE HOCKALISICE	I COM LIMOT	Scaling factor, 100	
Parameter Name: C00636 L_NSet_:	L: nMinLimit				
C00636 L_NSet_:		tpoint for speed set	point limitati	on	
C00636 L_NSet_1 The <u>L_NSet_1</u> FB:		•	point limitati		Data type: INTEGER_1 Index: 23939 _d = 5D83
C00636 L_NSet_1 The <u>L_NSet_1</u> FB:	Minimum speed se				
C00636 L_NSet_: The L_NSet_1 FB: Setting range (min199.99	Minimum speed se value unit max. value) %		Lenze settin	g	
C00636 L_NSet_: The L_NSet_1 FB: Setting range (min199.99	Minimum speed se value unit max. value) %	199.99	Lenze settin	g	
C00636 L_NSet_: The L_NSet_1 FB: Setting range (min199.99 ☑ Read access ☑ Write Parameter Name:	Minimum speed se value unit max. value) %	199.99	Lenze settin	g	
C00636 L_NSet_1 The L_NSet_1 FB: Setting range (min199.99 ☑ Read access ☑ Write Parameter Name: C00637 L_NSet_1	Minimum speed se' value unit max. value) % e access	199.99 CSTOP	Lenze settin -199.99 % □ COM □ MOT	g	Index: 23939 _d = 5D83 Data type: INTEGER_1 Index: 23938 _d = 5D82
C00636 L_NSet_: The L_NSet_1 FB: Setting range (min199.99 ☑ Read access ☑ Write Parameter Name: C00637 L_NSet_: The L_NSet_1 FB:	Minimum speed se' value unit max. value) % e access	199.99 STOP	Lenze settin -199.99 % □ COM □ MOT	Scaling factor: 100	Index: 23939 _d = 5D83 Data type: INTEGER_1 Index: 23938 _d = 5D82
C00636 L_NSet_: The L_NSet_1 FB: Setting range (min199.99 ☑ Read access ☑ Write Parameter Name: C00637 L_NSet_: The L_NSet_1 FB:	Minimum speed set value unit max. value) % e access	199.99 STOP	Lenze settin -199.99 % □ COM □ MOT	Scaling factor: 100	Index: 23939 _d = 5D83 Data type: INTEGER_1 Index: 23938 _d = 5D82

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00638

C00638	Parameter Name: C00638 L_NSet_	1: Output ramp round	ling			Data type: INTEGER_16 Index: 23937 _d = 5D81 _h
	The <u>L_NSet_1</u> FB:	Speed setpoint is disp	layed after being	processed by	PT1 filter function	
	Display range (min	. value unit max. value)				
	-199.99	%	199.99			
	☑ Read access ☐ Writ	e access □ CINH □ PLC ST	OP ☑ No transfer ☐] сом □ мот	Scaling factor: 100	
C00639						
C00039	Parameter Name: C00639 L_NSet_	1: Output additional v	<i>r</i> alue			Data type: INTEGER_16 Index: 23936 _d = 5D80 _h
	The <u>L_NSet_1</u> FB:	Additional speed setp	oint is displayed a	after being pr	ocessed by the ramp ge	nerator
	Display range (min	. value unit max. value)				
	-199.99	%	199.99			
	☑ Read access ☐ Writ	e access	OP No transfer	COM MOT	Scaling factor: 100	
C00640						
200040	Parameter Name: C00640 L_NSet_	1: nNOut_a				Data type: INTEGER_16 Index: 23935 _d = 5D7F _h
	The <u>L_NSet_1</u> FB:	Display of the generat	ted main speed se	tpoint at the	output <i>nNOut_a</i>	
	Display range (min	. value unit max. value)				
	-199.99	%	199.99			
	☑ Read access ☐ Writ	e access	OP ☑ No transfer ☐	СОМ □МОТ	Scaling factor: 100	
C00643						
2000 15	Parameter Name: C00643 Resp. to	PLI monitoring				Data type: UNSIGNED_8 Index: 23932 _d = 5D7C _h
					▶ <u>Pole p</u>	osition identification
	Selection list					
	0	No Reaction				
	1	Fault				
	3	TroubleQuickStop				
	4	WarningLocked				
	5	Warning				
	6	Information				
	Subcodes	Lenze setting		Info		
	C00643/1	1: Fault		Response to	PLI monitoring	
	☑ Read access ☑ Writ	e access	OP No transfer	COM MOT	Scaling factor: 1	
C00644	Parameter Name: C00644 PLI trave	rsing direction				Data type: UNSIGNED_8 Index: 23931 _d = 5D7B _h
					▶ Pole p	osition identification
	Selection list					
	0	right rotating field				
	1	left rotating field				
	Subcodes	Lenze setting		Info		
	C00644/1	0: right rotating field	d	PLI 360° trav	ersing direction	
	☑ Read access ☑ Writ	e access □ CINH □ PLC ST	OP No transfer	COM ☑ MOT	Scaling factor: 1	

Parameter | Name:

C00645 | PLI max. permissible deflection

Data type: INTEGER_16
Index: 23930_d = 5D7Ah

▶ Pole position identification

Setting range (min. value unit max. value)				
-6.0	o	90.0		

Subcodes	Lenze setting	Info		
C00645/1	0.0 °	Reserved		
C00645/2	0.0 °	PLI 360° max. error tolerance		
M Pond access M Write access MCINIA M DICCOOR M No transfer M COM M MOT. Scaling factor, 10				

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM ☑ MOT Scaling factor: 10

C00646

Parameter | Name:

C00646 | PLI current amplitude

Data type: UNSIGNED_16 Index: 23929_d = 5D79_h

▶ Pole position identification

Setting range (min. value unit max. value)				
1	%	1000		
Subcodes	Lenze setting		Info	
C00646/1	1%		Reserved	
C00646/2	100 %		PLI 360° current amplitude	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM ☑ MOT Scaling factor: 1				

C00647

Parameter | Name:
C00647 | PLI ramp time

Data type: UNSIGNED_16 Index: 23928_d = 5D78_h

▶ Pole position identification

Setting range (min. value unit max. value)				
5	%	1000		
Subcodes	bcodes Lenze setting		Info	
C00647/1	5 %		Reserved	
C00647/2 100 %			PLI 360° ramp time	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM ☑ MOT Scaling factor: 1				

C00650

Parameter | Name:
C00650 | L_Arithmetik 3-5: Function

Data type: UNSIGNED_8 Index: 23925_d = 5D75_h

Selection of the internal arithmetics

Selection list	
0	nOut_a = nIn1_a
1	nOut_a = nln1_a + nln2_a
2	nOut_a = nln1_a - nln2_a
3	nOut_a = (nln1_a * nln2_a) / 100%
4	nOut_a = (nIn1_a * 1%) / nIn2_a
5	nOut_a = (nln1_a * 100%) / (100% - nln2_a)
Subcodes	Lenze setting

Subcodes	Lenze setting	Into
C00650/1	0: nOut_a = nIn1_a	L_Arithmetik_3: Function
C00650/2	0: nOut_a = nIn1_a	L_Arithmetik_4: Function
C00650/3	0: nOut_a = nIn1_a	L_Arithmetik_5: Function
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

Parameter reference Parameter list | C00660

C00660

C00661

C00662

C00670

C00671

Parameter Name:	et_a_1: Analog value	ς		Index: 23915 _d = 50
. –	: Setting of the fixed			
	in. value unit max. value			
-199.99	%	199.99		
Subcodes	Lenze setting		Info	
C00660/1	0.00 %		Fixed value 0 15	
C00660/				
C00660/16				
•	rite access □ CINH □ PLO	CSTOP □ No transfer □	□ COM □ MOT Scaling factor: 100	
Parameter Name:	et_w_1: Fixed values			Data type: UNSIGNEE Index: 23914 _d = 5E
. –	1: Setting of the fixed			•
	in. value unit max. value			
0	raine max. value	65535		
Subcodes	Lenze setting	03333	Info	
C00661/1	0		Fixed value 0 15	
C00661/	-			
C00661/16				
,				
Parameter Name: C00662 L_FixS e	rite access		COM MOT Scaling factor: 1	Data type: UNSIGNEE Index: 23913 _d = 5I
Parameter Name: C00662 L_FixS e FB <u>L_FixSet_w_2</u>	et_w_2: Fixed values 2: Setting of the fixed	values	COM MOT Scaling factor: 1	
Parameter Name: C00662 L_FixSe FB L FixSet w 2 Setting range (m	et_w_2: Fixed values	values	COM MOT Scaling factor: 1	
Parameter Name: C00662 L_FixSe FB L_FixSet_w_2 Setting range (m 0	et_w_2: Fixed values 2: Setting of the fixed iin. value unit max. value	values		
Parameter Name: C00662 L_FixSe FB L_FixSet_w_2 Setting range (m 0 Subcodes	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting	values	Info	
Parameter Name: C00662 L_FixSe FB L_FixSet w_2 Setting range (m 0 Subcodes C00662/1	et_w_2: Fixed values 2: Setting of the fixed iin. value unit max. value	values		
Parameter Name: C00662 L_FixSet FB L_FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting	values	Info	
Parameter Name: C00662 L_FixSe FB L FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/16	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting	65535	Info Fixed value 0 15	
Parameter Name: C00662 L_FixSe FB L FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/16	et_w_2: Fixed values 2: Setting of the fixed iin. value unit max. value Lenze setting 0	65535	Info Fixed value 0 15	
Parameter Name: C00662 L_FixSet	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting 0	65535	Info Fixed value 0 15	Index: 23913 _d = 5i
Parameter Name: C00662 L_FixSet FB L_FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/16 ☑ Read access ☑ W Parameter Name: C00670 L_Offset	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value) Lenze setting 0 Trite access □ CINH □ PLO	65535 65535	Info Fixed value 0 15	Index: 23913 _d = 5i
Parameter Name: C00662 L_FixSet	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting 0 Vrite access □ CINH □ PLO	of the input	Info Fixed value 0 15	Index: 23913 _d = 5i
Parameter Name: C00662 L_FixSet	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value) Lenze setting 0 rite access □ CINH □ PLO etGainP_1: Gain nP 1 FB: Gain as mu	of the input	Info Fixed value 0 15 COM MOT Scaling factor: 1 signal + offset Lenze setting	Index: 23913 _d = 5I
Parameter Name: C00662 L_FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/16 ☑ Read access ☑ W Parameter Name: C00670 L_Offset The L_OffsetGai Setting range (m -100.0000	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value) Lenze setting 0 rite access □ CINH □ PLO etGainP_1: Gain nP 1 FB: Gain as mu	of the input 100.0000	Info Fixed value 0 15 COM MOT Scaling factor: 1 Signal + offset Lenze setting 1.0000	
Parameter Name: C00662 L_FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/16 ☑ Read access ☑ W Parameter Name: C00670 L_Offset The L_OffsetGai Setting range (m -100.0000	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting 0 rite access	of the input 100.0000	Info Fixed value 0 15 COM MOT Scaling factor: 1 Signal + offset Lenze setting 1.0000	Index: 23913 _d = 50
Parameter Name: C00662 L_FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/16 Read access w W Parameter Name: C00670 L_Offset Setting range (m -100.0000 Read access w W	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting 0 rite access	of the input 100.0000	Info Fixed value 0 15 COM MOT Scaling factor: 1 Signal + offset Lenze setting 1.0000	Data type: INTEGEI Index: 23905 _d = 51
Parameter Name: C00662 L_FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/ C00662/16 ☑ Read access ☑ W Parameter Name: C00670 L_Offset The L_OffsetGai Setting range (m -100.0000 ☑ Read access ☑ W	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting 0 rite access	Values 65535 65535 CSTOP No transfer CSTOP 100.0000 CSTOP No transfer No trans	Info Fixed value 0 15 COM MOT Scaling factor: 1 Signal + offset Lenze setting 1.0000 COM MOT Scaling factor: 10000	Data type: INTEGEI Index: 23905 _d = 51
Parameter Name: C00662 L_FixSet FB L_FixSet w 2 Setting range (m 0 Subcodes C00662/1 C00662/16 Read access W Parameter Name: C00670 L_Offset Setting range (m -100.0000 Read access W Parameter Name: C00671 L_Offset The L_OffsetGai	et_w_2: Fixed values 2: Setting of the fixed in. value unit max. value Lenze setting 0 rite access	values 65535 65535	Info Fixed value 0 15 COM MOT Scaling factor: 1 Signal + offset Lenze setting 1.0000 COM MOT Scaling factor: 10000	Index: 23913 _d = 50

Parameter Name: C00672 L_OffsetGainP_3: Gain			Data type: INTEGER_32 Index: 23903 _d = 5D5F _h	
The L OffsetGainP 3 FB: Gain as multiplier of the input signal + offset				
Setting range (min. value unit max. value) Lenze setting				
-100.0000	100.0000	1.0000		
☑ Read access ☑ Write access □ CINH □ PL	C STOP □ No transfer □	COM MOT Scaling factor: 10000		

C00673

Parameter Name: C00673 L_OffsetGainPhiP 1-2: Offset			Data type: INTEGER_32 Index: 23902 _d = 5D5E _h
Angular offset (is a	ndded to the angula	r input signal)	
Setting range (min. value unit max. value)			
-2147483647	Incr. 2147483647		
Subcodes	Lenze setting		Info
C00673/1	0 incr.		L_OffsetGainPhiP_1: Offset
C00673/2	0 incr.		L_OffsetGainPhiP_2: Offset

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00674

C00674 L_OffsetGainPhiP 1-2: Gain Angular gain as multiplier of the input signal + angular offset Setting range (min. value unit max. value)	Data type: INTEGER_32 Index: 23901 _d = 5D5D _h
Setting range (min. value unit max. value)	
24.47.402.47	
-2147483647 2147483647	
Subcodes Lenze setting Info	
C00674/1 0 L_OffsetGainPhiP_1: Gain	<u>1</u> : Gain
C00674/2 0 <u>L_OffsetGainPhiP_2</u> : Gain	<u>2</u> : Gain
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1	factor: 1

C00677

Parameter | Name:

C00677 L_GainO	C00677 L_GainOffsetP 1-3: Parameter Index: 23898 _d = 5D5					
Gain and offset						
Setting range (min.	value unit max. value)					
-199.99	%	199.99				
Subcodes	Lenze setting		Info			
C00677/1	100.00 %		L_GainOffsetP_1: Gain			
C00677/2	0.00 %		<pre>L_GainOffsetP_1: Offset</pre>			
C00677/3	100.00 %		L_GainOffsetP_2: Gain			
C00677/4	0.00 %		L_GainOffsetP_2: Offset			
C00677/5	100.00 %		L_GainOffsetP_3: Gain			
C00677/6	0.00 %		<u>L_GainOffsetP_3</u> : Offset			
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP □ No transfer □	COM MOT Scaling factor: 100			

Data type: INTEGER_16

Parameter reference Parameter list | C00678

C00678

Parameter Name: C00678 L_GainC	Data type: INTEGER_32 Index: 23897 _d = 5D59 _h		
Gain and offset			
Setting range (min. value unit max. value)			
-2147483647	2147483647		
Subcodes	Lenze setting		Info
C00678/1	65536		L_GainOffsetPhiP_1: Gain
C00678/2	0		<u>L_GainOffsetPhiP_1</u> : Offset
C00678/3	65536		L_GainOffsetPhiP_2: Gain
C00678/4	0		L_GainOffsetPhiP_2: Offset
☑ Read access ☑ Wri	te access	STOP No transfer	COM ☐ MOT Scaling factor: 1

C00679

Parameter | Name:

C00679 | L_MulDiv_2: Parameter

Index: 23896_d = 5D58_h

The L MulDiv 2 FB: Numerator and denominator

The L Maillet 2 1B. Numerator and denominator				
Setting range (min. value unit max. value)				
-32767		32767		
Subcodes	Lenze setting		Info	
C00679/1	0		<u>L_MulDiv_2</u> : Numerator	
C00679/2	10000		<u>L_MulDiv_2</u> : Denominator	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

C00680

 Parameter | Name:
 Data type: UNSIGNED_8

 C00680 | L_Compare_1: Fct.
 Index: 23895_d = 5D57_h

The L Compare 1 FB: Comparison operation

• If the statement of the selected comparison operation is true, the binary bOut output will be set to TRUE.

Selection list (Lenze	setting printed in bold)	
1	ln1 = ln2	
2	ln1 > ln2	
3	ln1 < ln2	
4	In1 = In2	
5	In1 > In2	
6	In1 < In2	
		

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00681

Parameter | Name:

C00681 | L_Compare_1: Hysteresis

Data type: INTEGER_16
Index: 23894_d = 5D56_h

The L Compare 1 FB: Hysteresis for the comparison function selected in C00680

Setting range (min. value unit max. value)			Lenze setting	
0.00	%	100.00	0 0.50 %	
☑ Read access ☑ Writ	e access CINH [□ PLC STOP □ No transfer	□ COM □ MOT Scaling factor: 100	

C	0	0	6	8	2

C00682									
C00002	Parameter Name: C00682 L_Com	pare_1:	Window						Data type: INTEGER_16 Index: 23893 _d = 5D55 _h
	The L_Compare	1 FB: W	/indow for t	he com	parison functi	on sel	lected ir	n <u>C00680</u>	
	Setting range (min. value unit max. value)				Lenze setting				
	0.00		%		100.00	2.00	%		
	☑ Read access ☑ W	rite access	CINH D	PLC STOP	□ No transfer □	COM	□мот	Scaling factor: 100	
53353									
C00685	Parameter Name: C00685 L_Com	pare_2:	Fct.						Data type: UNSIGNED_8 Index: 23890 _d = 5D52 _h
	The <u>L Compare</u> • If the statem		•	•		ı is tru	ue, the b	oinary <i>bOut</i> output will l	be set to TRUE.
	Selection list (Ler	ze setting	printed in bold	i)					
		1 In1 =	In2						
		2 In1 >	· In2						
		3 In1 <	In2						
		4 In1	= In2						
		5 In1	> In2						
		6 In1	< In2						
	☑ Read access ☑ W	rite access	□ CINH □ I	PLC STOP	□ No transfer □	COM	□ мот	Scaling factor: 1	
C00686									
C00080	Parameter Name: C00686 L_Com	pare_2:	Hysteresis						Data type: INTEGER_16 Index: 23889 _d = 5D51 _h
	The <u>L_Compare</u>	2 FB: H	ysteresis fo	r the co	mparison fund	tion s	elected	in <u>C00685</u>	
	Setting range (m	in. value	unit max. valı	ue)		Lenz	e settin	g	
	0.00		%		100.00	0.50	%		
	☑ Read access ☑ W	rite access	CINH D	PLC STOP	□ No transfer □	COM	□ мот	Scaling factor: 100	
600607									
C00687	Parameter Name: C00687 L_Com	pare_2:	Window						Data type: INTEGER_16 Index: 23888 _d = 5D50 _h
	The L Compare	2 FB: W	indow for t	he com	parison functi	on sel	lected ir	n <u>C00685</u>	
	Setting range (m	in. value	unit max. valı	ue)		Lenz	e settin	g	
	0.00		%		100.00	2.00	%		
	☑ Read access ☑ W	rite access	CINH D	PLC STOP	□ No transfer □	COM	□ мот	Scaling factor: 100	

Data type: UNSIGNED_8 Index: 23885_d = 5D4D_h Parameter | Name: C00690 | L_Compare_3: Function

The <u>L Compare 3</u> FB: Comparison operation

• If the statement of the selected comparison operation is true, the binary bOut output will be set to TRUE.

Selection list (Lenze	setting printed in bold)
1	In1 = In2
2	ln1 > ln2
3	ln1 < ln2
4	In1 = In2
5	In1 > In2
6	In1 < In2
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer □

4 |In1| = |In2| 5 |In1| > |In2|

Parameter reference Parameter list | C00691

C

C00691						
	Parameter Name: C00691 L_Compa	re_3: Hysteresis				Data type: INTEGER_16 Index: 23884 _d = 5D4C _h
	FB <u>L_Compare_3</u> : l	Hysteresis for the co	omparison operatio	n selected in	<u>C00690</u>	
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0.00	%	100.00	0.00 %		
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	ГСОМ □МОТ	Scaling factor: 100	
C00692						
C00692	Parameter Name: C00692 L_Compa	re_3: Window				Data type: INTEGER_16 Index: 23883 _d = 5D4B _h
	FB <u>L Compare 3</u> :	window for the com	nparison operation s	selected in <u>CC</u>	00690	
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0.00	%	100.00	0.00 %		
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	ГСОМ □МОТ	Scaling factor: 100	
C00693						
C00033	Parameter Name: C00693 L_Compa	re 4-5: Function				Data type: UNSIGNED_8 Index: 23882 _d = 5D4A _h
	Comparison opera • If the statemen		mparison operation	is true, the b	inary <i>bOut</i> output will b	e set to TRUE.
	Selection list					
	1	In1 = In2				
	2	ln1 > ln2				
	3	In1 < In2				

6	In1 < In2	
Subcodes	Lenze setting	Info
C00693/1	1: ln1 = ln2	L_Compare_4: Function
C00693/2	1: ln1 = ln2	L_Compare_5: Function
☑ Read access ☑ Write	e access	☐ COM ☐ MOT Scaling factor: 1

C00694

Parameter Name: C00694 L_Compa	Data type: INTEGER_16 Index: 23881 _d = 5D49 _h			
Hysteresis for the	comparison operati	on selected in <u>C006</u>	93	
Setting range (min.	value unit max. value)			
0.00	%	100.00		
Subcodes	Lenze setting		Info	
C00694/1	0.00 %		L Compare 4: Hysteresis	
C00694/2	0.00 %		L Compare 5: Hysteresis	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100				

C0069

C00695	Parameter Name:					Data type: INTEGER 16
	C00695 L_Compa	are 4-5: Window				Index: 23880 _d = 5D48 _h
	Window for the co	mparison operation	n selected in <u>C0069</u>	<u>3</u>		
	Setting range (min.	value unit max. value)				
	0.00	%	100.00			
	Subcodes	Lenze setting		Info		
	C00695/1	0.00 %		L_Compare	4: Window	
	C00695/2	0.00 %		L Compare	<u>5</u> : Window	
	☑ Read access ☑ Write	e access □ CINH □ PLC	STOP □ No transfer □	СОМ □МОТ	Scaling factor: 100	
C00696	Parameter Name: C00696 L_Offset	GainP_1: Offset				Data type: INTEGER_16 Index: 23879 _d = 5D47 _h
	The <u>L_OffsetGainF</u>	1 FB: Offset (addi	tive to the input sig	nal)		
	Setting range (min.	value unit max. value)		Lenze settin	g	
	-199.99	%	199.99	0.00 %		
	☑ Read access ☑ Write	e access	STOP No transfer	СОМ □МОТ	Scaling factor: 100	
600607						
C00697	Parameter Name: C00697 L_Offset	GainP_2: Offset				Data type: INTEGER_16 Index: 23878 _d = 5D46 _h
	The L_OffsetGainF	2_2 FB: Offset (addi	tive to the input sig	nal)		
	Setting range (min.	value unit max. value)		Lenze settin	g	
	-199.99	%	199.99	0.00 %		
	☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	СОМ □МОТ	Scaling factor: 100	
C00600						
C00698	Parameter Name: C00698 L_Offset	GainP_3: Offset				Data type: INTEGER_16 Index: 23877 _d = 5D45 _h
	The <u>L_OffsetGain</u>	3 FB: Offset (addi	tive to the input sig	nal)		
	Setting range (min.	value unit max. value)		Lenze settin	g	
	-199.99	%	199.99	0.00 %		
	☑ Read access ☑ Write	e access	STOP INo transfer	СОМ □МОТ	Scaling factor: 100	
500500						
C00699	Parameter Name: C00699 L_MulDiv	v_1: Parameter				Data type: INTEGER_16 Index: 23876 _d = 5D44 _h
	The <u>L_MulDiv_1</u> F	B: Numerator and o	denominator			
	Setting range (min.	value unit max. value)				
	-32767		32767			
	Subcodes	Lenze setting		Info		
	C00699/1	0		L MulDiv 1	: Numerator	
	<i>'</i> -					

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

L MulDiv 1: Denominator

C00699/2

10000

Parameter reference Parameter list | C00700

C00700

Parameter | Name:
C00700 | LA_NCtrl: Analog connection list

Data type: UNSIGNED_16 Index: 23875_d = 5D43_h

Connection parameters for "Actuating drive speed" application: 16-bit inputs

- Selection of the 16 bit output signals to be connected to the 16 bit input signals
- The selection list contains all 16 bit output signals which can be assigned to the 16 bit inputs displayed by the subcodes.

Selection list		
See <u>selection list</u>	: - analog signals	
Subcodes	Lenze setting	Info
C00700/1	20005: LS_ParFix_wDriveCtrl	LA NCtrl: wCANDriveControl (input for control word from CAN to device control)
C00700/2	20005: LS_ParFix_wDriveCtrl	LA NCtrl: wMCIDriveControl (input for control word from communication interface to device control)
C00700/3	20012: LS_ParFree_nC472_3_a	LA NCtrl: nTorqueMotLim_a (input for maximum torque in motor mode)
C00700/4	20013: LS_ParFree_nC472_4_a	LA NCtrl: nTorqueGenLim_a (input for maximum torque in generator mode)
C00700/5	0: Not connected	LA NCtrl: nPIDVpAdapt_a (input for adapting the PID controller gain)
C00700/6	0: Not connected	LA NCtrl: nPIDActValue_a (input for actual PID controller value)
C00700/7	16000: AIN1_Out	LA NCtrl: nMainSetValue_a (input for main speed setpoint)
C00700/8	0: Not connected	LA NCtrl: nAuxSetValue_a (input for additional speed setpoint)
C00700/9	0: Not connected	LA_NCtrl: nGPAnalogSwitchIn1_a (input for analog-value selector analog signal 1)
C00700/10	0: Not connected	LA NCtrl: nGPAnalogSwitchIn2_a (input for analog-value selector analog signal 2)
C00700/11	0: Not connected	LA NCtrl: nGPArithmetikIn1_a (input for arithmetic function analog signal 1)
C00700/12	0: Not connected	LA NCtrl: nGPArithmetikIn2_a (input for arithmetic function analog signal 2)
C00700/13	0: Not connected	LA NCtrl: nGPMulDivIn_a (input for analog signal for multiplication/division)
C00700/14	0: Not connected	LA NCtrl: nGPCompareIn1_a (input for comparison operation analog signal 1)
C00700/15	0: Not connected	LA NCtrl: nGPCompareIn2_a (input for comparison operation analog signal 2)
C00700/16	0: Not connected	LA NCtrl: nVoltageAdd_a (input for additive voltage boost)
C00700/17	0: Not connected	LA NCtrl: nPIDInfluence_a (input for influence signal of PID controller correcting variable)
C00700/18	0: Not connected	LA NCtrl: nPIDSetValue_a (input for PID controller setpoint)
C00700/19	0: Not connected	LA NCtrl: nPWMAngleOffset (input for pulse width modulation phase offset)
C00700/20	0: Not connected	LA NCtrl: nBoost_a (input for additional setpoint for the motor voltage at speed = 0)

Parameter Name: C00700 LA_NCtr	l: Analog connection list	Data type: UNSIGNED_16 Index: 23875 _d = 5D43 _h		
C00700/21	0: Not connected	LA NCtrl: wSMCtrl (interface to optional safety system)		
C00700/22	0: Not connected	Reserved		
C00700/23	0: Not connected	Reserved		
C00700/24	0: Not connected	Reserved		
C00700/25	0: Not connected	Reserved		
C00700/26	0: Not connected	LA NCtrl: wFreeIn1 (input for user signal 1)		
C00700/27	0: Not connected	LA NCtrl: wFreeIn2 (input for user signal 2)		
C00700/28	0: Not connected	LA NCtrl: wFreeIn3 (input for user signal 3)		
C00700/29	0: Not connected	LA NCtrl: wFreeIn4 (input for user signal 4)		
☑ Read access ☑ Writ	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

Parameter | Name:

C00701 | LA_NCtrl: Digital connection list

Data type: UNSIGNED_16 Index: 23874_d = 5D42_h

Connection parameters for "Actuating drive speed" application: Binary inputs

- Selection of the binary output signals to be connected to the binary input signals
- The selection list contains all binary output signals which can be assigned to the binary inputs mapped by the subcodes.

Selection list		
See selection lis	st - digital signals	
Subcodes	Lenze setting	Info
C00701/1	0: Not connected	LA_NCtrl: bCInh (control input for setting controller inhibit)
C00701/2	16008: Digln_Clnh	LA NCtrl: bFailReset (control input for error acknowledgement)
C00701/3	0: Not connected	LA NCtrl: bSetQuickstop (control input for quick stop request)
C00701/4	16002: DigIn_bln3	LA NCtrl: bSetDCBrake (control input for DC-injection braking request)
C00701/5	0: Not connected	LA_NCtrl: bRFG_Stop (control input for stopping the speed ramp function generator)
C00701/6	0: Not connected	LA_NCtrl: bRFG_0 (control input for setting the speed ramp function generator to 0)
C00701/7	0: Not connected	Reserved
C00701/8	16003: Digln_bln4	LA_NCtrl: bSetSpeedCcw (control input for change of direction of rotation)
C00701/9	16000: DigIn_bIn1	LA NCtrl: bJogSpeed1 (selection input for fixed setpoints)
C00701/10	16001: Digln_bln2	LA NCtrl: bJogSpeed2 (selection input for fixed setpoints)
C00701/11	0: Not connected	LA NCtrl: bJogSpeed4 (selection input for fixed setpoints)
C00701/12	0: Not connected	LA_NCtrl: bJogSpeed8 (selection input for fixed setpoints)

Parameter Name: C00701 LA_NC	trl: Digital connection list	Data type: UNSIGNED_1 Index: 23874 _d = 5D42
C00701/13	0: Not connected	LA NCtrl: bJogRamp1 (selection input for additional acceleration/deceleration times)
C00701/14	0: Not connected	LA NCtrl: bJogRamp2 (selection input for additional acceleration/deceleration times)
C00701/15	0: Not connected	LA NCtrl: bJogRamp4 (selection input for additional acceleration/deceleration times)
C00701/16	0: Not connected	LA NCtrl: bJogRamp8 (selection input for additional acceleration/deceleration times)
C00701/17	0: Not connected	LA_NCtrl: bMPOTInAct (control input for deactivation of motor potentiometer)
C00701/18	0: Not connected	LA_NCtrl: bMPOTUp (control input for motor potentiometer ramp-up)
C00701/19	0: Not connected	LA_NCtrl: bMPOTDown (control input for motor potentiometer ramp-down)
C00701/20	0: Not connected	LA NCtrl: bMBRKRelease (control input for manual holding brake release request
C00701/21	0: Not connected	LA NCtrl: bGPFree1 (control input for manual jog in positive direction request)
C00701/22	0: Not connected	LA NCtrl: bGPFree2 (control input for manual jog in negative direction request)
C00701/23	0: Not connected	LA NCtrl: bGPAnalogSwitchSet (control input for analog-value selector change-over)
C00701/24	0: Not connected	LA NCtrl: bGPDigitalDelayIn (input for digital signal with time delay)
C00701/25	0: Not connected	LA NCtrl: bGPLogicIn1 (input signal 1 for digital logic)
C00701/26	0: Not connected	LA NCtrl: bGPLogicIn2 (input signal 2 for digital logic)
C00701/27	0: Not connected	LA NCtrl: bGPLogicIn3 (input signal 3 for digital logic)
C00701/28	0: Not connected	LA NCtrl: bGPDFlipFlopInD (control input for DFlipFlop setting signal)
C00701/29	0: Not connected	LA_NCtrl: bGPDFlipFlopInClk (control input for DFlipFlop clock signal)
C00701/30	0: Not connected	LA_NCtrl: bGPDFlipFlopInClr (control input for DFlipFlop reset signal)
C00701/31	0: Not connected	LA_NCtrl: bMPotEnable (control input for activation of motor potentiometer)
C00701/32	0: Not connected	LA NCtrl: bPIDEnableInfluenceRamp (control input for activation of influence of output correcting variable of PID controller)
C00701/33	0: Not connected	LA NCtrl: bPIDIOff (control input for deactivation of PID controller I component)
C00701/34	20000: LS_ParFix_True	LA_NCtrl: bRLQCw (control input for activation of CW direction of rotation of speed setpoint)

Parameter Name: C00701 LA_NCtrl: Digital connection list Data type: UN Index: 2383		
C00701/35	0: Not connected	LA NCtrl: bRLQCcw (control input for activation of CCW direction of rotation of speed setpoint)
C00701/36	0: Not connected	Reserved
C00701/37	0: Not connected	Reserved
C00701/38	0: Not connected	Reserved
C00701/39	0: Not connected	Reserved
C00701/40	0: Not connected	Reserved
C00701/41	0: Not connected	LA_NCtrl: bFreeIn1 (input for binary user signal 1)
C00701/42	0: Not connected	LA_NCtrl: bFreeIn2 (input for binary user signal 2)
C00701/43	0: Not connected	LA NCtrl: bFreeIn3 (input for binary user signal 3)
C00701/44	0: Not connected	LA NCtrl: bFreeIn4 (input for binary user signal 4)
C00701/45	0: Not connected	LA NCtrl: bFreeIn5 (input for binary user signal 5)
C00701/46	0: Not connected	LA NCtrl: bFreeIn6 (input for binary user signal 6)
C00701/47	0: Not connected	LA_NCtrl: bFreeIn7 (input for binary user signal 7)
C00701/48	0: Not connected	LA_NCtrl: bFreeIn8 (input for binary user signal 8)
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer □	□ COM □ MOT Scaling factor: 1

Parameter | Name:

C00705 | LA_NCtrl_Out: Analog signal list

Data type: UNSIGNED_16
Index: 23870d = 5D3Eh

This code is for device-internal use only and must not be written to by the user!

C00706

Parameter | Name:

C00706 | LA_NCtrl_Out digital signal list

This code is for device-internal use only and must not be written to by the user!

C00710

Parameter | Name:

C00710 | LA_TabPos: Analog connection list

Data type: UNSIGNED_16
Index: 23865_d = 5D39_h

Connection parameters for "Table positioning" application: 16-bit inputs

- Selection of the 16 bit output signals to be connected to the 16 bit input signals
- The selection list contains all 16 bit output signals which can be assigned to the 16 bit inputs displayed by the subcodes.

Selection list		
See selection list - analog signals		
Subcodes	Lenze setting	Info
C00710/1	0: Not connected	<u>LA_TabPos</u> : wCanDriveControl (input for control word from CAN to device control)
C00710/2	0: Not connected	<u>LA_TabPos</u> : wMciDriveControl (input for control word from communication interface to device control)

Parameter Name: C00710 LA_Ta	abPos: Analog connection list	Data type: UNSIGNED_1 Index: 23865 _d = 5D39
C00710/3	0: Not connected	LA TabPos: nTorqueMotLim_a (input for maximum torque in motor mode)
C00710/4	0: Not connected	<u>LA_TabPos</u> : nTorqueGenLim_a (input for maximum torque in generator mode)
C00710/5	0: Not connected	LA TabPos: nMainSetValue_a (input for main speed setpoint)
C00710/6	0: Not connected	LA TabPos: nAuxSetValue_a (input for additional speed setpoint)
C00710/7	0: Not connected	LA TabPos: wMckCtrl1 (input for MCK control word 1)
C00710/8	0: Not connected	LA TabPos: wMckCtrl2 (input for MCK control word 2)
C00710/9	0: Not connected	<u>LA_TabPos</u> : wMckOperationMode (input for selection of MCK operating mode)
C00710/10	0: Not connected	LA TabPos: wPosProfileMode (input for selection of MCK positioning mode in positioning mode)
C00710/11	0: Not connected	LA TabPos: wPosProfileNo (input for MCK positioning profile number in positioning mode)
C00710/12	0: Not connected	LA_TabPos: nGPAnalogSwitchIn1_a (input for analog-value selector analog signal 1)
C00710/13	0: Not connected	<u>LA_TabPos</u> : nGPAnalogSwitchIn2_a (input for analog-value selector analog signal 2)
C00710/14	0: Not connected	<u>LA_TabPos</u> : nGPArithmetikIn1_a (input for arithmetic function analog signal 1)
C00710/15	0: Not connected	<u>LA_TabPos</u> : nGPArithmetikIn2_a (input for arithmetic function analog signal 2)
C00710/16	0: Not connected	<u>LA_TabPos</u> : nGPMulDivIn_a (input for analog signal for multiplication/division)
C00710/17	0: Not connected	LA TabPos: nGPCompareIn1_a (input for comparison operation analog signal 1)
C00710/18	0: Not connected	LA_TabPos: nGPCompareIn2_a (input for comparison operation analog signal 2)
C00710/19	0: Not connected	LA_TabPos: wGPCounter1LdVal (input for load value for counter module 1)
C00710/20	0: Not connected	LA_TabPos: wGPCounter1CmpVal (input for comparison value for counter module 1)
C00710/21	0: Not connected	LA_TabPos: nSpeedOverride_a (input for speed override)
C00710/22	0: Not connected	LA_TabPos: nAccOverride_a (input for acceleration override)
C00710/23	0: Not connected	LA_TabPos: wFreeIn1 (input for user signal 1)
C00710/24	0: Not connected	LA_TabPos: wFreeIn2 (input for user signal 2)
C00710/25	0: Not connected	LA_TabPos: wFreeIn3 (input for user signal 3)
C00710/26	0: Not connected	LA TabPos: wFreeIn4 (input for user signal 4)

Parameter Name: C00710 LA_TabP	os: Analog connection list	Data type: UNSIGNED_16 Index: 23865 _d = 5D39 _h
C00710/27	0: Not connected	LA TabPos: nPosCtrlOutLimit (input for correcting variable limitation of position controller)
C00710/28	0: Not connected	LA TabPos: nPosCtrlPAdapt (input for adapting the position controller gain)
C00710/29	0: Not connected	LA TabPos: wSMCtrl (interface to optional safety system)
C00710/30	0: Not connected	LA TabPos: wPosProfileUnitsLW (input for selecting the target position in [units], Low-Word)
C00710/31	0: Not connected	LA TabPos: wPosProfileUnitsHW (input for selecting the target position in [units], High-Word)
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

Parameter | Name:

C00711 | LA_TabPos: Digital connection list

Data type: UNSIGNED_16
Index: 23864_d = 5D38_h

Connection parameters for "Table positioning" application: Binary inputs

- Selection of the binary output signals to be connected to the binary input signals
- The selection list contains all binary output signals which can be assigned to the binary inputs mapped by the subcodes.

Selection list		
See selection list - digital signals		
Subcodes	Lenze setting	Info
C00711/1	0: Not connected	LA TabPos: bCInh (control input for setting controller inhibit)
C00711/2	0: Not connected	LA TabPos: bFailReset (control input for error acknowledgement)
C00711/3	0: Not connected	LA_TabPos: bSetQuickstop (control input for quick stop request)
C00711/4	0: Not connected	LA_TabPos: bSetSpeedCcw (control input for negation of speed direction)
C00711/5	0: Not connected	LA TabPos: blogSpeed1 (control input for fixed speed selection valency 1)
C00711/6	0: Not connected	LA_TabPos: bJogSpeed2 (control input for fixed speed selection valency 2)
C00711/7	0: Not connected	LA TabPos: bMPotEnable (control input for activation of motor potentiometer)
C00711/8	0: Not connected	LA TabPos: bMPotUp (control input for motor potentiometer ramp-up)
C00711/9	0: Not connected	LA_TabPos: bMPotDown (control input for motor potentiometer ramp-down)
C00711/10	0: Not connected	LA_TabPos: bMBrakeRelease (control input for manual holding brake release request)
C00711/11	0: Not connected	LA TabPos: bPosCtrlOn (control input for activation of position controller)
C00711/12	0: Not connected	LA TabPos: bLimitSwitchPos (input for positive hardware limit switch signal)
C00711/13	0: Not connected	LA TabPos: bLimitSwitchNeg (input for negative hardware limit switch signal)

Parameter Name: C00711 LA_Ta	abPos: Digital connection list	Data type: UNSIGNED_1 Index: 23864 _d = 5D38
C00711/14	0: Not connected	LA TabPos: bReleaseLimitSwitch (control input for hardware limit switch retracting request)
C00711/15	0: Not connected	LA TabPos: bManJogPos (control input for manual jog in positive direction request)
C00711/16	0: Not connected	LA TabPos: bManJogNeg (control input for manual jog in negative direction request)
C00711/17	0: Not connected	LA_TabPos: bManEnable2ndSpeed (control input for activation of the second manual speed for manual jog)
C00711/18	0: Not connected	LA TabPos: bEnableSpeedOverride (control input for activation of speed override)
C00711/19	0: Not connected	LA <u>TabPos</u> : bEnableAccOverride (control input for activation of acceleration override)
C00711/20	0: Not connected	LA TabPos: bHomeStartStop (control input for start/stop homing)
C00711/21	0: Not connected	LA TabPos: bHomeSetPosition (control input for setting the home position)
C00711/22	0: Not connected	LA TabPos: bHomeResetPosition (control input for reset of "Home position known")
C00711/23	0: Not connected	LA TabPos: bHomeMark (input for pre-stop signal for homing)
C00711/24	0: Not connected	<u>LA TabPos</u> : bPosSetProfilePosition (control input for accepting the profile position in the profile data set)
C00711/25	0: Not connected	LA TabPos: bPosSetActualPosition (control input for accepting the current position in the profile data set)
C00711/26	0: Not connected	LA TabPos: bPosExecute (control input for positioning start)
C00711/27	0: Not connected	LA TabPos: bPosFinishTarget (control input for completion of positioning to target position)
C00711/28	0: Not connected	LA TabPos: bPosDisableFollowProfile (control input for suppression of sequence profile linkage)
C00711/29	0: Not connected	LA TabPos: bPosStop (control input for interruption of profile generation by ramp-down procedure)
C00711/30	0: Not connected	<u>LA_TabPos</u> : bGPAnalogSwitchSet (control input for analog-value selector change-over)
C00711/31	0: Not connected	LA TabPos: bGPDigitalDelayIn (input for digital signal with time delay)
C00711/32	0: Not connected	LA TabPos: bGPLogicIn1 (input signal 1 for digital logic)
C00711/33	0: Not connected	LA TabPos: bGPLogicIn2 (input signal 2 for digital logic)
C00711/34	0: Not connected	LA TabPos: bGPLogicIn3 (input signal 3 for digital logic)
C00711/35	0: Not connected	<u>LA_TabPos</u> : bGPDFlipFlop_InD (control input for DFlipFlop setting signal)

Parameter Name: C00711 LA_Ta	bPos: Digital connection list	Data type: UNSIGNED_1 Index: 23864 _d = 5D38
C00711/36	0: Not connected	LA TabPos: bGPDFlipFlop_InClk (control input for DFlipFlop clock signal)
C00711/37	0: Not connected	LA TabPos: bGPDFlipFlop_InClr (control input for DFlipFlop reset signal)
C00711/38	0: Not connected	LA TabPos: bGPCounter1ClkUp (control input for up-counting counter module 1)
C00711/39	0: Not connected	LA TabPos: bGPCounter1ClkDown (control input for down-counting counter module 1)
C00711/40	0: Not connected	LA TabPos: bGPCounter1Load (control input for load value acceptance in counter module 1)
C00711/41	0: Not connected	LA TabPos: bMckOperationMode_1 (control input for MCK operating mode changeover valency 1)
C00711/42	0: Not connected	LA TabPos: bMckOperationMode_2 (control input for MCK operating mode changeover valency 2)
C00711/43	0: Not connected	LA TabPos: bMckOperationMode_4 (control input for MCK operating mode changeover valency 4)
C00711/44	0: Not connected	LA TabPos: bMckOperationMode_8 (control input for MCK operating mode changeover valency 8)
C00711/45	0: Not connected	LA TabPos: bPosProfileNo_1 (control input for selection of profile number valency 1)
C00711/46	0: Not connected	LA TabPos: bPosProfileNo_2 (control input for selection of profile number valency 2)
C00711/47	0: Not connected	LA TabPos: bPosProfileNo_4 (control input for selection of profile number valency 4)
C00711/48	0: Not connected	LA TabPos: bPosProfileNo_8 (control input for selection of profile number valency 8)
C00711/49	0: Not connected	LA TabPos: bFreeIn1 (input for binary user signal 1)
C00711/50	0: Not connected	LA_TabPos: bFreeIn2 (input for binary user signal 2)
C00711/51	0: Not connected	LA TabPos: bFreeIn3 (input for binary user signal 3)
C00711/52	0: Not connected	LA TabPos: bFreeIn4 (input for binary user signal 4)
C00711/53	0: Not connected	LA TabPos: bFreeIn5 (input for binary user signal 5)
C00711/54	0: Not connected	LA TabPos: bFreeIn6 (input for binary user signal 6)
C00711/55	0: Not connected	LA TabPos: bFreeIn7 (input for binary user signal 7)
C00711/56	0: Not connected	LA_TabPos: bFreeIn8 (input for binary user signal 8)

Parameter reference Parameter list | C00712

C00712

Connection parameters for "Table positioning" application: 32-bit inputs

- Selection of the 32-bit output signals for connection with the 32-bit input signals
- The selection list contains all 32-bit output signals which can be assigned to the 32-bit inputs mapped by the subcodes.

Selection list		
See selection list	- angle signals	
Subcodes	Lenze setting	Info
C00712/1	0: Not connected	LA TabPos: dnPosProfilePosition (input for selecting the target position in [increments])
C00712/2	0: Not connected	LA TabPos: dnFreeIn1 (input for 32-bit user signal 1)
C00712/3	0: Not connected	LA TabPos: dnFreeIn2 (input for 32-bit user signal 2)
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

C00715

Parameter | Name:
C00715 | LA_TabPos_Out: Analog signal list

This code is for device-internal use only and must not be written to by the user!

C00716

Parameter | Name:

C00716 | LA_TabPos_Out: Digital signal list

This code is for device-internal use only and must not be written to by the user!

C00717

Parameter | Name:
C00717 | LA_TabPos_Out: phi signal list

This code is for device-internal use only and must not be written to by the user!

C00720

Parameter | Name:

C00720 | L_DigitalDelay_1: Delay

Switch-on/off delay time

Setting range (min. value | unit | max. value)

0.000 s 3600.000

Subcodes Lenze setting Info

C00720/1 0.000 s L DigitalDelay 1: ON delay

C00720/2 0.000 s L DigitalDelay 1: OFF delay

© Read access © Write access CINH PLC STOP No transfer COM MOT Scaling factor: 1000

Data type: UNSIGNED_32 Index: 23855_d = 5D2F_h

Parameter Name: C00721 L_Digital	Data type: UNSIGNED_32 Index: 23854 _d = 5D2E _h		
Switch-on/off dela	ay time		
Setting range (min.	value unit max. value)		
0.000	s 3600.000		
Subcodes	Lenze setting		Info
C00721/1	0.000 s		L_DigitalDelay 2: ON delay
C00721/2 0.000 s			L_DigitalDelay 2: OFF delay
C00721/3	0.000 s		L_DigitalDelay_3: ON delay
C00721/4	0.000 s		L_DigitalDelay_3: OFF delay
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1000			

C00725

Parameter | Name:

C00725 | Current switching frequency

Data type: UNSIGNED_8 Index: 23850_d = 5D2A_h

Display of the current switching frequency

- In <u>C00018</u> you can choose between a drive-optimised setting for good smooth-running characteristics and an inverter loss-optimised setting (min. Pv).
- Both possibilities offer fixed and variable switching frequencies.
- When a variable switching frequency is selected in C00018, the switching frequency may change as a function of the load and rotational frequency.

Selection list (read only)		
1	4 kHz var./drive-optimised	
2	8 kHz var./drive-optimised	
3	16 kHz var./drive-optimised	
5	2 kHz constant/drive-optimised	
6	4 kHz constant/drive-optimised	
7	8 kHz constant/drive-optimised	
8	16 kHz constant/drive-optimised	
11	4 kHz var./min. Pv	
12	8 kHz var./min. Pv	
13	16 kHz var./min. Pv	
14	Reserved	
15	2 kHz constant/min. Pv	
16	4 kHz constant/min. Pv	
17	8 kHz constant/min. Pv	
18	16 kHz constant/min. Pv	
21	8 kHz var./drive-opt./4 kHz min	
22	16 kHz var./drive-opt./4 kHz min	
23	16 kHz var./drive-opt./8 kHz min	
31	8 kHz var./min. Pv/4 kHz min	
32	16 kHz var./min. Pv/4 kHz min	
33	16 kHz var./min. Pv/8 kHz min	
□ Dandanana □ Muita	DOING DRIGGTOR MALE	

 $\ \square$ Read access $\ \square$ Write access $\ \square$ CINH $\ \square$ PLC STOP $\ \square$ No transfer $\ \square$ COM $\ \square$ MOT $\$ Scaling factor: 1

C00726

Parameter | Name:
C00726 | Current limit values

Data type: UNSIGNED_8 Index: 23849_d = 5D29_h

This code is for device-internal use only and must not be written to by the user!

Parameter reference Parameter list | C00727

C00727

C00728

C00729

C00730

C00731

C00732

Parameter Name: C00727 LS_Ke	ypad digital values		Data type: UNSIGI Index: 23848 _d =	
Execution of co	ntrol commands for ke	ypad operation		
Setting range (n	nin. value unit max. value)			
0		1		
Subcodes	Lenze setting		Info	
C00727/1	0		"1" ≡ request quick stop	
C00727/2	0		"1" ≡ request DC-injection braking	
C00727/3	0		"1" ≡ request change of direction of rotation	
C00727/4	0		"1" ≡ request fixed speed setpoint 1	
C00727/5	0		"1" ≡ request fixed speed setpoint 2	
C00727/6	0		"1" = motor potentiometer: request activation	
C00727/7	0		"1" = motor potentiometer: request pos. acceleratio	n
C00727/8	0		"1" = motor potentiometer: request neg. acceleration	
· · · · · · · · · · · · · · · · · · ·	Vrite access □ CINH □ PLC	STOP No transfer [· · · · · · · · · · · · · · · · · · ·	
Parameter Name:			Data type: INTEG	ER 16
	d analog values		Index: 23847 _d =	
Selection of diff	ferent setpoints when	operating via keyp	ad	
Setting range (n	nin. value unit max. value)			
-199.99	%	199.99		
Subcodes	Lenze setting		Info	
C00728/1	100.00 %		Torque limit in motor mode	
C00728/2	100.00 %		Torque limit in generator mode	
C00728/3	0.00 %		Setpoint speed	
☑ Read access ☑ V	Vrite access □ CINH □ PLC	STOP No transfer	□ COM □ MOT Scaling factor: 100	
Parameter Name:			Data type: INTEG	ER 16
C00729 Remo	te: Setpoint selection		Index: 23846 _d =	
Setting range (n	nin. value unit max. value)			
-199.99		199.99		
Subcodes	Lenze setting		Info	
C00729/1	0.00		Remote: Setpoint keypad	
C00729/2	0.00		Remote: Setpoint PC	
☑ Read access ☑ V	Vrite access □ CINH □ PLC	STOP I No transfer	□ COM □ MOT Scaling factor: 100	
Parameter Name:			Data type: UNSIGN	ED 32
•	oscope scanning interv	al	Index: 23845 _d =	
This code is for	device-internal use on	ly and must not be	written to by the user!	
Parameter Name:			Data type: UNSIGN	ED 32
	oscope recording lengt	h	Index: 23844 _d =	
This code is for	device-internal use on	ly and must not be	written to by the user!	
Parameter Name:			Data type: UNSIGI	NED 8
	oscope command		Index: 23843 _d =	
This code is for	device-internal use on	ly and must not be	written to by the user!	

Parameter reference Parameter list | C00734

C00734		
	Parameter Name: C00734 Oscilloscope trigger channel selection	Data type: UNSIGNED_16 Index: 23841 _d = 5D21 _h
	This code is for device-internal use only and must not be written to by the user!	
C00735		
	Parameter Name: C00735 Oscilloscope channel source type	Data type: UNSIGNED_8 Index: 23840 _d = 5D20 _h
	This code is for device-internal use only and must not be written to by the user!	
C00736	Parameter Name:	Data type: UNSIGNED_16 Index: 23839 _d = 5D1F _h
	C00736 Oscilloscope data type/data width This code is for device-internal use only and must not be written to by the user!	111dex. 23033d - 3011h
	This code is for device internal use only and must not be infined to by the user.	
C00740	Parameter Name:	Data type: UNSIGNED_32
	C00740 Oscilloscope offset variables	Index: 23835 _d = 5D1B _h
	This code is for device-internal use only and must not be written to by the user!	
C00741	Parameter Name:	Data type: UNSIGNED 8
	C00741 Oscilloscope trigger mode	Index: 23834 _d = 5D1A _h
	This code is for device-internal use only and must not be written to by the user!	
C00742		
	Parameter Name: C00742 Oscilloscope trigger delay	Data type: INTEGER_16 Index: 23833 _d = 5D19 _h
	This code is for device-internal use only and must not be written to by the user!	
C00743		
200743	Parameter Name: C00743 Oscilloscope trigger level	Data type: UNSIGNED_32 Index: 23832 _d = 5D18 _h
	This code is for device-internal use only and must not be written to by the user!	<u> </u>
C00744	Parameter Name:	Data type: UNSIGNED_32
	C00744 Oscilloscope trigger mask This code is for device-internal use only and must not be written to by the user!	Index: 23831 _d = 5D17 _h
	This code is for device internal use only and must not be written to by the user.	
C00746	Parameter Name:	Data type: UNSIGNED_32
	C00746 Oscilloscope trigger counter	Index: 23829 _d = 5D15 _h
	This code is for device-internal use only and must not be written to by the user!	
C00747	Parameter Name:	Data type: UNSIGNED 16
	C00747 Oscilloscope status word	Index: 23828 _d = 5D14 _h
	This code is for device-internal use only and must not be written to by the user!	
C00748		
	Parameter Name: C00748 Oscilloscope no. of measured values	Data type: UNSIGNED_32 Index: 23827 _d = 5D13 _h
	This code is for device-internal use only and must not be written to by the user!	
C00749		
200749	Parameter Name: C00749 Oscilloscope recording	Data type: UNSIGNED_32 Index: 23826 _d = 5D12 _h
	This code is for device-internal use only and must not be written to by the user!	

Parameter reference Parameter list | C00750

C00750

Parameter | Name:

C00750 | Select. of BU oscillos. channels

This code is for device-internal use only and must not be written to by the user!

C00751

Parameter | Name:

C00751 | Oscilloscope data memory

Data type: UNSIGNED_32
Index: 23824_d = 5D10_h

This code is for device-internal use only and must not be written to by the user!

C00753

Parameter | Name:

C00753 | Oscilloscope data memory octet string

This code is for device-internal use only and must not be written to by the user!

C00760

Parameter | Name: Data type: UNSIGNED_16
 C00760 | LA_SwitchPos: Analog connection list
 Index: $23815_d = 5007_h$

Connection parameters for "Switch-off positioning" application: 16-bi inputs

- Selection of the 16 bit output signals to be connected to the 16 bit input signals
- The selection list contains all 16 bit output signals which can be assigned to the 16 bit inputs displayed by the subcodes.

Selection list		
See <u>selection li</u>	st - analog signals	
Subcodes Lenze setting		Info
C00760/1	0: Not connected	<u>LA SwitchPos</u> : wCANDriveControl (input for control word from CAN to device control)
C00760/2	0: Not connected	LA <u>SwitchPos</u> : wMCIDriveControl (input for control word from communication interface to device control)
C00760/3	0: Not connected	<pre>LA_SwitchPos: nVoltageAdd_a (input for additive voltage impression)</pre>
C00760/4	0: Not connected	LA_SwitchPos: nBoost_a (input for additional setpoint for the motor voltage at speed = 0)
C00760/5	0: Not connected	<u>LA_SwitchPos</u> : nPWMAngleOffset (input for additional offset for the electrical angle of rotation)
C00760/6	0: Not connected	LA <u>SwitchPos</u> : nTorqueMotLim_a (input for maximum torque in motor mode)
C00760/7	0: Not connected	LA SwitchPos: nTorqueGenLim_a (input for maximum torque in generator mode)
C00760/8	0: Not connected	<u>LA SwitchPos</u> : nMainSetValue_a (input for main speed setpoint)
C00760/9	0: Not connected	<u>LA SwitchPos</u> : nAuxSetValue_a (input for additional speed setpoint)
C00760/10	0: Not connected	<u>LA SwitchPos</u> : nGPAnalogSwitchIn1_a (input for analog-value selector analog signal 1)
C00760/11	0: Not connected	<u>LA SwitchPos</u> : nGPAnalogSwitchIn2_a (input for analog-value selector analog signal 2)
C00760/12	0: Not connected	LA SwitchPos: nGPArithmetikIn1_a (input for arithmetic function analog signal 1)
C00760/13	0: Not connected	LA_SwitchPos: nGPArithmetikIn2_a (input for arithmetic function analog signal 2)
C00760/14	0: Not connected	<u>LA_SwitchPos</u> : nGPMulDivIn_a (input for analog signal for multiplication/division)

Parameter Name: C00760 LA_Swi	tchPos: Analog connection list	Data type: UNSIGNED_16 Index: 23815 _d = 5D07 _h		
C00760/15	0: Not connected	LA SwitchPos: nGPCompareIn1_a (input for comparison operation analog signal 1)		
C00760/16	0: Not connected	LA_SwitchPos: nGPCompareIn2_a (input for comparison operation analog signal 2)		
C00760/17	0: Not connected	LA SwitchPos: wSMCtrl (interface to optional safety system)		
C00760/18	0: Not connected	Reserved		
C00760/19	0: Not connected	Reserved		
C00760/20	0: Not connected	Reserved		
C00760/21	0: Not connected	Reserved		
C00760/22	0: Not connected	LA SwitchPos: wFreeIn1 (input for user signal 1)		
C00760/23	0: Not connected	LA SwitchPos: wFreeIn2 (input for user signal 2)		
C00760/24	0: Not connected	LA SwitchPos: wFreeIn3 (input for user signal 3)		
C00760/25	0: Not connected	LA_SwitchPos: wFreeIn4 (input for user signal 4)		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

Parameter | Name:

C00761 | LA_SwitchPos: Digital connection list

Data type: UNSIGNED_16 Index: 23814_d = 5D06_h

Connection parameters for "Switch-off positioning" application: Binary inputs

- Selection of the binary output signals to be connected to the binary input signals
- The selection list contains all binary output signals which can be assigned to the binary inputs mapped by the subcodes.

Selection list		
See <u>selection list</u>	- digital signals	
Subcodes	Lenze setting	Info
C00761/1	0: Not connected	LA SwitchPos: bCInh (control input for setting controller inhibit)
C00761/2	0: Not connected	LA SwitchPos: bFailReset (control input for error acknowledgement)
C00761/3	0: Not connected	LA SwitchPos: bSetQuickstop (control input for quick stop request)
C00761/4	0: Not connected	LA SwitchPos: bSetDCBrake (control input for DC-injection braking request)
C00761/5	0: Not connected	LA SwitchPos: bRFG_Stop (control input for stopping the speed ramp function generator)
C00761/6	0: Not connected	LA SwitchPos: bSetSpeedCcw (control input for change of direction of rotation)
C00761/7	0: Not connected	LA SwitchPos: bRLQCw (control input for activation of CW rotation (fail-safe))
C00761/8	0: Not connected	LA SwitchPos: bRLQCcw (control input for activation of CCW rotation (fail-safe))
C00761/9	0: Not connected	LA SwitchPos: bJogCtrlInputSel1 (selection input 1 for binary coded selection of the switch-off position 1 3)

Parameter Name: C00761 LA_Sv	witchPos: Digital connection list	Data type: UNSIGNED_1: Index: 23814 _d = 5D06
C00761/10	0: Not connected	LA SwitchPos: bJogCtrlInputSel2 (selection input 2 for binary coded selection of the switch-off position 1 3)
C00761/11	0: Not connected	LA_SwitchPos: bJogCtrlRfgIn (control input for setpoint generator ramp-down)
C00761/12	0: Not connected	LA SwitchPos: bJogCtrlJog1 (selection input 1 for overriding fixed setpoints (JOG setpoints) for the main setpoint)
C00761/13	0: Not connected	LA SwitchPos: bJogCtrlJog2 (selection input 2 for overriding fixed setpoints (JOG setpoints) for the main setpoint)
C00761/14	0: Not connected	LA_SwitchPos: bJogCtrlSlowDown1 (control input for selection of pre-switch off 1)
C00761/15	0: Not connected	LA_SwitchPos: bJogCtrlStop1 (control input for stop function 1)
C00761/16	0: Not connected	LA_SwitchPos: bJogCtrlSlowDown2 (control input for selection of pre-switch off 2)
C00761/17	0: Not connected	LA_SwitchPos: bJogCtrlStop2 (control input for stop function 2)
C00761/18	0: Not connected	LA_SwitchPos: bJogCtrlSlowDown3 (control input for selection of pre-switch off 3)
C00761/19	0: Not connected	LA_SwitchPos: bJogCtrlStop3 (control input for stop function 3)
C00761/20	0: Not connected	LA_SwitchPos: bJogSpeed4 (selection input for fixed setpoints)
C00761/21	0: Not connected	LA_SwitchPos: bJogSpeed8 (selection input for fixed setpoints)
C00761/22	0: Not connected	LA_SwitchPos: bJogRamp1 (selection input for additional acceleration/deceleration times)
C00761/23	0: Not connected	LA SwitchPos: bJogRamp2 (selection input for additional acceleration/deceleration times)
C00761/24	0: Not connected	LA SwitchPos: bJogRamp4 (selection input for additional acceleration/deceleration times)
C00761/25	0: Not connected	LA SwitchPos: bJogRamp8 (selection input for additional acceleration/deceleration times)
C00761/26	0: Not connected	LA_SwitchPos: bMBrkRelease (control input for manual holding brake release request
C00761/27	0: Not connected	<u>LA_SwitchPos</u> : bGPAnalogSwitchSet (control input for analog-value selector change-over)
C00761/28	0: Not connected	LA_SwitchPos: bGPDigitalDelayIn (input for digital signal with time delay)
C00761/29	0: Not connected	LA_SwitchPos: bGPLogicIn1 (input signal 1 for digital logic)
C00761/30	0: Not connected	LA_SwitchPos: bGPLogicIn2 (input signal 2 for digital logic)
C00761/31	0: Not connected	LA_SwitchPos: bGPLogicIn3 (input signal 3 for digital logic)
C00761/32	0: Not connected	LA_SwitchPos: bGPDFlipFlop_InD (control input for DFlipFlop setting signal)

Parameter Name: C00761 LA_Sv	vitchPos: Digital connection list		Data type: UNSIGNED_16 Index: 23814 _d = 5D06 _h		
C00761/33	0: Not connected LA SwitchPos: bGPDFlipFlop_InCl (control input for DFlipFlop clock s				
C00761/34	0: Not connected	LA SwitchPos: bGPDFlipFlop_InClr (control input for DFlipFlop reset si			
C00761/35	0: Not connected	Reserved			
C00761/36	0: Not connected	Reserved			
C00761/37	0: Not connected	Reserved			
C00761/38	0: Not connected	Reserved			
C00761/39	0: Not connected	Reserved			
C00761/40	0: Not connected	LA SwitchPos: bFreeIn1 (input for binary user signal 1)			
C00761/41	0: Not connected	LA SwitchPos: bFreeIn2 (input for binary user signal 2)			
C00761/42	0: Not connected	LA SwitchPos: bFreeIn3 (input for binary user signal 3)			
C00761/43	0: Not connected	LA SwitchPos: bFreeIn4 (input for binary user signal 4)			
C00761/44	0: Not connected	LA SwitchPos: bFreeIn5 (input for binary user signal 5)			
C00761/45	0: Not connected	LA SwitchPos: bFreeIn6 (input for binary user signal 6)			
C00761/46	0: Not connected	LA SwitchPos: bFreeIn7 (input for binary user signal 7)			
C00761/47	0: Not connected	LA SwitchPos: bFreeIn8 (input for binary user signal 8)			
☑ Read access ☑ V	Write access □ CINH □ PLC STOP □ No trai	nsfer COM MOT Scaling factor: 1			
Parameter Name: C00762 LA_Sv	vitchPos: phi connection list		Data type: UNSIGNED_1 Index: 23813 _d = 5D05		
This code is for	device-internal use only and must r	not be written to by the user!			
Parameter Name: C00765 LA_Sv	Data type: UNSIGNED_1 Index: 23810 _d = 5D02				
This code is for	device-internal use only and must r	not be written to by the user!			
Parameter Name: C00766 LA_SwitchPos_Out: Digital signal list Data type: UNSIG					
This code is for	device-internal use only and must r	not be written to by the user!			
Parameter Name: C00767 LA Sv	vitchPos_Out: phi signal list		Data type: UNSIGNED_1 Index: 23808 _d = 5D00		

This code is for device-internal use only and must not be written to by the user!

C00762

C00765

C00766

C00767

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00800

	n	R	n	

C00800						
200800	Parameter Name: C00800 L_MPot_	1: Upper limit				Data type: INTEGER_16 Index: 23775 _d = 5CDF _h
	The <u>L_MPot_1</u> FB:	Upper limit of the r	motor potentiomete	r function		
	Setting range (min. value unit max. value)			Lenze setting		
	-199.99	%	199.99	100.00 %		
	☑ Read access ☑ Write	e access	STOP No transfer	сом 🗆 мот	Scaling factor: 100	
_						
C00801	Parameter Name: C00801 L_MPot_	1: Lower limit				Data type: INTEGER_16 Index: 23774 _d = 5CDE _h
	The <u>L_MPot_1</u> FB:	Lower limit of the r	notor potentiomete	r function		
	Setting range (min.	value unit max. value)		Lenze settin	g	
	-199.99	%	199.99	-100.00 %		
	☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	сом 🗆 мот	Scaling factor: 100	
C00802	Parameter Name: C00802 L_MPot_	1: Acceleration time	e			Data type: UNSIGNED_16 Index: 23773 _d = 5CDD _h
	The <u>L_MPot_1</u> FB:	Acceleration time of	of the motor potenti	ometer func	tion	
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0.1	s	6000.0	10.0 s		
	☑ Read access ☑ Write	e access	STOP No transfer	сом 🗆 мот	Scaling factor: 10	
C00803						
C00803	Parameter Name: C00803 L_MPot_	1: Deceleration tim	e			Data type: UNSIGNED_16 Index: 23772 _d = 5CDC _h
	The <u>L_MPot_1</u> FB:	Deceleration time of	of the motor potent	iometer func	tion	
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0.1	s	6000.0	10.0 s		
	☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	сом 🗆 мот	Scaling factor: 10	
C00004						
C00804	Parameter Name: C00804 L_MPot_	1: Inactive fct.				Data type: UNSIGNED_8 Index: 23771 _d = 5CDB _h
	The <u>L_MPot_1</u> FB:	Selection of the res	ponse if the motor	ootentiomete	er is deactivated via inpu	it bInAct
	Selection list (Lenze	setting printed in bold)		Info		
	0	0 Retain value		Retain output value		
	1	Deceleration to 0		Deceleration	n via ramp to 0	
	2	Deceleration to lo	wer limit	Deceleration	n via ramp to the lower li	imit (<u>C00801</u>)
	3	Without ramp to 0)	Step change to 0		
	4	Without ramp to I	ower limit	Jump to low	ver limit (<u>C00800</u>)	
	5	Acceleration to up	per limit	Acceleration	n via ramp to upper limit	(<u>C00800</u>)
	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1					
	☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	сом 🗆 мот	Scaling factor: 1	

Parameter | Name:

C00805 | L_MPot_1: Init fct.

The L_MPot_1 FB: Selection of the response at device switch-on

Selection list (Lenze setting printed in bold)

O Load last value

1 Load lower limit

2 Load 0

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00806

 Parameter | Name:
 Data type: UNSIGNED_8

 C00806 | L MPot 1: Use
 Index: 23769 d = 5CD9 h

The L MPot 1 FB: Use of the motor potentiometer

Selection list (Lenze setting printed in bold)		Info	
0 No		 The motor potentiometer is not used. The analog value applied to the nln_a input is looped through without any changes to the nOut_a output. 	
1	Yes	 The motor potentiometer is used. The analog value applied at the nIn_a input is led via the motor potentiometer and provided at the nOut_a output. 	

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00807

 Parameter | Name:
 Data type: INTEGER_16

 C00807 | L_NLim_1: Max.SkipFrq.
 Index: 23768_d = 5CD8_h

FB L NLim 1: Maximum blocking frequencies

Setting range (min. value unit max. value)			
0.00	%	199.99	
Subcodes	Lenze setting		Info
C00807/1	0.00 %		Maximum blocking frequency for zone 1
C00807/2	0.00 %		Maximum blocking frequency for zone 2
C00807/3	0.00 %		Maximum blocking frequency for zone 3
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	COM ☐ MOT Scaling factor: 100	

C00808

Parameter | Name:

C00808 | L_NLim_1: Min.SkipFrq.

Data type: INTEGER_16
Index: 23767_d = 5CD7_h

FB <u>L_NLim_1</u>: Minimum blocking frequencies

Calling warmen ()

Setting range (min. value unit max. value)			
0.00	%	199.99	
Subcodes	Lenze setting		Info
C00808/1	0.00 %		Minimum blocking frequency for zone 1
C00808/2	0.00 %		Minimum blocking frequency for zone 2
C00808/3	0.00 %		Minimum blocking frequency for zone 2
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP 🗆 No transfer 🗆	COM MOT Scaling factor: 100

Parameter reference Parameter list | C00809

C00809

Parameter Name: C00809 L_NLim_2: Max.SkipFrq.			Data type: INTEGER_16 Index: 23766 _d = 5CD6 _h
FB <u>L NLim 2</u> : Max	kimum blocking free	quencies	
Setting range (min. value unit max. value)			
0.00	%	199.99	
Subcodes	Lenze setting		Info
C00809/1 0.00 %			Maximum blocking frequency for zone 1
C00809/2	0.00 %		Maximum blocking frequency for zone 2
C00809/3	0.00 %		Maximum blocking frequency for zone 3
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ N			COM MOT Scaling factor: 100

C00810

Parameter Name: C00810 L_NLim_2: Min.SkipFrq.			Data type: INTEGER_16 Index: 23765 _d = 5CD5 _h
FB <u>L_NLim_2</u> : Min	imum blocking freq	uencies	
Setting range (min. value unit max. value)			
0.00	%	199.99	

0.00	70	155.55	
Subcodes	Lenze setting		Info
C00810/1	0.00 %		Minimum blocking frequency for zone 1
C00810/2	0.00 %		Minimum blocking frequency for zone 2
C00810/3	0.00 %		Minimum blocking frequency for zone 3

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100

C00811

Parameter Name: C00811 L_NLim_1: Current output value	Data type: INTEGER_16 Index: 23764 _d = 5CD4 _h

From version 02.00.00

Display range (min. value unit max. value)			
-199.99	%	199.99	
Subcodes			Info
C00811/1			<u>L_NLim_1</u> : Current output value
C00811/2			<u>L_NLim_2</u> : Current output value
☑ Read access ☐ Write	access □ CINH □ PLC	STOP ☑ No transfer □	COM MOT Scaling factor: 100

Parameter Name: C00812 L_NLim:	Current status	Data type: UNSIGNED_16 Index: 23763 _d = 5CD3 _h
From version 02.00	0.00	
Display area (min. h	ex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:		
Bit 0	No blocking zone active	
Bit 1	Blocking zone 1 active	
Bit 2	Blocking zone 2 active	
Bit 3	Blocking zone 3 active	
Bit 4	Value in blocking zone	
Bit 5	Reserved	
Bit 6	Reserved	
Bit 7	Reserved	
Bit 8	Reserved	
Bit 9	Reserved	
Bit 10	Reserved	
Bit 11	Reserved	
Bit 12	Reserved	
Bit 13	Reserved	
Bit 14	Reserved	
Bit 15	Reserved	
Subcodes		Info
C00812/1		L_NLim_1: Current status
C00812/2		L_NLim_2: Current status
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer □	СОМ □МОТ

C00820

Parameter | Name:

C00820 | L_DigitalLogic_1: Function

Data type: UNSIGNED_8
Index: 23755_d = 5CCB_h

The <u>L_DigitalLogic_1</u> FB: Selection of the internal logic function

Selection list (Lenze setting printed in bold)		Info
0	bOut = 0	Constant value "FALSE"
1	bOut = 1	Constant value "TRUE"
2	bOut = bln1 AND bln2 AND bln3	AND operation
3	bOut = bln1 OR bln2 OR bln3	OR operation
4	bOut = f (truth table)	The truth table parameterised in <u>C00821</u> is used.
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

Parameter reference Parameter list | C00821

C00821

Parameter Name:	Data type: UNSIGNED_8
C00821 L_DigitalLogic_1: Truth table	Index: $23754_d = 5CC\overline{A}_h$

The <u>L_DigitalLogic_1</u> FB: Parameterisation of the truth table

Selection list	
0	False
1	True

Subcodes	Lenze setting	Info
C00821/1	0: FALSE	L_DigitalLogic_1: bln3bln1=0 0 0
C00821/2	0: FALSE	L_DigitalLogic_1: bln3bln1=0 0 1
C00821/3	0: FALSE	L_DigitalLogic_1: bln3bln1=0 1 0
C00821/4	0: FALSE	L_DigitalLogic_1: bln3bln1=0 1 1
C00821/5	0: FALSE	L_DigitalLogic_1: bln3bln1=100
C00821/6	0: FALSE	L_DigitalLogic_1: bln3bln1=1 0 1
C00821/7	0: FALSE	L_DigitalLogic_1: bln3bln1=110
C00821/8	0: FALSE	L_DigitalLogic_1: bln3bln1=111

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00822

Parameter | Name:

C00822 | L_DigitalLogic_2: Function

Data type: UNSIGNED_8
Index: 23753_d = 5CC9_h

The <u>L_DigitalLogic_2</u> FB: Selection of the internal logic function

Selection list (Lenze setting printed in bold)		Info
0	bOut = 0	Constant value "FALSE"
1	bOut = 1	Constant value "TRUE"
2	bOut = bIn1 AND bIn3	AND operation
3	bOut = bIn1 OR bIn3	OR operation
4	bOut = f (truth table)	The truth table parameterised in <u>C00823</u> is used.
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

C00823

Selection list

Parameter | Name:

C00823 | L_DigitalLogic_2: Truth table

Data type: UNSIGNED_8
Index: 23752_d = 5CC8_h

The <u>L_DigitalLogic_2</u> FB: Parameterisation of the truth table

0	False	
1	True	
Subcodes	Lenze setting	Info
C00823/1	0: FALSE	L_DigitalLogic_2: bln3bln1=0 0 0
C00823/2	0: FALSE	L_DigitalLogic_2: bln3bln1=0 0 1
C00823/3	0: FALSE	L_DigitalLogic_2: bln3bln1=0 1 0
C00823/4	0: FALSE	L_DigitalLogic_2: bln3bln1=0 1 1
C00823/5	0: FALSE	L_DigitalLogic_2: bln3bln1=1 0 0
C00823/6	0: FALSE	L_DigitalLogic_2: bln3bln1=1 0 1
C00823/7	0: FALSE	L_DigitalLogic_2: bln3bln1=1 1 0
C00823/8	0: FALSE	L_DigitalLogic_2: bln3bln1=1 1 1
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	□ COM □ MOT Scaling factor: 1

Parameter | Name:

C00824 | L_DigitalLogic5_1: Function

Data type: UNSIGNED_8
Index: 23751_d = 5CC7_h

FB <u>L_DigitalLogic5_1</u>: Selection of the interna logic operation

Selection list (Lenze setting printed in bold)		Info
0	bOut = 0	
1	bOut = 1	
2	bOut = f (truth table)	The truth table parameterised in <u>C00825</u> is used.

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C00825

Parameter | Name:

C00825 | L_DigitalLogic5_1: Truth table

Data type: UNSIGNED_8
Index: 23750_d = 5CC6_h

FB L DigitalLogic5 1: Parameter setting of the truth table

Selection list	
0	False
1	True

1	True	
Subcodes	Lenze setting	Info
C00825/1	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 0 0 0
C00825/2	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 0 0 1
C00825/3	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 0 1 0
C00825/4	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 0 1 1
C00825/5	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 1 0 0
C00825/6	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 1 0 1
C00825/7	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 1 1 0
C00825/8	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 0 1 1 1
C00825/9	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 0 0 0
C00825/10	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 0 0 1
C00825/11	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 0 1 0
C00825/12	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 0 1 1
C00825/13	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 1 0 0
C00825/14	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 1 0 1
C00825/15	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 1 1 0
C00825/16	0: FALSE	L_DigitalLogic5_1: bln5bln1=0 1 1 1 1
C00825/17	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 0 0 0
C00825/18	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 0 0 1
C00825/19	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 0 1 0
C00825/20	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 0 1 1
C00825/21	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 1 0 0
C00825/22	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 1 0 1
C00825/23	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 1 1 0
C00825/24	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 0 1 1 1
C00825/25	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 1 0 0 0
C00825/26	0: FALSE	L_DigitalLogic5_1: bln5bln1=11001
C00825/27	0: FALSE	L_DigitalLogic5_1: bln5bln1=11010
C00825/28	0: FALSE	L_DigitalLogic5_1: bln5bln1=11011

Parameter Name: C00825 L_Digital	Logic5_1: Truth table	Data type: UNSIGNED_8 Index: 23750 _d = 5CC6 _h
C00825/29	0: FALSE	L DigitalLogic5 1: bln5bln1=11100
C00825/30	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 1 1 0 1
C00825/31	0: FALSE	L_DigitalLogic5_1: bln5bln1=1 1 1 1 0
C00825/32	0: FALSE	L_DigitalLogic5_1: bln5bln1=11111
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

Parameter | Name:

C00826 | L_DigitalLogic5_2: Function

Data type: UNSIGNED_8
Index: 23749_d = 5CC5_h

FB L DigitalLogic5 2: Selection of the interna logic operation

Selection list (Lenze setting printed in bold)		Info
0	bOut = 0	
1	bOut = 1	
2	bOut = f (truth table)	The truth table parameterised in C00827 is used.
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □		COM MOT Scaling factor: 1

C00827

Parameter | Name:

C00827 | L_DigitalLogic5_2: Truth table

Data type: UNSIGNED_8
Index: 23748_d = 5CC4_h

FB <u>L_DigitalLogic5_2</u>: Parameter setting of the truth table

Selection list		
False		
True		

Subcodes	Lenze setting	Info
C00827/1	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 0 0 0
C00827/2	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 0 0 1
C00827/3	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 0 1 0
C00827/4	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 0 1 1
C00827/5	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 1 0 0
C00827/6	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 1 0 1
C00827/7	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 1 1 0
C00827/8	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 0 1 1 1
C00827/9	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 0 0 0
C00827/10	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 0 0 1
C00827/11	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 0 1 0
C00827/12	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 0 1 1
C00827/13	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 1 0 0
C00827/14	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 1 0 1
C00827/15	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 1 1 0
C00827/16	0: FALSE	L_DigitalLogic5_2: bln5bln1=0 1 1 1 1
C00827/17	0: FALSE	L_DigitalLogic5_2: bln5bln1=1 0 0 0 0
C00827/18	0: FALSE	L_DigitalLogic5_2: bln5bln1=10001
C00827/19	0: FALSE	L_DigitalLogic5_2: bln5bln1=10010
C00827/20	0: FALSE	L_DigitalLogic5_2: bln5bln1=10011
C00827/21	0: FALSE	L DigitalLogic5 2: bln5bln1=1 0 1 0 0
C00827/22	0: FALSE	L DigitalLogic5 2: bln5bln1=10101

Parameter Name: C00827 L_Digital	 Logic5_2: Truth table	Data type: UNSIGNED_8 Index: 23748 _d = 5CC4 _h
C00827/23	0: FALSE	L DigitalLogic5 2: bln5bln1=1 0 1 1 0
C00827/24	0: FALSE	L_DigitalLogic5_2: bln5bln1=1 0 1 1 1
C00827/25	0: FALSE	L_DigitalLogic5_2: bln5bln1=1 1 0 0 0
C00827/26	0: FALSE	<u>L_DigitalLogic5_2</u> : bln5bln1=1 1 0 0 1
C00827/27	0: FALSE	L_DigitalLogic5_2: bln5bln1=11010
C00827/28	0: FALSE	L_DigitalLogic5_2: bln5bln1=11011
C00827/29	0: FALSE	L_DigitalLogic5_2: bln5bln1=1 1 1 0 0
C00827/30	0: FALSE	<u>L_DigitalLogic5_2</u> : bln5bln1=1 1 1 0 1
C00827/31	0: FALSE	L_DigitalLogic5_2: bln5bln1=11110
C00827/32	0: FALSE	L_DigitalLogic5_2: bln5bln1=11111
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

Parameter | Name:
C00828 | L_DigitalLogic_3: Function

Data type: UNSIGNED_8 Index: 23747_d = 5CC3_h

From version 02.00.00

The <u>L_DigitalLogic_3</u> FB: Selection of the internal logic function

Selection list (Lenze setting printed in bold)		Info
0	bOut = 0	Constant value "FALSE"
1	bOut = 1	Constant value "TRUE"
2	bOut = bln1 AND bln2 AND bln3	AND operation
3	bOut = bln1 OR bln2 OR bln3	OR operation
4 bOut = f (truth table)		The truth table parameterised in <u>C00829</u> is used.

 $\ \square$ Read access $\ \square$ Write access $\ \square$ CINH $\ \square$ PLC STOP $\ \square$ No transfer $\ \square$ COM $\ \square$ MOT $\$ Scaling factor: 1

C00829

Parameter | Name:
C00829 | L_DigitalLogic_3: Truth table

Data type: UNSIGNED_8 Index: 23746_d = 5CC2_h

From version 02.00.00

The <u>L_DigitalLogic_3</u> FB: Parameterisation of the truth table

Selection list		
0	False	
1	True	

Subcodes	Lenze setting	Info
C00829/1	0: FALSE	L_DigitalLogic_3: bln3bln1=0 0 0
C00829/2	0: FALSE	L_DigitalLogic_3: bln3bln1=0 0 1
C00829/3	0: FALSE	L_DigitalLogic_3: bln3bln1=0 1 0
C00829/4	0: FALSE	L_DigitalLogic_3: bln3bln1=0 1 1
C00829/5	0: FALSE	L_DigitalLogic_3: bln3bln1=100
C00829/6	0: FALSE	L_DigitalLogic_3: bln3bln1=101
C00829/7	0: FALSE	L_DigitalLogic_3: bln3bln1=110
C00829/8	0: FALSE	L_DigitalLogic_3: bln3bln1=111
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

8400 TopLine C | Software Manual

Parameter reference Parameter list | C00830

Parameter Name: C00830 16-bit inputs [%]		Data type: INTEGER_16 Index: 23745 _d = 5CC1 _h
Display in percent of 16-bit input values of different blocks		
Display range (min. value unit	max. value)	
-199.99	% 199.99	
Subcodes		Info
C00830/1		L_Absolut_1: nIn_a
C00830/2		L_AddSub_1: nln1_a
C00830/3		L_AddSub_1: nIn2_a
C00830/4		L_AddSub_1: nIn3_a
C00830/5		L_OffsetGain_1: nln_a
C00830/6		L_OffsetGain_1: nOffset_a
C00830/7		L_OffsetGain_1: nGain_a
C00830/8		L Negation 1: nln_a
C00830/9		L_GainOffset_1: nln_a
C00830/10		L_GainOffset_1: nGain_a
C00830/11		L_GainOffset_1: nOffset_a
C00830/12		L_Arithmetik_1: nln1_a
C00830/13		L_Arithmetik_1: nln2_a
C00830/14		L_AnalogSwitch_1: nln1_a
C00830/15		L_AnalogSwitch_1: nln2_a
C00830/16		L Compare 1: nln1_a
C00830/17		L_Compare_1: nln2_a
C00830/18		MCTRL: nTorqueLimitAdapt_a
C00830/19		Reserved
C00830/20		MCTRL: nPosCtrlPAdapt_a
C00830/21		MCTRL: nPosCtrlOutLimit_a
C00830/22		MCTRL: nSpeedSetValue_a
C00830/23		MCTRL: nSpeedLowLimit_a
C00830/24		MCTRL: nSpeedCtrll_a
C00830/25		MCTRL: nSpeedCtrlPAdapt_a
C00830/26		MCTRL: nBoost_a
C00830/27		MCTRL: nTorqueSetValue_a
C00830/28		MCTRL: nTorqueGenLimit_a
C00830/29		MCTRL: nTorqueMotLimit_a
C00830/30		Reserved
C00830/31		MCTRL: nVoltageAdd_a
C00830/32		MCTRL: nPWMAngleOffset_a
C00830/33		L NSet 1: nCInhVal_a
C00830/34		L_NSet_1: nNSet_a
C00830/35		L_NSet_1: nSet_a
C00830/36		L_NSet_1: nNAdd_a
C00830/37		DCTRL: wCANControl
C00830/38		DCTRL: wCCMControl
C00830/39		L NLim 1: nln_a
C00830/40		Reserved
·		

Parameter Name: C00830 16-bit inputs [%]	Data type: INTEGE Index: 23745 _d = 5
C00830/41	L Compare 2: nln1_a
C00830/42	L_Compare_2: nln2_a
C00830/43	L_Compare_3: nln1_a
C00830/44	L_Compare_3: nln2_a
C00830/45	L_AnalogSwitch_2: nln1_a
C00830/46	L_AnalogSwitch_2: nln2_a
C00830/47	L_AnalogSwitch_3: nln1_a
C00830/48	L_AnalogSwitch_3: nln2_a
C00830/49	L_Arithmetik_2: nln1_a
C00830/50	L_Arithmetik_2: nln2_a
C00830/51	Reserved
C00830/52	Reserved
C00830/53	L_GainOffset_2: nln_a
C00830/54	L_GainOffset_2: nGain_a
C00830/55	L_GainOffset_2: nOffset_a
C00830/56	L OffsetGainP 1: nln_a
C00830/57	L OffsetGainP 2: nln_a
C00830/58	L OffsetGain 2: nln_a
C00830/59	L OffsetGain 2: nOffset a
C00830/60	L OffsetGain 2: nGain_a
C00830/61	L PCTRL 1: nAct a
C00830/62	L PCTRL 1: nAdapt a
C00830/63	L PCTRL 1: nSet_a
C00830/64	L PCTRL 1: nInfluence a
C00830/65	MCK: nSpeedCtrll_a
C00830/66	MCK: nPWMAngleOffset a
C00830/67	Reserved
C00830/68	MCK: nBrkAddValue a
C00830/69	MCK: nTorqueSetValue_a
C00830/70	MCK: nTorqueLimitAdapt a
C00830/71	MCK: nSRampOverride a
C00830/72	MCK: nSpeedSetValue_a
C00830/73	MCK: wMotionCtrl2
C00830/74	MCK: wMotionCtrl1
C00830/75	MCK: nSpeedOverride a
C00830/76	MCK: nAccOverride a
C00830/77	MCK: nSpeedAdd v
C00830/78	MCK: wAuxCtrl
C00830/79	MCK: wSMCtrl
C00830/80	L OffsetGainP 3: nIn a
C00830/81	L MPot 1: nln a
C00830/82	L MulDiv 1: nln a
C00830/83	LS_DataAccess: wIn1 (Lenze-internal)

Parameter Name: C00830 16-bit inputs [%]	Data type: INTEGER_16 Index: 23745 _d = 5CC1 _h
C00830/84	LS_DataAccess: wIn2 (Lenze-internal)
C00830/85	LS_DataAccess: wIn3 (Lenze-internal)
C00830/86	LS_DataAccess: wIn4 (Lenze-internal)
C00830/87	<u>L_PT1_1</u> : nln_a
C00830/88	MCTRL: nSpeedHighLimit_a
C00830/89	L_PCTRL_1: nNSet_a
C00830/90	L_PCTRL_1: nlSet_a
C00830/91	L_Interpolator_1: nPhdIn_v
C00830/92	L_Interpolator_1: nNIn_a
C00830/93	Reserved
C00830/94	Reserved
C00830/95	Reserved
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No trans	fer COM MOT Scaling factor: 100

Parameter Name: C00831 16-bit inp	outs		Data type: UNSIGNED_16 Index: 23744 _d = 5CC0 _h
Decimal/hexadeci	mal/bit coded disp	lay of 16 bit input va	llues of various blocks
Display area (min. h	ex value max. hex value	<u>e)</u>	
0x0000		0xFFFF	
Value is bit-coded:			
Bit 0	Active		
Bit 15	Active		
Subcodes			Info
C00831/1			L_Absolut_1: nln_a
C00831/2			L_AddSub_1: nln1_a
C00831/3			L_AddSub_1: nln2_a
C00831/4			L_AddSub_1: nln3_a
C00831/5			L_OffsetGain_1: nln_a
C00831/6			<u>L_OffsetGain_1</u> : nOffset_a
C00831/7			L_OffsetGain_1: nGain_a
C00831/8			L_Negation_1: nln_a
C00831/9			L_GainOffset_1: nln_a
C00831/10			L_GainOffset_1: nGain_a
C00831/11			<u>L_GainOffset_1</u> : nOffset_a
C00831/12			L_Arithmetik_1: nln1_a
C00831/13			L_Arithmetik_1: nln2_a
C00831/14			L_AnalogSwitch_1: nln1_a
C00831/15			L_AnalogSwitch_1: nln2_a
C00831/16			L_Compare_1: nln1_a
C00831/17			L_Compare_1: nln2_a
C00831/18			MCTRL: nTorqueLimitAdapt_a

Parameter Name: C00831 16-bit inputs	Data type: UNSIGNED_1 Index: 23744 _d = 5CC0
C00831/19	Reserved
C00831/20	MCTRL: nPosCtrlPAdapt_a
C00831/21	MCTRL: nPosCtrlOutLimit_a
C00831/22	MCTRL: nSpeedSetValue_a
C00831/23	MCTRL: nSpeedLowLimit_a
C00831/24	MCTRL: nSpeedCtrll_a
C00831/25	MCTRL: nSpeedCtrlPAdapt_a
C00831/26	MCTRL: nBoost_a
C00831/27	MCTRL: nTorqueSetValue_a
C00831/28	MCTRL: nTorqueGenLimit_a
C00831/29	MCTRL: nTorqueMotLimit_a
C00831/30	Reserved
C00831/31	MCTRL: nVoltageAdd_a
C00831/32	MCTRL: nPWMAngleOffset_a
C00831/33	L NSet 1: nCInhVal a
C00831/34	L NSet 1: nNSet a
C00831/35	L NSet 1: nSet_a
C00831/36	L NSet 1: nNAdd a
C00831/37	DCTRL: wCANControl
C00831/38	DCTRL: wMCIControl
C00831/39	L NLim 1: nln a
C00831/40	Reserved
C00831/41	L Compare 2: nln1 a
C00831/42	L Compare 2: nln2_a
C00831/43	L Compare 3: nln1 a
C00831/44	L Compare 3: nln2 a
C00831/45	L AnalogSwitch 2: nln1_a
C00831/46	L AnalogSwitch 2: nln2 a
C00831/47	L AnalogSwitch 3: nln1_a
C00831/48	L AnalogSwitch 3: nln2 a
C00831/49	L Arithmetik 2: nln1 a
C00831/50	L Arithmetik 2: nln2_a
C00831/51	Reserved
C00831/52	Reserved
C00831/53	L GainOffset 2: nln a
C00831/54	L GainOffset 2: nGain_a
C00831/55	L GainOffset 2: nOffset a
·	
C00831/56	L_OffsetGainP_2:nln_a
C00831/57	L_OffsetGainP_2: nln_a
C00831/58	L_OffsetGain_2:nln_a
C00831/59	L_OffsetGain_2: nOffset_a
C00831/60	L_OffsetGain_2: nGain_a
C00831/61	L PCTRL 1: nAct a
C00831/61 C00831/62	L PCTRL 1: nAdapt a

Parameter Name: C00831 16-bit inputs	Data type: UNSIGNED_16 Index: 23744 _d = 5CC0 _h
C00831/63	L_PCTRL_1: nSet_a
C00831/64	L_PCTRL_1: nInfluence_a
C00831/65	MCK: nSpeedCtrll_a
C00831/66	MCK: nPWMAngleOffset_a
C00831/67	Reserved
C00831/68	MCK: nBrkTorqueAdd_a
C00831/69	MCK: nTorqueSetValue_a
C00831/70	MCK: nTorqueLimitAdapt_a
C00831/71	MCK: nSRampOverride_a
C00831/72	MCK: nSpeedSetValue_a
C00831/73	MCK: wMotionCtrl2
C00831/74	MCK: wMotionCtrl1
C00831/75	MCK: nSpeedOverride_a
C00831/76	MCK: nAccOverride_a
C00831/77	MCK: nSpeedAdd_v
C00831/78	MCK: wAuxCtrl
C00831/79	MCK: wSMCtrl
C00831/80	L_OffsetGainP_3: nln_a
C00831/81	L_MPot_1: nIn_a
C00831/82	L_MulDiv_1: nln_a
C00831/83	LS_DataAccess: wIn1 (Lenze-internal)
C00831/84	LS_DataAccess: wIn2 (Lenze-internal)
C00831/85	LS_DataAccess: wIn3 (Lenze-internal)
C00831/86	LS_DataAccess: wIn4 (Lenze-internal)
C00831/87	L_PT1_1: nln_a
C00831/88	MCTRL: nSpeedHighLimit_a
C00831/89	L_PCTRL_1: nNSet_a
C00831/90	L_PCTRL_1: nISet_a
C00831/91	L_Interpolator_1: nPhdIn_v
C00831/92	L_Interpolator_1: nNIn_a
C00831/93	Reserved
C00831/94	Reserved
C00831/95	Reserved
☑ Read access ☐ Write access ☐ CINH ☐ PLC STO	P ☑ No transfer □ COM □ MOT

Parameter Name: C00832 16-bit inputs [rpm]	Data type: INTEGER_16 Index: 23743 _d = 5CBF _h
Display of 16-bit input values of different b	locks in [rpm]
Display range (min. value unit max. value)	
-32767 rpm	32767
Subcodes	Info
C00832/1	L Absolut 1:nIn a
C00832/2	L AddSub 1: nln1_a
C00832/3	L AddSub 1: nIn2_a
C00832/4	L_AddSub_1: nIn3_a
C00832/5	L_OffsetGain_1: nln_a
C00832/6	L_OffsetGain_1: nOffset_a
C00832/7	L_OffsetGain_1: nGain_a
C00832/8	L_Negation_1: nln_a
C00832/9	L_GainOffset_1: nln_a
C00832/10	L_GainOffset_1: nGain_a
C00832/11	L_GainOffset_1: nOffset_a
C00832/12	L_Arithmetik_1: nln1_a
C00832/13	L_Arithmetik_1: nln2_a
C00832/14	L_AnalogSwitch_1: nln1_a
C00832/15	L_AnalogSwitch_1: nln2_a
C00832/16	L_Compare_1: nln1_a
C00832/17	L_Compare_1: nln2_a
C00832/18	MCTRL: nTorqueLimitAdapt_a
C00832/19	Reserved
C00832/20	MCTRL: nPosCtrlPAdapt_a
C00832/21	MCTRL: nPosCtrlOutLimit_a
C00832/22	MCTRL: nSpeedSetValue_a
C00832/23	MCTRL: nSpeedLowLimit_a
C00832/24	MCTRL: nSpeedCtrll_a
C00832/25	MCTRL: nSpeedCtrlPAdapt_a
C00832/26	MCTRL: nBoost_a
C00832/27	MCTRL: nTorqueSetValue_a
C00832/28	MCTRL: nTorqueGenLimit_a
C00832/29	MCTRL: nTorqueMotLimit_a
C00832/30	Reserved
C00832/31	MCTRL: nVoltageAdd_a
C00832/32	MCTRL: nPWMAngleOffset_a
C00832/33	L_NSet_1: nCInhVal_a
C00832/34	L_NSet_1: nNSet_a
C00832/35	L_NSet_1: nSet_a
C00832/36	L_NSet_1: nNAdd_a
C00832/37	DCTRL: wCANControl
C00832/38	DCTRL: wCCMControl
C00832/38 C00832/39 C00832/40	DCTRL: wCCMControl L_NLim_1: nln_a Reserved

Parameter Name: C00832 16-bit inputs [rpm]	Data type: INTEGER_1(Index: 23743 _d = 5CBF
C00832/41	L Compare 2: nln1_a
C00832/42	L_Compare_2: nln2_a
C00832/43	L_Compare_3: nln1_a
C00832/44	L_Compare_3: nln2_a
C00832/45	L_AnalogSwitch_2: nln1_a
C00832/46	L_AnalogSwitch_2: nln2_a
C00832/47	L_AnalogSwitch_3: nln1_a
C00832/48	L_AnalogSwitch_3: nln2_a
C00832/49	L Arithmetik 2: nIn1_a
C00832/50	L Arithmetik 2: nln2_a
C00832/51	Reserved
C00832/52	Reserved
C00832/53	L GainOffset 2: nln a
C00832/54	L GainOffset 2: nGain_a
C00832/55	L GainOffset 2: nOffset a
C00832/56	L OffsetGainP 1: nIn a
C00832/57	L OffsetGainP 2: nIn a
C00832/58	L OffsetGain 2: nln_a
C00832/59	L OffsetGain 2: nOffset a
C00832/60	L OffsetGain 2: nGain_a
C00832/61	L PCTRL 1: nAct a
C00832/62	L PCTRL 1: nAdapt a
C00832/63	L PCTRL 1: nSet_a
C00832/64	L PCTRL 1: nInfluence_a
C00832/65	MCK: nSpeedCtrll_a
C00832/66	MCK: nPWMAngleOffset a
C00832/67	Reserved
C00832/68	MCK: nBrkTorqueAdd a
C00832/69	MCK: nTorqueSetValue_a
C00832/70	MCK: nTorqueLimitAdapt a
C00832/71	MCK: nSRampOverride a
C00832/72	MCK: nSpeedSetValue a
C00832/73	MCK: wMotionCtrl2
C00832/74	MCK: wMotionCtrl1
C00832/75	MCK: nSpeedOverride_a
C00832/76	MCK: nAccOverride a
C00832/77	MCK: nSpeedAdd v
C00832/78	MCK: MAuxCtrl
C00832/79	MCK: WAUXCUT
C00832/80	L OffsetGainP 3: nln_a
C00832/80 C00832/81	L MPot 1: nln_a
C00832/82	L MulDiv 1: nln_a
C00832/83	LS_DataAccess: wIn1 (Lenze-internal)

Parameter Name: C00832 16-bit inputs [rpm]	Data type: INTEGER_16 Index: 23743 _d = 5CBF _h
C00832/84	LS_DataAccess: wIn2 (Lenze-internal)
C00832/85	LS_DataAccess: wIn3 (Lenze-internal)
C00832/86	LS_DataAccess: wIn4 (Lenze-internal)
C00832/87	L_PT1_1: nln_a
C00832/88	MCTRL: nSpeedHighLimit_a
C00832/89	L_PCTRL_1: nNSet_a
C00832/90	L_PCTRL_1: nlSet_a
C00832/91	L_Interpolator_1: nPhdIn_v
C00832/92	L_Interpolator_1: nNIn_a
C00832/93	Reserved
C00832/94	Reserved
C00832/95	Reserved
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No trans	sfer COM MOT Scaling factor: 1

Selection list

Data type: UNSIGNED_8
Index: 23742 _d = 5CBE _h

Display of the signal status of the binary inputs of different blocks

0	False	
	True	
Subcodes	Tide	Info
C00833/1		L And 1: bln1
C00833/2		L And 1: bln2
C00833/3		L And 1: bln3
C00833/4		L_DFlipFlop_1: bD
C00833/5		L_DFlipFlop_1: bClk
C00833/6		L_DFlipFlop_1: bClr
C00833/7		L_Not_1: bln
C00833/8		L_Or_1: bln1
C00833/9		L Or 1: bln2
C00833/10		<u>L_Or_1</u> : bln3
C00833/11		L_RLQ_1: bCw
C00833/12		L RLQ 1: bCcw
C00833/13		L_AnalogSwitch_1: bSet
C00833/14		L NSet 1: bRfgStop
C00833/15		L NSet 1: bRfg0
C00833/16		L NSet 1: bNSetInv
C00833/17		L NSet 1: bJog1
C00833/18		L NSet 1: bJog2
C00833/19		L NSet 1: bJog4
C00833/20		L_NSet_1: bJog8
C00833/21		L_NSet_1: bTi1

Parameter Name: C00833 Binary inputs	Data type: UNSIGNED_1 Index: 23742 _d = 5CBE
C00833/22	L NSet 1: bTi2
C00833/23	L_NSet_1: bTi4
C00833/24	L_NSet_1: bTi8
C00833/25	L_NSet_1: bLoad
C00833/26	L_NSet_1: bExternalCINH
C00833/27	MCTRL: bPosCtrlOn
C00833/28	MCTRL: bSpeedInterpolatorOn
C00833/29	MCTRL: bTorqueInterpolatorOn
C00833/30	MCTRL: bTorquemodeOn
C00833/31	MCTRL: bSpeedCtrlIOn
C00833/32	MCTRL: bAutoBoostOn
C00833/33	MCTRL: bQSPOn
C00833/34	MCTRL: bDcBrakeOn
C00833/35	MCTRL: bDeltaPosOn
C00833/36	DCTRL: bCINH
C00833/37	DCTRL: bFailReset
C00833/38	DCTRL: bStatus B0
C00833/39	DCTRL: bStatus B2
C00833/40	DCTRL: bStatus B3
C00833/41	DCTRL: bStatus B4
C00833/42	DCTRL: bStatus B5
C00833/43	DCTRL: bStatus B14
C00833/44	DCTRL: bStatus_B15
C00833/45	DCTRL: bFree 1
C00833/46	DCTRL: bFree 2
C00833/47	DCTRL: bFree 3
C00833/48	DCTRL: bFree 4
C00833/49	L And 2: bln1
C00833/50	L And 2: bln2
C00833/51	L And 2: bln3
C00833/52	L And 3: bln1
C00833/53	L And 3: bln2
C00833/54	L And 3: bln3
C00833/55	L Or 2: bln1
C00833/56	L Or 2: bln2
C00833/57	L Or 2: bln3
C00833/58	L Or 3: bln1
C00833/59	L Or 3: bln2
C00833/60	L Or 3: bln3
C00833/60 C00833/61	L Not 2: bln
	L Not 3: bln
C00833/62	
C00833/63	L DigitalLogic 1: bln1
C00833/64 C00833/65	L_DigitalLogic_1: bln2 L_DigitalLogic_1: bln3

Parameter Name: C00833 Binary inputs	Data type: UNSIGNED_ Index: 23742 _d = 5CB
C00833/66	L DigitalDelay 1: bln
C00833/67	MCTRL: bPosDerivativeOn
C00833/68	MCTRL: bMotorRefOffsetOn
C00833/69	MCTRL: bSpeedCtrlPAdaptOn
C00833/70	L_AnalogSwitch_2: bSet
C00833/71	L_AnalogSwitch_3: bSet
C00833/72	L MPot 1: bUp
C00833/73	L MPot 1: bInAct
C00833/74	L MPot 1: bDown
C00833/75	L PCTRL 1: bPIDOff
C00833/76	L PCTRL 1: binAct
C00833/77	L PCTRL 1: bIOff
C00833/78	MCK: bSpeedCtrlIOn
C00833/79	MCK: bDcBrakeOn
C00833/80	MCK: bBrkRelease
C00833/81	MCK: bBrkStartTorqueDir
C00833/82	MCK: bBrkApplied
C00833/83	MCK: bLimitSwitchPos
C00833/84	MCK: bLimitSwitchNeg
C00833/85	MCK: bPosCtrlOn
C00833/86	MCK: bDeltaPosOn
C00833/87	MCK: bPosDerivativeOn
C00833/88	MCK: bMotorRefOffsetOn
C00833/89	MCK: bQspOn
C00833/90	MCK: bTorquemodeOn
C00833/91	MCK: bTorqueLimitAdaptOn
C00833/92	MCK: bHomMark
C00833/93	L Transient 1: bln
C00833/94	L Transient 2: bln
C00833/95	L Transient 3: bln
C00833/96	L Transient 4: bln
C00833/97	Reserved
C00833/98	MCTRL: bTorqueLimitAdaptOn
C00833/99	L NSet 1: bNAddInv
C00833/100	L MPot 1: bEnable
C00833/101	L NLim 1: bEnable
C00833/102	LS_DataAccess: bEnableIn1 (Lenze-internal)
C00833/103	LS_DataAccess: bEnableIn2 (Lenze-internal)
C00833/104	LS_DataAccess: bEnableIn3 (Lenze-internal)
C00833/105	LS_DataAccess: bEnableIn4 (Lenze-internal)
C00833/106	<u>L_PCTRL_1</u> : bEnableInfluenceRamp

Parameter reference Parameter list | C00834

Parameter Name: C00833 Binary inputs	Data type: UNSIGNED_8 Index: 23742 _d = 5CBE _h
C00833/107	LS SetError 2: bSetError1
C00833/108	LS_SetError_2: bSetError2
C00833/109	LS_SetError_2: bSetError3
C00833/110	LS_SetError_2: bSetError4
C00833/111	L_JogCtrlExtension: bInputSel1
C00833/112	L_JogCtrlExtension: bInputSel2
C00833/113	L_JogCtrlExtension: bRfgIn
C00833/114	L_JogCtrlExtension: bJog1In
C00833/115	L_JogCtrlExtension: bJog2In
C00833/116	L_JogCtrlExtension: bSlowDown1
C00833/117	L_JogCtrlExtension: bStop1
C00833/118	L_JogCtrlExtension: bbSlowDown2
C00833/119	L_JogCtrlExtension: bStop2
C00833/120	L_JogCtrlExtension: bSlowDown3
C00833/121	L_JogCtrlExtension: bStop3
C00833/122	L_PCTRL_1: blSet
C00833/123	L_Interpolator_1: bSpeedAct0
C00833/124	L_Or_4: bln1
C00833/125	L_Or_4: bln2
C00833/126	L_Or_4: bln3
C00833/127	L_DigitalLogic_3: bln1
C00833/128	L_DigitalLogic_3: bln2
C00833/129	L_DigitalLogic_3: bln3
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	□ COM □ MOT Scaling factor: 1

Parameter Name: C00834 32-bit in	puts [incr]		Data type: INTEGER_32 Index: 23741 _d = 5CBD _h
Display in [increm	ents] of 32 bit input	values of various b	locks
Display range (min.	value unit max. value)		
-2147483647	Incr.	2147483647	
Subcodes			Info
C00834/1			MCK: dnPosSetValue_p
C00834/2			MCK: dnMotorRefOffset_p
C00834/3			MCK: dnDeltaPos_p
C00834/4			MCTRL: dnDeltaPos_p
C00834/5			MCTRL: dnPosSetValue_p
C00834/6			MCTRL: dnMotorRefOffset_p
C00834/7			MCK: dnProfilePosition_p
C00834/8			L_Interpolator_1: dnPhiIn_p
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1			

Parameter Name: C00835 16-bit inputs [%] (Set2)	Data type: INTEGER_16 Index: 23740 _d = 5CBC _h
Display in percent of 16-bit input values of different blo	cks
Display range (min. value unit max. value)	
-199.99 % 199.99	
Subcodes	Info
C00835/1	L Absolut 2: nIn a
C00835/2	L AnalogSwitch 4: nln1 a
C00835/3	L AnalogSwitch 4: nln2 a
C00835/4	L AnalogSwitch 5: nln1_a
C00835/5	L AnalogSwitch 5: nln2_a
C00835/6	L Compare 4: nln1_a
C00835/7	L Compare 4: nln2_a
C00835/8	L_Compare_5: nln1_a
C00835/9	L_Compare_5: nln2_a
C00835/10	L Arithmetik 3: nln1_a
C00835/11	L Arithmetik 3: nln2_a
C00835/12	L_Arithmetik_4: nIn1_a
C00835/13	L Arithmetik 4: nln2_a
C00835/14	L_Arithmetik_5: nIn1_a
C00835/15	L Arithmetik 5: nln2_a
C00835/16	L_Counter_2: wLdVal
C00835/17	L_Counter_2: wCmpVal
C00835/18	L Counter 3: wLdVal
C00835/19	L Counter 3: wCmpVal
C00835/20	L_PhaseIntK_1: nln_v
C00835/21	L_Negation_2: nln_a
C00835/22	L_NLim_2: nln_a
C00835/23	L_OffsetGain_3: nln_a
C00835/24	L_OffsetGain_3: nOffset_a
C00835/25	L_OffsetGain_3: nGain_a
C00835/26	L_PT1_2: nln_a
C00835/27	<u>L_PT1_3</u> : nln_a
C00835/28	L_PhaseIntK_2: nln_v
C00835/29	L_SampleHold_1: nIn_a
C00835/30	L_SampleHold_2: nIn_a
C00835/31	L_Mux_1: wInSelect
C00835/32	L_GainOffset_3: nln_a
C00835/33	L_GainOffset_3: nGain_a
C00835/34	L_GainOffset_3: nOffset_a
C00835/35	L_MulDiv_2: nln_a
C00835/36	L_DT1_1: nln_a
C00835/37	L_Counter_1: wLdVal
C00835/38	L_Counter_1: wCmpVal
C00835/39	L_GainOffsetP_1: nln_a
C00835/40	L_GainOffsetP_2: nln_a

Parameter Name: C00835 16-bit inputs [%] (Set2)	Data type: INTEGER_16 Index: 23740 _d = 5CBC _h
C00835/41	L GainOffsetP 3: nln_a
C00835/42	L_Limit_1: nln_a
C00835/43	L_Limit_2: nln_a
C00835/44	<u>L_MckCtrlInterface_1</u> : wOperationMode
C00835/45	L_MckCtrlInterface_1: wPosMode
C00835/46	L_MckCtrlInterface_1: wProfileNo
C00835/47	L_MckCtrlInterface_1: wInMckPosCtrl_1
C00835/48	L_MckCtrlInterface_1: wInMckPosCtrl_2
C00835/49	L MckStateInterface 1: wInMckPosState_1
C00835/50	L MckStateInterface 1: wInMckPosState_2
C00835/51	L_PosiShaftCtrlInterface_1: wInPosiShaftCtrl_1
C00835/52	L PosiShaftCtrlInterface 1: wInPosiShaftCtrl_2
C00835/53	L PosiShaftCtrlInterface 1: wInPosiShaftCtrl 3
C00835/54	L PosiShaftCtrlInterface 1: wInPosiShaftCtrl 4
C00835/55	L ConvWordToBits 1: wInput
C00835/56	L ConvWordToBits 2: wInput
C00835/57	L ConvWordToBits 3: wInput
C00835/58	L ConvWordsToDInt 1: wInLWord
C00835/59	L ConvWordsToDInt 1: wInHWord
C00835/60	L ConvWordsToDInt 2: wInLWord
C00835/61	L ConvWordsToDInt 2: wInHWord
C00835/62	L ConvWordsToDInt 3: wInLWord
C00835/63	L ConvWordsToDInt 3: wInHWord
C00835/64	L ConvUnitsToIncr 1: wInLWord
C00835/65	L ConvUnitsTolner 1: WINHWord
C00835/66	L ConvUnitsTolner 2: WINLWord
·	
C00835/67	L_ConvUnitsToIncr_2: wInHWord L_ConvUnitsToIncr_3: wInLWord
C00835/68	
C00835/69	L_ConvUnitsToIncr_3: wInHWord
C00835/70	L_Curve 1: nln_a
C00835/71	L_ConvW_1: wIn
C00835/72	L_ConvW_2: wIn
C00835/73	L_ConvW_3: wIn
C00835/74	L_ConvW_4: wIn
C00835/75	L_MckCtrlInterface_1: wPosSetHW
C00835/76	L_MckCtrlInterface_1: wPosSetLW
C00835/77	L_PhaseDiff_1: nln_v
C00835/78	L PhaseDiff 2: nln_v
C00835/79	L_SRFG_1: nln_a
C00835/80	L_SRFG_2: nln_a
C00835/81	L_SRFG_1: nSet_a
C00835/82	L_SRFG_2: nSet_a
C00835/83	L_SignalSwitch_1: wln1
C00835/84	L SignalSwitch 2: wln1

Parameter Name: C00835 16-bit inputs [%] (Set2)	Data type: INTEGER_1 Index: 23740 _d = 5CBC
C00835/85	L SignalSwitch 3: wln1
C00835/86	L_SignalSwitch_4: wln1
C00835/87	L_SignalSwitch_1: wln2
C00835/88	L_SignalSwitch_2: wln2
C00835/89	L_SignalSwitch_3: wln2
C00835/90	L_SignalSwitch_4: wln2
C00835/91	L_Odometer_1: nInSpeed_v
C00835/92	L CalcDiameter 1: wDMax
C00835/93	L_CalcDiameter_1: wDMin
C00835/94	L CalcDiameter 1: wVMax
C00835/95	L_CalcDiameter_1: nVLine_a
C00835/96	L_CalcDiameter_1: nMotorSpeedAct_v
C00835/97	L CalcDiameter 1: wGearNum
C00835/98	L CalcDiameter 1: wGearDenom
C00835/99	L CalcDiameter 1: nSetD_a
C00835/100	L ProcessCtrl 1: nVpAdapt a
C00835/101	L ProcessCtrl 1: nSet_a
C00835/102	L ProcessCtrl 1: nAct a
C00835/103	L ProcessCtrl 1: nRTimeAdapt a
C00835/104	L ProcessCtrl 1: nInfluence_a
C00835/105	L PhiIntegrator 1: nln v
C00835/106	L PhiIntegrator 1: wGearNum
C00835/107	L PhiIntegrator 1: wGearDenom
C00835/108	L SwitchPoint 1: nActSpeed v
C00835/109	L Philntegrator 1: nSpeedAdd v
C00835/110	L DFSET 1: nSpeedTrim v
C00835/111	L DFSET 1: nSpeedTrim_a
C00835/112	L DFSET 1: wGearNum
C00835/113	L DFSET 1: wGainNum
C00835/114	L DFSET 1: nSet v
C00835/115	L DFSET 1: wGainDenom
C00835/116	L DFSET 1: wGearDenom
C00835/117	L DFSET 1: nPositionTrimming
C00835/118	L DFSET 1: nNAct_v
C00835/119	L DFRFG 1: nln v
C00835/120	L GearComp 1: nTorque a
C00835/121	L ConvAP 1: nin a
C00835/121 C00835/122	L ConvAP 2: nin a
C00835/122 C00835/123	L ConvAP 3: nln_a
C00835/125 C00835/124	L ConvX 1: nln a
C00835/124 C00835/125	L ConvX 1: nNum
·	
C00835/126	L ConvX 1: wDenom
C00835/127 C00835/128	L ConvX 2: nln_a L ConvX 2: nNum

Parameter Name: C00835 16-bit inputs [%] (Set2)	Data type: INTEGER_16 Index: 23740 _d = 5CBC _h
C00835/129	L ConvX 2: wDenom
C00835/130	L_ConvX_3: nln_a
C00835/131	L_ConvX_3: nNum
C00835/132	L_ConvX_3: wDenom
C00835/133	L_ConvPP_1: nNum
C00835/134	L_ConvPP_1: wDenom
C00835/135	L_ConvPP_2: nNum
C00835/136	L_ConvPP_2: wDenom
C00835/137	L_ConvPP_3: nNum
C00835/138	L_ConvPP_3: wDenom
C00835/139	L_Curve_2: nln_a
C00835/140	L_Curve_3: nln_a
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	☐ COM ☐ MOT Scaling factor: 100

Parameter Name: C00836 16-bit inp	outs (Set2)		Data type: UNSIGNED_16 Index: 23739 _d = 5CBB _h
Decimal/hexadeci	mal/bit coded displ	ay of 16 bit input va	lues of various blocks
Display area (min. h	ex value max. hex value)	
0x0000		0xFFFF	
Value is bit-coded:			
Bit 0	Active		
Bit 15	Active		
Subcodes			Info
C00836/1			L_Absolut_2: nIn_a
C00836/2			L_AnalogSwitch_4: nln1_a
C00836/3			L_AnalogSwitch_4: nln2_a
C00836/4			L_AnalogSwitch_5: nln1_a
C00836/5			L_AnalogSwitch_5: nln2_a
C00836/6			L_Compare_4: nln1_a
C00836/7			L_Compare_4: nln2_a
C00836/8			L_Compare_5: nln1_a
C00836/9			<u>L_Compare_5</u> : nln2_a
C00836/10			L_Arithmetik_3: nln1_a
C00836/11			<u>L_Arithmetik_3</u> : nIn2_a
C00836/12			L_Arithmetik_4: nln1_a
C00836/13			L_Arithmetik_4: nln2_a
C00836/14			L_Arithmetik_5: nln1_a
C00836/15			<u>L_Arithmetik_5</u> : nln2_a
C00836/16			<u>L_Counter_2</u> : wLdVal
C00836/17			<u>L_Counter_2</u> : wCmpVal
C00836/18			<u>L_Counter_3</u> : wLdVal
C00836/19			<u>L_Counter_3</u> : wCmpVal
C00836/20			L_PhaseIntK_1: nln_v

Parameter Name: C00836 16-bit inputs (Set2)	Data type: UNSIGNED_16 Index: 23739 _d = 5CBB _h
C00836/21	L Negation 2: nln_a
C00836/22	<u>L_NLim_2</u> : nln_a
C00836/23	L_OffsetGain_3: nln_a
C00836/24	<u>L_OffsetGain_3</u> : nOffset_a
C00836/25	L_OffsetGain_3: nGain_a
C00836/26	<u>L_PT1_2</u> : nln_a
C00836/27	<u>L_PT1_3</u> : nln_a
C00836/28	L_PhaseIntK_2: nln_v
C00836/29	L_SampleHold_1: nIn_a
C00836/30	L_SampleHold_2: nIn_a
C00836/31	L Mux 1: wInSelect
C00836/32	L_GainOffset_3: nln_a
C00836/33	L_GainOffset_3: nGain_a
C00836/34	L GainOffset 3: nOffset_a
C00836/35	L MulDiv 2: nln_a
C00836/36	L DT1 1:nln a
C00836/37	L Counter 1: wLdVal
C00836/38	L Counter 1: wCmpVal
C00836/39	L GainOffsetP 1: nIn a
C00836/40	L GainOffsetP 2: nIn_a
C00836/41	L GainOffsetP 3: nIn a
C00836/42	L Limit 1: nIn a
C00836/43	L Limit 2: nIn a
C00836/44	L MckCtrlInterface 1: wOperationMode
C00836/45	L MckCtrlInterface 1: wPosMode
C00836/46	L MckCtrlInterface 1: wProfileNo
C00836/47	L MckCtrlInterface 1: wInMckPosCtrl 1
C00836/48	L MckCtrlInterface 1: wInMckPosCtrl 2
C00836/49	L MckStateInterface 1: wInMckPosState 1
C00836/50	L MckStateInterface 1: wInMckPosState 2
C00836/51	L PosiShaftCtrlInterface 1: wInPosiShaftCtrl 1
C00836/52	L PosiShaftCtrlInterface 1: wInPosiShaftCtrl 2
C00836/53	L PosiShaftCtrlInterface 1: wInPosiShaftCtrl 3
C00836/54	L PosiShaftCtrlInterface 1: wInPosiShaftCtrl 4
C00836/55	L ConvWordToBits 1: wInput
C00836/56	L ConvWordToBits 2: WInput
C00836/57	L ConvWordToBits 3: Winput
C00836/58	L ConvWordsToDInt 1: wInLWord
C00836/59	L ConvWordsToDInt 1: WinHWord
C00836/60	L ConvWordsToDInt 1: WinHWord L ConvWordsToDInt 2: WinLWord
·	
C00836/61	L_ConvWordsToDint_2: winHWord
C00836/62	L_ConvWordsToDint_3: winLWord
C00836/63	L_ConvWordsToDInt_3: wInHWord
C00836/64	<u>L_ConvUnitsToIncr_1</u> : wInLWord

Parameter Name: C00836 16-bit inputs (Set2)	Data type: UNSIGNED_1 Index: 23739 _d = 5CBB
C00836/65	L ConvUnitsToIncr 1: wInHWord
C00836/66	L_ConvUnitsToIncr_2: wInLWord
C00836/67	L ConvUnitsToIncr 2: wInHWord
C00836/68	L ConvUnitsToIncr 3: wInLWord
C00836/69	L ConvUnitsToIncr 3: wInHWord
C00836/70	L_Curve_1: nln_a
C00836/71	L ConvW 1: wln
C00836/72	L ConvW 2: wln
C00836/73	L ConvW 3: wIn
C00836/74	L ConvW 4: wIn
C00836/75	L MckCtrlInterface 1: wPosSetHW
C00836/76	L MckCtrlInterface 1: wPosSetLW
C00836/77	L PhaseDiff 1: nln v
C00836/78	L PhaseDiff 2: nln v
C00836/79	L SRFG 1: nln a
C00836/80	L SRFG 2: nln a
C00836/81	L SRFG 1:nSet a
C00836/82	L SRFG 2: nSet a
C00836/83	L SignalSwitch 1: wln1
C00836/84	L SignalSwitch 2: wln1
C00836/85	L SignalSwitch 3: wln1
C00836/86	L SignalSwitch 4: wln1
C00836/87	L SignalSwitch 1: wln2
C00836/88	L SignalSwitch 2: wln2
C00836/89	L SignalSwitch 3: wln2
C00836/90	L SignalSwitch 4: wln2
C00836/91	L Odometer 1: nlnSpeed v
C00836/92	L CalcDiameter 1: wDMax
C00836/93	L CalcDiameter 1: wDMin
C00836/94	L CalcDiameter 1: wVMax
C00836/95	L CalcDiameter 1: nVLine a
C00836/96	L CalcDiameter 1: nMotorSpeedAct v
C00836/97	L CalcDiameter 1: WGearNum
C00836/98	L CalcDiameter 1: wGearDenom
C00836/99	L CalcDiameter 1: nSetD a
·	
C00836/100	L_ProcessCtrl_1: nVpAdapt_a
C00836/101	L_ProcessCtrl_1: nSet_a
C00836/102	L ProcessCtrl 1: nAct_a
C00836/103	L ProcessCtrl 1: nRTimeAdapt_a
C00836/104	L_ProcessCtrl_1: nInfluence_a
C00836/105	L_Philntegrator_1: nln_v
C00836/106	L_Philntegrator_1: wGearNum
C00836/107	L_PhiIntegrator_1: wGearDenom
C00836/108	L_SwitchPoint_1: nActSpeed_v

Parameter Name: C00836 16-bit inputs (Set2)	Data type: UNSIGNED_16 Index: 23739 _d = 5CBB _h
C00836/109	L PhiIntegrator 1: nSpeedAdd_v
C00836/110	L_DFSET_1: nSpeedTrim_v
C00836/111	L_DFSET_1: nSpeedTrim_a
C00836/112	L_DFSET_1: wGearNum
C00836/113	L DFSET 1: wGainNum
C00836/114	L_DFSET_1: nSet_v
C00836/115	L_DFSET_1: wGainDenom
C00836/116	L_DFSET_1: wGearDenom
C00836/117	L_DFSET_1: nPositionTrimming
C00836/118	L_DFSET_1: nNAct_v
C00836/119	L_DFRFG_1: nln_v
C00836/120	L_GearComp_1: nTorque_a
C00836/121	L_ConvAP_1: nln_a
C00836/122	L_ConvAP_2: nIn_a
C00836/123	L_ConvAP_3: nIn_a
C00836/124	L_ConvX_1: nln_a
C00836/125	L_ConvX_1: nNum
C00836/126	L_ConvX_1: wDenom
C00836/127	L_ConvX_2: nln_a
C00836/128	L_ConvX_2: nNum
C00836/129	L_ConvX_2: wDenom
C00836/130	L_ConvX_3: nln_a
C00836/131	L_ConvX_3: nNum
C00836/132	L_ConvX_3: wDenom
C00836/133	L_ConvPP_1: nNum
C00836/134	L ConvPP 1: wDenom
C00836/135	L_ConvPP_2: nNum
C00836/136	L_ConvPP_2: wDenom
C00836/137	L_ConvPP_3: nNum
C00836/138	L_ConvPP_3: wDenom
C00836/139	L_Curve_2: nln_a
C00836/140	L_Curve_3: nln_a
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	□сом □мот

Parameter Name: C00837 16-bit inputs [rpm] (Set2)			Data type: INTEGER_16 Index: 23738 _d = 5CBA _h
Display of 16-bit in	put values of differ	ent blocks in [rpm]	
Display range (min. value unit max. value)			
-32767 rpm 32767		32767	
Subcodes			Info
C00837/1			L_Absolut_2: nIn_a
C00837/2			L_AnalogSwitch_4: nIn1_a
C00837/3			L_AnalogSwitch_4: nIn2_a
C00837/4			L_AnalogSwitch_5: nln1_a

Parameter Name: C00837 16-bit inputs [rpm] (Set2)	Data type: INTEGER_ Index: 23738 _d = 5CB
C00837/5	L AnalogSwitch 5: nln2_a
C00837/6	L Compare 4: nln1_a
C00837/7	L_Compare_4: nln2_a
C00837/8	L Compare 5: nln1_a
C00837/9	L Compare 5: nln2_a
C00837/10	L Arithmetik 3: nln1_a
C00837/11	L_Arithmetik_3: nln2_a
C00837/12	L Arithmetik 4: nln1_a
C00837/13	L Arithmetik 4: nln2_a
C00837/14	L Arithmetik 5: nln1_a
C00837/15	L Arithmetik 5: nln2_a
C00837/16	L Counter 2: wLdVal
C00837/17	L Counter 2: wCmpVal
C00837/18	L Counter 3: wLdVal
C00837/19	L Counter 3: wCmpVal
C00837/20	L PhaseIntK 1: nIn v
C00837/21	L Negation 2: nln_a
C00837/22	L NLim 2: nln_a
C00837/23	L OffsetGain 3: nIn a
C00837/24	L OffsetGain 3: nOffset a
C00837/25	L OffsetGain 3: nGain_a
C00837/26	L PT1 2: nln a
C00837/27	L PT1 3: nln_a
C00837/28	L PhaseIntK 2: nIn v
C00837/29	L SampleHold 1: nIn a
C00837/30	L SampleHold 2:nIn a
C00837/31	L Mux 1: wInSelect
C00837/32	L GainOffset 3: nln_a
C00837/33	L GainOffset 3: nGain a
C00837/34	L GainOffset 3: nOffset a
C00837/35	L MulDiv 2: nln a
C00837/36	L DT1 1:nln a
C00837/37	L Counter 1: wLdVal
C00837/38	L Counter 1: wCmpVal
C00837/39	L GainOffsetP 1: nIn a
C00837/40	L GainOffsetP 2: nln a
C00837/41	L GainOffsetP 3: nIn a
C00837/42	L Limit 1: nln a
C00837/43	L Limit 2: nln a
C00837/44	L MckCtrlInterface 1: wOperationMode
C00837/45	L MckCtrlInterface 1: wOperationWode
C00837/46	L MckCtrlInterface 1: wProfileNo
C00837/46	L MckCtrlInterface 1: wInMckPosCtrl 1
C00837/47 C00837/48	L MckCtrlInterface 1: wInMckPosCtrl 2

Parameter Name: C00837 16-bit inputs [rpm] (Set2)	Data type: INTEGER_16 Index: 23738 _d = 5CBA _h
C00837/49	<u>L MckStateInterface 1</u> : wInMckPosState_1
C00837/50	<u>L_MckStateInterface_1</u> : wInMckPosState_2
C00837/51	<u>L_PosiShaftCtrlInterface_1</u> : wInPosiShaftCtrl_1
C00837/52	L_PosiShaftCtrlInterface_1: wInPosiShaftCtrl_2
C00837/53	L_PosiShaftCtrlInterface_1: wInPosiShaftCtrl_3
C00837/54	<u>L_PosiShaftCtrlInterface_1</u> : wInPosiShaftCtrl_4
C00837/55	L ConvWordToBits 1: wInput
C00837/56	L ConvWordToBits 2: wInput
C00837/57	L ConvWordToBits 3: wInput
C00837/58	L ConvWordsToDInt 1: wInLWord
C00837/59	L ConvWordsToDInt 1: wInHWord
C00837/60	L ConvWordsToDInt 2: wInLWord
C00837/61	L ConvWordsToDInt 2: wInHWord
C00837/62	L ConvWordsToDInt 3: wInLWord
C00837/63	L ConvWordsToDInt 3: wInHWord
C00837/64	L ConvUnitsToIncr 1: wInLWord
C00837/65	L ConvUnitsToIncr 1: wInHWord
C00837/66	L ConvUnitsToIncr 2: wInLWord
C00837/67	L ConvUnitsToIncr 2: wInHWord
C00837/68	L ConvUnitsToIncr 3: wInLWord
C00837/69	L ConvUnitsToIncr 3: wInHWord
C00837/70	L Curve 1: nln a
C00837/71	L ConvW 1: wIn
C00837/72	L ConvW 2: wln
C00837/73	L ConvW 3: wIn
C00837/74	L ConvW 4: wln
C00837/75	L MckCtrlInterface 1: wPosSetHW
C00837/76	L MckCtrlInterface 1: wPosSetLW
C00837/77	L PhaseDiff 1: nln_v
C00837/78	L PhaseDiff 2: nln v
C00837/79	L SRFG 1: nln a
C00837/80	L SRFG 2: nln a
C00837/81	L SRFG 1: nSet a
C00837/82	L SRFG 2: nSet a
C00837/83	L SignalSwitch 1: wln1
C00837/84	L SignalSwitch 2: wln1
C00837/85	L SignalSwitch 3: wln1
C00837/86	L SignalSwitch 4: wln1
C00837/87	L SignalSwitch 1: wln2
C00837/88	L SignalSwitch 2: wln2
C00837/89	L SignalSwitch 3: wln2
C00837/90	L SignalSwitch 4: wln2
,	L Odometer 1: nlnSpeed_v
C00837/91	
C00837/92	L CalcDiameter 1: wDMax

Parameter Name: C00837 16-bit inputs [rpm] (Set2)	Data type: INTEGER_i Index: 23738 _d = 5CB.
C00837/93	L CalcDiameter 1: wDMin
C00837/94	L_CalcDiameter_1: wVMax
C00837/95	L_CalcDiameter_1: nVLine_a
C00837/96	L_CalcDiameter_1: nMotorSpeedAct_v
C00837/97	L_CalcDiameter_1: wGearNum
C00837/98	L_CalcDiameter_1: wGearDenom
C00837/99	L_CalcDiameter_1: nSetD_a
C00837/100	L_ProcessCtrl_1: nVpAdapt_a
C00837/101	L_ProcessCtrl_1: nSet_a
C00837/102	L_ProcessCtrl_1: nAct_a
C00837/103	L_ProcessCtrl_1: nRTimeAdapt_a
C00837/104	L_ProcessCtrl_1: nInfluence_a
C00837/105	L_PhiIntegrator_1: nln_v
C00837/106	L_PhiIntegrator_1: wGearNum
C00837/107	L Philntegrator 1: wGearDenom
C00837/108	L_SwitchPoint_1: nActSpeed_v
C00837/109	L_PhiIntegrator_1: nSpeedAdd_v
C00837/110	L_DFSET_1: nSpeedTrim_v
C00837/111	L_DFSET_1: nSpeedTrim_a
C00837/112	L_DFSET_1: wGearNum
C00837/113	L_DFSET_1: wGainNum
C00837/114	L_DFSET_1: nSet_v
C00837/115	L_DFSET_1: wGainDenom
C00837/116	L DFSET 1: wGearDenom
C00837/117	L DFSET 1: nPositionTrimming
C00837/118	L_DFSET_1: nNAct_v
C00837/119	L DFRFG 1: nln_v
C00837/120	L GearComp 1: nTorque_a
C00837/121	L ConvAP 1: nln a
C00837/122	L ConvAP 2: nln a
C00837/123	L ConvAP 3: nln_a
C00837/124	L ConvX 1: nln a
C00837/125	L ConvX 1: nNum
C00837/126	L ConvX 1: wDenom
C00837/127	L ConvX 2:nln a
C00837/128	L ConvX 2: nNum
C00837/129	L ConvX 2: wDenom
C00837/130	L ConvX 3:nln a
C00837/131	L ConvX 3: nNum
C00837/132	L ConvX 3: wDenom
C00837/133	L ConvPP 1: nNum
C00837/134	L ConvPP 1: wDenom
C00837/135	L ConvPP 2: nNum
C00837/136	L ConvPP 2: wDenom

Parameter Name: C00837 16-bit inputs [rpm] (Set2)	Data type: INTEGER_16 Index: 23738 _d = 5CBA _h
C00837/137	L ConvPP 3: nNum
C00837/138	L_ConvPP_3: wDenom
C00837/139	L_Curve_2: nln_a
C00837/140	L_Curve_3: nln_a
☑ Read access □ Write access □ CINH □ PLC STOP ☑ No transfer	□ COM □ MOT Scaling factor: 1

Parameter | Name: C00838 | Binary inputs (Set2) Data type: UNSIGNED_8 Index: 23737_d = 5CB9_h

Display of the signal status of the binary inputs of different blocks

• In addition to the parameter <u>C00833</u>.

Selection list	
0 False	
1 True	
Subcodes	Info
C00838/1	<u>L_And5_1</u> : bln1
C00838/2	L_And5_1: bln2
C00838/3	<u>L_And5_1</u> : bln3
C00838/4	L_And5_1: bln4
C00838/5	<u>L_And5_1</u> : bln5
C00838/6	<u>L_And5_2</u> : bln1
C00838/7	<u>L_And5_2</u> : bln2
C00838/8	<u>L_And5_2</u> : bln3
C00838/9	<u>L_And5_2</u> : bln4
C00838/10	<u>L_And5_2</u> : bln5
C00838/11	<u>L_AnalogSwitch_4</u> : bSet
C00838/12	<u>L AnalogSwitch 5</u> : bSet
C00838/13	<u>L_DFlipFlop_2</u> : bD
C00838/14	<u>L_DFlipFlop_2</u> : bClk
C00838/15	<u>L_DFlipFlop_2</u> : bClr
C00838/16	<u>L_DigitalDelay_2</u> : bln
C00838/17	<u>L_DigitalDelay_3</u> : bln
C00838/18	<u>L_PhaseIntK_1</u> : bLoad
C00838/19	<u>L_PhaseIntK_2</u> : bLoad
C00838/20	L_DigitalLogic_2: bln1
C00838/21	L_DigitalLogic_2: bln2
C00838/22	L_DigitalLogic_2: bln3
C00838/23	L_DigitalLogic5_1: bln1
C00838/24	<u>L_DigitalLogic5_1</u> : bln2
C00838/25	<u>L_DigitalLogic5_1</u> : bln3
C00838/26	L_DigitalLogic5_1: bln4
C00838/27	L_DigitalLogic5_1: bln5
C00838/28	L_DigitalLogic5_2: bln1
C00838/29	L_DigitalLogic5_2: bln2
C00838/30	L DigitalLogic5 2: bln3

Parameter Name: C00838 Binary inputs (Set2)	Data type: UNSIGNED_8 Index: 23737 _d = 5CB9 _h
C00838/31	L DigitalLogic5 2: bln4
C00838/32	L_DigitalLogic5_2: bln5
C00838/33	L_NLim_2: bEnable
C00838/34	L_Or5_1: bln1
C00838/35	<u>L_Or5_1</u> : bln2
C00838/36	<u>L_Or5_1</u> : bln3
C00838/37	L_Or5_1: bln4
C00838/38	L_Or5_1: bln5
C00838/39	L_Or5_2: bln1
C00838/40	L Or5 2: bln2
C00838/41	L Or5 2: bln3
C00838/42	<u>L_Or5_2</u> : bln4
C00838/43	L Or5 2: bIn5
C00838/44	L Not 4: bln
C00838/45	L Not 5: bln
C00838/46	L Not 6: bln
C00838/47	L Not 7: bln
C00838/48	L RSFlipFlop 1: bSet
C00838/49	L RSFlipFlop 1: bReset
C00838/50	L RSFlipFlop 2: bSet
C00838/51	L RSFlipFlop 2: bReset
C00838/52	L SampleHold 1: bLoad
C00838/53	L SampleHold 2: bLoad
C00838/54	L Counter 2: bClkUp
C00838/55	L Counter 2: bClkDown
C00838/56	L Counter 2: bLoad
C00838/57	L Counter 3: bClkUp
C00838/58	L Counter 3: bClkDown
C00838/59	L Counter 3: bLoad
C00838/60	L Transient 5: bln
C00838/61	L Transient 6: bln
C00838/62	L Transient 7: bln
C00838/63	L Transient 8: bln
C00838/64	L Counter 1: bCountUp
C00838/65	L Counter 1: bCountDown
C00838/66	L Counter 1: bLoad
C00838/67	L ConvBitsToWord 1: bBit0
C00838/68	L ConvBitsToWord 1: bBit1
·	
C00838/69	L ConvBitsToWord 1: bBit2
C00838/70	L ConvBitsToWord 1 bBit3
C00838/71	L ConvBitsToWord 1
C00838/72	L_ConvBitsToWord_1: bBit5
C00838/73	L_ConvBitsToWord_1: bBit6
C00838/74	<u>L_ConvBitsToWord_1</u> : bBit7

CO0038/75 L. CONVBITSTOWORD 1; bBits	Parameter Name: C00838 Binary inputs (Set2)	Data type: UNSIGNED_8 Index: 23737 _d = 5CB9 _h
Coms8is777	C00838/75	L ConvBitsToWord 1: bBit8
Consist Cons	C00838/76	L_ConvBitsToWord_1: bBit9
CompBitsToWord 1: bBit12	C00838/77	L_ConvBitsToWord_1: bBit10
Consist Toward 1: bBit 13	C00838/78	L_ConvBitsToWord_1: bBit11
Consist Cons	C00838/79	L_ConvBitsToWord_1: bBit12
CO0838/82 L ConvBitsToWord 2: bBit15	C00838/80	L_ConvBitsToWord_1: bBit13
Consists Convention Conv	C00838/81	L ConvBitsToWord 1: bBit14
ConvBitsToWord 2: bBit1	C00838/82	L_ConvBitsToWord_1: bBit15
Consist Convert Conv	C00838/83	L_ConvBitsToWord_2: bBit0
	C00838/84	L ConvBitsToWord 2: bBit1
	C00838/85	L ConvBitsToWord 2: bBit2
Conv8is L Conv8its Conv8its	C00838/86	L ConvBitsToWord 2: bBit3
L CONVBITSTOWORD 2: bBit6	C00838/87	L ConvBitsToWord 2: bBit4
L ConvBitsToWord 2: bBit7	C00838/88	L_ConvBitsToWord_2: bBit5
L ConvBitsToWord 2: bBit8	C00838/89	L ConvBitsToWord 2: bBit6
Conv8itsToWord 2: bBit9	C00838/90	L ConvBitsToWord 2: bBit7
Conv8its Conv8its	C00838/91	L ConvBitsToWord 2: bBit8
L ConvBitsToWord 2: bBit11	C00838/92	L ConvBitsToWord 2: bBit9
L ConvBitsToWord 2: bBit12	C00838/93	L ConvBitsToWord 2: bBit10
C00838/96 L ConvBitsToWord 2: bBit13 C00838/97 L ConvBitsToWord 2: bBit14 C00838/98 L ConvBitsToWord 3: bBit5 C00838/99 L ConvBitsToWord 3: bBit0 C00838/100 L ConvBitsToWord 3: bBit1 C00838/101 L ConvBitsToWord 3: bBit2 C00838/102 L ConvBitsToWord 3: bBit3 C00838/103 L ConvBitsToWord 3: bBit4 C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrIInterface 1: bManJogNeg C00838/117 MckCtrIInterface 1: bManJogExecute2ndVel	C00838/94	L ConvBitsToWord 2: bBit11
L ConvBitsToWord 2: bBit14	C00838/95	L ConvBitsToWord 2: bBit12
C00838/98 L ConvBitsToWord 2: bBit15 C00838/100 L ConvBitsToWord 3: bBit0 C00838/101 L ConvBitsToWord 3: bBit1 C00838/102 L ConvBitsToWord 3: bBit3 C00838/103 L ConvBitsToWord 3: bBit4 C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/111 L ConvBitsToWord 3: bBit11 C00838/112 L ConvBitsToWord 3: bBit12 C00838/113 L ConvBitsToWord 3: bBit15 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/96	L ConvBitsToWord 2: bBit13
C00838/99 L ConvBitsToWord 3: bBit0 C00838/100 L ConvBitsToWord 3: bBit1 C00838/101 L ConvBitsToWord 3: bBit2 C00838/102 L ConvBitsToWord 3: bBit3 C00838/103 L ConvBitsToWord 3: bBit4 C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/97	L_ConvBitsToWord_2: bBit14
C00838/100 L ConvBitsToWord 3: bBit1 C00838/101 L ConvBitsToWord 3: bBit2 C00838/102 L ConvBitsToWord 3: bBit3 C00838/103 L ConvBitsToWord 3: bBit4 C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/98	L_ConvBitsToWord_2: bBit15
C00838/101 L ConvBitsToWord 3: bBit2 C00838/102 L ConvBitsToWord 3: bBit3 C00838/103 L ConvBitsToWord 3: bBit4 C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bManJogPos C00838/115 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/99	L_ConvBitsToWord_3: bBit0
C00838/102 L ConvBitsToWord 3: bBit3 C00838/103 L ConvBitsToWord 3: bBit4 C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/100	L_ConvBitsToWord_3: bBit1
C00838/103 L ConvBitsToWord 3: bBit4 C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/101	L_ConvBitsToWord_3: bBit2
C00838/104 L ConvBitsToWord 3: bBit5 C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit15 C00838/114 L ConvBitsToWord 3: bManJogPos C00838/115 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/102	L_ConvBitsToWord_3: bBit3
C00838/105 L ConvBitsToWord 3: bBit6 C00838/106 L ConvBitsToWord 3: bBit7 C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/103	L_ConvBitsToWord_3: bBit4
C00838/106 L_ConvBitsToWord_3: bBit7 C00838/107 L_ConvBitsToWord_3: bBit8 C00838/108 L_ConvBitsToWord_3: bBit9 C00838/109 L_ConvBitsToWord_3: bBit10 C00838/110 L_ConvBitsToWord_3: bBit11 C00838/111 L_ConvBitsToWord_3: bBit12 C00838/112 L_ConvBitsToWord_3: bBit13 C00838/113 L_ConvBitsToWord_3: bBit14 C00838/114 L_ConvBitsToWord_3: bMail C00838/115 MckCtrlInterface_1: bManJogPos C00838/116 MckCtrlInterface_1: bManJogNeg C00838/117 MckCtrlInterface_1: bManJogExecute2ndVel	C00838/104	L_ConvBitsToWord_3: bBit5
C00838/107 L ConvBitsToWord 3: bBit8 C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/105	L_ConvBitsToWord_3: bBit6
C00838/108 L ConvBitsToWord 3: bBit9 C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogReg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/106	L_ConvBitsToWord_3: bBit7
C00838/109 L ConvBitsToWord 3: bBit10 C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/107	L_ConvBitsToWord_3: bBit8
C00838/110 L ConvBitsToWord 3: bBit11 C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/108	L_ConvBitsToWord_3: bBit9
C00838/111 L ConvBitsToWord 3: bBit12 C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/109	L_ConvBitsToWord_3: bBit10
C00838/112 L ConvBitsToWord 3: bBit13 C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/110	L_ConvBitsToWord_3: bBit11
C00838/113 L ConvBitsToWord 3: bBit14 C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/111	L_ConvBitsToWord_3: bBit12
C00838/114 L ConvBitsToWord 3: bBit15 C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/112	L_ConvBitsToWord_3: bBit13
C00838/115 MckCtrlInterface 1: bManJogPos C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/113	L_ConvBitsToWord_3: bBit14
C00838/116 MckCtrlInterface 1: bManJogNeg C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/114	L_ConvBitsToWord_3: bBit15
C00838/117 MckCtrlInterface 1: bManJogExecute2ndVel	C00838/115	MckCtrlInterface_1: bManJogPos
	C00838/116	MckCtrlInterface_1: bManJogNeg
C00838/118 <u>MckCtrlInterface 1</u> : bReleaseLimitSwitch	C00838/117	<u>MckCtrlInterface_1</u> : bManJogExecute2ndVel
	C00838/118	MckCtrlInterface 1: bReleaseLimitSwitch

Parameter Name: C00838 Binary inputs (Set2)	Data type: UNSIGNED_8 Index: 23737 _d = 5CB9 _t
C00838/119	MckCtrlInterface 1: bHomingStartStop
C00838/120	<u>MckCtrlInterface_1</u> : bHomingSetPos
C00838/121	<u>MckCtrlInterface</u> 1: bHomingResetPos
C00838/122	MckCtrlInterface 1: bEnableVelOverride
C00838/123	MckCtrlInterface 1: bEnableAccOverride
C00838/124	MckCtrlInterface 1: bDisableSShaping
C00838/125	MckCtrlInterface 1: bPosExecute
C00838/126	MckCtrlInterface 1: bPosExecuteFinish
C00838/127	<u>MckCtrlInterface</u> 1: bPosDisableFollowProfile
C00838/128	MckCtrlInterface 1: bPosStop
C00838/129	MckCtrlInterface 1: bPosTeachSetPos
C00838/130	MckCtrlInterface 1: bPosTeachActPos
C00838/131	MckCtrlInterface 1: bProfileNo_1
C00838/132	MckCtrlInterface 1: bProfileNo_2
C00838/133	MckCtrlInterface 1: bProfileNo_4
C00838/134	MckCtrlInterface 1: bProfileNo_8
C00838/135	MckCtrlInterface 1: bOperationMode_1
C00838/136	MckCtrlInterface 1: bOperationMode_2
C00838/137	MckCtrlInterface 1: bOperationMode_4
C00838/138	MckCtrlInterface 1: bOperationMode_8
C00838/139	L PhaseDiff 1: bEnable
C00838/140	L PhaseDiff 2: bEnable
C00838/141	L PhaseDiff 1: bReset
C00838/142	L PhaseDiff 2: bReset
C00838/143	L SRFG 1: bLoad
C00838/144	L SRFG 2: bLoad
C00838/145	L SignalSwitch 1: bSet
C00838/146	L SignalSwitch 2: bSet
C00838/147	L SignalSwitch 3: bSet
C00838/148	L SignalSwitch 4: bSet
C00838/149	L Odometer 1: bTriggerPulse
C00838/150	L Odometer 1: bReset
C00838/151	L FixSet a 1: bSelect1
C00838/152	L FixSet a 1: bSelect2
C00838/153	L FixSet a 1: bSelect4
C00838/154	L FixSet a 1: bSelect8
C00838/155	L FixSet w 1: bSelect1
C00838/156	L FixSet w 1: bSelect2
C00838/157	L FixSet w 1: bSelect4
C00838/158	L FixSet w 1: bSelect8
C00838/159	L FixSet w 2: bSelect1
C00838/160	L FixSet w 2: bSelect2
C00838/161	L FixSet w 2: bSelect4
C00838/162	L FixSet w 2: bSelect8

Parameter Name: C00838 Binary inputs (Set2)		Data type: UNSIGNED_8 Index: 23737 _d = 5CB9 _h
C00838/163	L CalcDiameter 1: bResetPos	
C00838/164	L_CalcDiameter_1: bHoldD	
C00838/165	L_CalcDiameter_1: bUnidirect	
C00838/166	L_CalcDiameter_1: bUnwind	
C00838/167	<u>L_CalcDiameter_1</u> : bLoadDiameter	
C00838/168	L_CalcDiameter_1: bCalcRef	
C00838/169	L_ProcessCtrl_1: bLoadAct	
C00838/170	L_ProcessCtrl_1: bIOff	
C00838/171	L_ProcessCtrl_1: bReset	
C00838/172	L Philntegrator 1: bTPReceived	
C00838/173	L_PhiIntegrator_1: bReset	
C00838/174	L Philntegrator 1: bLoad	
C00838/175	L_PosCtrlLin_1: bExecute	
C00838/176	L_PosCtrlLin_1: bSetPos0	
C00838/177	L_PosCtrlLin_1: bPosMode	
C00838/178	L_PosCtrlLin_1: bEnable	
C00838/179	L_PosCtrlLin_2: bExecute	
C00838/180	L PosCtrlLin 2: bSetPos0	
C00838/181	L PosCtrlLin 2: bPosMode	
C00838/182	L_PosCtrlLin_2: bEnable	
C00838/183	L_SwitchPoint_1: bDisable	
C00838/184	L_DFSET_1: bZeroPulse	
C00838/185	L_DFSET_1: bSetTPReceived	
C00838/186	L_DFSET_1: bActTPReceived	
C00838/187	L_DFSET_1: bSetActIntegrator	
C00838/188	<u>L_DFSET_1</u> : bResetAllIntegrators	
C00838/189	L_DFRFG_1: bSetTPReceived	
C00838/190	L_DFRFG_1: bRfg0	
C00838/191	L_DFRFG_1: bRfgStop	
C00838/192	L_DFRFG_1: bReset	
C00838/193	L_ConvX_1: blnvers	
C00838/194	L_ConvX_2: bInvers	
C00838/195	L_ConvX_3: bInvers	
C00838/196	L_ConvPP_1: bAct	
C00838/197	L_ConvPP_2: bAct	
C00838/198	L_ConvPP_3: bAct	
C00838/199	L_SignalSwitch32_1: bSet	
C00838/200	L_SignalSwitch32_2: bSet	
C00838/201	L_SignalSwitch32_3: bSet	
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	☐ COM ☐ MOT Scaling factor: 1	

Parameter reference Parameter list | C00839

C00839

Parameter Name: C00839 32-bit in	puts [incr] (Set2)		Data type: INTEGER_32 Index: 23736 _d = 5CB8 _h	
Display in [increments] of 32 bit input values of various blocks In addition to the parameter C00834.				
Display range (min.	value unit max. value)			
-2147483647	Incr.	2147483647		
Subcodes			Info	
C00839/1			L_ComparePhi_1: dnIn1_p	
C00839/2			L_ComparePhi_1: dnIn2_p	
C00839/3			L_ComparePhi_2: dnln1_p	
C00839/4			L_ComparePhi_2: dnln2_p	
C00839/5			L_ComparePhi_3: dnln1_p	
C00839/6			L_ComparePhi_3: dnIn2_p	
C00839/7			L_ComparePhi_4: dnIn1_p	
C00839/8			L_ComparePhi_4: dnIn2_p	
C00839/9			L_ComparePhi_5: dnIn1_p	
C00839/10			L_ComparePhi_5: dnIn2_p	
C00839/11			L_ArithmetikPhi_1: dnIn1_p	
C00839/12			L_ArithmetikPhi_1: dnIn2_p	
C00839/13			L_ArithmetikPhi_2: dnIn1_p	
C00839/14			L_ArithmetikPhi_2: dnIn2_p	
C00839/15			L_ArithmetikPhi_3: dnIn1_p	
C00839/16			L_ArithmetikPhi_3: dnIn2_p	
C00839/17			L_GainOffsetPhiP_1: dnIn_p	
C00839/18			L_GainOffsetPhiP_2: dnIn_p	
C00839/19			L_LimitPhi_1: dnln_p	
C00839/20			L_LimitPhi_2: dnln_p	
C00839/21			L_LimitPhi_3: dnln_p	
C00839/22			L_OffsetGainPhiP_1: dnIn_p	
C00839/23			L_OffsetGainPhiP_2: dnIn_p	
C00839/24			L_PhaseIntK_1: dnSet_p	
C00839/25			L_PhaseIntK_2: dnSet_p	
C00839/26			L_Mux_1: dnInput1_p	
C00839/27			L_Mux_1: dnInput2_p	
C00839/28			L_Mux_1: dnInput3_p	
C00839/29			L_Mux_1: dnInput4_p	
C00839/30			L_Mux_1: dnInput5_p	
C00839/31			L_Mux_1: dnInput6_p	
C00839/32			L_Mux_1: dnInput7_p	
C00839/33			L_Mux_1: dnInput8_p	
C00839/34			L_SQrt_1: dnInput_p	
C00839/35			L_ConvDIntToWords_1: dnInput_p	
C00839/36			L_ConvDIntToWords_2: dnInput_p	
C00839/37			L_ConvDIntToWords_3: dnInput_p	
C00839/38			L_MckCtrlInterface_1: dnPosSetIn_p	
C00020/20			L DhasaDiff 1, duCat n	

<u>L_PhaseDiff_1</u>: dnSet_p

C00839/39

Parameter Name: C00839 32-bit inputs [incr] (Set2)	Data type: INTEGER_32 Index: 23736 _d = 5CB8 _h
C00839/40	L PhaseDiff 2: dnSet_p
C00839/41	L_PhaseDiff_1: dnAdd_p
C00839/42	L_PhaseDiff_2: dnAdd_p
C00839/43	L_MckStateInterface_1: dnPosIn_p
C00839/44	L_Odometer_1: dnInPosition_p
C00839/45	<u>L_PhiIntegrator_1</u> : dnTPPosition_p
C00839/46	L_PhiIntegrator_1: dnLoadVal_p
C00839/47	L_PosCtrlLin_1: dnSet_p
C00839/48	L_PosCtrlLin_1: dnAct_p
C00839/49	L_PosCtrlLin_2: dnSet_p
C00839/50	L_PosCtrlLin_2: dnAct_p
C00839/51	L_SwitchPoint_1: dnActPos_p
C00839/52	L_SwitchPoint_1: dnSwitchPoint1_p
C00839/53	L_SwitchPoint_1: dn2ndPoint_Size1_p
C00839/54	L_SwitchPoint_1: dnSwitchPoint2_p
C00839/55	L_SwitchPoint_1: dn2ndPoint_Size2_p
C00839/56	L_SwitchPoint_1: dnSwitchPoint3_p
C00839/57	L_SwitchPoint_1: dn2ndPoint_Size3_p
C00839/58	L_SwitchPoint_1: dnSwitchPoint4_p
C00839/59	L_SwitchPoint_1: dn2ndPoint_Size4_p
C00839/60	L_DFSET_1: dnSetTPPos_p
C00839/61	L_DFSET_1: dnActTPPos_p
C00839/62	L DFSET 1: dnPosOffset
C00839/63	L_DFRFG_1: dnSetTPPos_p
C00839/64	L_GearComp_1: dnPhiln_p
C00839/65	L_ConvPA_1: dnIn_p
C00839/66	L_ConvPA_2: dnIn_p
C00839/67	L_ConvPA_3: dnIn_p
C00839/68	L_ConvPP_1: dnIn_p
C00839/69	L_ConvPP_2: dnIn_p
C00839/70	L_ConvPP_3: dnIn_p
C00839/71	L SignalSwitch32 1: dnIn1
C00839/72	L SignalSwitch32 1: dnIn2
C00839/73	L SignalSwitch32 2: dnIn1
C00839/74	L SignalSwitch32 2: dnIn2
C00839/75	L SignalSwitch32 3: dnIn1
C00839/76	L SignalSwitch32 3: dnIn2
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	□ COM □ MOT Scaling factor: 1

8400 TopLine C | Software Manual Parameter reference

Parameter list | C00840

Parameter Name: C00840 16-bit ir	nputs I/O level [%]			Data type: INTEGER_16 Index: 23735 _d = 5CB7 _h
Display in percent	t of 16 bit input values	of various blocks	of the I/O level	
Display range (min	n. value unit max. value)			
-199.99	%	199.99		
Subcodes			Info	
C00840/1			LS_AnalogOutput: nOut1_a (V)	
C00840/2			LP_CanOut1: wState	
C00840/3			LP CanOut1: wOut2	
C00840/4			LP_CanOut1: wOut3	
C00840/5			LP CanOut1: wOut4	
C00840/6			LP_CanOut2: wOut1	
C00840/7			LP CanOut2: wOut2	
C00840/8			LP_CanOut2: wOut3	
C00840/9			LP_CanOut2: wOut4	
C00840/10			LP_CanOut3: wOut1	
C00840/11			LP_CanOut3: wOut2	
C00840/12			LP_CanOut3: wOut3	
C00840/13			LP_CanOut3: wOut4	
C00840/14			LS_DisFree_a: nDis1_a	
C00840/15			LS_DisFree_a: nDis2_a	
C00840/16			LS_DisFree_a: nDis3_a	
C00840/17			LS_DisFree_a: nDis4_a	
C00840/18			LS_DisFree: wDis1	
C00840/19			LS_DisFree: wDis2	
C00840/20			LS_DisFree: wDis3	
C00840/21			LS_DisFree: wDis4	
C00840/22			LP_MciOut: wState	
C00840/23			LP_MciOut: wOut2	
C00840/24			LP_MciOut: wOut3	
C00840/25			LP_MciOut: wOut4	
C00840/26			LP_MciOut: wOut5	
C00840/27			LP_MciOut: wOut6	
C00840/28			LP_MciOut: wOut7	
C00840/29			LP_MciOut: wOut8	
C00840/30			LP_MciOut: wOut9	
C00840/31			LP_MciOut: wOut10	
C00840/32			LP_MciOut: wOut11	
C00840/33			LP_MciOut: wOut12	
C00840/34			LP_MciOut: wOut13	
C00840/35			LP_MciOut: wOut14	
C00840/36			LP_MciOut: wOut15	
C00840/37			LP_MciOut: wOut16	
C00840/38			LS_AnalogOutput: nOut2_a (V)	
C00840/39			LS_AnalogOutput: nOut1_a (I)	
C00840/40			LS AnalogOutput: nOut2 a (I)	

Parameter Name: C00840 16-bit inputs I/O level [%]		Data type: INTEGER_16 Index: 23735 _d = 5CB7 _h
C00840/41	LS DisFree a: nDis5_a	
C00840/42	LS_DisFree_a: nDis6_a	
C00840/43	LS_DisFree_a: nDis7_a	
C00840/44	LS_DisFree_a: nDis8_a	
C00840/45	LS_DisFree: wDis5	
C00840/46	LS_DisFree: wDis6	
C00840/47	LS_DisFree: wDis7	
C00840/48	LS_DisFree: wDis8	
C00840/49	LS_ParReadWrite_1: wParIndex	
C00840/50	LS_ParReadWrite_1: wParSubindex	
C00840/51	LS_ParReadWrite_1: wInHWord	
C00840/52	LS_ParReadWrite_1: wInLWord	
C00840/53	LS ParReadWrite 2: wParIndex	
C00840/54	LS_ParReadWrite_2: wParSubindex	
C00840/55	LS_ParReadWrite_2: wInHWord	
C00840/56	LS_ParReadWrite_2: wInLWord	
C00840/57	LS_ParReadWrite_3: wParIndex	
C00840/58	LS ParReadWrite 3: wParSubindex	
C00840/59	LS_ParReadWrite_3: wInHWord	
C00840/60	LS_ParReadWrite_3: wInLWord	
C00840/61	LS ParReadWrite 4: wParIndex	
C00840/62	LS ParReadWrite 4: wParSubindex	
C00840/63	LS_ParReadWrite_4: wInHWord	
C00840/64	LS ParReadWrite 4: wInLWord	
C00840/65	LS ParReadWrite 5: wParIndex	
C00840/66	LS ParReadWrite 5: wParSubindex	
C00840/67	LS ParReadWrite 5: wInHWord	
C00840/68	LS ParReadWrite 5: wInLWord	
C00840/69	LS ParReadWrite 6: wParIndex	
C00840/70	LS ParReadWrite 6: wParSubindex	
C00840/71	LS ParReadWrite 6: wInHWord	
C00840/72	LS ParReadWrite 6: wInLWord	
C00840/73	Reserved	
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	□ COM □ MOT Scaling factor: 100	

Parameter Name: C00841 16-bit inputs I/O level			Data type: UNSIGNED_16 Index: 23734 _d = 5CB6 _h	
Decimal/hexadecimal/bit coded display of 16 bit input values of various blocks of the I/O level				
Display area (min. hex value max. hex value))		
0x0000		0xFFFF		
Value is bit-coded:				
Bit 0 Active				
Bit 15	Active			

C00841 16-bit inputs I/O level	Index: 23734 _d = 5CB
Subcodes	Info
C00841/1	LS_AnalogOutput: nOut1_a (V)
C00841/2	<u>LP_CanOut1</u> : wState
C00841/3	<u>LP_CanOut1</u> : wOut2
C00841/4	<u>LP_CanOut1</u> : wOut3
C00841/5	<u>LP_CanOut1</u> : wOut4
C00841/6	<u>LP_CanOut2</u> : wOut1
C00841/7	<u>LP_CanOut2</u> : wOut2
C00841/8	<u>LP_CanOut2</u> : wOut3
C00841/9	<u>LP_CanOut2</u> : wOut4
C00841/10	<u>LP_CanOut3</u> : wOut1
C00841/11	<u>LP_CanOut3</u> : wOut2
C00841/12	<u>LP_CanOut3</u> : wOut3
C00841/13	<u>LP_CanOut3</u> : wOut4
C00841/14	LS_DisFree_a: nDis1_a
C00841/15	LS DisFree a: nDis2_a
C00841/16	LS DisFree a: nDis3_a
C00841/17	LS DisFree a: nDis4_a
C00841/18	LS DisFree: wDis1
C00841/19	LS DisFree: wDis2
C00841/20	LS DisFree: wDis3
C00841/21	LS DisFree: wDis4
C00841/22	LP MciOut: wState
C00841/23	LP MciOut: wOut2
C00841/24	LP MciOut: wOut3
C00841/25	LP MciOut: wOut4
C00841/26	LP MciOut: wOut5
C00841/27	LP MciOut: wOut6
C00841/28	LP MciOut: wOut7
C00841/29	LP MciOut: wOut8
C00841/30	LP MciOut: wOut9
C00841/31	LP MciOut: wOut10
C00841/32	LP MciOut: wOut11
C00841/33	LP MciOut: wOut12
C00841/34	LP MciOut: wOut13
C00841/35	LP MciOut: wOut14
C00841/36	LP MciOut: wOut15
C00841/37	LP MciOut: wOut16
C00841/38	LS AnalogOutput: nOut2 a (V)
C00841/39	LS AnalogOutput: nOut1 a (I)
C00841/40	LS AnalogOutput: nOut2 a (I)
C00841/40 C00841/41	LS DisFree a: nDis5 a
C00841/41 C00841/42	
C00841/43	LS_DisFree_a: nDis6_a LS_DisFree_a: nDis7_a

Parameter Name: C00841 16-bit inputs I/O level	Data type: UNSIGNED_ Index: 23734 _d = 5CB
C00841/44	LS DisFree a: nDis8_a
C00841/45	LS_DisFree: wDis5
C00841/46	LS_DisFree: wDis6
C00841/47	LS_DisFree: wDis7
C00841/48	LS_DisFree: wDis8
C00841/49	LS ParReadWrite 1: wParIndex
C00841/50	LS ParReadWrite 1: wParSubindex
C00841/51	LS ParReadWrite 1: wInHWord
C00841/52	LS ParReadWrite 1: wInLWord
C00841/53	LS ParReadWrite 2: wParIndex
C00841/54	LS ParReadWrite 2: wParSubindex
C00841/55	LS ParReadWrite 2: wInHWord
C00841/56	LS ParReadWrite 2: wInLWord
C00841/57	LS ParReadWrite 3: wParIndex
C00841/58	LS ParReadWrite 3: wParSubindex
C00841/59	LS ParReadWrite 3: wInHWord
C00841/60	LS ParReadWrite 3: wInLWord
C00841/61	LS ParReadWrite 4: wParIndex
C00841/62	LS ParReadWrite 4: wParSubindex
C00841/63	LS ParReadWrite 4: wInHWord
C00841/64	LS ParReadWrite 4: wInLWord
C00841/65	LS ParReadWrite 5: wParIndex
C00841/66	LS ParReadWrite 5: wParSubindex
C00841/67	LS ParReadWrite 5: wInHWord
C00841/68	LS ParReadWrite 5: wInLWord
C00841/69	LS ParReadWrite 6: wParIndex
C00841/70	LS ParReadWrite 6: wParSubindex
C00841/71	LS ParReadWrite 6: wInHWord
C00841/72	LS ParReadWrite 6: wInLWord
C00841/73	Reserved
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No tran	nsfer □ COM □ MOT

Parameter | Name:

C00843 | Binary inputs I/O level

Data type: UNSIGNED_8
Index: 23732_d = 5CB4_h

Display of the signal status of the binary inputs of different I/O level blocks

Selection list		
0	False	
1	True	
Subcodes		Info
C00843/1		LS_DigitalOutput: bRelay
C00843/2		LS_DigitalOutput: bOut1
C00843/3		LS_DigitalInput: bCountIn1_Reset
C00843/4		<u>LS_DigitalInput</u> : bCountIn1_LoadStartValue
C00843/5		<u>LP_CanOut1</u> : bState_B0

Parameter Name: C00843 Binary inputs I/O level	Data type: UNSIGNED_8 Index: 23732 _d = 5CB4 _h
C00843/6	LP CanOut1: bState_B1
C00843/7	LP_CanOut1: bState_B2
C00843/8	<u>LP_CanOut1</u> : bState_B3
C00843/9	LP_CanOut1: bState_B4
C00843/10	LP_CanOut1: bState_B5
C00843/11	LP_CanOut1: bState_B6
C00843/12	LP_CanOut1: bState_B7
C00843/13	LP_CanOut1: bState_B8
C00843/14	LP_CanOut1: bState_B9
C00843/15	LP_CanOut1: bState_B10
C00843/16	LP_CanOut1: bState_B11
C00843/17	LP_CanOut1: bState_B12
C00843/18	LP_CanOut1: bState_B13
C00843/19	LP CanOut1: bState_B14
C00843/20	LP_CanOut1: bState_B15
C00843/21	LS DisFree b: bDis1
C00843/22	LS DisFree b: bDis2
C00843/23	LS DisFree b: bDis3
C00843/24	LS DisFree b: bDis4
C00843/25	LS DisFree b: bDis5
C00843/26	LS DisFree b: bDis6
C00843/27	LS DisFree b: bDis7
C00843/28	LS DisFree b: bDis8
C00843/29	LP_CanOut2: bOut1_B0
C00843/30	LP_CanOut2: bOut1_B1
C00843/31	LP_CanOut2: bOut1_B2
C00843/32	LP_CanOut2: bOut1_B3
C00843/33	LP_CanOut2: bOut1_B4
C00843/34	LP_CanOut2: bOut1_B5
C00843/35	LP_CanOut2: bOut1_B6
C00843/36	LP_CanOut2: bOut1_B7
C00843/37	LP_CanOut2: bOut1_B8
C00843/38	LP_CanOut2: bOut1_B9
C00843/39	LP_CanOut2: bOut1_B10
C00843/40	LP_CanOut2: bOut1_B11
C00843/41	LP_CanOut2: bOut1_B12
C00843/42	LP_CanOut2: bOut1_B13
C00843/43	LP CanOut2: bOut1_B14
C00843/44	LP CanOut2: bOut1_B15
C00843/45	LP CanOut3: bOut1_B0
C00843/46	LP CanOut3: bOut1_B1
C00843/47	LP CanOut3: bOut1_B2
C00843/48	LP CanOut3: bOut1_B3
C00843/49	LP CanOut3: bOut1 B4

Parameter Name: C00843 Binary inputs I/O level	Data type: UNSIGNED_8 Index: 23732 _d = 5CB4 _h
C00843/50	LP CanOut3: bOut1_B5
C00843/51	LP_CanOut3: bOut1_B6
C00843/52	LP_CanOut3: bOut1_B7
C00843/53	LP_CanOut3: bOut1_B8
C00843/54	LP_CanOut3: bOut1_B9
C00843/55	LP_CanOut3: bOut1_B10
C00843/56	LP_CanOut3: bOut1_B11
C00843/57	LP_CanOut3: bOut1_B12
C00843/58	LP_CanOut3: bOut1_B13
C00843/59	LP_CanOut3: bOut1_B14
C00843/60	LP_CanOut3: bOut1_B15
C00843/61	LP_MciOut: bState_B0
C00843/62	LP_MciOut: bState_B1
C00843/63	LP_MciOut: bState_B2
C00843/64	LP_MciOut: bState_B3
C00843/65	LP_MciOut: bState_B4
C00843/66	LP_MciOut: bState_B5
C00843/67	LP_MciOut: bState_B6
C00843/68	LP_MciOut: bState_B7
C00843/69	LP_MciOut: bState_B8
C00843/70	LP_MciOut: bState_B9
C00843/71	LP_MciOut: bState_B10
C00843/72	LP_MciOut: bState_B11
C00843/73	LP_MciOut: bState_B12
C00843/74	LP_MciOut: bState_B13
C00843/75	LP_MciOut: bState_B14
C00843/76	LP_MciOut: bState_B15
C00843/77	LP_MciOut: bOut2_B0
C00843/78	LP_MciOut: bOut2_B1
C00843/79	LP_MciOut: bOut2_B2
C00843/80	LP_MciOut: bOut2_B3
C00843/81	LP_MciOut: bOut2_B4
C00843/82	LP_MciOut: bOut2_B5
C00843/83	LP_MciOut: bOut2_B6
C00843/84	LP_MciOut: bOut2_B7
C00843/85	LP_MciOut: bOut2_B8
C00843/86	LP_MciOut: bOut2_B9
C00843/87	LP_MciOut: bOut2_B10
C00843/88	LP_MciOut: bOut2_B11
C00843/89	LP_MciOut: bOut2_B12
C00843/90	LP_MciOut: bOut2_B13
C00843/91	LP_MciOut: bOut2_B14
C00843/92	LP_MciOut: bOut2_B15
C00843/93	LS SetError 1: bSetError1
	·

Parameter Name: C00843 Binary inputs I/O level	Data type: UNSIGNED_8 Index: 23732 _d = 5CB4 _h
C00843/94	LS SetError 1: bSetError2
C00843/95	<u>LS_SetError_1</u> : bSetError3
C00843/96	LS_SetError_1: bSetError4
C00843/97	LS_DigitalInput: bCountIn6_Reset
C00843/98	LS_DigitalInput: bCountIn6_LoadStartValue
C00843/99	LS_DigitalOutput: bOut2
C00843/100	LS DigitalOutput: bOut3
C00843/101	LS DigitalOutput: bOut HighCurrent
C00843/102	LS DisFree b: bDis9
C00843/103	LS DisFree b: bDis10
C00843/104	LS DisFree b: bDis11
C00843/105	LS DisFree b: bDis12
C00843/106	LS DisFree b: bDis13
C00843/107	LS DisFree b: bDis14
C00843/108	LS DisFree b: bDis15
C00843/109	LS DisFree b: bDis16
C00843/110	Reserved
C00843/111	LS ParReadWrite 1: bExecute
C00843/112	LS ParReadWrite 1: bReadWrite
C00843/113	LS ParReadWrite 2: bExecute
C00843/114	LS ParReadWrite 2: bReadWrite
C00843/115	LS ParReadWrite 3: bExecute
C00843/116	LS ParReadWrite 3: bReadWrite
C00843/117	LS ParReadWrite 4: bExecute
C00843/118	LS ParReadWrite 4: bReadWrite
C00843/119	LS ParReadWrite 5: bExecute
C00843/119 C00843/120	LS ParReadWrite 5: bReadWrite
<u> </u>	LS ParReadWrite 6: bExecute
C00843/121	
C00843/122 C00843/123	LS ParReadWrite 6: bReadWrite
,	LS WriteParamList: bExecute
C00843/124	LS_WriteParamList: bSelectWriteValue_1
C00843/125	LS_WriteParamList: bSelectWriteValue_2
C00843/126	LS_CANManagement: bResetNode
C00843/127	LS_CANManagement: bReInitCAN
C00843/128	LS_DigitalInput: bPosIn12_Load
C00843/129	Reserved
C00843/130	Reserved
C00843/131	Reserved
C00843/132	Reserved
C00843/133	Reserved
C00843/134	Reserved
C00843/135	Reserved
C00843/136	Reserved
C00843/137	Reserved

Parameter Name: C00843 Binary inputs I/O level	Data type: UNSIGNED_8 Index: 23732 _d = 5CB4 _h
C00843/138	Reserved
C00843/139	Reserved
C00843/140	Reserved
C00843/141	Reserved
C00843/142	Reserved
C00843/143	Reserved
C00843/144	Reserved
C00843/145	Reserved
C00843/146	Reserved
C00843/147	LS_TouchProbe: bDisableTPDigIn3
C00843/148	LS_TouchProbe: bDisableTPDigIn4
C00843/149	LS_TouchProbe: bDisableTPDigIn5
C00843/150	LS_TouchProbe: bDisableTPDigIn6
C00843/151	LS_TouchProbe: bDisableTPDigIn7
C00843/152	LS_TouchProbe: bDisableTPDigIn3_Rising
C00843/153	LS_TouchProbe: bDisableTPDigIn3_Falling
C00843/154	LS_TouchProbe: bDisableTPDigIn4_Rising
C00843/155	LS_TouchProbe: bDisableTPDigIn4_Falling
C00843/156	LS_TouchProbe: bDisableTPDigIn5_Rising
C00843/157	LS_TouchProbe: bDisableTPDigIn5_Falling
C00843/158	LS_TouchProbe: bDisableTPDigIn3Window
C00843/159	LS TouchProbe: bDisableTPDigIn4Window
C00843/160	LS_TouchProbe: bDisableTPDigIn5Window
C00843/161	LS_AxisBusIO: bSetFail
C00843/162	LS AxisBusIO: bResetFail
C00843/163	Reserved
C00843/164	LS_MultiEncoder: bSetRef
C00843/165	LS_RetainData: bSetRetain_1
C00843/166	LS_RetainData: bSetRetain_2
C00843/167	LS_RetainData: bSetRetain_3
C00843/168	LS_RetainData: bLoadParams
C00843/169	LS RetainData: bln1
C00843/170	LS RetainData: bln2
C00843/171	LS RetainData: bln3
C00843/172	LS RetainData: bln4
C00843/173	LS AxisBusAux: bReadWrite
C00843/174	LS AxisBusAux: bExecute
C00843/175	LS AxisBusAux: bStop
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer	□ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C00844

C00844

Parameter Name: C00844 32-bit inp	puts I/O level [incr]		Data type: INTEGER_32 Index: 23731 _d = 5CB3 _h		
Display of 32-bit in	nput values of differ	ent I/O level blocks	in [increments]		
Display range (min.	value unit max. value)				
-2147483647	Incr.	2147483647			
Subcodes			Info		
C00844/1			LS_DisFree_p: dnDis1_p		
C00844/2			<u>LS_DisFree_p</u> : dnDis2_p		
C00844/3			LS_DisFree_p: dnDis3_p		
C00844/4			LS_DisFree_p: dnDis4_p		
C00844/5			LS_DisFree_p: dnDis5_p		
C00844/6			LS_DisFree_p: dnDis6_p		
C00844/7			<u>LS_DisFree_p</u> : dnDis7_p		
C00844/8			LS_DisFree_p: dnDis8_p		
C00844/9			<u>LP_CanOut1</u> : dnOut34_p		
C00844/10			<u>LP_CanOut2</u> : dnOut34_p		
C00844/11			<u>LP_CanOut3</u> : dnOut34_p		
C00844/12			<u>LP_MciOut</u> : dnOut34_p		
☑ Read access □ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT Scaling factor: 1					

C00866

Parameter Name:	Data type: UNSIGNED_16
C00866 CAN input words	Index: $23709_d = 5C9D_h$

Display of the 16 bit input values of the CAN interface

▶ System bus "CAN on board"

Display area (min. h	ex value max. hex value	e)	
0x0000		0xFFFF	
Value is bit-coded:	:		
Bit 0	Active		
Bit 15	Active		
Subcodes			Info
C00866/1			LP_CanIn1: wCtrl
C00866/2			LP_CanIn1: wIn2
C00866/3			LP_CanIn1: wIn3
C00866/4			LP_CanIn1: wIn4
C00866/5			LP_CanIn2: wIn1
C00866/6			LP_CanIn2: wIn2
C00866/7			LP_CanIn2: wIn3
C00866/8			LP_CanIn2: wIn4
C00866/9			LP_CanIn3: wIn1
C00866/10			LP_CanIn3: wIn2
C00866/11			LP_CanIn3: wIn3
C00866/12			LP_CanIn3: wIn4
☑ Read access ☐ Write	access 🗆 CINH 🗆 PLC	STOP INo transfer	ГСОМ □ МОТ

Parameter Name: C00868 CAN outp	ut words	Data type: UNSIGNED_16 Index: 23707 _d = 5C9B _h
Display of the 16 bi	t output values of the CAN interface	
Displayance ()		➤ System bus "CAN on board"
Display area (min. he		
0x0000	0xFFFF	
Value is bit-coded:	A	
Bit 0		
	Active	
Bit 6	Active	
Bit 7	Active	
Bit 8	Active	
Bit 9	Active	
Bit 10	Active	
Bit 11	Active	
Bit 12	Active	
Bit 13	Active	
Bit 14	Active	
Bit 15	Active	
Subcodes		Info
C00868/1		LP_CanOut1: wState
C00868/2		LP_CanOut1: wOut2
C00868/3		LP_CanOut1: wOut3
C00868/4		LP_CanOut1: wOut4
C00868/5		LP_CanOut2: wOut1
C00868/6		LP_CanOut2: wOut2
C00868/7		LP_CanOut2: wOut3
C00868/8		LP CanOut2: wOut4
C00868/9		LP CanOut3: wOut1
C00868/10		LP CanOut3: wOut2
C00868/11		LP CanOut3: wOut3
C00868/12		LP CanOut3: wOut4
☑ Read access ☐ Write	access □ CINH □ PLC STOP ☑ No transfer □] СОМ □ МОТ

Parameter reference Parameter list | C00876

Parameter Name: C00876 MCI inpu	t words		Data type: UNSIGNED_16 Index: 23699 _d = 5C93 _h		
Display of the 16 bit input values of the communication module					
Display area (min. h	ex value max. hex value)			
0x0000		0xFFFF			
Value is bit-coded:					
Bit 0	Active				
Bit 15	Active				
Subcodes			Info		
C00876/1			<u>LP_Mciln</u> : wCtrl		
C00876/2			<u>LP_Mciln</u> : wln2		
C00876/3			LP_Mciln: wln3		
C00876/4			LP_Mciln: wln4		
C00876/5			<u>LP_Mciln</u> : wln5		
C00876/6			LP_Mciln: wln6		
C00876/7			LP_Mciln: wln7		
C00876/8			LP_Mciln: wln8		
C00876/9			LP_Mciln: wln9		
C00876/10			LP_Mciln: wln10		
C00876/11			LP_Mciln: wln11		
C00876/12			LP_Mciln: wln12		
C00876/13			LP_Mciln: wln13		
C00876/14			LP_Mciln: wln14		
C00876/15			<u>LP_Mciln</u> : wln15		
C00876/16			<u>LP_Mciln</u> : wln16		
☑ Read access ☐ Write	access 🗆 CINH 🗆 PLC	STOP ☑ No transfer ☐	от при		

Parameter Name: C00877 MCI outp	ut words	Data type: UNSIGNED_16 Index: 23698 _d = 5C92 _h			
Display of the 16 bit output values of the communication module					
Display area (min. h	ex value max. hex value)				
0x0000	0xFFFF				
Value is bit-coded:					
Bit 0	Active				
Bit 15	Active				
Subcodes		Info			
C00877/1		LP_MciOut: wState			
C00877/2		LP_MciOut: wOut2			
C00877/3		LP_MciOut: wOut3			
C00877/4		LP_MciOut: wOut4			
C00877/5		LP_MciOut: wOut5			
C00877/6		LP_MciOut: wOut6			
C00877/7		LP_MciOut: wOut7			
C00877/8		LP_MciOut: wOut8			
C00877/9		LP_MciOut: wOut9			
C00877/10		LP_MciOut: wOut10			
C00877/11		LP_MciOut: wOut11			
C00877/12		LP_MciOut: wOut12			
C00877/13		LP_MciOut: wOut13			
C00877/14		LP_MciOut: wOut14			
C00877/15		LP_MciOut: wOut15			
C00877/16		LP_MciOut: wOut16			
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer !	□ СОМ □ МОТ			

C00890

Parameter Name: C00890 MCI_InO	ut: Inversion	Data type: UNSIGNED_16 Index: 23685 _d = 5C85 _h	
This parameter se	rves to invert the control/status bits of	the MCI port blocks.	
Setting range (min.	hex value max. hex value)		
0x0000	0xFFFF		
Value is bit-coded	:	Info	
Bit 0	Active	Bit set = inversion active	
Bit 15	Active		
Subcodes	Lenze setting	Info	
C00890/1	0	Inversion of LP_MciIn.wCtrl	
C00890/2	0	Inversion of LP_MciOut.wState	
C00890/3	0	Inversion of LP_Mciln.bln2_B015	
C00890/4	0	Inversion of LP MciOut.bOut2 B015	

lacktriangledown Read access \lacktriangledown Write access \lacktriangledown CINH \lacktriangledown PLC STOP \lacktriangledown No transfer \lacktriangledown COM \lacktriangledown MOT

Parameter reference Parameter list | C00905

C00905						
	Parameter Name: C00905 Motor ph	ase direction of rot	ation			Data type: UNSIGNED_8 Index: 23670 _d = 5C76 _h
	To correct such mis "1: Inverted". In thi	To correct such misconnected motor phases, the rotating field of the controller's output can be reversed by selectin "1: Inverted". In this case, a phase will be reversed at the output of the inverter.				
	Selection list (Lenze	setting printed in bold)				
	0	not inverted				
	1	inverted				
	☑ Read access ☑ Write	e access ☑ CINH ☐ PLC	STOP □ No transfer □	СОМ □МОТ	Scaling factor: 1	
C00000						
C00909	Parameter Name: C00909 Speed line	nitation				Data type: INTEGER_16 Index: 23666 _d = 5C72 _h
	Max. positive/nega	ative speed for all n	notor control modes	5		
	Setting range (min.	value unit max. value)				
	0.00	%	175.00			
	Subcodes	Lenze setting		Info		
	C00909/1	120.00 %		Max. pos. sp	eed	
	C00909/2	120.00 %		Max. neg. sp	eed	
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	СОМ □МОТ	Scaling factor: 100	
C00910	Parameter Name: C00910 Frequence	y limitation				Data type: UNSIGNED_16 Index: 23665 _d = 5C71 _h
	Max. positive/negative output frequency for all motor control modes					
	Setting range (min.	value unit max. value)				
	0	Hz	1000			
	Subcodes	Lenze setting		Info		
	C00910/1	1000 Hz		Max. pos. ou	tput frequency	
	C00910/2	1000 Hz		Max. neg. ou	tput frequency	
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	СОМ □МОТ	Scaling factor: 1	
C00915	Parameter Name: C00915 Motor ca	ble length				Data type: UNSIGNED_16 Index: 23660 _d = 5C6C _h
	0	U	ing the motor cable nce is displayed in <u>C</u>			
	Setting range (min.	value unit max. value)		Lenze setting	g	
	0.0	m	1000.0	5.0 m		
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	COM ☑ MOT	Scaling factor: 10	
C00016						
C00916	Parameter Name: C00916 Motor ca	ble cross-section				Data type: UNSIGNED_16 Index: 23659 _d = 5C6B _h
			cable for calculating nce is displayed in <u>C</u>		able resistance	
	Setting range (min.	value unit max. value)		Lenze setting	g	
	0.50	mm^2	100.00	6.00 mm^2		
	☑ Read access ☑ Write	access CINH PLC	STOP No transfer	COM ☑ MOT	Scaling factor: 100	

Parameter reference Parameter list | C00917

C00017						
C00917	Parameter Name: C00917 Motor ca	ble resistance				Data type: UNSIGNED_16 Index: 23658 _d = 5C6A _h
		e resistance is calcu	of a motor cable ph llated from the mot		th set in <u>C00915</u>	and the motor cable cross-
	Display range (min.	value unit max. value]				
	0	mOhm	64000			
	☑ Read access ☐ Write	e access □ CINH □ PLC	STOP IN No transfer	ГСОМ □МОТ	Scaling factor: 1	
C00918	Parameter Name: C00918 SC: Start	motor magnetising	g current			Data type: UNSIGNED_8 Index: 23657 _d = 5C69 _h
	Setting range (min.	value unit max. value)		Lenze settin	g	
	0	%	90	87 %		
	☑ Read access ☑ Write	e access	STOP No transfer	ГСОМ ☑ МОТ	Scaling factor: 1	
C00922	Parameter Name: C00922 ICM_Diag	gnosticCounter				Data type: UNSIGNED_16 Index: 23653 _d = 5C65 _h
	This code is for dev	vice-internal use on	ly and must not be	written to by	the user!	
C00925	Parameter Name: C00925 LS_Resolver: Number of pole pairs					Data type: UNSIGNED_8 Index: 23650 _d = 5C62 _h
						► Encoder/feedback system
	Setting range (min.	value unit max. value)		Lenze settin	g	
	1		10	1		
	☑ Read access ☑ Write	e access	STOP No transfer	I COM ☑ MOT	Scaling factor: 1	
C00926	Parameter Name: C00926 Pole posi	tion				Data type: INTEGER_16 Index: 23649 _d = 5C61 _h • Encoder/feedback system
	Setting range (min	value unit max. value)				
	-179.9	•	179.9			
	Subcodes	Lenze setting	173.5	Info		
	C00926/1	-90.0 °		-	: Pole position	
	C00926/2	0.0 °			coder: Pole posit	ion
			STOP □ No transfer □			
					-	
C00927	Parameter Name: C00927 Motor ro	tor position				Data type: UNSIGNED_16 Index: 23648 _d = 5C60 _h
						► Encoder/feedback system
	Display range (min.	value unit max. value				
	0		2047			
	☑ Read access ☐ Write	access \square CINH \square PI (STOP Motransfer	COM M MOT	Scaling factor: 1	

Parameter reference Parameter list | C00937

C00937

Parameter Name: C00937 Field-oriented motor currents	Data type: INTEGER_16 Index: 23638 _d = 5C56 _h
--	--

From version 02.00.00

▶ Field weakening for synchronous motors

Display range (min. value unit max. value)						
0.00		Α		320.0	0	
Subcodes					Info	
C00937/1					Field-produ	ucing current
C00937/2					Torque-pro	oducing current
☑ Read access □	☐ Write access	□ CINH	□ PLC STOP	☐ No transfer	□ сом 🗹 мот	Scaling factor: 100

C00938

Parameter | Name:

C00938 | PSM: Maximum motor current field weakening

Data type: UNSIGNED_16
Index: 23637_d = 5C55_h

From version 02.00.00

▶ Field weakening for synchronous motors

Setting range (min.	value unit max. value)		Lenze setting	
0.00	%	500.00	100.00 %	
☑ Read access ☑ Write	access CINH PLC	STOP □ No transfer □	COM ☑ MOT Scaling factor: 100	

C00939

Parameter Name: C00939 Ultimate motor current Data type: UNSIGNED_ Index: 23636 _d = 5C5			
Setting range (min.	value unit max. value)	Lenze setting	
0.0	Α	3000.0 3000.0 A	
☑ Read access ☑ Write	e access	lo transfer □ COM ☑ MOT Scaling fa	actor: 10

C00940

Parameter Name: C00940 L_ConvW numerator				ta type: INTEGER_16 dex: 23635 _d = 5C53 _h
Setting range (min.	value unit max. value)			
-32767		32767		
Subcodes	Lenze setting		Info	
C00940/1	1		<u>L_ConvW_1</u> : Numerator	
C00940/2	1		<u>L_ConvW_2</u> : Numerator	
C00940/3	1		L_ConvW_3: Numerator	
C00940/4	1		<u>L_ConvW_4</u> : Numerator	
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP INo transfer	COM MOT Scaling factor: 1	

C00941

Parameter | Name:

C00941 L_ConvW denominator			Index: $23634_d = 5\overline{C52}_h$
Setting range (min.	value unit max. value)		
1		32767	
Subcodes	Lenze setting		Info
C00941/1	1		<u>L_ConvW_1</u> : Denominator
C00941/2	1		<u>L_ConvW_2</u> : Denominator
C00941/3	1		<u>L_ConvW_3</u> : Denominator
C00941/4	1		<u>L_ConvW_4</u> : Denominator
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 1

Data type: INTEGER 16

C00942				
C00342	Parameter Name: C00942 L_ConvV	V conversion method		Data type: UNSIGNED_8 Index: 23633 _d = 5C51 _h
	Selection list			
	0	no conversion		
	1	from [%] into [incr./ms]		
	2	from [incr./ms] into [%]		
	3	Factors signed		
	4	Factors unsigned		
	Subcodes	Lenze setting	Info	
	C00942/1	0: No conversion	L_ConvW_1: Conversion method	
	C00942/2	0: No conversion	L_ConvW_2: Conversion method	
	C00942/3	0: No conversion	L_ConvW_3: Conversion method	
	C00942/4	0: No conversion	L_ConvW_4: Conversion method	
	☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer	□ COM □ MOT Scaling factor: 1	
C000E0				
C00950	Parameter Name: C00950 L_Interp	olator_1: Activation FB functions		Data type: UNSIGNED_8 Index: 23625 _d = 5C49 _h
	The <u>L_Interpolato</u>	r <u> </u>	on and signal monitoring	
	Selection list			
	0	Off		
	1	On		
	Subcodes	Lenze setting	Info	
	C00950/1	0: Off	<u>L_Interpolator_1</u> : Signal interpolation	
	C00950/2	0: Off	L_Interpolator_1: Signal monitorin	g
	C00950/3	0: Off	L_Interpolator_1: Master value monitoring	
	☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer	□ COM □ MOT Scaling factor: 1	
C000E1				
C00951	Parameter Name: C00951 L_Interp	olator_1: No. of interpolation steps		Data type: UNSIGNED_16 Index: 23624 _d = 5C48 _h
	The <u>L_Interpolato</u>	<u>1</u> FB: No. of interpolation steps		
	Setting range (min.	value unit max. value)	Lenze setting	
	0	65535	1	
	☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer	□ COM □ MOT Scaling factor: 1	
C00952	Parameter Name:			Data type: UNSIGNED 16
		olator_1: Limit value - error cycles		Index: $23623_d = 5C47_h$
	The <u>L_Interpolato</u>	<u>r_1</u> FB: Limit value for missing data tel	egrams	
	Setting range (min.	value unit max. value)	Lenze setting	
	0	65535	5	
	☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer	☐ COM ☐ MOT Scaling factor: 1	
C00953				
200333	Parameter Name: C00953 L_Interp	olator_1: Speed-up		Data type: UNSIGNED_8 Index: 23622 _d = 5C46 _h
	FB L Interpolator	<u>1</u> : Filter		
	Setting range (min.	value unit max. value)	Lenze setting	
	0	100	0	

Parameter | Name:

Parameter reference Parameter list | C00959

C00959

Parameter Name: C00959 L_Curve:	Data type: INTEGER_16 Index: 23616 _d = 5C40 _h				
From version 02.00.00 FB L Curve 1: Display of the current output value nOut_a					
Display range (min.	. value unit max. value)				
-199.99	%	199.99			
Subcodes			Info		
C00959/1			<u>L_Curve_1</u> : Current output value		
C00959/2			<u>L_Curve_2</u> : Current output value		
C00959/3			<u>L_Curve_3</u> : Current output value		
☑ Read access ☐ Write	☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 100				

C00960

C00960 L_Curve_	1: Selected curve type	Index: 23615 _d = 5C3F _h
FB <u>L_Curve_1</u> : Sele	ected curve type	
Selection list		
0	Out = 0	
1	Out = In	
2	Out = f(In)	
3	Out = f(table)	
Subcodes	Lenze setting	Info
C00960/1	1: Out = In	L_Curve_1: Function
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C00961

Parameter Name: C00961 L_Curve_	Parameter Name: C00961 L_Curve_1: Input limitation Data type: INTEGER Index: 23614 _d = 50				
FB <u>L_Curve_1</u> : Upp	per and lower limit f	or input value			
Setting range (min.	value unit max. value)				
-199.99	%	199.99			
Subcodes	Lenze setting		Info		
C00961/1	199.99 %		L Curve 1: N	Λax. input	
C00961/2	-199.99 %		L Curve 1: M	Λin. input	
☑ Read access ☑ Write	e access	STOP □ No transfer □	СОМ □МОТ	Scaling factor: 100	

C00963

Parameter Name: C00963 L_Curve_1: Table X-values Data type: INTEGER Index: 23612 _d = 500				
FB <u>L_Curve_1</u> : X-v	alues for characteristic function			
Setting range (min.	value unit max. value)			
-32767	32767			
Subcodes	Lenze setting	Info		
C00963/1	0	X values 1 32 for characteristic function		
C00963/				
C00963/32				
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

Data type: UNSIGNED_8

Parameter reference Parameter list | C00964

C00964

Parameter Name: C00964 L_Curve_1: Table Y-values Data type: INTEGER_1 Index: 23611 _d = 5GBE						
FB <u>L_Curve_1</u> : Y-v	FB <u>L Curve 1</u> : Y-value for characteristic function					
Setting range (min.	Setting range (min. value unit max. value)					
-32767		32767				
Subcodes	Lenze setting		Info			
C00964/1	0		Y values 1 32 for characteristic function			
C00964/						
C00964/32						
☑ Read access ☑ Write	eaccess □CINH □PIC	STOP Notransfer	□ COM □ MOT Scaling factor: 1			

C00965

Parameter | Name:

C00965 | Max. motor speed

Data type: UNSIGNED_16
Index: 23610_d = 5C3A_h

When the drive reaches the motor speed set here:

- The "Fault" error response takes place, i.e. the motor is shut down immediately.
- The error message "OS2: Max. motor speed reached" is entered into the logbook.

Setting range (min. value unit max. value)			Lenze setting		
50	rpm	60000	60000 rpm		
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	□ COM ☑ MOT Scaling factor: 1		

C00966

Parameter | Name:

C00966 | VFC: Time const. slip comp.

Data type: UNSIGNED_16
Index: 23609_d = 5C39_h

Filter time constant of the slip compensation for V/f characteristic control (VFCplus)

- The time constant of slip compensation serves to specify the dynamics of slip compensation for V/f characteristic control without feedback.
- The lower the selected time constant, the higher the dynamic performance of the slip compensation.

Setting range (min. value unit max. value)			Lenze setting		
1 ms 6000			100 ms		
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM ☑ MOT Scaling factor: 1		

Parameter reference Parameter list | C00967

C00967

Parameter | Name: C00967 | VFC: Frequency interpol. point n

Data type: INTEGER_16 Index: 23608_d = 5C38_h

Selection of the interpolation points (frequency values) for the V/f characteristic control ($\frac{\text{VFCplus}}{\text{Vf characteristic}}$) with user-definable V/f characteristic ($\frac{\text{C00006}}{\text{C00006}}$ = "10")

Setting range (min.	value unit max. value)		
-2600.0	Hz	2600.0	
Subcodes	Lenze setting		Info
C00967/1	-50.0 Hz		VFC: Frequency interpol. point 1
C00967/2	-40.0 Hz		<u>VFC</u> : Frequency interpol. point 2
C00967/3	-30.0 Hz		<u>VFC</u> : Frequency interpol. point 3
C00967/4	-20.0 Hz		VFC: Frequency interpol. point 4
C00967/5	-10.0 Hz		<u>VFC</u> : Frequency interpol. point 5
C00967/6	0.0 Hz		<u>VFC</u> : Frequency interpol. point 6
C00967/7	10.0 Hz		VFC: Frequency interpol. point 7
C00967/8	20.0 Hz		<u>VFC</u> : Frequency interpol. point 8
C00967/9	30.0 Hz		<u>VFC</u> : Frequency interpol. point 9
C00967/10	40.0 Hz		VFC: Frequency interpol. point 10
C00967/11	50.0 Hz		VFC: Frequency interpol. point 11
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM ☐ MOT Scaling factor: 10

C00968

Parameter | Name:

C00968 VFC: Voltage interpol. point n

Data type: UNSIGNED_16 Index: 23607_d = 5C37_h

Selection of the interpolation points (voltage values) for the V/f characteristic control ($\frac{VFCplus}{V}$) with user-definable V/f characteristic ($\frac{C00006}{V}$) = "10")

Setting range (min.	value unit max. value)		
0.00	V	600.00	
Subcodes	Lenze setting		Info
C00968/1	400.00 V		VFC: Voltage interpol. point 1
C00968/2	320.00 V		VFC: Voltage interpol. point 2
C00968/3	240.00 V		<u>VFC</u> : Voltage interpol. point 3
C00968/4	160.00 V		VFC: Voltage interpol. point 4
C00968/5	80.00 V		VFC: Voltage interpol. point 5
C00968/6	0.00 V		<u>VFC</u> : Voltage interpol. point 6
C00968/7	80.00 V		VFC: Voltage interpol. point 7
C00968/8	160.00 V		<u>VFC</u> : Voltage interpol. point 8
C00968/9	240.00 V		VFC: Voltage interpol. point 9
C00968/10	320.00 V		VFC: Voltage interpol. point 10
C00968/11	400.00 V		VFC: Voltage interpol. point 11
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 100

Parameter | Name: Data type: UNSIGNED_16
 C00971 | VFC: Limitation V/f +encoder
 Index: $23604_d = 5\overline{C3}4_h$

Limitation of the output frequency of the slip regulator and limitation of the injected stator frequency for the V/f control (VFCplus+encoder)

Setting range (min.	value unit max. value)					
0.00	Hz	100.00				
Subcodes	Lenze setting		Info			
C00971/1	10.00 Hz		Maximum output / correcting variable of the slip regulator The slip regulator output is limited to the value set here in motor/generator mode. It is recommended to select 1 to 3 times the slip frequency of the motor as limit value.			
C00971/2	100.00 Hz		Maximum frequency deviation between the rotational frequency (speed) measured mechanically by the encoder and the injected stator frequency. A limitation may e.g. avoid overcurrent interruption when traversing to a fixed limit stop.			

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100

C00972

 Parameter | Name:
 Data type: UNSIGNED_16

 C00972 | VFC: Vp V/f +encoder
 Index: 23603_d = 5C33_h

Proportional gain of the slip regulator for V/f control (VFCplus+encoder)

- The gain must be selected depending on the drive system and the sensor resolution (range: 0.005 ... 5).
- · A high gain requires a high number of increments.

Setting range (min. value unit max. value)			Lenze setting		
0.000	Hz/Hz	64.000	0.100 Hz/Hz		
☑ Read access ☑ Write	e access	STOP □ No transfer □	I COM ☑ MOT Scaling factor: 1000		

C00973

Parameter | Name: Data type: UNSIGNED_16
 C00973 | VFC: Ti V/f +encoder
 Index: $23602_d = 5\overline{C3}2_h$

Integral time constant of the slip regulator for V/f control (VFCplus+encoder)

• In general, the time constant should be selected in a range of 20 ms (high dynamics) to 200 (low dynamics).

Setting range (min. value unit max. value)			Lenze setting		
0.0	ms	6000.0	100.0 ms		
☑ Read access ☑ Write	access 🗆 CINH 🗆 PL	C STOP □ No transfer □	COM □ MOT	Scaling factor: 10	

C00975

Parameter | Name:

C00975 | VFC-ECO: Vp CosPhi controller

Data type: UNSIGNED_16
Index: 23600_d = 5C30_h

Proportional gain of the Cos-Phi controller for energy-saving V/f characteristic control (VFCplusEco)

Setting range (min. value unit max. value)			Lenze setting		
0.000 Hz/Hz 64.000			0.500 Hz/Hz		
☑ Read access ☑ Write	e access	□ No transfer □	COM MOT Scaling factor: 1000		

C00976

Parameter | Name: Data type: UNSIGNED_16
 C00976 | VFC-ECO: Ti CosPhi controller
 Index: $23599_d = 5\overline{C2F_h}$

Reset time of the Cos-Phi controller for energy-saving V/f characteristic control (VFCplusEco)

Setting range (min.	value unit max. value)		Lenze setting		
0.0	ms	6000.0	200.0 ms		
☑ Read access ☑ Write	e access □ CINH □ PLC S	STOP 🗆 No transfer 🗆	□ COM □ MOT Scaling factor: 10		

Parameter reference Parameter list | C00977

	Parameter Name: C00977 VFC-EC	Parameter Name: C00977 VFC-ECO: Minimum voltage V/f							
	Minimum voltag	ge V/f of	the Cos-	Phi cont	roller for energy	r-saving V/f o	characteristic control (VFC	plusEco)	
	Setting range (m	in. value ι	ınit max. v	value)		Lenze setting			
	20.00	T	%		100.00	20.00 %			
	☑ Read access ☑ W	rite access	□ CINH	□ PLC STO	P □ No transfer □	СОМ □МОТ	Scaling factor: 100		
C00978	Parameter Name:	O: Volta	age redu	ction				Data type: INTEGER_16 Index: 23597 _d = 5C2D _h	
	Display of the vo	oltage re	duction v	with ene	rgy-saving V/f c	haracteristic	control (<u>VFCplusEco</u>)		
	Display range (m	in. value ı	unit max. v	value)					
	-1000		٧		1000				
	☑ Read access □ W	rite access	□ CINH	□ PLC STO	P □ No transfer □	сом 🗆 мот	Scaling factor: 1		
C00979	Parameter Name: C00979 Cosine	phi						Data type: INTEGER_16 Index: 23596 _d = 5C2C _h	
	Display of the co	sφ setpc	int and	actual va	lue with energy	r-saving V/f	characteristic control (VFC	plusEco)	
	Display range (m	in. value ı	unit max. v	value)					
	-1.00				1.00				
	Subcodes					Info			
	C00979/1					Cosine phi a	act		
	C00979/2					Cosine phi			
	☑ Read access □ W	rite access	□ CINH	□ PLC STO	P □ No transfer □	COM □ MOT	Scaling factor: 100		
C00980	Parameter Name: C00980 Output	power						Data type: INTEGER_32 Index: 23595 _d = 5C2B _h	
	Display paramet a measure for er					application.	From this, decisions can be	e deduced whether	
	Display range (m	in. value ı	unit max. v	value)					
	0.000		kW		32.000				
	Subcodes					Info			
	C00980/1					Active output power			
	C00980/2					Apparent output power			
	☑ Read access □ W	☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☐ No transfer ☐ COM ☐ MOT Scaling factor: 1000							
C00981	Parameter Name: C00981 Energy	Parameter Name: C00981 Energy display							
	a measure for er	Display parameter for an energy analysis in the prevailing application. From this, decisions can be deduced whether a measure for energy optimisation is economic. • The values are saved to the device by switching off the mains and cannot be reset.							
	Display range (m	in. value ı	unit max. v	value)					
	0.00		kWh		21474836.47				
	Subcodes					Info			
	C00981/1					Output ene	ergy in motor mode		

☑ Read access □ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100

C00981/2

Output energy in generator mode

Parameter reference Parameter list | C00982

C00982	Parameter Name: C00982 VFC-ECO: Voltage reduction ramp								Data type: U Index: 235	INSIGNED_8 93 _d = 5C29 _h			
	Voltage ram	Voltage ramp for cancelling V-Sub with energy-saving V/f characteristic control (VFCplusEco)											
	Setting range (min. value unit max. value)					ı	Lenz	e settin	g				
	0.1			S			5.	0 0	0.8 s				
	☑ Read access	☑ Writ	e access	□ CINH		STOP	☐ No transfer		СОМ	☑ MOT	Scaling factor: 10		
C00985													
C00983	Parameter Nam		eld curr	ent con	trolle	r gain	1						INTEGER_16 90 _d = 5C26 _h
	Gain of the d sensorless ve • The gain s	ector o	control	(SLVC)				etp	oint	and ac	tual current for th	e voltage model o	of the
	Setting range	e (min.	value u	ınit max.	value)			ı	Lenz	e settin	g		
	0.00			%			10.0	0 0	0.50	%			
	☑ Read access	☑ Writ	e access	□ CINH		STOP	☐ No transfer		СОМ	□ МОТ	Scaling factor: 100		
C00986	Parameter Nam		oss curi	rent cor	ntrolle	er gaiı	n						INTEGER_16 89 _d = 5C25 _h
	Gain of the	ross	current	differe	nce f	or the	voltage mo	del	of th	ne senso	orless vector contr	ol (<u>SLVC</u>)	
	Setting range	e (min.	value u	ınit max.	value)			ı	Lenz	e settin	g		
	0.00			%			10.0	0 0	0.00	%			
	☑ Read access	☑ Writ	e access	□ CINH	□ PLC	STOP	☐ No transfer		СОМ	□ мот	Scaling factor: 100		
C00987	C00987 Inve	Parameter Name: C00987 Inverter motor brake: nAdd Speed lift which is connected in pulses to the brake rampe when the motor is braked.											
	▶ <u>Inverter motor brake</u>												
	Setting range	e (min.	value u	ınit max.	value)					e settin	g		
	0			rpm				-	80 rp				
	☑ Read access	☑ Writ	e access	□ CINH		STOP	□ No transfer		COM	✓ MOT	Scaling factor: 1		
C00988	Parameter Nam			huales, F	T1 £	l4 a u 4:							INTEGER_16
	C00988 Inverter motor brake: PT1 filter time Index: 23587 _d = 5C23 _h												
	PT1 filter time for smoothing the speed lift which is added in pulses (C00987) ▶ Inverter motor brake												
	Setting range	e (min.	value u	ınit max.	value)			ı	Lenz	e settin	g		
	0.0			ms			100.	0 0	0.0 n	ns			
	☑ Read access	☑ Writ	e access	□ CINH		STOP	☐ No transfer		СОМ	□мот	Scaling factor: 10		
C00990	Parameter Name: C00990 Flying restart fct.: Activation Data type: UNSIGN Index: 23585 _d = 9												
	Switch on/activate flying restart circuit for non-feedback drive systems Flying restart fct.												
	Selection list	(Lenze	setting	printed in	bold)								
		0	Off										
		1	On										
	☑ Read access	☑ Writ	e access	☑ CINH	□ PLC	STOP	☐ No transfer		СОМ	□ мот	Scaling factor: 1		

Parameter reference Parameter list | C00991

C00991

Parameter Name:	Data type: UNSIGNED_16
C00991 Flying restart fct.: Process	Index: 23584 _d = 5C20 _h

Selection of the starting value and the speed search range for the flying restart function

► Flying restart fct.

Selection list (Lenze	setting printed in bold)	Info				
0	0+n Start: +10 Hz	Search positive speed range (0 +n) with a start frequency of +10 Hz				
1	-n0 Start: -10 Hz	Search negative speed range (-n 0) with a start frequency of -10 Hz				
2	-n+n Start: +10 Hz	Search negative and positive speed range (-n n) with a start frequency of +10 Hz				
3	-n+n Start: -10 Hz	Search negative and positive speed range (-n n) with a start frequency of -10 Hz				
4	-n+n Start: Cx992	Search the negative and positive speed range (-n n) with the start frequency set in C00992				
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1					

C00992

Parameter | Name:

C00992 | Flying restart fct.: Start frequency

Data type: INTEGER_16
Index: 23583_d = 5C1F_h

Manual selection of the starting value for the flying restart function

• Only active if <a>C00991 = 4

Flying restart fct.

Setting range (min.	value unit max. value)		Lenze setting
-200	Hz	200	10 Hz
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLO	STOP INotransfer	□ COM □ MOT Scaling factor: 1

C00993

Parameter Name:	Data type: UNSIGNED_16
C00993 Flying restart fct: Int. time	Index: $23582_d = 5C1E_h$

Time constant of the angular difference controller of the flying restart function

• The time constant is to amount between 60 ... 300 ms.

▶ Flying restart fct.

Setting range (min.	value unit max. value)		Lenze setting
0.0	ms	6000.0	300.0 ms
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLO	STOP No transfer	□ COM □ MOT Scaling factor: 10

C00994

Parameter | Name:

C00994 | Flying restart fct.: Current

Data type: INTEGER_16
Index: 23581_d = 5C1D_h

Current to be injected during the flying restart process

- 100 % = rated motor current (C00088).
- The flying restart current should amount to 10 ... 25 % of the rated motor current.

Flying restart fct.

Setting range (min.	value unit max. value)		Lenze setting
0.00	%	100.00	25.00 %
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No tr			COM MOT Scaling factor: 100

Parameter Name:	Data type: UNSIGNED 16
C00995 SLPSM: Controlled current setpoint	Index: $23580_d = 5C1C_h$

▶ Sensorless control for synchronous motor

Setting range (min.	value unit max. value)		
5.00	%	400.00	
Subcodes	Lenze setting		Info
C00995/1	100.00 %		SLPSM: Controlled accelerating current
C00995/2	20.00 %		SLPSM: Controlled standstill current
☑ Read access ☑ Write	e access	☐ COM ☑ MOT Scaling factor: 100	

C00996

Parameter | Name:

C00996 | SLPSM: Switching speed

Data type: INTEGER_16
Index: 23579_d = 5C1B_h

▶ <u>Sensorless control for synchronous motor</u>

Setting range (min. value unit max. value)				
0.00	%	100.00		
Subcodes	Lenze setting			
C00996/1	13.00 %			
C00996/2	8.00 %			
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ C				

C00997

Parameter | Name: Data type: INTEGER_16
C00997 | SLPSM: Filter cutoff frequency
Index: $23578_d = 5\overline{C1A}_h$

▶ <u>Sensorless control for synchronous motor</u>

Setting range (min.	value unit max. value)		Lenze setting
0.00	%	100.00	5.00 %
☑ Read access ☑ Write	e access	STOP INo transfer I	□ COM □ MOT Scaling factor: 100

C00998

Parameter | Name:

C00998 | SLPSM: Filter time rotor position

Data type: INTEGER_16
Index: 23577_d = 5C19_h

▶ <u>Sensorless control for synchronous motor</u>

Setting range (min.	value unit max. value)		
0.5	ms	20.0	
Subcodes	Lenze setting		Info
C00998/1	3.0 ms		<u>SLPSM</u> : Filter time rotor position
C00998/2 5.0 ms			<u>SLPSM</u> : Filter time actual speed value
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM ☑ MOT Scaling factor: 10

C00999

Parameter | Name:

C00999 | SLPSM: PLL gain

Data type: INTEGER_16
Index: 23576_d = 5C18_h

▶ Sensorless control for synchronous motor

Setting range (min. value unit max. value)			Lenze setting
0	% 1000		400 %
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM ☑ MOT Scaling factor: 1

8400 TopLine C | Software Manual Parameter reference

Parameter list | C01000

C01000

Parameter Name: C01000 MCTRL: S	tatus		Data type: UNSIGNED_16 Index: 23575 _d = 5C17 _h
Display area (min. h	ex value max. hex value)	
0x0000		0xFFFF	
Value is bit-coded			
Bit 0	SL PSM: Mode		
Bit 1	Reserved		
Bit 2	Reserved		
Bit 3	Reserved		
Bit 4	Reserved		
Bit 5	Reserved		
Bit 6	Reserved		
Bit 7	Reserved		
Bit 8	Reserved		
Bit 9	Reserved		
Bit 10	Reserved		
Bit 11	Reserved		
Bit 12	Reserved		
Bit 13	Reserved		
Bit 14	Reserved		
Bit 15	Reserved		
☑ Read access ☐ Write	e access	STOP No transfer	□COM ☑ MOT

Parameter Name: C01010 L_Arithm	netikPhi 1-3: Function	Data type: UNSIGNED_8 Index: 23565 _d = 5C0D _h
Selection of the in	ternal arithmetics	
Selection list		
0	dnOut_p = dnIn1_p	
1	dnOut_p = dnIn1_p + dnIn2_p	
2	dnOut_p = dnIn1_p - dnIn2_p	
3	dnOut_p = dnIn1_p * dnIn2_p	
4	dnOut_p = dnIn1_p / dnIn2_p	
Subcodes	Lenze setting	Info
C01010/1	0: dnOut_p = dnIn1_p	L_ArithmetikPhi_1: Function
C01010/2	0: dnOut_p = dnIn1_p	L_ArithmetikPhi_2: Function
C01010/3	0: dnOut_p = dnIn1_p	L_ArithmetikPhi_3: Function
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM ☐ MOT Scaling factor: 1

Parameter reference Parameter list | C01020

C01020					
001010	Parameter Name: C01020 L_Odome	eter_1: Memory length			Data type: UNSIGNED_8 Index: 23555 _d = 5C03 _h
	FB L Odometer 1:	No. of measurements			
	Selection list (Lenze	setting printed in bold)			
	1	1 measurement			
	2 2 measurements				
	3	3 measurements			
	4	4 measurements			
	5	5 measurements			
	6	6 measurements			
	7	7 measurements			
	☑ Read access ☑ Write	access □ CINH □ PLC STOP □ No transfer □	ГСОМ □МОТ	Scaling factor: 1	
C01021	Parameter Name: C01021 L_Odome	ter_1: Memory type			Data type: UNSIGNED_8 Index: 23554 _d = 5C02 _h
		If "ring buffer" is selected, it is started ten. Otherwise, the measurement sto		he measurement	s set in <u>C01020</u> and the old
	Selection list (Lenze	setting printed in bold)			
	0	No ring buffer			
	1	Ring buffer			
	☑ Read access ☑ Write	access □ CINH □ PLC STOP □ No transfer □	ГСОМ □МОТ	Scaling factor: 1	
C01022					
C01022	Parameter Name: C01022 L_Odome	ter_1: Input selection			Data type: UNSIGNED_8 Index: 23553 _d = 5C01 _h
	FB L Odometer 1:	Selection of position or speed input			
	Selection list (Lenze	setting printed in bold)			
	0	Pos input			
	1	V input			
	☑ Read access ☑ Write	access □ CINH □ PLC STOP □ No transfer □	ГСОМ □МОТ	Scaling factor: 1	
C01023	Parameter Name: C01023 L_Odome	ter_1: Edge selection			Data type: UNSIGNED_8 Index: 23552 _d = 5C00 _h
	FB <u>L_Odometer_1</u> :	No. of the edge triggering the measur	ement		
	Selection list (Lenze	setting printed in bold)			
	0	High edge			
	1	Low edge			
	2	High and low edge			

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C01025

C01025

C01026

C01028

Parameter Name:	2: Selected curve ty	vne.			Data type: UNSIGNED_8 Index: 23550 _d = 5BFE _h
From version 02.0		уре			aex. 23330a - 321 2 ₁₁
FB <u>L Curve 2</u> : Sele					
Selection list					
0	Out = 0				
1	Out = In				
2	Out = f(In)				
3	Out = f(table)				
Subcodes	Lenze setting		Info		
C01025/1	1: Out = In		L Curve 2:	Function	
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP No transfer	ом □мот	Scaling factor: 1	
Parameter Name:					Data type: INTEGER_16
C01026 L_Curve_	_2: Input limitation				Index: 23549 _d = 5BFD _h
From version 02.00		6 t			
	per and lower limit				
0 0	value unit max. value)				
-199.99	%	199.99			
Subcodes	Lenze setting		Info		
· · · · · · · · · · · · · · · · · · ·	199.99 %		L_Curve_2:	•	
C01026/2 ☑ Read access ☑ Write Parameter Name:	-199.99 % e access □ CINH □ PLC	STOP INo transfer I	L Curve 2:	Min. input	Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00	-199.99 % e access		L Curve 2:	Min. input	Data type: INTEGER_16
Parameter Name: C01028 L_Curve_ From version 02.00 FB <u>L_Curve_2</u> : X-v.	-199.99 % e access □ CINH □ PLC _2: Table X-values 0.00 alues for characteris	stic function	L Curve 2:	Min. input	Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min.	-199.99 % e access	stic function	L Curve 2:	Min. input	Data type: INTEGER_16
C01026/2 Read access Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min. -32767	-199.99 % e access	stic function	L Curve 2: 1	Min. input	Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min. -32767 Subcodes	-199.99 % e access	stic function	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _t
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min. -32767 Subcodes C01028/1	-199.99 % e access	stic function	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve 2: X-v. Setting range (min. -32767 Subcodes C01028/1 C01028/	-199.99 % e access	stic function	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _h
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/32	-199.99 % e access	stic function 32767	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _t
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/ C01028/32	-199.99 % e access	stic function 32767	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _l
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/32 ☑ Read access ☑ Write Parameter Name:	-199.99 % e access	stic function 32767	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _t eristic function Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve 2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_	-199.99 % e access	stic function 32767	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _t eristic function Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/ C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_ From version 02.00	-199.99 % e access	stic function 32767 STOP □ No transfer □	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _t eristic function Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve 2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_ From version 02.00 FB L_Curve 2: Y-v.	-199.99 % e access	stic function 32767 STOP No transfer c	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _t eristic function Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/ C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_ From version 02.00 FB L_Curve_2: Y-v. Setting range (min.	-199.99 % e access	stic function 32767 STOP No transfer c	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _h eristic function Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve 2: X-v. Setting range (min. -32767 Subcodes C01028/1 C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_ From version 02.00 FB L_Curve 2: Y-v. Setting range (min. -32767	-199.99 % e access	stic function 32767 STOP No transfer cuttic function	L Curve 2: I	Min. input Scaling factor: 100	Data type: INTEGER_16 Index: 23547 _d = 5BFB _h eristic function Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve 2: X-v. Setting range (min. -32767 Subcodes C01028/1 C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_ From version 02.00 FB L_Curve 2: Y-v. Setting range (min. -32767	-199.99 % e access	stic function 32767 STOP No transfer cuttic function	Info X values 1 Info	Min. input Scaling factor: 100 32 for characte Scaling factor: 1	Data type: INTEGER_16 Index: 23547 _d = 5BFB _h eristic function Data type: INTEGER_16
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve 2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_ From version 02.00 FB L_Curve 2: Y-v. Setting range (min32767 Subcodes	-199.99 % e access	stic function 32767 STOP No transfer cuttic function	Info X values 1 Info	Min. input Scaling factor: 100 32 for characte Scaling factor: 1	Data type: INTEGER_16 Index: 23547 _d = 5BFB _h eristic function Data type: INTEGER_16 Index: 23546 _d = 5BFA _h
C01026/2 ☑ Read access ☑ Write Parameter Name: C01028 L_Curve_ From version 02.00 FB L_Curve_2: X-v. Setting range (min32767 Subcodes C01028/1 C01028/ C01028/32 ☑ Read access ☑ Write Parameter Name: C01029 L_Curve_ From version 02.00 FB L_Curve_2: Y-v. Setting range (min32767 Subcodes C01029/1	-199.99 % e access	stic function 32767 STOP No transfer cuttic function	Info X values 1 Info	Min. input Scaling factor: 100 32 for characte Scaling factor: 1	Data type: INTEGER_16 Index: 23547 _d = 5BFB _h eristic function Data type: INTEGER_16 Index: 23546 _d = 5BFA _h

Parameter Name: C01030 L_Curve	_3: Selected curve type	Data type: UNSIGNED_8 Index: 23545 _d = 5BF9 _h
From version 02.0 FB <u>L_Curve_3</u> : Sele		
Selection list		
0	Out = 0	
1	Out = In	
2	Out = f(In)	
3	Out = f(table)	
Subcodes	Lenze setting	Info
C01030/1	1: Out = In	L_Curve_3: Function
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C01031

Parameter | Name:

C01031 | L_Curve_3: Input limitation

Data type: INTEGER_16
Index: 23544_d = 5BF8_h

From version 02.00.00

FB L Curve 3: Upper and lower limit for input value

Setting range (min. value unit max. value)			
-199.99	%	199.99	
Subcodes	Lenze setting		Info
C01031/1	199.99 %		L_Curve_3: Max. input
C01031/2	-199.99 %		L_Curve_3: Min. input
☑ Read access ☑ Writ	e access	☐ No transfer ☐	I COM MOT Scaling factor: 100

C01033

Parameter | Name:

C01033 | L_Curve_3: Table X-values

Data type: INTEGER_16
Index: 23542_d = 5BF6_h

From version 02.00.00

FB L Curve 3: X-values for characteristic function

Setting range (min. value unit max. value)				
-32767		32767		
Subcodes	Lenze setting		Info	
C01033/1	0		X values 1	. 32 for characteristic function
C01033/				
C01033/32				
☑ Read access ☑ Write	e access	STOP No transfer [□сом □мот	Scaling factor: 1

C01034

Parameter | Name:

C01034 | L_Curve_3: Table Y-values

Data type: INTEGER_16
Index: 23541_d = 5BF5_h

From version 02.00.00

FB L Curve 3: Y-value for characteristic function

Setting range (min.	value unit max. val	ue)		
-32767		3276	7	
Subcodes	Lenze setting		Info	
C01034/1	0		Y values 1	32 for characteristic function
C01034/				
C01034/32				
☑ Read access ☑ Write	e access	PLC STOP	□сом □мот	Scaling factor: 1

Parameter reference Parameter list | C01040

C01040

Parameter Name: C01040 L_SRFG_12 linear ramp time					Data type: UNSIGNED_32 Index: 23535 _d = 5BEF _h
Symmetrical accel	eration/deceleratio	n time for the ramp	function gene	rator	
Setting range (min. value unit max. value)					
0.001	s	999.999			
Subcodes	Lenze setting		Info		
C01040/1	100.000 s		L_SRFG_1: line	ear ramp time	
C01040/2	2 100.000 s			ear ramp time	
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1000				

C01041

Parameter | Name:

C01041 | L_SRFG_1..2 S-ramp time

S-ramp time for jerk-free acceleration

Setting range (min. value | unit | max. value)

Jeering ramge (
0.001	S	50.000		
Subcodes	Lenze setting		Info	
C01041/1	0.200 s		L SRFG 1: S	-ramp time
C01041/2	0.200 s		L_SRFG_2: S	-ramp time
☑ Read access ☑ Write	access DCINH DDIC	STOP Notransfer	I COM II MOT	Scaling factor: 1000

C01042

Parameter | Name:

C01042 | L_SRFG_1..2 limitations of output values

Limitation of the output values

Setting range (min. value | unit | max. value)

Setting range (min.	value unit max. value)		
-199.99	%	199.99	
Subcodes	Lenze setting		Info
C01042/1	100.00 %		<u>L_SRFG_1</u> : Pos. Limit
C01042/2	-100.00 %		L_SRFG_1: Neg. Limit
C01042/3	100.00 %		L_SRFG_2: Pos. Limit
C01042/4	-100.00 %		L_SRFG_2: Neg. Limit
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM MOT Scaling factor: 100

C01045

Parameter | Name:

C01045 | L_ConvAP 1-3: Numerator/denominator

Data type: INTEGER_16
Index: 23530_d = 5BEA_h

From version 02.00.00

Setting range (min. value unit max. value)			
-32767		32767	
Subcodes	Lenze setting		Info
C01045/1	1		L_ConvAP_1: Numerator
C01045/2	1		L_ConvAP_1: Numerator
C01045/3	1		L_ConvAP_2: Numerator
C01045/4	1		L_ConvAP_2: Numerator
C01045/5	1		L_ConvAP_3: Numerator
C01045/6	1		L_ConvAP_3: Numerator
☑ Read access ☑ Write	e access	P □ No transfer □	COM MOT Scaling factor: 1

Parameter reference Parameter list | C01046

C01046

C01047

C01048

C01049

Parameter Name: C01046 L_ConvPA	N 1-2: hyDivision			Data type: INTEGER_8 Index: 23529 _d = 5BE9 _h
From version 02.00	-			
Setting range (min.	value unit max. value)			
0		31		
Subcodes	Lenze setting		Info	
C01046/1	1		L ConvPA 1: Division factor	
C01046/2	1		L ConvPA 2: Division factor	
C01046/3	1		L ConvPA 3: Division factor	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	☐ COM ☐ MOT Scaling factor: 1	
Parameter Name: C01047 L_GearCo	omp: Offset			Data type: INTEGER_16 Index: 23528 _d = 5BE8 _h
From version 02.00	0.00			
Setting range (min.	value unit max. value)			
-16383		16383		
Subcodes	Lenze setting		Info	
C01047/1	0		L GearComp 1: Offset	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 1	
Parameter Name: C01048 L_GearCo	omp: Num_Denom			Data type: INTEGER_16 Index: 23527 _d = 5BE7 _h
From version 02.00	0.00			
Setting range (min.	value unit max. value)			
-32767		32767		
Subcodes	Lenze setting		Info	
C01048/1	1		L_GearComp_1: Numerator	
C01048/2	1		L_GearComp_1: Denominator	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 1	
Parameter Name:	ameter: Status			Data type: INTEGER_16 Index: 23526 _d = 5BE6 _h
C01049 L_CalcDia				
C01049 L_CalcDia From version 02.00				
C01049 L_CalcDia From version 02.00	0.00	30		

L CalcDiameter 1: Status

☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1

C01049/1

Parameter reference Parameter list | C01050

C01050

C01051

C01052

C01053

C01050 L_Cald	cDiameter_1: Diamete	rrecalculation	Index: 23525 _d = 5
From version 02	2.00.00		
Setting range (r	min. value unit max. value)		
0.001	Rev.	1000.000	
Subcodes	Lenze setting		Info
C01050/1	1.000 rev.		L_CalcDiameter_1: Diameter recalculation 0
C01050/2	0.100 rev.		L CalcDiameter 1: Diameter recalculation 1
☑ Read access ☑ V	Write access □ CINH □ PLC	STOP I No transfer I	COM MOT Scaling factor: 1000
Parameter Name:	cDiameter: Filter time	ronstant	Data type: UNSIGNEI Index: 23524 _d = 5
From version 02		constant	
	min. value unit max. value)		
0.010	S	3.000	
Subcodes	Lenze setting	3.000	Info
C01051/1	1.000 s		L CalcDiameter 1: Filter time constant
,			
Parameter Name: C01052 L_Calo	write access CINH PLC		Data type: INTEGEI
Parameter Name: C01052 L_Calo From version 0.2 Setting range (r	cDiameter: Web break 2.00.00 min. value unit max. value)	monitoring	Data type: INTEGEI Index: 23523 _d = 5
Parameter Name: C01052 L_Calo From version 0. Setting range (r 0.00	cDiameter: Web break 2.00.00 min. value unit max. value) %	monitoring	Data type: INTEGEI Index: 23523 _d = 5
Parameter Name: C01052 L_Calo From version 02 Setting range (r 0.00 Subcodes	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting	monitoring	Data type: INTEGEI Index: 23523 _d = 5
Parameter Name: C01052 L_Calo From version 0. Setting range (r 0.00 Subcodes C01052/1	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 %	monitoring 100.00	Data type: INTEGEI Index: 23523 _d = 5 Info L_CalcDiameter 1: Permissible diameter change
Parameter Name: C01052 L_Calo From version 0. Setting range (r 0.00 Subcodes C01052/1	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 %	monitoring 100.00	Data type: INTEGEI Index: 23523 _d = 5
Parameter Name: C01052 L_Calc From version 0.0 Setting range (r 0.00 Subcodes C01052/1 ☑ Read access ☑ v	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 %	monitoring 100.00 STOP □ No transfer □	Info L_CalcDiameter_1: Permissible diameter change COM MOT Scaling factor: 100 Data type: UNSIGNEE
Parameter Name: C01052 L_Calc From version 0.0 Setting range (r 0.00 Subcodes C01052/1 ☑ Read access ☑ v	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Write access □ CINH □ PLC	monitoring 100.00 STOP □ No transfer □	Info L_CalcDiameter_1: Permissible diameter change COM MOT Scaling factor: 100 Data type: UNSIGNEI
Parameter Name: C01052 L_Calc From version 0.0 Setting range (r 0.00 Subcodes C01052/1 Read access v Parameter Name: C01053 L_Proc From version 0.0	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Write access □ CINH □ PLC	monitoring 100.00 STOP □ No transfer □	Info L_CalcDiameter_1: Permissible diameter change COM MOT Scaling factor: 100 Data type: UNSIGNEE
Parameter Name: C01052 L_Calc From version 0.0 Setting range (r 0.00 Subcodes C01052/1 Read access v Parameter Name: C01053 L_Proc From version 0.0	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Write access □ CINH □ PLC cessCtrl: Controller time 2.00.00	monitoring 100.00 STOP □ No transfer □	Data type: INTEGEI Index: 23523 _d = 5 Info L_CalcDiameter_1: Permissible diameter change □ COM □ MOT Scaling factor: 100 Data type: UNSIGNET Index: 23522 _d = 5
Parameter Name: C01052 L_Calc From version 0.0 Setting range (r 0.00 Subcodes C01052/1 ☑ Read access ☑ v Parameter Name: C01053 L_Proc From version 0.0 Setting range (r	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Write access □ CINH □ PLC cessCtrl: Controller time 2.00.00	monitoring 100.00 STOP □ No transfer □	Data type: INTEGE Index: 23523 _d = 5 Info L_CalcDiameter_1: Permissible diameter change □ COM □ MOT Scaling factor: 100 Data type: UNSIGNET Index: 23522 _d = 5
Parameter Name: C01052 L_Calc From version 02 Setting range (r 0.00 Subcodes C01052/1 Parameter Name: C01053 L_Proc From version 02 Setting range (r 0.000	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Write access	monitoring 100.00 STOP □ No transfer □	Info L_CalcDiameter_1: Permissible diameter change COM
Parameter Name: C01052 L_Calc From version 0. Setting range (r 0.00 Subcodes C01052/1 Parameter Name: C01053 L_Proc From version 0. Setting range (r 0.000 Subcodes	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Write access □ CINH □ PLC cessCtrl: Controller tim 2.00.00 min. value unit max. value) S Lenze setting	monitoring 100.00 STOP □ No transfer □	Data type: INTEGE Index: 23523 _d = 5 Info L_CalcDiameter_1: Permissible diameter change □ COM □ MOT Scaling factor: 100 Data type: UNSIGNET Index: 23522 _d = 5
Parameter Name: C01052 L_Calc From version 02 Setting range (r 0.00 Subcodes C01052/1 ☑ Read access ☑ v Parameter Name: C01053 L_Proc From version 02 Setting range (r 0.000 Subcodes C01053/1	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Nrite access	monitoring 100.00 STOP □ No transfer □	Info L_CalcDiameter_1: Permissible diameter change COM
Parameter Name: C01052 L_Calo From version 02 Setting range (r 0.00 Subcodes C01052/1 Parameter Name: C01053 L_Proc From version 02 Setting range (r 0.000 Subcodes C01053/1 C01053/2	cDiameter: Web break 2.00.00 min. value unit max. value) % Lenze setting 10.00 % Write access □ CINH □ PLO cessCtrl: Controller tim 2.00.00 min. value unit max. value) s Lenze setting 0.000 s 0.000 s	monitoring 100.00 STOP □ No transfer □	Info L_CalcDiameter_1: Permissible diameter change COM

 $\ \square$ Read access $\ \square$ Write access $\ \square$ CINH $\ \square$ PLC STOP $\ \square$ No transfer $\ \square$ COM $\ \square$ MOT Scaling factor: 1000

Parameter reference Parameter list | C01054

C01054	Parameter Name:	actul Contant davida	4:			Data type: INTEGER_16 Index: 23521 _d = 5BE1 _h
	From version 02.00	sCtrl: System devia	tion			macx. 23321 _d - 3521 _h
		value unit max. value				
	0.00	walue unit max. value	199.99			
	Subcodes	Lenze setting	133.33	Info		
	C01054/1	100.00 %			rl 1: Gain of system dev	iation
	C01054/2	0.00 %			rl 1: Area of system dev	
	,		STOP INotransfer I			
					-	
C01055	Parameter Name: C01055 L_Proces	sCtrl: Correcting va	lue limitation			Data type: UNSIGNED_8 Index: 23520 _d = 5BE0 _h
	From version 02.0	0.00				
	Selection list					
	0	False				
	1	True				
	Subcodes	Lenze setting		Info		
	C01055/1	0: FALSE		L_ProcessCt	rl_1: Correcting variable	limitation
	☑ Read access ☑ Write	e access	STOP No transfer	СОМ □МОТ	Scaling factor: 1	
C01056						
201030	Parameter Name: C01056 L_Proces	sCtrl: Controller ga	in			Data type: UNSIGNED_16 Index: 23519 _d = 5BDF _h
	From version 02.0	0.00				
	Setting range (min.	value unit max. value				
	0.00		100.00			
	Subcodes	Lenze setting		Info		
	C01056/1	0.10		L_ProcessCt	rl_1: Controller gain	
	☑ Read access ☑ Write	e access	STOP No transfer	□ COM □ MOT	Scaling factor: 100	
C01057						
201037	Parameter Name: C01057 L_CalcDi	ameter: Current dia	ameter			Data type: UNSIGNED_32 Index: 23518 _d = 5BDE _h
	From version 02.0	0.00				
	Display range (min.	value unit max. value)			
	0.000	mm	10000.000			
	Subcodes			Info		
	C01057/1			L_CalcDiam	eter_1: Current diamete	r
	☑ Read access ☐ Write	e access	STOP IN No transfer	COM MOT	Scaling factor: 1000	

Parameter reference Parameter list | C01058

C01058

Parameter Name: C01058 L_PosCtr	Data type: UNSIGNED_8 Index: 23517 _d = 5BDD _h	
From version 02.0	0.00	
Selection list		
0	deactivated	
1	activated	
Subcodes	Lenze setting	Info
C01058/1	0: Deactivated	L_PosCtrlLin_1: Limit stop
C01058/2	0: Deactivated	L_PosCtrlLin_2: Limit stop
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C01059

Parameter Name: C01059 L_PosCtr	lLin 1-2: Positioning behaviour	Data type: UNSIGNED_8 Index: 23516 _d = 5BDC _h
From version 02.00	0.00	
Selection list		
0	dnOut_p = 0	
1	dnOut_p/nOut_v follow dnAct_p	
2	dnOut_p/nOut_v follow dnSet_p	
3	dnOut_p/nOut_v follow dnAct_p (without limitation)	
Subcodes	Lenze setting	Info

Japeoucs	zenze setting	
C01059/1	0: dnOut_p = 0	L_PosCtrlLin_1: Positioning behaviour
C01059/2	0: dnOut_p = 0	<u>L_PosCtrlLin_2</u> : Positioning behaviour
·		

C01060

Parameter Name:	Data type: INTEGER_32
C01060 L_PosCtrlLin 1-2: Ramps	Index: $23515_d = 5BDB_h$

From version 02.00.00

Setting range (min.	value unit max. value)	
0.010	s 130.0	00
Subcodes	Lenze setting	Info
C01060/1	1.000 s	<u>L_PosCtrlLin_1</u> : Deceleration of set position
C01060/2	1.000 s	L_PosCtrlLin_1: Acceleration ramp
C01060/3	1.000 s	L_PosCtrlLin_1: Deceleration ramp
C01060/4	1.000 s	<u>L_PosCtrlLin_2</u> : Deceleration of set position
C01060/5	1.000 s	<u>L_PosCtrlLin_2</u> : Acceleration ramp
C01060/6	1.000 s	L_PosCtrlLin_2: Deceleration ramp
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfe	r □ COM □ MOT Scaling factor: 1000

Parameter Name: C01061 L_PosCtr	Data type: INTEGER_16 Index: 23514 _d = 5BDA _h				
From version 02.0	From version 02.00.00				
Setting range (min.	value unit max. value)				
-15000	rpm	15000			
Subcodes	Lenze setting		Info		
C01061/1	199 rpm		<u>L_PosCtrlLin_1</u> : Forward motion		
C01061/2 199 rpm			<u>L_PosCtrlLin_1</u> : Return motion		
C01061/3	199 rpm		<u>L_PosCtrlLin_2</u> : Forward motion		
C01061/4	199 rpm		<u>L_PosCtrlLin_2</u> : Return motion		
☑ Read access ☑ Write	e access □ CINH □ PLO	STOP I No transfer I	COM ☐ MOT Scaling factor: 1		

C01062

Parameter Name: C01062 L_Switch	Data type: UNSIGNED_16 Index: 23513 _d = 5BD9 _h		
From version 02.00	0.00		
Setting range (min.	value unit max. value)		
0	μs	65535	
Subcodes	Lenze setting		Info
C01062/1	0 μs		<u>L_SwitchPoint_1</u> : Dead time 1
C01062/2	C01062/2 0 μs		<u>L_SwitchPoint_1</u> : Dead time 2
C01062/3	0 μs		L_SwitchPoint_1: Dead time 3
C01062/4	0 μs		<u>L_SwitchPoint_1</u> : Dead time 4
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM MOT Scaling factor: 1

Parameter Name: C01063 L_Switch	Point: Hysteresis			e: UNSIGNED_16 23512 _d = 5BD8 _h
From version 02.0	0.00			
Setting range (min.	value unit max. value)			
0	Incr.	65535		
Subcodes	Lenze setting		Info	
C01063/1	0 incr.		L_SwitchPoint_1: Hysteresis 1	
C01063/2	C01063/2 0 incr.		L_SwitchPoint_1: Hysteresis 2	
C01063/3	0 incr.		<u>L_SwitchPoint_1</u> : Hysteresis 3	
C01063/4	0 incr.		L_SwitchPoint_1: Hysteresis 4	
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP No transfer	COM MOT Scaling factor: 1	

Parameter reference Parameter list | C01064

C01064

C01065

C01066

C01066/2

C01066/3

C01066/4

Parameter Name: C01064 L_Switch	Point: CenterMode			Data type: UNSIGNED_8 Index: 23511 _d = 5BD7 _h
From version 02.00	0.00			
Selection list				
0	False			
1	True			
Subcodes	Lenze setting		Info	
C01064/1	0: FALSE		L_SwitchPoint_1: CenterMode 1	
C01064/2	0: FALSE		L_SwitchPoint_1: CenterMode 2	
C01064/3	0: FALSE		L_SwitchPoint_1: CenterMode 3	
C01064/4	0: FALSE		L_SwitchPoint_1: CenterMode 4	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM MOT Scaling factor: 1	
Parameter Name: C01065 L_Switch	Point: Running time	e		Data type: UNSIGNED_16 Index: 23510 _d = 5BD6 _h
From version 02.00	0.00			
Setting range (min.	value unit max. value)			
0	ms	60000		
Subcodes	Lenze setting		Info	
C01065/1	0 ms		L_SwitchPoint_1: Running time 1	
C01065/2	0 ms		L_SwitchPoint_1: Running time 2	
C01065/3	0 ms		L_SwitchPoint_1: Running time 3	
C01065/4	0 ms		L_SwitchPoint_1: Running time 4	
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP □ No transfer □	COM MOT Scaling factor: 1	
Parameter Name: C01066 L_Switch	Point: Status			Data type: INTEGER_16 Index: 23509 _d = 5BD5 _h
From version 02.00	0.00			
Selection list				
-10	Switching points n	ot plausible		
0	ОК			
10	FB not active			
Subcodes			Info	
	codes		L SwitchPoint 1: Status 1	

L_SwitchPoint_1: Status 2

L SwitchPoint 1: Status 3

L SwitchPoint 1: Status 4

 \blacksquare Read access \square Write access \square CINH \square PLC STOP \blacksquare No transfer \square COM \square MOT Scaling factor: 1

C01069

C01070

C01071

Parameter Name: C01067 Inversion of gearbox stages			Data type: UNSIGNED_8 Index: 23508 _d = 5BD4 _h
From version 02			
Selection list			
	0 not inverted		
	1 inverted		
	2 Automatically from	MCK	
Subcodes	Lenze setting		Info
C01067/1	0: Not inverted		<u>L_PhiIntegrator_1</u> : Invert. gearbox nSet_v
C01067/2	0: Not inverted		L_DFSET_1: Invert. gearbox nSet_v
C01067/3	0: Not inverted		L CalcDiameter 1: Invert. gearbox nMotorSpeedAct_v
☑ Read access ☑ W	/rite access □ CINH □ PLC S	STOP INo transfer I	☐ COM ☐ MOT Scaling factor: 1
Parameter Name: C01069 L_DFS	ET: Ramp settings		Data type: UNSIGNED_1 Index: 23506 _d = 5BD2
From version 02	2.00.00		
Setting range (m	nin. value unit max. value)		
1	Incr./ms	32767	
Subcodes	Lenze setting		Info
C01069/1	10 incr./ms		L_DFSET_1: Ramp SpeedTrim
C01069/2	100 incr./ms		L_DFSET_1: Ramp angle compensation
☑ Read access ☑ W	/rite access □ CINH □ PLC S	STOP □ No transfer □	COM □ MOT Scaling factor: 1
Parameter Name: C01070 L_DFS I	ET: Angular trimming		Data type: INTEGER_3: Index: 23505 _d = 5BD1
From version 02	2.00.00		
Setting range (m	nin. value unit max. value)		
-134217728	Incr.	134217728	
Subcodes	Lenze setting		Info
C01070/1	0 incr.		<u>L_DFSET_1</u> : Speed-dependent angle adjustment
☑ Read access ☑ W	/rite access □ CINH □ PLC S	STOP INotransfer I	I COM □ MOT Scaling factor: 1
Parameter Name: C01071 L_DFS	ET: Following error limi	t	Data type: UNSIGNED_3: Index: 23504 _d = 5BD0
From version 02	2.00.00		
Setting range (m	nin. value unit max. value)		
10	Incr.	2147483647	
Subcodes	Lenze setting		Info

L DFSET 1: Following error limit

C01071/1

32768 incr.

Parameter reference Parameter list | C01072

C01072

Parameter Name: C01072 L_DFSET: Multiplier - angular trimming			Data type: INTEGER_16 Index: 23503 _d = 5BCF _h
From version 02.00.00			
Setting range (min. value unit max. value)			
-20000		20000	
Subcodes	Lenze setting		Info
C01072/1	1		L_DFSET_1: Multiplier - angular trimming
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C01073

Data type: UNSIGNED_8 Index: 23502_d = 5BCE_h C01073 | L_DFSET: Evaluation - setpoint angle integrator From version 02.00.00 Selection list 0 Evaluation with gearbox factor 1 Evaluation without gearbox factor

Subcodes Lenze setting Info C01073/1 0: Evaluation with gearbox factor L DFSET 1: Evaluation - setpoint angle integrator ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C01074

Parameter | Name: Data type: UNSIGNED_16 C01074 | L_DFSET: Zero pulse divider Index: $23501_d = 5BCD_h$

From version 02.00.00

Parameter | Name:

Setting range (min. value | unit | max. value) 0 16384 Subcodes Lenze setting Info C01074/1 0 L DFSET 1: Divider for actual value zero pulse C01074/2 L DFSET 1: Divider for setpoint zero pulse ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C01075

Data type: UNSIGNED_8 Index: 23500_d = 5BCC_h Parameter | Name: C01075 | L_DFSET: Synchronisation mode

From version 02.00.00

Selection list		
0	Inactive	
1	Permanent sync. without enable (bZeroPulse)	
2	Permanent sync. with enable (bZeroPulse)	
10	1x sync Angular diff. shortest path setpoint	
11	1x Sync Angular diff. Cw	
12	1x Sync Angular diff. Ccw	
13	1x Sync Angular diff. shortest path act. value	
Subcodes	Lenze setting	Info
C01075/1	0: Inactive	<u>L_DFSET_1</u> : Synchronisation mode
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C01077

C01078

C01079

C01080

C01076 L DFRF0	G· Times				Data type: UNSIGNED_ Index: 23499 _d = 580
From version 02.0					ű
	n. value unit max. value	a)			
0.000	s	999.900			
Subcodes	Lenze setting		Info		
C01076/1	1.000 s			Acceleration and dec	eleration time
C01076/2	0.000 s		L DFRFG 1:	Deceleration time for	quick stop
·	 te access □ CINH □ PL	.C STOP □ No transfer □			
Parameter Name: C01077 L_DFRF0	G: Max. speed-up				Data type: INTEGER_ Index: 23498 _d = 580
From version 02.0	00.00				
Setting range (mir	ı. value unit max. value	2)			
1	rpm	15000			
Subcodes	Lenze setting		Info		
C01077/1	3000 rpm		L DFRFG 1:	Max. speed-up	
☑ Read access ☑ Wri	te access CINH PL	_C STOP □ No transfer □	COM MOT	Scaling factor: 1	
Parameter Name: C01078 L_DFRFC	G: Following error				Data type: UNSIGNED Index: 23497 _d = 5B
From version 02.0	00.00				
Setting range (mir	ı. value unit max. value	<u>.</u>)			
10	Incr.	200000000			
Subcodes	Lenze setting		Info		
C01078/1	2000000000 incr.		L_DFRFG_1:	Following error limit	
☑ Read access ☑ Wri	te access	.C STOP □ No transfer □	COM MOT	Scaling factor: 1	
Parameter Name:	3. Synchronication v	window			Data type: UNSIGNED Index: 23496 _d = 5B
C01079 L_DFRFG: Synchronisation window					u
. –	10.00				
From version 02.0		A			
From version 02.0 Setting range (mir	n. value unit max. value				
From version 02.0 Setting range (mir	ı. value unit max. value	e) 65535	Info		
From version 02.0 Setting range (min 0 Subcodes	Incr. Lenze setting		Info	Synchronisation win	dow (position)
From version 02.0 Setting range (mir 0 Subcodes C01079/1	Incr. Lenze setting 100 incr.	65535	L_DFRFG_1:	Synchronisation wind	dow (position)
From version 02.0 Setting range (mir 0 Subcodes C01079/1	Incr. Lenze setting 100 incr.		L_DFRFG_1:	•	dow (position)
From version 02.0 Setting range (mir 0 Subcodes C01079/1	Incr. Lenze setting 100 incr. te access CINH PL	65535	L_DFRFG_1:	•	Data type: INTEGER
From version 02.0 Setting range (mir 0 Subcodes C01079/1 Read access Wri	Incr. Incr. Lenze setting 100 incr. te access CINH PL	65535	L_DFRFG_1:	•	Data type: INTEGER
From version 02.0 Setting range (mir 0 Subcodes C01079/1 Read access Wri Parameter Name: C01080 L_DFRF6 From version 02.0	Incr. Incr. Lenze setting 100 incr. te access CINH PL	65535 .CSTOP □ No transfer □	L_DFRFG_1:	•	Data type: INTEGER
From version 02.0 Setting range (mir 0 Subcodes C01079/1 Read access Wri Parameter Name: C01080 L_DFRF0 From version 02.0 Setting range (mir	Incr. Lenze setting 100 incr. te access CINH PL G: Offset	65535 .CSTOP □ No transfer □	L_DFRFG_1:	•	Data type: INTEGER
From version 02.0 Setting range (mir 0 Subcodes C01079/1 Read access Wri Parameter Name: C01080 L_DFRF6 From version 02.0	Incr. Lenze setting 100 incr. te access CINH PL G: Offset 00.00 Invalue unit max. value	65535 .CSTOP □ Notransfer □	L_DFRFG_1:	•	dow (position) Data type: INTEGER_ Index: 23495 _d = 580

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C01081

C01081

Parameter Name: C01081 L_DFRFG	: Sync. direction / TP function	Data type: UNSIGNED_8 Index: 23494 _d = 5BC6 _h
From version 02.00	0.00	
Selection list		
1	cw/ccw - without TP	
2	cw - without TP	
3	ccw - without TP	
4	cw/ccw - with TP	
5 cw - with TP		
6	ccw - with TP	
Subcodes	Lenze setting	Info
C01081/1	1: cw/ccw - without TP	L_DFRFG_1: Sync. direction / TP function
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C01082

Parameter | Name:

C01082 | LS_WriteParamList: Execute Mode

Data type: UNSIGNED_8
Index: 23493_d = 5BC5_h

Parameter change-over: Selection of the activation method

Selection list (Lenze setting printed in bold)		Info
0	by Execute	The writing of the parameter list is activated by a FALSE/TRUE edge at the <i>bExecute</i> input.
1	by Input Select	The writing of the parameter list is carried out if a change is made at the select inputs and if the controller is initialised.
= =	ESPECTOR EN . C.	

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C01083

Parameter | Name: C01083 | LS_WriteParamList: Error status

Data type: UNSIGNED_16 Index: 23492_d = 5BC4_h

Parameter change-over: Error status:

- 0 = no error
- 33803 = Invalid data type (e.g. STRING)
- 33804 = limit violation
- 33806 = invalid code
- 33813 = no element of the selection list
- 33815 = writing of the parameter not permitted
- 33816 = writing of the parameter only permitted if controller is inhibited
- 33829 = invalid subcode
- 33865 = no parameter with subcodes

Display range (min. value | unit | max. value) 0 34000 ☑ Read access □ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT Scaling factor: 1

C01084

Parameter | Name:

C01084 | LS_WriteParamList: Error line

Data type: UNSIGNED_8
Index: 23491_d = 5BC3_h

<u>Parameter change-over</u>: Display of the number of list entry where the error occurred (in connection with the value set selected via <u>bSelectWriteValue 1</u> and <u>bSelectWriteValue 2</u>).

Display range (nin. value unit m	ax. value)	/		
0			32		
☑ Read access □ \	Vrite access □ CIN	H □ PLC STOP ☑ No t	ransfer 🗆 COM	□ мот	Scaling factor: 1

C01086

C01087

C01088

Parameter Name: C01085 LS_Write	ParamList: Index		Data type: INTEGER_32 Index: 23490 _d = 5BC2 _h	
Parameter change	-over: Parameter for ent	ry 1 32		
Setting range (min.	value unit max. value)			
0.000		16000.000		
Subcodes	Lenze setting		Info	
C01085/1	0.000		Parameter for entries 1 32	
C01085/			 Format: <code number="">.<subcode number=""></subcode></code> Examples: "12.000" = C00012; "26.001" = C00026/1 	
C01085/32			- LXAMPIES. 12.000 - C00012, 20.001 - C00020/1	
☑ Read access ☑ Write	e access □ CINH □ PLC STOP	□ No transfer □	COM ☐ MOT Scaling factor: 1000	
Parameter Name: C01086 LS_Write	ParamList: WriteValue_	1	Data type: INTEGER_32 Index: 23489 _d = 5BC1 _h	
Parameter change	<u>-over</u> : Parameter values	- value set 1		
Setting range (min.	value unit max. value)			
-2147483647		2147483647		
Subcodes	Lenze setting		Info	
C01086/1	0		Parameter values - value set 1	
C01086/			• Parameter values for the parameters defined in	
C01086/32			<u>C01085</u> /1 32.	
☑ Read access ☑ Write	e access	□ No transfer □	☐ COM ☐ MOT Scaling factor: 1	
Parameter Name: C01087 LS_Write	ParamList: WriteValue_	2	Data type: INTEGER_32 Index: 23488 _d = 5BC0 _h	
Parameter change	<u>-over</u> : Parameter values	- value set 2		
Setting range (min.	value unit max. value)			
-2147483647		2147483647		
Subcodes	Lenze setting		Info	
C01087/1	0		Parameter values - value set 2	
C01087/			• Parameter values for the parameters defined in	
C01087/32			<u>C01085</u> /1 32.	
☑ Read access ☑ Write	e access	□ No transfer □	I COM ☐ MOT Scaling factor: 1	
Parameter Name: C01088 L5_WriteParamList: WriteValue_3			Data type: INTEGER_32 Index: 23487 _d = 58BF _h	
Parameter change-over: Parameter values - value set 3				
Setting range (min.	value unit max. value)			
-2147483647		2147483647		
Subcodes	Lenze setting		Info	
C01088/1	0		Parameter values - value set 3	
C01088/			• Parameter values for the parameters defined in	

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

<u>C01085</u>/1 ... 32.

C01088/32

Parameter reference Parameter list | C01089

C01089

Parameter Name: C01089 LS_WriteParamList: WriteValue_4 Data type: INTEGE Index: 23486 _d = 5				
Parameter change-over: Parameter values - value set 4				
Setting range (min. value unit max. value)				
-2147483647	2147483647			
Subcodes	Lenze setting		Info	
C01089/1	0		Parameter values - value set 4	
C01089/			Parameter values for the parameters defined in C01085/1 32.	
C01089/32			<u> </u>	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

C01090

Parameter Name:	Data type: INTEGER_32
C01090 LS ParReadWrite 1-6: Index	Index: 23485 _d = 5BBD _h

Parameter to be read or written.

- Format: <code number>,<subcode number>
- For a setting of "0,000", inputs wParIndex and wParSubindex are effective for addressing purposes instead.

Setting range (min.	value unit max. value)	
0.000	16000.000	
Subcodes	Lenze setting	Info
C01090/1	0.000	LS_ParReadWrite_1: Index
C01090/2	0.000	LS_ParReadWrite_2: Index
C01090/3	0.000	LS_ParReadWrite_3: Index
C01090/4	0.000	LS_ParReadWrite_4: Index
C01090/5	0.000	LS_ParReadWrite_5: Index
C01090/6	0.000	LS_ParReadWrite_6: Index
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1000

Parameter Name: C01091 LS_ParReadWrite 1-6: Cycle time	Data type: UNSIGNED_16 Index: 23484 _d = 5BBC _h
Time interval for cyclic reading/writing	

Selection list	
0	0 (by Execute)
20	20 ms
50	50 ms
100	100 ms
200	200 ms
500	500 ms
1000	1 s
2000	2 s
5000	5 s
10000	10 s

Subcodes	Lenze setting	Info
C01091/1	0: 0 (by Execute)	LS_ParReadWrite_1: Cycle time
C01091/2	0: 0 (by Execute)	LS_ParReadWrite_2: Cycle time
C01091/3	0: 0 (by Execute)	LS_ParReadWrite_3: Cycle time
C01091/4	0: 0 (by Execute)	LS_ParReadWrite_4: Cycle time
C01091/5	0: 0 (by Execute)	LS_ParReadWrite_5: Cycle time
C01091/6	0: 0 (by Execute)	LS_ParReadWrite_6: Cycle time
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	□ COM □ MOT Scaling factor: 1

Exeau access Exiting access Exiting access Exiting access Exiting factors

C01092

C01092 | LS_ParReadWrite 1-6: FailState

Data type: UNSIGNED_16 Index: 23483_d = 5BBB_h

Error status:

- 0 = no error
- 33803 = Invalid data type (e.g. STRING)
- 33804 = limit violation
- 33806 = invalid code
- 33813 = no element of the selection list
- 33815 = writing of the parameter not permitted
- 33816 = writing of the parameter only permitted if controller is inhibited
- 33829 = invalid subcode
- 33865 = no parameter with subcodes

Display range (min. value unit max. value)		
0	34000	
Subcodes		Info
C01092/1		<u>LS_ParReadWrite_1</u> : Error status
C01092/2		<u>LS_ParReadWrite_2</u> : Error status
C01092/3		LS_ParReadWrite_3: Error status
C01092/4		<u>LS_ParReadWrite_4</u> : Error status
C01092/5		<u>LS_ParReadWrite_5</u> : Error status
C01092/6		<u>LS_ParReadWrite_6</u> : Error status
☑ Read access ☐ Write access ☐ CINH ☐ PLC	STOP ☑ No transfer ☐	COM MOT Scaling factor: 1

Parameter reference Parameter list | C01093

C01093

Parameter | Name: C01093 - LS_ParReadWrite 1-6: Arithmetic mode

Data type: UNSIGNED_8 Index: 23482_d = 5BBA_h

The integrated <u>arithmetic function</u> allows for easy arithmetic conversion of the process value to be written or which was read into the format of the target parameter via parameterisable factors and without the need for an additional arithmetic FB.

Selection list	
0	No arithmetic
1	In16Bit: LW=+/-32767
2	In16Bit: HW=+/-; LW=065535
3	In32Bit: HW_LW=+/-2147483647

Subcodes	Lenze setting	Info
C01093/1	0: no arithmetic	LS_ParReadWrite_1: Arithmetic mode
C01093/2	0: no arithmetic	LS_ParReadWrite_2: Arithmetic mode
C01093/3	0: no arithmetic	LS_ParReadWrite_3: Arithmetic mode
C01093/4	0: no arithmetic	LS_ParReadWrite_4: Arithmetic mode
C01093/5	0: no arithmetic	LS_ParReadWrite_5: Arithmetic mode
C01093/6	0: no arithmetic	LS_ParReadWrite_6: Arithmetic mode
☑ Read access ☑ Write	access CINH CIPICSTOP CINOtransfer C	COM □ MOT Scaling factor: 1

C01094

Parameter | Name:

C01094 - LS ParReadWrite 1-6: Numerator

Data type: INTEGER_16 Index: 23481_d = 5BB9_h

Arithmetic function: Factor (numerator) for internal conversion in arithmetic modes 1 ... 3.

Setting range (min.	value unit max. value)	
-32767	3276	7
Subcodes	Lenze setting	Info
C01094/1	1	<u>LS_ParReadWrite_1</u> : Numerator
C01094/2	1	LS_ParReadWrite_2: Numerator
C01094/3	1	LS_ParReadWrite_3: Numerator
C01094/4	1	<u>LS_ParReadWrite_4</u> : Numerator
C01094/5	1	<u>LS_ParReadWrite_5</u> : Numerator
C01094/6	1	LS_ParReadWrite_6: Numerator
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer	□ COM □ MOT Scaling factor: 1

C01095

Parameter | Name:

C01095 - LS_ParReadWrite 1-6: Denominator

Setting range (min. value | unit | max. value)

Data type: INTEGER_16 Index: 23480_d = 5BB8_h

<u>Arithmetic function</u>: Factor (denominator) for internal conversion in arithmetic modes 1 ... 3.

	,		
1		32767	
Subcodes	Lenze setting		Info
C01095/1	1		LS_ParReadWrite_1: Denominator
C01095/2	1		LS_ParReadWrite_2: Denominator
C01095/3	1		LS_ParReadWrite_3: Denominator
C01095/4	1		LS_ParReadWrite_4: Denominator
C01095/5	1		LS_ParReadWrite_5: Denominator
C01095/6	1		LS_ParReadWrite_6: Denominator
☑ Read access ☑ Write	e access	P □ No transfer □	COM MOT Scaling factor: 1

Parameter Name: C01100 Function	L_Counter 1-3	Data type: UNSIGNED_8 Index: 23475 _d = 5BB3 _h
Selection of reset t	function	
Selection list		
0	Normal counting	
1	Auto reset	
2	Manual reset	
Subcodes	Lenze setting	Info
C01100/1	0: Normal counting	<u>L_Counter_1</u> : Function
C01100/2	0: Normal counting	<u>L_Counter_2</u> : Function
C01100/3	0: Normal counting	<u>L_Counter_3</u> : Function
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC STOP 🗆 No transfer 🗆	COM □ MOT Scaling factor: 1

C01101

Parameter Name: C01101 Comparison L_Counter 1-3	Data type: UNSIGNED_8 Index: 23474 _d = 5BB2 _h
Selection of comparison operation	
Selection list	
0 Greater than or equal to	
1 Less than or equal to	

Subcodes	Lenze setting	Info
C01101/1	0: Greater than or equal to	L_Counter_1: Comparison
C01101/2	0: Greater than or equal to	L_Counter_2: Comparison
C01101/3	0: Greater than or equal to	L_Counter_3: Comparison

 \blacksquare Read access \blacksquare Write access \square CINH \square PLC STOP \square No transfer \square COM \square MOT Scaling factor: 1

C01110

Parameter | Name:

C01110 | LS_MultiEncoder: Solid measure

Data type: UNSIGNED_8
Index: 23465_d = 5BA9_h

From version 02.00.00

2 equal to

► Encoder/feedback system: SSI encoder

Selection list (Lenze	e setting printed in bold)
0	rotatively unipolar
1	linearly unipolar
2	rotatively bipolar
3	linearly bipolar
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No transfer □

C01111

Parameter | Name:

C01111 | SSI: Encoder constant

Data type: INTEGER_32
Index: 23464_d = 5BA8_h

From version 02.00.00

► Encoder/feedback system: SSI encoder

Setting range (min.	value unit max. value)			
1	2147483647			
Subcodes	Lenze setting	Info		
C01111/1	1	LS_MultiEncoder: Difference - traverse path		
C01111/2	1	LS_MultiEncoder: Difference - encoder value		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

Parameter reference Parameter list | C01112

C01112

Parameter Name: C01112 LS_Multi	Encoder: PosValues		Data type: INTEGER_32 Index: 23463 _d = 5BA7 _h	
Setting range (min. value unit max. value)				
-214748.3647	units 214748.3647			
Subcodes	Lenze setting		Info	
C01112/1	0.0000 units		LS_MultiEncoder: Position offset	
C01112/2	-214748.3647 units		LS_MultiEncoder: Data area min	
C01112/3	214748.3647 units	i	LS_MultiEncoder: Data area max	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10000				

C01119

Parameter | Name:

C01119 | LS_MultiEncoder: Current position

Data type: INTEGER_32
Index: 23456_d = 5BAO_h

From version 02.00.00

▶ Encoder/feedback system: Multi-Encoder

Display range (m	in. value unit max. v	/alue)	
-214748.3647	units	214748.3647	
Subcodes			Info
C01119/1			LS MultiEncoder: Current position
C01119/2			LS MultiEncoder: Maximum travel distance
☑ Read access □ W	rite access	□ PLC STOP ☑ No transfer [□ COM □ MOT Scaling factor: 10000

C01120

Parameter | Name:

C01120 | Sync signal source

Data type: UNSIGNED_8
Index: 23455_d = 5B9F_h

Selection of the signal source for device synchronisation

• Basically, only one source is allowed to synchronise the drive.

▶ Synchronisation of the internal time base

Selection list (Lenze	setting printed in bold)	Info		
0	Off	Synchronisation off		
1	CAN on board	Synchronisation via CAN bus ▶ Sync telegram		
2	AxisBusIO	Synchronisation via axis bus • Axis bus		
4	MCI	Synchronisation via MCI (communication module)		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

C01121

Parameter | Name:

C01121 | Sync cycle time setpoint

Data type: UNSIGNED_16
Index: 23454_d = 589E_h

Cycle time setpoint for device synchronisation

- Time at which the phase-locking loop (PLL) in the controller expects the synchronisation signals to arrive.
- The cycle time setpoint must be set according to the cycle of the respective synchronisation source.

Note

- Only integer multiples of 1000 μs can be set.
- Intelligent communication modules usually define the cycle time setpoint derived from the bus cycle. In this
 case, a manual change is not possible.

Example: For the CAN bus, a distance of 2 ms has been set between two synchronisation signals. If the CAN bus is to be used as synchronisation source, a synchronisation cycle of 2000 µs must be set in C01121.

▶ Synchronisation of the internal time base

Setting range (min.	value unit max. value)		Lenze setting	
1000	μs	20000	1000 μs	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

Parameter reference Parameter list | C01122

C01122

Parameter | Name:

C01122 | Sync phase position

Data type: UNSIGNED_16
Index: 23453_d = 589D_h

Phase position for device synchronisation

- The phase position determines the zero-time of the internal system cycle with regard to the synchronisation signal (bus cycle). Since PDO processing is an inherent part of the system part of the application, the instant of acceptance of the PDOs is postponed as well by a changed phase position.
- With a setting = 0, the system cycle starts simultaneously with the synchronisation signal.
- With a setting > 0, the internal system cycle starts earlier by the set time with regard to the synchronisation signal (the phase position acts negatively).
- Intelligent communication modules define the optimal time with activated synchronisation by themselves. In this case, a manual change is not possible.
- The decisive factor for defining C01122 is the time where all nodes are provided with valid PDOs.

Example: If the phase position is set to 550 μ s, the system part of the application starts 550 μ s before the arrival of the synchronisation signal.

▶ Synchronisation of the internal time base

Setting range (min. value unit max. value)			Lenze setting
0	μs	1000	0 μs
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	□ COM □ MOT Scaling factor: 1

C01123

Parameter | Name:

C01123 | Sync window

Data type: UNSIGNED_16
Index: 23452_d = 5B9C_h

Time slot for monitoring the synchronisation signal or the phase position

- The synchronisation signal or the current phase position must be within this time slot around the corresponding expected value (C01122).
- With the setting "1000 μs " there will be no monitoring.

▶ Synchronisation of the internal time base

Setting range (min. value unit max. value)			Lenze setting
0	μs	10000	100 μs
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM MOT Scaling factor: 1

C01124

Parameter | Name:

C01124 | Sync correction width

Data type: UNSIGNED_8
Index: 23451_d = 5B9B_h

Correction increment for device synchronisation

- If the cycle times of the synchronisation signal differs and phase-locken loop (PLL) differ from each other, this setting defines the measure the phase-locking loop is reset with.
- If synchronisation is not reached, select a higher correction constant.
- The optimum setting depends on quartz precision and must be determined empirically if required.

▶ <u>Synchronisation of the internal time base</u>

Selection list	(Lenze	setting p	rinted in	bold)			
	1	80ns					
	2	160ns	;				
	3	240ns	;				
	4	320ns	;				
	5	400ns	;				
☑ Read access [☑ Write	access	□ CINH	□ PLC STOP	☐ No transfer	СОМ	COM MOT

Parameter reference Parameter list | C01130

C01130

Parameter Name:		Data type: UNSIGNED_16
C01130 LS_Retain		Index: 23445 _d = 5895 _h
From version 02.00		
• •	hex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:		
Bit 0 □		
Bit 1 🗆		
Bit 2	-	
Bit 3 🗆		
Bit 4 □		
Bit 5		
Bit 6 □		
Bit 7 🗆		
Bit 8		
Bit 9 □		
Bit 10 □		
Bit 11 □		
	Reserved	
Subcodes	Lenze setting	Info
C01130/1	0	LS_RetainData: Selection bSetRetain_1
C01130/2	0	LS_RetainData: Selection bSetRetain_2
C01130/3	0	LS_RetainData: Selection bSetRetain_3
C01130/4	O SCHUL FRIGGTOR FINAL () F	LS_RetainData: Selection bLoadParams
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM LIMOI
Parameter Name: C01131 LS_Retail	nData: 16Bit data	Data type: UNSIGNED_16 Index: 23444 _d = 5B94 _h
From version 02.00	0.00	
Setting range (min.	value unit max. value)	
0	65535	
Subcodes	Lenze setting	Info
C01131/1	0	LS_RetainData: wValue1
C01131/2	0	LS_RetainData: wValue2
C01131/3	0	LS_RetainData: wValue3

LS RetainData: wValue4

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C01131

C01131/4

Parameter Name: C01132 LS_Retai	nData: 32Bit data		Data type: INTEGER_ Index: 23443 _d = 589		
From version 02.00	0.00				
Setting range (min. value unit max. value)					
-2147483647	2147483647				
Subcodes	Lenze setting		Info		
C01132/1	0		LS_RetainData: dnValue1		
C01132/2	0		LS_RetainData: dnValue2		
C01132/3	0		LS_RetainData: dnValue3		
C01132/4	0		LS_RetainData: dnValue4		
☑ Read access ☑ Write access ☐ CINH ☐ DIC STOP ☐ No transfer ☐ COM ☐ MOT Scaling factor: 1					

C01133

Parameter | Name:

C01133 | LS_RetainData: Bool data

Data type: UNSIGNED_8
Index: 23442_d = 5B92_h

From version 02.00.00

Selection list	
) False
1	L True

Subcodes	Lenze setting	Info		
C01133/1	0: FALSE	LS_RetainData: bValue1		
C01133/2	0: FALSE	LS_RetainData: bValue2		
C01133/3	0: FALSE	LS_RetainData: bValue3		
C01133/4	0: FALSE	LS_RetainData: bValue4		
M Pand access M Write access MCINH M PICSTOP M No transfer M COM M MOT Scaling factor 1				

C01138

Parameter | Name:

C01138 | L_Transient 1-4: Function

Data type: UNSIGNED_8
Index: 23437_d = 5B8D_h

Selection of edge evaluation

Selection list		
0	High edge	
1	Low edge	
2	High and low edge	
Subcodes	Lenze setting	Info
C01138/1	0: High edge	<u>L_Transient_1</u> : Function
C01138/2	0: High edge	<u>L_Transient_2</u> : Function
C01138/3	0: High edge	<u>L_Transient_3</u> : Function
C01138/4	0: High edge	<u>L_Transient_4</u> : Function
		COM MOT Scaling factor: 1

Parameter reference Parameter list | C01139

C01139

Parameter Name: C01139 L_Transic	ent 1-4: Pulse duration		Data type: UNSIGNED_16 Index: 23436 _d = 5B8C _h
Setting range (min.	value unit max. value)		
0.000	S	60.000	
Subcodes	Lenze setting		Info
C01139/1	0.000 s		<u>L_Transient_1</u> : Pulse duration
C01139/2	0.000 s		<u>L_Transient_2</u> : Pulse duration
C01139/3	0.000 s		<u>L_Transient_3</u> : Pulse duration
C01139/4	0.000 s		<u>L_Transient_4</u> : Pulse duration
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No tra	ansfer 🗆	COM MOT Scaling factor: 1000

C01140

Parameter Name: C01140 L_Transie	ent 5-8: Function	Data type: UNSIGNED_8 Index: 23435 _d = 5B8B _h
Selection of edge e	evaluation	
Selection list		
0	High edge	
1	Low edge	
2	High and low edge	
Subcodes	Lenze setting	Info
C01140/1	0: High edge	<u>L_Transient_5</u> : Function
C01140/2	0: High edge	L_Transient_6: Function
C01140/3	0: High edge	<u>L_Transient_7</u> : Function
C01140/4	0: High edge	L_Transient_8: Function
☑ Read access ☑ Write	e access	I COM ☐ MOT Scaling factor: 1

C01141

Parameter Name: C01141 L_Transient 5-8 pulse duration			Data type: UNSIGNED_16 Index: 23434 _d = 5B8A _h
Setting range (min. value unit max. value)			
0.000	s	60.000	
Subcodes	Lenze setting		Info
C01141/1	0.000 s		<u>L_Transient_5</u> : Pulse duration
C01141/2	0.000 s		<u>L_Transient_6</u> : Pulse duration
C01141/3	0.000 s		<u>L_Transient_7</u> : Pulse duration
C01141/4	0.000 s		L_Transient_8: Pulse duration
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	COM MOT Scaling factor: 1000

Parameter Name: C01150 L_Phasel	ntK: Function	Data type: UNSIGNED_8 Index: 23425 _d = 5B81 _h
Loading behaviou	of the integrator	
Selection list		Info
0	Loading with level	Load integrator with TRUE level at the input bLoad
1	Loading with edge	Load integrator with FALSE/TRUE edge at the input bLoad
2	Loading with level + reset	Load integrator when the comparison value (C01151) is reached or with TRUE level at the <i>bLoad</i> input
Subcodes	Lenze setting	Info
C01150/1	0: Loading with level	L_PhaseIntK_1: Function
C01150/2	0: Loading with level	L_PhaseIntK_2: Function
☑ Read access ☑ Write	e access CINH PLC STOP No transfer	☐ COM ☐ MOT Scaling factor: 1

C01151

Parameter Name: C01151 L_PhaseI	ntK: Compare			Data type: INTEGER_32 Index: 23424 _d = 5B80 _h
Comparison value				
Setting range (min.	value unit max. value)			
0		2147418112		
Subcodes	Lenze setting		Info	
C01151/1	0		<u>L_PhaseIntK_1</u> : Comparison value	
C01151/2	0		<u>L_PhaseIntK_2</u> : Comparison value	
☑ Read access ☑ Write	access	STOP □ No transfer □	COM MOT Scaling factor: 1	

C01190

Parameter Name: C01190 Motor thermal sensor	Data type: UNSIGNED_8 Index: 23385 _d = 5B59 _h
---	--

Selection of the thermal sensor for monitoring the motor temperature

▶ Encoder/feedback system: Motor temperature monitoring (KTY)

Selection list		Info		
0	KTY83-110	Lenze standard KTY83-110 (MDSKX, MCS06)		
1	Spec. characteristic	Characteristic defined via C01191 and C01192		
2	KTY83-110 + 2 x PTC	Lenze standard KTY83-110 + 2 x PTC 150°C (MCS09-MCS19)		
4	KTY84-130	Lenze standard KTY83-130		
Subcodes	Lenze setting	Info		
C01190/1	0: KTY83-110	Type of motor temperature sensor resolver		
C01190/2	0: KTY83-110	Type of motor temperature sensor MultiEncoder		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

Parameter reference Parameter list | C01191

C01191

Parameter | Name:

C01191 | PTC characteristic: Temperature 1/2

Data type: UNSIGNED_8
Index: 23384_d = 5858_h

The spec. thermal sensor characteristic is selected through the setting C01190="1"

► Encoder/feedback system: Motor temperature monitoring (KTY)

Setting range (min. value unit max. value)			
0	°C	255	
Subcodes	Lenze setting		Info
C01191/1	100 °C		PTC characteristic: Temperature 1
C01191/2	150 °C		PTC characteristic: Temperature 2
☑ Read access ☑ Writ	e access	STOP □ No transfer □	COM MOT Scaling factor: 1

C01192

Parameter | Name:

C01192 | PTC characteristic: Resistance 1/2

Data type: INTEGER_32
Index: 23383_d = 5857_h

The spec. thermal sensor characteristic is selected through the setting C01190="1"

▶ Encoder/feedback system: Motor temperature monitoring (KTY)

Setting range (min. value unit max. value)			
0	Ohm	30000	
Subcodes	Lenze setting		Info
C01192/1	1070 Ohms		PTC characteristic: Resistance 1
C01192/2	2225 Ohms		PTC characteristic: Resistance 2
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C01193

Parameter | Name:

C01193 | Feedback system motor temperature

Data type: UNSIGNED_8
Index: 23382_d = 5856_h

Selection of the feedback system for monitoring the motor temperature

► Encoder/feedback system: Motor temperature monitoring (KTY)

Selection list (Lenze	setting printed in bold)	
0	Speed feedback	
1	Resolver input	
2	Encoder input	
5	Res. and enc. parallel	
☑ Pead access ☑ Write	access CINH CDICSTOP C Notransfer C	 Scaling factor: 1

C01201

Parameter | Name:

C01201 | MCK: Cycle

Data type: INTEGER_32
Index: 23374_d = 584E_h

Cycle for Modulo measuring system

• When the cycle is set to 0 units (Lenze setting), the traversing range is unlimited (classical measuring system).

▶ <u>Activation of the Modulo measuring system</u>

Setting range (min. value unit max. value)				
0.0000	units	214748.3647		
Subcodes	Lenze setting		Info	
C01201/1	0.0000 units		MCK: Cycle	
☑ Read access ☑ Write	e access	P □ No transfer □	COM □ MOT Scaling	factor: 10000

Parameter | Name:

C01202 | MCK: iM motor/process

Data type: UNSIGNED_16

Index: 23373_d = 5B4D_h

Gearbox factor - motor

• Entry of the gearbox factor as numerator/denominator ratio (numerator = motor speed and denominator = output speed of gearbox) or from the number of teeth of the gearbox arrangement.

▶ Machine parameter

Setting range (min.	value unit max. value)	
1	65535	
Subcodes	Lenze setting	Info
C01202/1	1	MCK: iM: Numerator gearbox factor Z2
C01202/2	1	MCK: iM: Denominator gearbox factor Z1
☑ Read access ☑ Write	e access	COM ☐ MOT Scaling factor: 1

C01203

Parameter | Name:

C01203 | MCK: iG motor/position encoder

Data type: UNSIGNED_16
Index: 23372_d = 5B4C_h

Gearbox factor - position encoder

• Entry of the gearbox factor as numerator/denominator ratio, with numerator = motor speed and denominator = position encoder speed.

▶ Machine parameter

Setting range (min. value unit max. value)		
1	65535	
Subcodes	Lenze setting	Info
C01203/1	1	MCK: iG: Numerator (motor speed)
C01203/2	1	MCK: iG: Denominator (encoder speed)
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	I COM ☐ MOT Scaling factor: 1

C01204

Parameter | Name:

C01204 | MCK: Feed constant

Data type: INTEGER_32
Index: 23371_d = 584B_h

The feed constant corresponds to the machine movement for one revolution of the gearbox output shaft.

• The value is entered in application units referred to one revolution.

▶ Machine parameter

Setting range (min. value unit max. value)			Lenze setting
0.0001	units/rev.	214748.3647	360.0000 units/rev.
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM MOT Scaling factor: 10000

C01205

Parameter | Name:

C01205 | MCK: Position resolution

Data type: INTEGER_32
Index: 23370_d = 5BAA_h

Display of the number of increments corresponding to one unit.

• 1 motor revolution = 65536 increments

Machine parameter

Display range (min. value unit max. value)				
0.0000	Incr./unit	214748.3647		
☑ Read access ☐ Writ	e access	P □ No transfer □ COM □	MOT Scaling factor: 10000	

Parameter reference Parameter list | C01206

C01206

C01210

Parameter Name: C01206 MCK: Mo	unting direction		Data type: UNSIGNED_8 Index: 23369 _d = 5849 _h
Inversion for mirro	ored motor and enco	der mounting	
			▶ <u>Machine parameter</u>
Selection list			
-	not inverted		
	inverted		
Subcodes	Lenze setting		Info
C01206/1	0: Not inverted		Motor mounting direction • Setting for motor mounting turned by 180°.
C01206/2	0: Not inverted		 Position encoder mounting direction Setting for position encoder system mounting turned by 180°.
☑ Read access ☑ Write	e access ☑ CINH ☐ PLC	STOP I No transfer I	☐ COM ☐ MOT Scaling factor: 1
Parameter Name:	rrent positions		Data type: INTEGER_32 Index: 23365 _d = 5B45 _h
Display of current	position data of the	Motion Control Ke	rnel
Display range (min.	value unit max. value)		
-214748.3647	units	214748.3647	
Subcodes			Info
C01210/1			MCK: Feed • Display of the current feed for positioning profiles as a relative distance.
C01210/2			MCK: Set position Display of the current setpoint position calculated by the MCK.
C01210/3			MCK: Actual position Display of the current actual position calculated by an optional encoder system.
C01210/4			 MCK: Following error Display of the current following error as a difference between setpoint position and actual position.
C01210/5			MCK: Positioning accuracy Display of the current positioning accuracy referred to the actual number of increments of the position encoder.
C01210/6			MCK: Target position
C01210/7			MCK: Modulo position
☑ Read access ☐ Write	e access	STOP ☑ No transfer □	COM MOT Scaling factor: 10000
Parameter Name:	eed		Data type: INTEGER_32 Index: 23364 _d = 5844 _t
Display of the curr	ent speed data		
Display range (min.	value unit max. value)		

C01211

Parameter Name: C01211 MCK: Speed		Data type: INTEGER_32 Index: 23364 _d = 5B44 _h
Display of the current speed data		
Display range (min. value unit max. value)		
-214748.3647 units/s	214748.3647	
Subcodes		Info
C01211/1		MCK: Max. traversing speed 100%_C11 • Display of the maximum traversing speed based on the reference speed set in C00011.
☑ Read access ☐ Write access ☐ CINH ☐ PLC	STOP INo transfer	COM ☐ MOT Scaling factor: 10000

Parameter reference Parameter list | C01213

C01213

Parameter Name: C01213 MCK: Ma	x. traversing dista	nce	Data type: INTEGER_32 Index: 23362 _d = 5B42 _h
Display of current	position limits		
Display range (min.	value unit max. valu	e)	
-2147480000	units	2147480000	
Subcodes			Info
C01213/1			MCK: Max. traversing distance • Display of the maximum distance to be traversed referred to the 32-bit display area (max. 2147483647 increments).
☑ Read access ☐ Write	access 🗆 CINH 🗆 PI	.C STOP ☑ No transfer □	□ COM □ MOT Scaling factor: 1

C01215

Parameter | Name:

C01215 | MCK: Following error

Data type: INTEGER_32
Index: 23360_d = 5B40_h

Limits for following error monitoring system

▶ Following error monitoring system

Setting range (min. value unit max. value)			
0.0000	units 21	14748.0000	
Subcodes	Lenze setting		Info
C01215/1	0.0000 units		MCK: Following error limit 1 First limit of the maximum following error for monitoring and response activation.
C01215/2	0.0000 units		MCK: Following error limit 2 Second limit of the maximum following error for monitoring and response activation.
☑ Read access ☑ Writ	e access	No transfer	COM MOT Scaling factor: 10000

C01216

Parameter Name: C01216 MCK: Positioning setting	Data type: UNSIGNED_8 Index: 23359 _d = 5B3F _h
	▶ <u>Positioning</u>

Setting range (min. hex value max. hex value)			Lenze setting
0x00	0xFF		0x01 (decimal: 1)
Value is bit-coded:	(☑ = bit set)		
Bit 0 ☑	PosAbort at PosInit		
Bit 1 □	PosExecute active at PosInit		
Bit 2 □	Reserved		
Bit 3 □	Reserved		
Bit 4 □	ProfilStart at PosIni	t	
Bit 5 □	Reserved		
Bit 6 □	Reserved		
Bit 7 □	Reserved		
☑ Read access ☑ Write	access CINH PLC	STOP □ No transfer □	□ COM □ MOT

Parameter reference Parameter list | C01218

C01218

Parameter Name: Data type: UNSIGNED C01218 PosFollower: Setting Index: 23357 _d = 5830				
Settings for "Position follower" mode				
	▶ <u>Position follower</u>			
Setting range (min. hex value max. hex value)	Lenze setting			
0x00 0xFF	0x0C (decimal: 12)			
Value is bit-coded: (☑ = bit set)	Info			
Bit 0	"1" = speed feedforward control value comes from main setpoint nSpeedSetValue_a			
Bit 1	"1" = speed feedforward control value comes from additive speed value nSpeedAddValue_v			
Bit 2 🗹 HW limit switch on	"1" \equiv Travel range monitoring via hardware limit switch is active. The error response can be parameterised in $\underline{\text{C00595/1}}$ and $\underline{\text{C00595/2}}$.			
Bit 3 🗹 SW limit switch on	"1" \equiv Travel range monitoring via parameterised software limit positions is active. The error response can be parameterised in $\frac{\text{C00595/3}}{\text{C00595/4}}$ and $\frac{\text{C00595/4}}{\text{C00595/4}}$.			
Bit 4 □ Reserved				
Bit 5 🗆 Reserved				
Bit 6 □ Reserved				
Bit 7 □ Reserved				
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □	□сом □мот			

C01219

Parameter Name:	Data type: UNSIGNED_8
C01219 MCK: Speed follower setting	Index: 23356 _d = 5B3C _h

Settings for "Speed follower" mode

▶ <u>Speed follower</u>

Setting range (min.	hex value max. hex value	e)	Lenze setting
0x00		0xFF	0x0C (decimal: 12)
Value is bit-coded:	: (☑ = bit set)		Info
Bit 0 □	Reserved		
Bit 1 □	Reserved		
Bit 2 ☑	HW limit switch on		"1" \equiv Travel range monitoring via hardware limit switch is active. The error response can be parameterised in $\underline{\text{C00595/1}}$ and $\underline{\text{C00595/2}}$.
Bit 3 ☑	SW limit switch on		"1" \equiv Travel range monitoring via parameterised software limit positions is active. The error response can be parameterised in $\frac{\text{C00595/3}}{\text{C00595/4}}$.
Bit 4 □	Reserved		
Bit 5 □	Reserved		
Bit 6 □	Reserved		
Bit 7 □	Position controller	off	"1" = Position controller is deactivated. Thus, the compensation of the following error is switched off.
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC S	STOP □ No transfer □	сом 🗆 мот

Parameter | Name:

C01221 | MCK: Ref. mode

Data type: UNSIGNED_8
Index: 23354_d = 5B3A_h

Selection of the homing mode.

▶ Homing

Selection list (Lenze	setting printed in bold)	Info
6	>_Rn_>_TP	Positive direction - via home mark (neg. edge) - continuing in positive direction - to TP
7	<_Rn_<_TP	Negative direction - via home mark (neg. edge) - continuing in negative direction - to TP
8	>_TP	Positive direction - to TP
9	<_TP	Negative direction - to TP
10	>_Lp_<_TP	Positive direction - reversing on pos. limit switch - to TP
11	<_Ln_>_TP	Negative direction - reversing on neg. limit switch - to TP
12	>_Lp	Positive direction - to pos. limit switch
13	<_Ln	Negative direction - to neg. limit switch
14	>_Mlim	Positive direction towards torque limit (C01222)
15	<_Mlim	Negative direction towards torque limit (C01222)
100	SetRef	Direct acceptance and setting of the home position The measuring system is set based on the home position parameterised in C01227/2 when the drive is at standstill.
☑ Read access ☑ Write	access □ CINH □ PLC STOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 1

C01222

Parameter | Name:

C01222 | MCK: Ref. M limit mode 14/15

Data type: INTEGER_16
Index: 23353_d = 5B39_h

Torque limit for homing modes 14 and 15 (homing towards positive stop)

• 100 % = maximum torque (C00057)

▶ Homing

Setting range (min.	value unit max. value)		Lenze setting
0.00	%	199.99	10.00 %
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM MOT Scaling factor: 100

C01223

Parameter | Name:

C01223 | MCK: Ref. waiting time mode 14/15

Data type: UNSIGNED_16
Index: 23352_d = 5838_h

Blocking time for homing modes 14 and 15 (homing towards positive stop)

 The reference is set if an excess of the torque limit set in <u>C01222</u> has been deteced over a time period defined here.

▶ Homing

Setting range (min.	value unit max. value)		Lenze setting
0	ms	65000	100 ms
☑ Read access ☑ Write	e access	STOP No transfer	□ COM □ MOT Scaling factor: 1

Parameter reference Parameter list | C01224

C01224

Parameter Name: C01224 MCK: Ref. speeds	Data type: INTEGER_32 Index: 23351 _d = 5B37 _h
Speeds for reference search/homing	→ Homing
Setting range (min. value unit max. value)	

Setting range (min. value unit max. value)			
0.0000	unit/s	214748.3647	
Subcodes	Lenze setting		Info
C01224/1	720.0000 unit/s		MCK: Ref. initial speed • Starting speed for approaching the pre-stop signals.
C01224/2	180.0000 unit/s		MCK: Ref. search speed • Search speed for detecting the reference initiator.
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM			COM MOT Scaling factor: 10000

C01225

Parameter | Name:

C01225 | MCK: Ref. accelerations

Data type: INTEGER_32
Index: 23350_d = 5836_h

Accelerations for reference search/homing

▶ Homing

Setting range (min. value unit max. value)			
0.0000	unit/s2	214748.3647	
Subcodes	Lenze setting		Info
C01225/1	720.0000 unit/s2		MCK: Ref. initial acceleration • Starting acceleration for the starting speed ramps.
C01225/2	720.0000 unit/s2		MCK: Ref. search acceleration • Search acceleration for the search speed ramps.
☑ Read access ☑ Writ	e access	STOP □ No transfer □	COM ☐ MOT Scaling factor: 10000

C01226

Parameter | Name:

C01226 | MCK: Ref. S-ramp time

Data type: UNSIGNED_16
Index: 23349_d = 5B35_h

S-ramp time for reference search/homing

• Setting "0 s" \equiv no rounding

▶ Homing

Setting range (min. value unit max. value)			
0.000	s 10	0.000	
Subcodes	Lenze setting	Info	
C01226/1	0.000 s	MCK: Ref. S-ramp time • S-ramp time for the starting and search speed ra	mps.
☑ Read access ☑ Writ	e access □ CINH □ PLC STOP □ No tran	sfer □ COM □ MOT Scaling factor: 1000	

Parameter | Name:

C01227 | MCK: Ref. positions

Data type: INTEGER_32
Index: 23348_d = 5834_h

Positions for determining the zero position of the reference measuring system

▶ Homing

Setting range (min. value unit max. value)				
-214748.3647	unit	214748.3647		
Subcodes	Lenze setting		Info	
C01227/1	0.0000 unit		MCK: Ref. offset reference degree • Relative traverse path by which the drive traverses after detection of the reference initiator.	
C01227/2	0.0000 unit		MCK: Ref. home position Position with which setpoint and actual position are loaded after completion of homing.	
☑ Read access ☑ Writ	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10000			

C01228

Parameter | Name:

C01228 | MCK: Ref. sequence profile

Data type: UNSIGNED_8 Index: 23347_d = 5B33_h

Number of the sequence profile the absolute position of which will be approached after homing.

▶ Homing

Setting range (min.	value unit max. value)		Lenze settin	g
0		15	0	
☑ Read access ☑ Write	access	STOP No transfer] сом □ мот	Scaling factor: 1

C01229

Parameter | Name:
C01229 | MCK: Position limiting values

Data type: INTEGER_32 Index: 23346_d = 5B32_h

Software limit position for limiting the valid traversing range

• The error response to leaving the valid traversing range can be parameterised in C00595/3 and C00595/3 and C00595/4.

Note

For limiting the traversing range by means of software limit positions, the home position must be known and the positive software limit position must be higher than the negative software limit position!

▶ Limit position monitoring

Setting range (min. value unit max. value)			
-214748.3647	units	214748.3647	
Subcodes	Lenze setting		Info
C01229/1	0.0000 units		MCK: Positive SW limit position (positive travel range limit)
C01229/2	0.0000 units		MCK: Negative SW limit position (negative travel range limit)
☑ Read access ☑ Writ	te access	STOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 10000

Parameter reference Parameter list | C01230

C01230

Settings for "Manu	og: Setting		
settings for Marie	arjog mode		▶ <u>Manual jo</u> ş
Setting range (min.	hex value max. hex value)		Lenze setting
0x00		0xFF	0x00 (decimal: 0)
Value is bit-coded:	(☑ = bit set)		Info
Bit 0 □	Breakpoints 14 on		"1" ≡ approach of the parameterised breakpoint in manual jog direction
Bit 1 □	Time-based start of 2nd	speed	"1" \equiv Automatic change-over to second manual speed after the wating time set in <u>C01235/1</u> .
Bit 2 □	HW limit switch on		"1" \equiv Travel range monitoring via hardware limit switch is active. The error response can be parameterised in $\underline{\text{C00595/1}}$ and $\underline{\text{C00595/2}}$.
Bit 3 □	SW limit switch on		"1" \equiv Travel range monitoring via parameterised software limit positions is active. The error response car be parameterised in $\underline{\text{C00595/3}}$ and $\underline{\text{C00595/4}}$.
Bit 4 □	Reserved		
Bit 5 □	Reserved		
Bit 6 □	Reserved		
Bit 7 □	Position controller off		"1" = Position controller is deactivated. Thus, the compensation of the following error is switched off.
☑ Read access ☑ Write	access CINH PLC STOP I	□ No transfer □	

C01231

Parameter Name:	Data type: INTEGER_32
C01231 MCK: Manual jog speeds	Index: 23344 _d = 5B30 _h

Manual jog speeds

▶ Manual jog

Setting range (min. value unit max. value)			
-214748.3647	units/s	214748.3647	
Subcodes	Lenze setting		Info
C01231/1	360.0000 units/s		Manual jog: speed 1 • Regular manual speed
C01231/2	720.0000 units/s		Manual jog: Speed 2 • Second manual speed (can be activated via MCK control word)
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10000			

C01232

Parameter Name:	Data type: INTEGER_32
C01232 MCK: Manual jog accelerations	Index: 23343 _d = 5B2F _h

Acceleration/deceleration for manual jog

▶ <u>Manual jog</u>

Setting range (min.	value unit max. value)		
-214748.3647	units/s2	214748.3647	
Subcodes	Lenze setting		Info
C01232/1	720.0000 units/s2		Manual jog: Acceleration • Acceleration for ramp-up to manual speed.
C01232/2	720.0000 units/s2		Manual jog: Deceleration Deceleration for manual speed ramp-down to standstill.
☑ Read access ☑ Writ	e access	P □ No transfer □	COM ☐ MOT Scaling factor: 10000

Parameter | Name:

C01233 | MCK: Manual jog S-ramp time

Data type: UNSIGNED_16
Index: 23342_d = 582E_h

S-ramp time for manual jog

Setting "0 s"

= no rounding

▶ Manual jog

Setting range (min.	value unit max. value)		
0.000	S	10.000	
Subcodes	Lenze setting		Info
C01233/1	0.000 s		Manual jog: S-ramp time • S-ramp time for the manual speed ramps.
☑ Read access ☑ Write	1 COM □ MOT Scaling factor: 1000		

C01234

Parameter | Name:

C01234 | MCK: Manual jog breakpoints

Data type: INTEGER_32
Index: 23341_d = 5B2D_h

Breakpoint positions for manual jog

The drive stops at the parameterised positions if these are located in the manual jog direction and the
approaching of the breakpoints is switched on in C01230 via bit 0.

▶ Manual jog

Setting range (min. value unit max. value)			
-214748.3647	unit	214748.3647	
Subcodes	Lenze setting		Info
C01234/1	0.0000 unit		Manual jog: Breakpoint 1
C01234/2	0.0000 unit		Manual jog: Breakpoint 2
C01234/3	0.0000 unit		Manual jog: Breakpoint 3
C01234/4	0.0000 unit		Manual jog: Breakpoint 4
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □			l COM ☐ MOT Scaling factor: 10000

C01235

Parameter | Name:

C01235 | MCK: Manual jog waiting times

Data type: UNSIGNED_16
Index: 23340_d = 582C_h

Waiting times for manual jog

▶ Manual jog

Setting range (min. value unit max. value)			
0.000	s	65.000	
Subcodes	bcodes Lenze setting		Info
C01235/1	5.000 s		Manual jog: Waiting time 2nd speed • Time after which the first manual speed (C01231/1) is accelerated to the second manual speed (C01231/2).
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1000			

C01236

Parameter | Name:

C01236 | MCK: Speed follower

Data type: INTEGER_32
Index: 23339_d = 5828_h

Speeds for position follower

▶ <u>Position follower</u>

Setting range (min. value unit max. value)			
-214748.3647	units/s	214748.3647	
Subcodes	Lenze setting		Info
C01236/1	360.0000 units/s		PosFollower: Sync. speed Synchronisation speed for approaching the setpoint position of the master.
☑ Read access ☑ Writ	e access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM ☐ MOT Scaling factor: 10000

Parameter reference Parameter list | C01237

C01237

Parameter Name:	Data type: INTEGER_32
C01237 MCK: Acceleration follower	Index: 23338 _d = $5B2A_h$

Accelerations for position follower

▶ Position follower

Setting range (min. value unit max. value)			
-214748.3647	units/s2	214748.3647	
Subcodes	Lenze setting		Info
C01237/1	720.0000 units/s2		Pos follower: Sync. accel. • Acceleration for ramp-up to synchronisation speed.
C01237/2	720.0000 units/s2		Pos follower: Sync. decel. Deceleration for synchronisation speed ramp-down to standstill (to the setpoint position of the master).
☑ Read access ☑ Wri	te access	TOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 10000

C01238

Parameter | Name:

C01238 | MCK: S-ramp time follower

Data type: UNSIGNED_16
Index: 23337_d = 5B29_h

S-ramp times for position follower

• Setting "0 s" = no rounding

▶ <u>Position follower</u>

Setting range (min.	. value unit max. value)		
0.000	S	10.000	
Subcodes	Lenze setting		Info
C01238/1	0.000 s		Pos follower: Sync. S-ramp time • S-ramp time for the synchronisation speed ramps.
☑ Read access ☑ Write access ☐ CINH ☐ PIC STOP ☐ No transfer ☐ COM ☐ MOT Scaling factor: 1000			

C01239

Parameter | Name:

C01239 | Reserved

Data type: UNSIGNED_32
Index: 23336_d = 5828_h

Interpolator cycle for position follower

• Cycle time for the position interpolation of the position from the master.

▶ Position follower

Setting range (min.	value unit max. value)		Lenze setting
0.000	ms 60.000		0.000 ms
☑ Read access ☑ Write	e access	TOP □ No transfer □	COM MOT Scaling factor: 1000

C01240

 Parameter | Name:
 Data type: UNSIGNED_32

 C01240 | MCK: Control word
 Index: 23335_d = 5827_h

Bit-coded status of the MCK control word

• The MCK control word is used to control the functions of the Motion Control Kernel.

► MCK control word

Display area (min. hex value max. hex value)		
0x00000000	0xFFFFFF	
Value is bit-coded:		Info
Bit 0	OpMode_Bit0	Active operating mode - control bit 0
Bit 1	OpMode_Bit1	Active operating mode - control bit 1
Bit 2	OpMode_Bit2	Active operating mode - control bit 2
Bit 3	OpMode_Bit3	Active operating mode - control bit 4
Bit 4	ManJogPos	Control bit for manual jog in positive direction
Bit 5	ManJogNeg	Control bit for manual jog in negative direction
Bit 6	ManExecute2ndSpeed	Control bit for activation of second manual speed

Parameter Name: C01240 MCK: Col	ntrol word	Data type: UNSIGNED_32 Index: 23335 _d = 5827 _h
Bit 7	ReleaseLimitSwitch	Control bit for retracting the hardware limit positions
Bit 8	HomStartStop	Control bit for start/stop homing
Bit 9	HomSetPos	 Control bit for setting of home position "0->1" ≡ sets position setpoint and actual position value to the home position at the MCK. This function is independent of the operating modes.
Bit 10	HomResetPos	 Control bit for reset of home position "0->1" ≡ resets the information bit for the status "Home position known" (home position not known). The position displays are not influenced by this.
Bit 11	EnableSpeedOverride	 Control bit for activation of speed override "1" = activation of the override speed at the MCK for acceptance in a running speed profile.
Bit 12	EnableAccOverride	Control bit for activation of acceleration override • "1" ≡ activation of the override acceleration at the MCK for acceptance in a running speed profile.
Bit 13	EnableSRampOverride	Control bit for deactivation of S-shaping for speed profiles • "1" ≡ deactivates S-shaping for speed profiles
Bit 14	PosTeachSetPos	Control bit for accepting the selected setpoint position in the selected profile • "0->1" ≡ accepts the setpoint position at the MCK in the profile with the profile number defined via the MCK control word.
Bit 15	PosTeachActPos	Control bit for accepting the current actual position in the selected profile • "0->1" ≡ accepts the current actual position in the profile with the profile number defined via the MCK control word.
Bit 16	PosExecute	Control bit for starting a positioning profile • "0->1" ≡ starts a positioning profile selected via the control word in the "Positioning" mode.
Bit 17	PosFinishTarget	Control bit for completing processing of an interrupted positioning profile • "0->1" ≡ processing of a positioning profile which has already been started and has been interrupted because of a cancellation condition or a change of the operating mode is completed in the "Positioning" mode when the home position is known. • Note: Completion of profile processing through this control is based on the target position detected at the profile start!
Bit 18	PosDisableFollowProfile	Control bit for suppression of the sequence profile • "1" ≡ positioning profiles whose profile numbers are entered in profile data sets for sequence profiles are not started after completion of the corresponding profile.
Bit 19	PosStop	Control bit for stopping the positioning profile • "0->1" ≡ ("Positioning" mode): Interrupts a running profile through deceleration along the set deceleration ramp to standstill. • "0->1" ≡ ("Stop" mode): Starts a new deceleration to standstill with the parameterised stop ramp.
Bit 20	PosModeBit0	Active positioning mode - control bit 0
Bit 21	PosModeBit1	Active positioning mode - control bit 1
Bit 22	PosModeBit2	Active positioning mode - control bit 2
Bit 23	PosModeBit3	Active positioning mode - control bit 3

Parameter Name: C01240 MCK: Cor	ntrol word	Data type: UNSIGNED_32 Index: 23335 _d = 5B27 _h
Bit 24	ProfileNo_Bit0	Active positioning profile number - control bit 0
Bit 25	ProfileNo_Bit1	Active positioning profile number - control bit 1
Bit 26	ProfileNo_Bit2	Active positioning profile number - control bit 2
Bit 27	ProfileNo_Bit3	Active positioning profile number - control bit 3
Bit 28	ProfileNo_Bit4	Active positioning profile number - control bit 4
Bit 29	ProfileNo_Bit5	Active positioning profile number - control bit 5
Bit 30	ProfileNo_Bit6	Active positioning profile number - control bit 6
Bit 31	ProfileNo_Bit7	Active positioning profile number - control bit 7
☑ Read access □ Write access □ CINH □ PLC STOP ☑ No transfer □ COM □ MOT		

 Parameter | Name:
 Data type: UNSIGNED_32

 C01241 | MCK: Status word
 Index: 23334_d = 5826_h

Bit-coded status of the MCK status word

• The MCK status word is used to output status messages of the MotionControlKernel.

► MCK status word

Display area (min. hex value max. hex value)			
0x00000000		0xFFFFFFF	
Value is bit-coded:			Info
Bit 0	ActOpModeBit00		Active operating mode - status bit 0
Bit 1	ActOpModeBit01		Active operating mode - status bit 1
Bit 2	ActOpModeBit02		Active operating mode - status bit 2
Bit 3	ActOpModeBit03		Active operating mode - status bit 4
Bit 4	Busy		Status bit - profile generation active • "1" ≡ Internal profile generation is active. A speed profile is being generated.
Bit 5	Done		Status bit - profile generation completed • "1" ≡ Generation of a speed profile with the selected position has been completed.
Bit 6	AcceleratingActive		Status bit - acceleration process for profile generation active • "1" ≡ Profile generation phase is in the acceleration process.
Bit 7	ConstSpeedDuty		Status bit - constant speed for profile generation active • "1" ≡ Profile generation phase at constant speed active.
Bit 8	DeceleratingActive		Status bit - deceleration process for profile generation active • "1" ≡ Profile generation phase is in the deceleration process.
Bit 9	S_ShapingActive		Status bit - rounding for profile generation active • "1" ≡ Rounding during acceleration/deceleration active.
Bit 10	Pos. HW-Limit Detected	d	Status bit - positive hardware limit detected • "1" ≡ Positive limit switch has triggered. • Reset only possible via"Manual jog" mode!
Bit 11	Neg. HW-Limit Detecte	ed	Status bit - negative hardware limit detected • "1" ≡ Negative limit switch has triggered. • Reset only possible via"Manual jog" mode!
Bit 12	HomPosDone		Status bit - homing completed • "1" ≡ Homing has been completed.

Parameter Name: C01241 MCK: Sta	tus word	Data type: UNSIGNED_32 Index: 23334 _d = 5826 _h
Bit 13	HomPosAvailable	Status bit - home position known • "1" ≡ The home position has been detected and is known in the drive.
Bit 14	Pos. SW-Limit Detected	Status bit - positive software limit detected • "1" ≡ Positive software limit position overtravelled.
Bit 15	Neg. SW-Limit Detected	Status bit - negative software limit detected • "1" ≡ Negative software limit position overtravelled.
Bit 16	DwellTime	Status bit - transient effects in target position active • "1" ≡ Dwell time after reaching the setpoint position is active.
Bit 17	InTarget	Status bit - actual position is in the target window • "1" ≡ Dwell time has expired and current actual position is in the set target window.
Bit 18	PosDone	Status bit - positioning process completed • "1" ≡ Positioning profile has been completed in the "Positioning" mode. Setpoint position is in target.
Bit 19	Reserved	
Bit 20	ActPosMode_Bit00	Active positioning mode - status bit 0
Bit 21	ActPosMode_Bit01	Active positioning mode - status bit 1
Bit 22	ActPosMode_Bit02	Active positioning mode - status bit 2
Bit 23	ActPosMode_Bit03	Active positioning mode - status bit 3
Bit 24	ActProfileNo_Bit00	Active positioning profile - status bit 0
Bit 25	ActProfileNo_Bit01	Active positioning profile - status bit 1
Bit 26	ActProfileNo_Bit02	Active positioning profile - status bit 2
Bit 27	ActProfileNo_Bit03	Active positioning profile - status bit 3
Bit 28	ActProfileNo_Bit04	Active positioning profile - status bit 4
Bit 29	ActProfileNo_Bit05	Active positioning profile - status bit 5
Bit 30	ActProfileNo_Bit06	Active positioning profile - status bit 6
Bit 31	ActProfileNo_Bit07	Active positioning profile - status bit 7
	e access	

Parameter Name: C01242 MCK: Current pos profile number Data type: UNSIGNED_8 Index: 23333 _d = 5825 _h			
Display of the current profile number of the active profile in the "Positioning" mode • Positioning			
Display range (min. value unit max. value)			
0 255			
☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT Scaling factor: 1			

Parameter reference Parameter list | C01243

C01243

Parameter Name:	Data type: UNSIGNED_8
C01243 MCK: Current operating mode	Index: 23332 _d = 5B24 _h

Display of the active operating mode of the Motion Control Kernel

▶ Basic drive functions

Selection list (read only)		Info	
0	Speed follower	Drive traverses according to a preselected speed setpoint	
1	Homing	Drive finds its reference measuring system by setting the home position or homing	
2	ManualJog	Drive can be traversed manually via initiators, e.g. for cleaning purposes or tool changes.	
3	Positioning	Drive traverses according to defined travel profiles and motion processes	
4	Stop	Drive is decelerated to standstill along a parameterised deceleration ramp	
5	Position follower	Drive traverses according to a preselected position setpoint	
15	StandBy	Internal operating mode for quick stop and pulse inhibit	
M Read access □ Write access □ CINH □ PLC STOP M No transfer □ COM □ MOT Scaling factor: 1			

C01244

Parameter | Name:

C01244 | MCK: Target detection - times

Data type: UNSIGNED_16
Index: 23331_d = 5823_h

Timing for various MCK functions

Setting range (min. value unit max. value)			
0	ms	60000	
Subcodes	Lenze setting		Info
C01244/1	100 ms		 MCK: Dwell time - target position Time expiring after reaching the setpoint position for positioning processes and enabling the actual position detection in the target position window. Target position monitoring
C01244/2	0 ms		MCK: Waiting time following error 1 From version 02.00.00 ▶ Following error monitoring system
C01244/3	0 ms		MCK: Waiting time following error 2 From version 02.00.00 ▶ Following error monitoring system
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			□ COM □ MOT Scaling factor: 1

Parameter Name: C01245 MCK: Tai	rget detection - posi	itions	Data type: INTEGER_32 Index: 23330 _d = 5B22 _h
Position settings f	or various MCK fund	ctions	
Setting range (min.	value unit max. value)		
0.0000	units	214748.3647	
Subcodes	Lenze setting		Info
C01245/1	1.0000 units		 MCK: Window target position Window around the target position for comparison with the actual position to see whether the drive is in target. Target position monitoring
C01245/2	1.0000 units		MCK: Blocking zone Modulo ▶ Activation of the Modulo measuring system
C01245/3	0.0000 units		MCKI: Hysteresis position change
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10000			

C01246

Parameter | Name:

C01246 | MCK: Select signal source

Data type: UNSIGNED_8
Index: 23329_d = 5821_h

Selection of the touch probe signal source for reference search with touch probe detection

If the reference signal is to follow a reach touch probe, the <u>Touch-Probe-Interface</u> must be configured accordingly.

▶ Homing

Selection list		
0	No TP	
3	TP-DigIn3	
4	TP-DigIn4	
5	TP-DigIn5	
6	TP-DigIn6	
7	TP-DigIn7	
Subcodes	Lenze setting	Info
C01246/1	0: No TP	MCK: Ref. TP signal source
C01246/2	0: No TP	MCK: Set.Ref. signal source
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC STOP 🗆 No transfer 🗅	COM □ MOT Scaling factor: 1

C01251

Parameter | Name:

C01251 | MCK: Acceleration stop

Data type: INTEGER_32
Index: 23324_d = 5B1C_h

Acceleration parameter for stop

Setting range (min. value | unit | max. value)

▶ Stop

8 . 8 . (
-214748.3647	units/s2	214748.3647	
Subcodes	Lenze setting		Info
C01251/1	720.0000 units/s2		MCK: Stop: Decel. Deceleration for setpoint speed ramp-down to standstill.
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □			COM ☐ MOT Scaling factor: 10000

Parameter reference Parameter list | C01252

C01252

Data type: UNSIGNED_16 Index: 23323_d = 5B1B_h Parameter | Name: C01252 | MCK: S-ramp times stop

S-ramp times for stop

• Setting "0 s" ≡ no rounding

▶ Stop

Setting range (min.	. value unit max. value)		
0.000	S	10.000	
Subcodes	Lenze setting		Info
C01252/1	0.000 s		MCK: Stop: S-ramp time • S-ramp time for setpoint speed ramp-down to standstill.

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1000

C01295

Parameter | Name: C01295 | L_MCKStateInterface_1: Pos. selection Data type: UNSIGNED_8 Index: 23280_d = 5AF0_h

Selection of the position to be provided at the dnPosOut_p output of the FB L MckStateInterface

Selection list (Lenze	setting printed in bold)		
0	dnPosIn_p		
1	Current feed		
2	dnSetPos_p		
3	dnActPos_p		
4	dnDeltaPos_p		
5	dnTargetPos_p		
□ D □ \A/-:t-			C

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C01296

Parameter | Name: C01296 | Mode: Position calculation Data type: UNSIGNED_8 Index: $23279_d = 5AEF_h$

► MCKInterface

Selection list	
0	dnPosOut_p=dnPosIn_p
1	16 bits: LW=+/-32767
2	16 bits: HW=+/-; LW=065535
3	32 bits: HW_LW=+/-214748_3647

Subcodes	Lenze setting	Info
C01296/1	0: dnPosOut_p=dnPosIn_p	<u>L_MckCtrlInterface_1</u> : PosCalcMode
C01296/2	1: 16Bit: LW=+/-32767	L_MckCtrlInterface_1: PosDisplayMode
□ Dood occose □ Weit	DOLLAR DESCRIPTION DATE TO THE PROPERTY OF	COM DMOT Carling factor 1

Parameter | Name: C01297 | L_MckStateInterface_1: Alternative function Data type: UNSIGNED_8 Index: 23278_d = 5AEE_h

Selection of the alternative function for bit 16 (PosExecute) in the MCK control word

▶ Alternative functions for "PosExecute" control bit

Setting range (min. I	hex value max. hex valu	ıe)	Lenze setting
0x00		0xFF	0x03 (decimal: 3)
Value is bit-coded:	(☑ = bit set)		Info
Bit 0 ☑	PosStop with PosE	xecute = FALSE	 "1" = Stop positioning with PosExecute PosExecute="0" stops a running positioning process by ramp-down to standstill.
Bit 1 ☑	HomingStartStop	with PosExecute	"1" ≡ Start/stop homing with <i>PosExecute</i> • PosExecute="1" starts homing, PosExecute="0" stops homing in the "Homing" mode.
Bit 2 □	SetProfilPosition v	vith PosExecute	 "1" = Teach set position with PosExecute PosExecute="0->1" accepts the setpoint position at the MCK in the profile with the specified profile number.
Bit 3 □	SetProfilPosition a	t position change	 "1"
Bit 4 □	Profile start at pos	ition change	From version 02.00.00 "1" ≡ Automatic profile start at position change • An automatic "PosExecute" takes place if the incremental position selection changes and this change is higher than set in the hysteresis for position change (C01245/3).

Parameter reference Parameter list | C01298

C01298

Parameter Name: C01298 MCK: Operating mode change with profile no.	Data type: UNSIGNED_8 Index: 23277 _d = 5AED _h
EP MckCtrlinterface 1, Assignment of an energting mode to a profile	

FB <u>L_MckCtrlInterface_1</u>: Assignment of an operating mode to a profile

Selection list		Info
0	No change	There will be no changed operating mode when the profile is changed. Instead, the operating mode requested "from outside" via the MCK control word applies.
1	Follower	Change to the "Speed follower" mode
2	Homing	Change to the "Homing" mode
3	ManualJog	Change to the "Manual jog" mode
4	Positioning	Change to the "Positioning" mode
Subcodes	Lenze setting	Info
C01298/1	1: Follower	 MCK operating mode at profile no. 0 Selection of the operating mode for profile 0 at L_MckCtrlInterface_1.
C01298/2	2: Homing	MCK operating mode at profile no. 1 • Selection of the operating mode for profile 1 at L_MckCtrlInterface_1.
C01298/3	3: ManualJog	MCK operating mode at profile no. 2 • Selection of the operating mode for profile 2 at L_MckCtrlInterface_1.
		MCK operating mode at profile no. 315

C01299

Parameter Name: C01299 MCKI: Sta	atus MCKInterface		Data type: UNSIGNED_8 Index: 23276 _d = 5AEC _h
FB <u>L_MckCtrlInterf</u>	face 1: Status messages		
Display area (min. h	ex value max. hex value)		
0x00		0xFF	
Value is bit-coded:			Info
Bit 0	InvalidOperationMode		 Invalid operating mode selection "1" ≡ The selected operating mode is not defined/invalid.
Bit 1	InvalidPosMode		 Invalid positioning mode selection "1" = The selected positioning mode is not defined/invalid.
Bit 2	InvalidProfileNo		 Invalid profile number selection "1" = The selected profile number refers to a profile data set that does not exist.
Bit 3	Reserved		
Bit 4	Reserved		
Bit 5	Reserved		
Bit 6	Reserved		
Bit 7	Reserved		

☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☐ COM ☐ MOT

Parameter Name: C01300 Profile data: Positioning mode	Data type: UNSIGNED_8 Index: 23275 _d = 5AEB _h
Selection of the positioning mode for profiles 1 \dots 15	

▶ Profile entry

Selection list		Info
	Absolute (shortest math)	
1	Absolute (shortest path)	 Absolute positioning The profile position corresponds to the target position.
2	Continuous	Continuous positioning without approaching a target position
3	Relative	 Relative positioning The profile position determines the distance to be traversed.
4	absolute (Cw)	 Clockwise absolute positioning The zero position of the axis can be exceed in this direction. The profile position corresponds to the target position.
5	absolute (Ccw)	 Counter-clockwise absolute positioning The zero position of the axis can be exceed in this direction. The profile position corresponds to the target position.
8	Absolute (shortest path) to TP	 Absolute positioning The profile position corresponds to the target position. After a touch probe is detected, the TP profile (C01308/115) is executed.
9	Continuous to TP	Continuous positioning without approaching a target position • After a touch probe is detected, the TP profile (C01308/115) is executed.
10	Relative to TP	 Relative positioning The profile position determines the distance to be traversed. After a touch probe is detected, the TP profile (C01308/115) is executed.
11	Absolute (Cw) on TP	 Clockwise absolute positioning The zero position of the axis can be exceed in this direction. The profile position corresponds to the target position. After a touch probe is detected, the TP profile (C01308/115) is executed.
12	Absolute (Ccw) on TP	 Counter-clockwise absolute positioning The zero position of the axis can be exceed in this direction. The profile position corresponds to the target position. After a touch probe is detected, the TP profile (C01308/115) is executed.
Subcodes	Lenze setting	Info
01300/1	1: absolute (beeline)	Profiles 1 15: Positioning mode
01300/	, ,	
01300/15		

Parameter reference Parameter list | C01301

C01301

Parameter Name: C01301 Profile data: Position	Data type: INTEGER_32 Index: 23274 _d = 5AEA _h
Selection of the positions for profiles 1 15	▶ <u>Profile entry</u>

Setting range (mi	Setting range (min. value unit max. value)		
-214748.3647	unit	214748.3647	
Subcodes	Lenze setting		Info
C01301/1	360.0000 unit		Profiles 1 15: Position
C01301/			
C01301/15			
☑ Read access ☑ Wi	rite access 🗆 CINH 🗆 PLC	STOP No transfer	COM ☐ MOT Scaling factor: 10000

C01302

Parameter Name:	Data type: INTEGER_32
C01302 Profile data: Speed	Index: 23273 _d = 5AE9 _h

Selection of the maximum speeds for profiles 1 ... 15

▶ Profile entry

Setting range (min. value unit max. value)			
-214748.3647	unit/s	214748.3647	
Subcodes	Lenze setting		Info
C01302/1	360.0000 unit/s		Profiles 1 15: Speed
C01302/			
C01302/15			
☑ Read access ☑ Wri	te access	COM MOT Scaling factor: 10000	

C01303

Parameter Name:	Data type: INTEGER 32
C01303 Profile data: Acceleration	Index: 23272 _d = 5AE8 _h

Selection of the accelerations for profiles 1 \dots 15

▶ Profile entry

Setting range (min. value unit max. value)					
-214748.3647	unit/s2	214748.3647			
Subcodes	Lenze setting		Info		
C01303/1	720.0000 unit/s2		Profiles 1 1	15: Acceleration	
C01303/					
C01303/15					
☑ Read access ☑ Wri	te access	STOP No transfer	COM 🗆 MOT	Scaling factor: 10000	

C01304

Parameter Name:	Data type: INTEGER_32
C01304 Profile data: Deceleration	Index: $23271_d = 5AE7_h$

Selection of the decelerations for profiles 1 \dots 15

▶ <u>Profile entry</u>

Setting range (min. value unit max. value)			
-214748.3647	unit/s2	214748.3647	
Subcodes	Subcodes Lenze setting		Info
C01304/1	720.0000 unit/s2		Profiles 1 15: Deceleration
C01304/			
C01304/15			
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10000			

Parameter reference Parameter list | C01305

C01305

Parameter | Name:

C01305 | Profile data: Final speed

Data type: INTEGER_32
Index: 23270_d = 5AE6_h

Selection of the final speeds for profiles 1 ... 15

• For profile linkage with overchange.

▶ Profile entry

Setting range (min. value unit max. value)			
-214748.3647	unit/s	214748.3647	
Subcodes	Lenze setting		Info
C01305/1	0.0000 unit/s		Profiles 1 15: Final speed
C01305/			
C01305/15			
☑ Read access ☑ W	/rite access □ CINH □ PLC	STOP □ No transfer □	I COM □ MOT Scaling factor: 100

C01306

Parameter | Name:

C01306 | Profile data: S-ramp time

Data type: UNSIGNED_16
Index: 23269_d = 5AE5_h

Selection of the S-ramp times for profiles 1 ... 15

• The maximum S-ramp time is the time in which the maximum acceleration or the maximum deceleration is reached along a ramp (jerk limitation).

▶ Profile entry

Setting range (min.	value unit max. value)		
0.000	S	10.000	
Subcodes	Lenze setting		Info
C01306/1	0.000 s		Profiles 1 15: S-ramp time
C01306/			
C01306/15			
☑ Read access ☑ Write	COM ☐ MOT Scaling factor: 1000		

C01307

Parameter | Name:

C01307 | Profile data: Sequence profile

Data type: UNSIGNED_8
Index: 23268_d = 5AE4_h

Selection of the sequence profile numbers for profiles 1 ... 15

· For profile linkage

▶ Profile entry

Setting range (min. value unit max. value)					
0		15			
Subcodes	Lenze setting		Info		
C01307/1	0		Profiles 1 15	: Sequence profile	
C01307/					
C01307/15					
M Read access M Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1					

Parameter reference Parameter list | C01308

C01308

Parameter | Name:

C01308 | Profile data: TP profile

Data type: UNSIGNED_8
Index: 23267_d = 5AE3_h

Selection of the touch-probe profile numbers for profile 1 ... 15

• Only relevant for positioning modes with touch-probe.

▶ <u>Profile entry</u>

Setting range (min. value unit max. value)				
0		15		
Subcodes	bcodes Lenze setting		Info	
C01308/1	0		Profile 1 15: TP profile	
C01308/				
C01308/15				
☑ Read access ☑ Write	e access 🗆 CINH 🗆 PLC	STOP No transfer	ом □ мот	Scaling factor: 1

C01309

Parameter | Name:

C01309 | Profile data: TP signal source

Data type: UNSIGNED_8
Index: 23266_d = 5AE2_h

Selection of the touch-probe signal sources for profile 1 ... 15

· Only relevant for positioning modes with touch-probe.

▶ Profile entry

Selection list		
3	TP-DigIn3	
4	TP-DigIn4	
5	TP-DigIn5	
6	TP-DigIn6	
7	TP-DigIn7	
Subcodes	Lenze setting	Info
C01309/1	3: TP-DigIn3	Profiles 1 15: Sequence profile
C01309/		
C01309/15		
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C01501

Parameter | Name:

C01501 | Resp. to communication error with MCI

Data type: UNSIGNED_8
Index: 23074_d = 5A22_h

Configuration of monitoring functions for the communication module

Selection list		
0	No Reaction	
1	Fault	
2	Trouble	
3	TroubleQuickStop	
4	WarningLocked	
5	Warning	
6	Information	

Subcodes	Lenze setting	Info
C01501/1	0: No Reaction	Resp. to MCI connection error Response to a communication error of the attached communication module.
C01501/2	0: No Reaction	Resp. to MCI invalid module Response to an unplugged or incompatible communication module

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

Parameter | Name: C01670 | L_ComparePhi 1-5: Function Data type: UNSIGNED_8 Index: 22905_d = 5979_h

Selection of comparison operation

• If the statement of the selected comparison operation is true, the binary bOut output will be set to TRUE.

Selection list	
1	In1 = In2
2	ln1 > ln2
3	ln1 < ln2
4	In1 = In2
5	In1 > In2
6	In1 < In2

Subcodes	Lenze setting	Info
C01670/1	1: ln1 = ln2	L_ComparePhi_1: Function
C01670/2	1: ln1 = ln2	L_ComparePhi_2: Function
C01670/3	1: ln1 = ln2	L_ComparePhi_3: Function
C01670/4	1: ln1 = ln2	L_ComparePhi_4: Function
C01670/5	1: ln1 = ln2	L_ComparePhi_5: Function
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 1

C01671

Parameter | Name:

C01671 | L_ComparePhi 1-5: Hysteresis

Data type: INTEGER_32
Index: 22904_d = 5978_h

Hysteresis for the comparison function

Setting range (min. value unit max. value)				
0	Incr.	1073741824		
Subcodes	Lenze setting		Info	
C01671/1	0 incr.		L C	

Jubcodes	Lenze setting	IIIIO			
C01671/1	0 incr.	L_ComparePhi_1: Hysteresis			
C01671/2	0 incr.	L_ComparePhi_2: Hysteresis			
C01671/3	0 incr.	L_ComparePhi_3: Hysteresis			
C01671/4	0 incr.	L_ComparePhi_4: Hysteresis			
C01671/5	0 incr.	L_ComparePhi_5: Hysteresis			
Charles Children Collin Child Child Children Collin Children Collin Coll					

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

C01672

Parameter | Name:

C01672 | L_ComparePhi 1-5: Window

Data type: INTEGER_32
Index: 22903_d = 5977_h

Window for the comparison operation

Setting range (min. value unit max. value)					
0	Incr. 1073741824				
Subcodes	Lenze setting		Info		
C01672/1	0 incr.		L_ComparePhi_1: Window		
C01672/2	0 incr.		L_ComparePhi_2: Window		
C01672/3	0 incr.		L_ComparePhi_3: Window		
C01672/4	0 incr.		L_ComparePhi_4: Window		
C01672/5	0 incr.		L_ComparePhi_5: Window		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1					

8400 TopLine C | Software Manual Parameter reference

Parameter list | C01751

C01751	Parameter Name: C01751 Service co	Data type: UNSIGNED_8 Index: 22824 _d = 5928 _h			
	-			written to by the user!	
			,	,	
C01752	Parameter Name: C01752 Service p	Data type: UNSIGNED_8 Index: 22823 _d = 5927 _h			
	This code is for dev	vice-internal use on	ly and must not be	written to by the user!	
C01755	Parameter Name: C01755 Service p	ar. inverter charact.	factor		Data type: INTEGER_16 Index: 22820 _d = 5924 _h
	This code is for dev	vice-internal use on	ly and must not be	written to by the user!	
C01763	Parameter Name: C01763 Service co	ode -clamp threshol	d		Data type: INTEGER_16 Index: 22812 _d = 591C _h
	This code is for dev	vice-internal use on	ly and must not be	written to by the user!	
C01764	Parameter Name: C01764 Service p	ar. clamp time			Data type: UNSIGNED_8 Index: 22811 _d = 591B _h
	This code is for dev	vice-internal use on	ly and must not be	written to by the user!	
C01765	Parameter Name: C01765 Service co	ode - difference thre	eshold UG		Data type: UNSIGNED_16 Index: 22810 _d = 591A _h
	This code is for dev	vice-internal use on	ly and must not be	written to by the user!	
C01770	Parameter Name: C01770 Filter tim	e - earth-fault dete	ct. is running		Data type: UNSIGNED_8 Index: 22805 _d = 5915 _h
	Setting range (min.	value unit max. value)		Lenze setting	
	0	ms	250	2 ms	
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer □	COM MOT Scaling factor: 1	
C01902	Parameter Name: C01902 Diagnost	ics X6: Max. baud ra	ate		Data type: UNSIGNED_16 Index: 22673 _d = 5891 _h
	Maximally permiss interface X6	sible baud rate in th	e standard device a	fter determination of the b	aud rate at the diagnostic
	Selection list (Lenze	setting printed in bold)			
	192	19.200 Bd			
	384	38.400 Bd			
	576	57.600 Bd			
		75.000 Bd			
		115.200 Bd			
	1500	150.000 Bd			
		250.000 Bd			
	3750	375.000 Bd			
	7500	750.000 Bd			
	☑ Read access ☑ Write	access 🗆 CINH 🗆 PLC	STOP □ No transfer ☑	I COM ☐ MOT Scaling factor: 1	

Data type: UNSIGNED_8 Index: 22672_d = 5890_h Parameter | Name: C01903 | Diagnostics X6: Change baud rate New baud rate determination at the diagnostic interface X6 Selection list (Lenze setting printed in bold) 0 Ignore changes 1 Negotiate baud rate ☑ Read access ☑ Write access □ CINH □ PLC STOP ☑ No transfer ☑ COM □ MOT Scaling factor: 1 C01905 Data type: UNSIGNED_32 Index: 22670_d = 588E_h Parameter | Name: C01905 | Diagnostics X6: Current baud rate Current baud rate at the diagnostic interface X6 Display range (min. value | unit | max. value) 0 Bd 3000000 ☑ Read access ☐ Write access ☐ CINH ☐ PLC STOP ☑ No transfer ☑ COM ☐ MOT Scaling factor: 1

C02430

Parameter | Name: C02430 | Axis bus address and no. of nodes Data type: UNSIGNED_8 Index: 22145_d = 5681_h

From version 02.00.00

▶ Axis bus

Setting range (min.	. value unit max. value)				
0	62				
Subcodes	Lenze setting	Info			
C02430/1	1	Axis bus address • 1 ≡ Master • 2 62 ≡ slave 1 slave 61			
C02430/2	2	Axis bus no. of nodesNumber of slaves connected to the axis bus.Setting only required for the master.			
☑ Read access ☑ Write access ☐ CINH ☐ PIC STOP ☐ No transfer ☑ COM ☐ MOT Scaling factor: 1					

C02431

Parameter | Name: C02431 | Axis bus time settings Data type: UNSIGNED_16 Index: 22144_d = 5680_h

From version 02.00.00

Axis bus

Setting range (min.	value unit max. value)				
0	ms	65000			
Subcodes	Lenze setting		Info		
C02431/1	3000 ms		Axis bus decel. boot-up operat. Delay during status change from "Boot-up" to "Operational".		
C02431/2	1000 ms		Axis bus decel. operat 1.transmit - "Operational" time until "first transmission".		
C02431/3	1000 ms		Axis bus decel. BusOff recovery		
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer ☑ COM □ MOT Scaling factor: 1					

Parameter reference Parameter list | C02435

C02435

C02436

C02437

Parameter Name: C02435 Axis bus	status						Data type: UNSIGNED_8 Index: 22140 _d = 567C _h
From version 02.00	0.00						► Axis bus
Selection list (read of	only)						
	PDO active						
1	SDO active						
2	Reserved						
3	Reserved						
4	BootUp						
5	Stopped						
6	Reserved						
7	Reset						
☑ Read access ☐ Write	e access	□ PLC STOP	☑ No transfer	☑ COM	□мот	Scaling factor: 1	
Parameter Name: C02436 Axis bus	error status						Data type: UNSIGNED_8 Index: 22139 _d = 567B _h
From version 02.00	0.00						▶ <u>Axis bus</u>
Selection list (read of	only)						
0	No Error						
1	Warning ErrA	Active					
2	Warning ErrP	assive					
3	Bus off						
4	Reserved						
5	Reserved						
☑ Read access ☐ Write	e access	□ PLC STOP	☑ No transfer	□сом	□ мот	Scaling factor: 1	
Parameter Name: C02437 Axis bus	MessageError						Data type: UNSIGNED_8 Index: 22138 _d = 567A _h
From version 02.00	0.00						• Axis bus
Selection list (read o	only)						
0	No Error						
1	StuffError						
2	FormError						
3	AckError						
4	Bit1Error						
5	Bit0Error						
6	CRCError						
7	Reserved						
☑ Read access ☐ Write	e access	□ PLC STOP	☑ No transfer	☑ COM	□мот	Scaling factor: 1	

Parameter reference Parameter list | C02440

C02440

Parameter Name: C02440 AxisBusI	O slave/master	Data type: UNSIGNED_8 Index: 22135 _d = 5677 _h
From version 02.0	0.00	► <u>Axis bus</u>
Selection list		
0	Off	
1	Master	
2	Slave	
3	Ю	
Subcodes	Lenze setting	Info
C02440/1	0: Off	Axis bus IO function
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer ☑	I COM ☐ MOT Scaling factor: 1

C02580

Parameter | Name:

C02580 | Holding brake: Operating mode

Data type: UNSIGNED_8
Index: 21995_d = 55EB_h

Selection of the operating mode for holding brake control

▶ Holding brake control

Selection list (Lenze setting printed in bold)		Info	
0	Brake control off	No holding brake is used. Internal control is switched off.	
11	Manually controlled	The holding brake is released and closed via a control bit in the MCK control word.	
12	Autom. controlled	The holding brake is automatically released and closed via speed setpoint comparisons.	
13	Semi-automat. controlled	The holding brake is released and closed via a control bit in the MCK control word. In contrast to the manual operation (mode 11) the feedforward control is active in this mode, preventing a sagging e.g. in case of a hoist. the brake in this mode also closes when the controller is inhibited in order to prevent the axis in a hoist from falling.	
☑ Read access ☑ Write	☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1		

Parameter reference Parameter list | C02581

C02581

Parameter Name: C02581 Holding brake: Speed thresholds	Data type: INTEGER_16 Index: 21994 _d = 55EA _h
--	--

Speed setpoint threshold and hysteresis for automatic holding brake control

▶ Holding brake control

Setting range (min. value unit max. value)			
-199.99	% 199.99		
Subcodes	Lenze setting		Info
C02581/1	5.00 %		 Holding brake: Switching threshold Switching threshold of the speed setpoint from which on the holding brake is released/applied automatically.
C02581/2	1.00 %		 Holding brake: Hyst.release Hysteresis for holding brake release. Release threshold = switching threshold + release hysteresis
C02581/3	1.00 %		 Holding brake: Hyst. close Hysteresis for holding brake application. Application threshold = switching threshold - application hysteresis
C02581/4	0.00 %		Holding brake: FF control starting value 1
C02581/5	0.00 %		Holding brake: FF control starting value 2
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100			COM MOT Scaling factor: 100

C02582

Parameter | Name:

C02582 | Holding brake: Setting

Data type: UNSIGNED_8
Index: 21993_d = 55E9_h

Activation of functional holding brake control options

▶ Holding brake control

Setting range (min. hex value max. hex value)			Lenze setting	
0x00	0xFF		xFF	0x40 (decimal: 64)
Value is bit-coded	: (☑ = bit set)			Info
Bit 0 □	bBrkReleaseOut invert.			Activation of inverted control • "1" ≡ Inverted logic of the control signal for the holding brake control switching element.
Bit 1 □	□ Horizontal brake protection			 Brake response in case of pulse inhibit "1" ≡ In the case of a pulse inhibit, the actual speed value is monitored which must reach the "Close" threshold value to cause the holding brake to be applied. Note: This function is only active if bit 3 (horizontal/winding technology) is set as well. The function is used in order that, when the controller is inhibited, the holding brake of a drive with horizontal traverse path does not wear out during rotation. With vertical motion (bit 3 = 0), this function is not active. Especially with hoists and activated pulse inhibit of the controller, an immediate application of the brake is essential for safety-related reasons!
Bit 2 □	with hoist inv. feedfwd. control			Direction of feedforward control with vertical/hoist technology: • "0" ≡ Positive direction • "1" ≡ Negative direction Note: Reversal (Ccw) is then considered.

Parameter Name: C02582 Holding I	brake: Setting	Data type: UNSIGNED_8 Index: 21993 _d = 55E9 _h
Bit 3 □	Horizontal application	 Direction of movement of the axis "0" ≡ The axis performs vertical movements. Gravitational acceleration causes movements. "1" ≡ The direction of the axis is horizontal or rotary. The gravitational acceleration does not cause any movement.
Bit 4 □	Feedforward control C2581	Selection of the feedforward control value • "0" ≡ Automatic selection. - The torque saved at the last stop is used. • "1" ≡ Manual selection. - bBrkStartValue = FALSE: The feedforward control value 1 set in C02581/4 is used. - bBrkStartValue = TRUE: The feedforward control value 2 set in C02581/5 is used.
Bit 5 □	Feedback monitoring	Activation of status monitoring • "1" ≡ The bBrkApplied input for status detection of the brake (via a switching contact at the brake) is monitored after the waiting time set in C02589/3 has expired. Activation of status monitoring • "1" ≡ The bBrkApplied input for status detection of the brake (via a switching contact at the brake) is monitored after the waiting time set in C02589/3 has expired.
Bit 6 ☑	SyncRampe L_NSet_1	From version 02.00.00 Selection of the ramp time for the synchronisation process to setpoint speed after the brake opening time has elapsed Revised behaviour from version 02.00.00: • "1" ≡ The ramp time of the effective acceleration of the ramp function generator (L_NSet_1) is used (Lenze setting). • "0" ≡ As before, the ramp time set in C02610/1 is used. Note: The changeover can be dynamically both via the ramp parameter and via bit 6.
Bit 7 □	Reserved	
☑ Read access ☑ Write	□ e access □ CINH □ PLC STOP □ No transfer □	□ COM □ MOT

Parameter reference Parameter list | C02589

C02589

Parameter | Name:

C02589 | Holding brake: Time system

Data type: UNSIGNED_16
Index: 21986_d = 55E2_h

Operating times of the holding brake

Setting range (min. value | unit | max. value)

• The electromechanical delay times of the holding brake are specified in the data sheets or on the holding brake nameplate.

► Holding brake control

Setting range (min. value unit max. value)			
0	ms 60000		
Subcodes	Lenze setting		Info
C02589/1	100 ms		Holding brake: Application time Time in which the holding brake is completely applied from the beginning of control and in which the controller is inhibited.
C02589/2	100 ms		 Holding brake: Release time Time in which the holding brake is completely released from the beginning of control.
C02589/3	100 ms		Holding brake: Waiting time status Time after which all transient reactions are completed and the switching status of the holding brake is stable. Beginning of monitoring the feedback signal for the switching status of the holding brake.
C02589/4	0 ms		Holding brake: Ramp time FF ctrl
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1			

C02593

Parameter | Name:

C02593 | Holding brake: Activation time

Data type: UNSIGNED_32
Index: 21982_d = 55DE_h

Time parameter for the delay of trigger signals of the holding brake control

▶ Holding brake control

0.000	S	3600.000	
Subcodes	Lenze setting		Info
C02593/1	0.000 s		 Holding brake: Actual value monitoring Time in which the actual value is supposed to reach the threshold for closing the brake if the setpoint has already reached the threshold. Time > 0 s: If the actual speed value has not reached the threshold within the time for brake application, the holding brake is applied by control. Time = 0 s: The brake is only applied by control when the actual speed has reached the application threshold.
C02593/2	0.000 s		 Holding brake: Application delay Time by which the control process for holding brake application is delayed. The time expires when the speed setpoint has reached the switching threshold for application. With positioning processes, a continuous application and release of the holding brake can thus be suppressed for the set time.
C02593/3	0.000 s		Holding brake: Reserved
C02593/4	0.000 s		Holding brake: Reserved
☑ Read access ☑ Write	e access	STOP No transfer	□ COM □ MOT Scaling factor: 1000

Parameter Name: C02607 Holding brake: Status		Data type: UNSIGNED_16 Index: 21968 _d = 55D0 _h
Switching status of the holding brake	e control	► Holding brake control
Display area (min. hex value max. hex value	e)	
0x0000	0xFFFF	
Value is hit and ad		If.

Display area (min. n	ex value max. nex value)	
0x0000	0xFFFF	
Value is bit-coded	:	Info
Bit 0	Brake applied	Holding brake is completely applied
Bit 1	Brake released	Holding brake is completely released
Bit 2	Feedforward control active	Feedforward control for holding of the load via the motor is active before the holding brake releases.
Bit 3	Closing active	The brake closing time (<u>C02589/1</u>) expires
Bit 4	Forced release active	In case of automatic operation of the holding brake control, the brake is directly released via the MCK input bBrkRelease = TRUE
Bit 5	Release active	The brake release time (C02589/2) expires
Bit 6	Setpoint synchronisation active	A speed setpoint at the MCK is approached along a defined ramp after brake release
Bit 7	Signalling contact error	The status monitoring has tripped.
Bit 8	Reserved	
Bit 9	Reserved	
Bit 10	Reserved	
Bit 11	Reserved	
Bit 12	Reserved	
Bit 13	Reserved	
Bit 14	Reserved	
Bit 15	Reserved	
☑ Read access ☐ Write	e access □ CINH □ PLC STOP ☑ No transfer □	COM □ MOT

C02610

Parameter | Name:

C02610 | MCK: Accel./decel. times

Data type: UNSIGNED_32
Index: 21965_d = 55CD_h

Ramp times for speed setpoint synchronisation

Setting range (min. value unit max. value)			
0.000	s 999.999		
Subcodes	Lenze setting		Info
C02610/1	2.000 s		 Holding brake: ramp time synchr. Ramp time for the synchronisation process to setpoint speed after the brake opening time has elapsed Revised behaviour from version 02.00.00: The setting made here is only effective if bit 6 "SyncRampe L_NSet_1" in C02582 is set to "0". In the Lenze setting of C02582 (Bit 6 = "1"), the ramp time of the effective acceleration of the ramp function generator (L NSet 1) is used. ▶ Holding brake control
C02610/2	2.000 s		MCK: Ramp time synchr. setpoint Time for synchronisation ramps between setpoint jumps occurring through the exceedance of minimum and maximum speed setpoint limit ranges.
C02610/3	2.000 s		MCK: SM stopping ramp
☑ Read access ☑ Writ	e access	STOP No transfer	☐ COM ☐ MOT Scaling factor: 1000

Parameter reference Parameter list | C02611

C02611

Parameter | Name:

C02611 | MCK: Limitations

Data type: INTEGER_16
Index: 21964_d = 55CC_h

Speed setpoint limits for the determination of limited validity ranges

Note:

Traversing with setpoints through resulting blocking zones is executed with the ramp set in C02610/2.

▶ Min/Max speed

Setting range (min.	value unit max. value)		
0.00	%	199.99	
Subcodes	Lenze setting		Info
C02611/1	199.99 %		 MCK: Pos. max. speed Upper limit of the speed setpoint limitation in positive direction of rotation.
C02611/2	0.00 %		MCK: Pos. min. speed Lower limit of the speed setpoint limitation in positive direction of rotation.
C02611/3	0.00 %		MCK: Neg. min. speed Lower limit of the speed setpoint limitation in negative direction of rotation.
C02611/4	199.99 %		MCK: Neg. max. speed • Upper limit of the speed setpoint limitation in negative direction of rotation.
☑ Read access ☑ Write	e access	STOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 100

C02652

Parameter | Name:

C02652 | Memorise positions at power-off

Data type: UNSIGNED_16
Index: 21923_d = 55A3_h

From version 02.00.00

Setting range (min.	hex value max. hex value)	Lenze setting
0x0000	0xFFFF	0x0000 (decimal: 0)
Value is bit-coded	: (☑ = bit set)	
Bit 0 □	Actual MCTRL position	
Bit 1 □	Reserved	
Bit 2 □	Reserved	
Bit 3 □	Reserved	
Bit 4 □	Reserved	
Bit 5 □	Reserved	
Bit 6 □	Reserved	
Bit 7 □	Reserved	
Bit 8 □	Reserved	
Bit 9 □	Reserved	
Bit 10 □	Reserved	
Bit 11 □	Reserved	
Bit 12 □	Reserved	
Bit 13 □	Reserved	
Bit 14 □	Reserved	
Bit 15 □	Reserved	
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	I COM □ MOT

Parameter Name: C02810 TP: Edge selection		Data type: UNSIGNED_8 Index: 21765 _d = 5505 _h
		► <u>Touch-probe detection</u>
Selection list		
0	Off	
1	Rising	
2	Falling	
3	Rising and falling	
Subcodes	Lenze setting	Info
C02810/1	0: Off	Reserved
C02810/2	0: Off	Reserved
C02810/3	0: Off	TPDigIn3: Edge selection
C02810/4	0: Off	TPDigIn4: Edge selection
C02810/5	0: Off	TPDigIn5: Edge selection
C02810/6	0: Off	TPDigIn6: Edge selection
C02810/7	0: Off	TPDigIn7: Edge selection
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	☐ COM ☐ MOT Scaling factor: 1

C02811

Parameter Name:	Data type: UNSIGNED_16
C02811 TP: Sensor delay	Index: 21764 _d = 5504 _h

► <u>Touch-probe detection</u>

Setting range (min. value unit max. value)				
0	μs	6999		
Subcodes	Lenze setting		Info	
C02811/1	0 μs		Reserved	
C02811/2	0 μs		Reserved	
C02811/3	0 μs		TPDigIn3: Sensor delay	
C02811/4	0 μs		TPDigIn4: Sensor delay	
C02811/5	0 μs		TPDigIn5: Sensor delay	
C02811/6	0 μs		TPDigIn6: Sensor delay	
C02811/7	0 μs		TPDigIn7: Sensor delay	
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1				

Parameter | Name:

Parameter reference Parameter list | C02812

C02812

C02812 TP: Position offset			Index: 21763 _d = 5503 _h
			► <u>Touch-probe detection</u>
Setting range (min	. value unit max. value)		
-214748.3647	units	214748.3647	
Subcodes	Lenze setting		Info
C02812/1	0.0000 units		Reserved
C02812/2	0.0000 units		Reserved
C02812/3	0.0000 units		TPDigIn3: Pos offset
C02812/4	0.0000 units		TPDigIn4: Pos offset
C02812/5	0.0000 units		TPDigIn5: Pos offset
C02812/6	0.0000 units		TPDigIn6: Pos offset
C02812/7	0.0000 units		TPDigIn7: Pos offset

C02813

Parameter | Name:

C02813 | TP: Pos. window start

Data type: INTEGER_32
Index: 21762_d = 5502_h

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 10000

► Touch-probe detection

Data type: INTEGER 32

Setting range (min. value unit max. value)			
-214748.3647	units	214748.3647	
Subcodes	Lenze setting		Info
C02813/1	-214748.3647 units		TPDigIn3: Window start
C02813/2	-214748.3647 units		TPDigIn4: Window start
C02813/3	-214748.3647 units		TPDigIn5: Window start
☑ Read access ☑ Write	e access □ CINH □ PLC	STOP No transfer	COM MOT Scaling factor: 1000

C02814

Parameter Name:	Data type: INTEGER_32
C02814 TP: Pos. window end	Index: 21761 _d = 5501 _h

► Touch-probe detection

Setting range (min. value unit max. value)			
-214748.3647	units	214748.3647	
Subcodes	Lenze setting		Info
C02814/1	214748.3647 units		TPDigIn3: Window end
C02814/2	214748.3647 units		TPDigIn4: Window end
C02814/3	214748.3647 units	,	TPDigIn5: Window end
☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer I			COM MOT Scaling factor: 10000

Parameter Name: C02815 TP: Position source		Data type: UNSIGNED_8 Index: 21760 _d = 5500 _h
		► <u>Touch-probe detection</u>
Selection list		
0	Position encoder actual value	
1	Pos DigIn1/2	
2	Pos resolver	
3	Pos MultiEncoder	
Subcodes	Lenze setting	Info
C02815/1	0: Position encoder actual value	Reserved
C02815/2	0: Position encoder actual value	Reserved
C02815/3	0: Position encoder actual value	TPDigIn3: Position source
C02815/4	0: Position encoder actual value	TPDigIn4: Position source
C02815/5	0: Position encoder actual value	TPDigIn5: Position source
C02815/6	0: Position encoder actual value	TPDigIn6: Position source
C02815/7	0: Position encoder actual value	TPDigIn7: Position source

C02816

Parameter Name:	Data type: UNSIGNED_16
C02816 TP: Signal counter	Index: 21759 _d = 54FF _h

☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1

► Touch-probe detection

Display range (min. value unit max. value)		
0	65535	
Subcodes		Info
C02816/1		Reserved
C02816/2		Reserved
C02816/3		TPDigIn3: Signal counter
C02816/4		TPDigIn4: Signal counter
C02816/5		TPDigIn5: Signal counter
C02816/6		TPDigIn6: Signal counter
C02816/7		TPDigIn7: Signal counter
☑ Read access ☐ Write access ☐ CINH ☐ PLC	STOP ☑ No transfer ☐	COM MOT Scaling factor: 1

8400 TopLine C | Software Manual Parameter reference

Parameter list | C02817

C02817

Parameter Name: C02817 TP: TouchProbe position			Data type: INTEGER_32 Index: 21758 _d = 54FE _h
			► <u>Touch-probe detection</u>
Display range (min.	value unit max. value)		
-214748.3647	units	214748.3647	
Subcodes			Info
C02817/1			Reserved
C02817/2			Reserved
C02817/3			TPDigIn3: TP position
C02817/4			TPDigIn4: TP position
C02817/5			TPDigIn5: TP position
C02817/6			TPDigIn6: TP position
C02817/7			TPDigIn7: TP position
☑ Read access ☐ Write	e access □ CINH □ PLC	STOP 🗆 No transfer 🗆	COM MOT Scaling factor: 10000

Parameter | Name:

C02830 | Dix: Debounce time

Data type: UNSIGNED_8
Index: 21745_d = 54F1_h

Debounce times for the digital inputs

▶ <u>Digital input terminals</u>

Selection list		
0	0.00 ms	
1	0.25 ms	
2	0.50 ms	
3	0.75 ms	
4	1.00 ms	
5	1.25 ms	
6	1.50 ms	
7	1.75 ms	
8	2.00 ms	
10	2.50 ms	
12	3.00 ms	
14	3.50 ms	
16	4.00 ms	
18	4.50 ms	
20	5.00 ms	
22	5.50 ms	
24	6.00 ms	
28	7.00 ms	
32	8.00 ms	
36	9.00 ms	
40	10.0 ms	
44	11.0 ms	
48	12.0 ms	
52	13.0 ms	
56	14.0 ms	
64	16.0 ms	
72	18.0 ms	
80	20.0 ms	
88	22.0 ms	
96	24.0 ms	
104	26.0 ms	
112	28.0 ms	
120	30.0 ms	
128	32.0 ms	
Culturadas	Laura auttina	ı.

Subcodes	Lenze setting	Info
C02830/1	1: 0.25 ms	DI1 DI7: Debounce time
C02830/		
C02830/7		
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM ☐ MOT Scaling factor: 1

Lenze

Parameter reference Parameter list | C02840

C02840

Parameter | Name:

C02840 | Countinx: Parameter

Data type: UNSIGNED_32
Index: 21735_d = 54E7_h

Starting and comparison values for digital count inputs

▶ Use DI1(6) as counting input

Setting range (min. value unit max. value)		
0	Incr. 2147483647	
Subcodes	Lenze setting	Info
C02840/1	0 incr.	CountIn1: Starting value
C02840/2	65535 incr.	CountIn1: Comparison value
C02840/3	0 incr.	CountIn6: Starting value
C02840/4	65535 incr.	CountIn6: Comparison value
☑ Read access ☑ Write	e access □ CINH □ PLC STOP □ No transfer □	COM MOT Scaling factor: 1

C02841

Parameter | Name:

C02841 | Countinx: Counter content

Data type: UNSIGNED_32
Index: 21734_d = 54E6_h

Display of the current counter content of the digital count inputs

▶ Use DI1(6) as counting input

Display rang	ge (min. value ı	ınit max	. value)		
0		Incr.		214748364	7
Subcodes					
C02841/1					
C02841/2					
☑ Read access	☐ Write access	□ CINH	□ PLC STOP	☑ No transfer	

C02842

Parameter | Name:

C02842 | FreqInxx: Offset

Data type: INTEGER_16
Index: 21733_d = 54E5_h

Offset for digital frequency inputs

▶ Using DI1(6) and DI2(7) as frequency inputs

Setting range (min	. value unit max. value)			
-199.99	%	199.99		
Subcodes	Lenze setting		Info	
C02842/1	0.00 %		FreqIn12: Of	fset
C02842/2	0.00 %		FreqIn67: Of	fset
☑ Read access ☑ Wri	te access	ом □мот	Scaling factor: 100	

C02843

Parameter | Name:

C02843 | FreqInxx: Gain

Data type: INTEGER_16
Index: 21732_d = 54E4_h

Gain for digital frequency inputs

▶ Using DI1(6) and DI2(7) as frequency inputs

Setting range (min. value unit max. value)			
-199.99	%	199.99	
Subcodes	Lenze setting		Info
C02843/1	100.00 %		FreqIn12: Gain
C02843/2	100.00 % FreqIn67: Gain		
☑ Read access ☑ Write	e access	STOP □ No transfer □	COM ☐ MOT Scaling factor: 100

Parameter | Name:

C02844 | FreqIn12: Function

Data type: UNSIGNED_8 Index: 21731_d = 54E3_h

Output of the encoder position of the DI1/DI2 frequency input

Selection list

0 Loading with level
1 Loading with edge
2 Loading with level + reset

Subcodes Lenze setting Info

Subcodes	Lenze setting	Info
C02844/1	0: Loading with level	FreqIn12: PosIn function
☑ Pood access ☑ Wri	to accoss DCINH DDICSTOR DNo transfer	COM DMOT Scaling factor, 1

C02845

Parameter | Name:

C02845 | FreqIn12: PosIn comparison value

Data type: INTEGER_32
Index: 21730_d = 54\(\bar{E}2_h\)

▶ Output of the encoder position of the DI1/DI2 frequency input

Setting range (min. value unit max. value)			Lenze setting
0	Incr.	2147418112	0 incr.
☑ Read access ☑ Write	e access	P □ No transfer □	COM MOT Scaling factor: 1

C02853

Parameter | Name:

C02853 | PSM: Lss saturation characteristic

Data type: UNSIGNED_8
Index: 21722_d = 54DA_h

► Correction via saturation characteristic

Setting range (min.	. value unit max. value)		
0	%	255	
Subcodes	Lenze setting		Info
C02853/1	100 %		PSM: Lss saturation c
C02853/2	100 %		PSM: Lss saturation ch
C02853/3	100 %		PSM: Lss saturation ch
C02853/4	100 %		PSM: Lss saturation cha
C02853/5	100 %		PSM: Lss saturation cha
C02853/6	100 %		PSM: Lss saturation cha
C02853/7	100 %		PSM: Lss saturation char
C02853/8	100 %		PSM: Lss saturation char
C02853/9	100 %		PSM: Lss saturation char
C02853/10	100 %		PSM: Lss saturation chara
C02853/11	100 %		PSM: Lss saturation chara
C02853/12	100 %		PSM: Lss saturation chara
C02853/13	100 %		PSM: Lss saturation charac
C02853/14	100 %		PSM: Lss saturation charac
C02853/15	100 %		PSM: Lss saturation charac
C02853/16	100 %		PSM: Lss saturation charact
C02853/17	100 %		PSM: Lss saturation characte
☑ Read access ☑ Writ	e access □ CINH □ PLC	STOP □ No transfer □	I COM ☑ MOT Scaling factor: 1

8400 TopLine C | Software Manual Parameter reference

Parameter list | C02855

Setting range (min.	value unit max. value) A e access		Lenze setting	Data type: UNSIGNED_1 Index: 21720 _d = 54D8 Correction via saturation characteristi
0.0 ☑ Read access ☑ Write	Α		Lenze setting	
0.0 ☑ Read access ☑ Write	Α		Lenze setting	
☑ Read access ☑ Write		3000.0		g
	access 🗆 CINH 🗆 PLO		3000.0 A	
Parameter Name:		STOP INotransfer I	COM ☑ MOT	Scaling factor: 10
Parameter Name:				
C02859 PSM: Act	ivate Lss saturatior	ı char.		Data type: UNSIGNED_ Index: 21716 _d = 54D4
				Correction via saturation characteristic
Selection list (Lenze	setting printed in bold)			
0	Off			
1	On			
☑ Read access ☑ Write	access CINH PLO	STOP INotransfer I	СОМ □МОТ	Scaling factor: 1
Parameter Name: C02862 Resolver	gain			Data type: UNSIGNED_1 Index: 21713 _d = 54D1
				► Encoder/feedback system: Resolve
Setting range (min.	value unit max. value)			
0.00	%	199.99		
Subcodes	Lenze setting		Info	
C02862/1	100.00 %		Resolver: Co	s gain
C02862/2	100.00 %		Resolver: Sin	n gain
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLO	STOP INotransfer I	сом 🗆 мот	Scaling factor: 100
Parameter Name: C02863 Resolver:	Phase error			Data type: INTEGER_1 Index: 21712 _d = 54D0
				► Encoder/feedback system: Resolve
Setting range (min.	value unit max. value)		Lenze setting	g
-199.99	%	199.99	0.00 %	
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLO	STOP No transfer	СОМ □МОТ	Scaling factor: 100
Parameter Name: C02866 MCTRL: S	pecial settings			Data type: UNSIGNED_ Index: 21709 _d = 54CD
•		internal motor cont	rol	
Selection list				
0	No			
1	Yes			
Subcodes	Lenze setting		Info	
C02866/1	1: Yes			.: Current controller par. C075 C076 c motor data identification
C02866/2	0: No		From version	
	Parameter Name: C02862 Resolver Setting range (min. 0.00 Subcodes C02862/1 C02862/2 ☑ Read access ☑ Write C02863 Resolver: Setting range (min199.99 ☑ Read access ☑ Write C02866 MCTRL: S Activation of speci Selection list 0 1 Subcodes C02866/1 C02866/2	Parameter Name: C02862 Resolver gain Setting range (min. value unit max. value) 0.00 % Subcodes Lenze setting C02862/1 100.00 % C02862/2 100.00 % Parameter Name: C02863 Resolver: Phase error Setting range (min. value unit max. value) -199.99 % Read access	Off 1 On Read access	O Off 1 On Read access Write access CINH PLC STOP No transfer COM MOT Parameter Name: CO2862 Resolver gain Setting range (min. value unit max. value) 0.00 % 199.99 Subcodes Lenze setting Info C02862/1 100.00 % Resolver: Sir Read access Write access CINH PLC STOP No transfer COM MOT Parameter Name: CO2863 Resolver: Phase error Setting range (min. value unit max. value) Lenze settin -199.99 % 199.99 0.00 % Read access Write access CINH PLC STOP No transfer COM MOT Parameter Name: CO2866 MCTRL: Special settings Activation of special functions of the internal motor control Selection list

Parameter Name:	Data type: UNSIGNED_8
C02867 - Identification procedure	Index: 21708 _d = 54CC _h

Selection of the identification procedure for motor parameter identification

▶ <u>Automatic motor parameter identification</u>

Selection list		Info	
0	automatic	 Automatic selection of the optimum identification procedure: For synchronous motors, the extended identification procedure is always used. For asynchronous motors with a rated motor power of up to 11 kW, the basic identification procedure is used. For asynchronous motors with a rated motor power of more than 11 kW, the extended identification procedure is used. 	
1	standard identification	Only for asynchronous motors.Duration approx. 30 s	
2	extended identification	 Stands out due to increased accuracy of the determined motor parameters. Also supports synchronous motors and asynchronous motors with a power of more than 11 kW. Duration approx. 80 s 	
Subcodes	Lenze setting	Info	
C02867/1	0: automatic	Motor parameter identification: Process	
☑ Read access ☑ Write access ☑ CINH ☐ PLC STOP ☐ No transfer ☐ COM ☑ MOT Scaling factor: 1			

C02870

Parameter | Name:

C02870 | PLI without motion: Optimisation factor

Data type: INTEGER_16
Index: 21705_d = 54C9_h

From version 02.00.00

▶ Pole position identification without motion

Display range (min. value unit max. value)			
0.00	%	300.00	
Subcodes			Info
C02870/1			PLI without motion: Optimisation factor
☑ Read access ☐ Writ	e access 🗆 CINH 🗆 PLO	STOP No transfer	□ COM □ MOT Scaling factor: 100

C02871

Parameter | Name:

C02871 | PLI without motion: Running time

Data type: INTEGER_16
Index: 21704_d = 54C8_h

From version 02.00.00

▶ Pole position identification without motion

Display range (min. value unit max. value)				
0.00	ms	300.00		
Subcodes			Info	
C02871/1			PLI without n	notion: Running time
☑ Read access ☐ Wr	ite access □ CINH □	PLC STOP	□ сом □ мот	Scaling factor: 100

8400 TopLine C | Software Manual Parameter reference

Parameter list | C02872

C02872	
--------	--

	ŕ		STOP □ No transfer □		
	C02874/1	1		PLI without r	motion
	Subcodes	Lenze setting		Info	
	Bit 15 □				
	Bit 14 □				
	Bit 13 □				
	Bit 12				
	Bit 11 🗆				
	Bit 10 □				
		Reserved			
		Reserved			
		Reserved			
		Reserved Reserved			
		Reserved			
		Reserved	muoner enable		
		for SC PSM with m			
		for SC PSM with m			
		for SLPSM with cor	atroller enable		
	Value is bit-coded:	(√ = hit cat)	UXFFFF		
	0x0000	nes value į max. nex valu	0xFFFF		
	Setting range /win	hex value max. hex valu	e)	•	Pole position identification without motion
	From version 02.00	0.00			Pole position identification without mation
	C02874 PLI witho	ut motion			Data type: UNSIGNED_16 Index: 21701 _d = 54C5 _h
C02874	Parameter Name:				Data type: HINSIGNED 16
	caa access _ wille	. access in citeri in the	J.J. BROHAIISIEI L	COM LIMOI	500
		eaccess □ CINH □ PI C	STOP □ No transfer □		Scaling factor: 1
	C02873/1				motion: Ident. el. rotor displ. angle
	Subcodes		360	Info	
	O lispiay range (min.	value unit max. value) °	360		
	Dienlau range / :)	Pole position identification without motion
	From version 02.00	0.00			
	•	ut motion: Ident. e	l. rotor displ. angle		Data type: INTEGER_16 Index: 21702 _d = 54C6 _h
C02873	Parameter Name:				Data type: INITECEP 16
	_ neud decess _ nine		J.C. Z. W. C. C. C.	2	Stating lector. 2
		-	STOP □ No transfer □		·
	C02872/1	Lenze setting			motion: Adaptation of time duration
	-10 Subcodes	Laura sattina	10	Info	
	Setting range (min.	value unit max. value)	10		
)	Pole position identification without motion
	From version 02.00	0.00			
		ut motion: Adaptat	ion of time duratio	n	Index: 21703 _d = 54C7 _h
	Parameter Name:				Data type: INTEGER 8

Parameter reference Parameter list | C02875

C02875

Data type: INTEGER_8 Index: 21700_d = 54C4_h Parameter | Name: C02875 | PLI without motion: Adaptation of ident angle From version 02.00.00 ▶ Pole position identification without motion Setting range (min. value | unit | max. value) -100 100 Subcodes Lenze setting C02875/1 PLI without motion: Adaptation of ident angle ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1 C02876 Data type: UNSIGNED 8 Parameter | Name: Index: $21699_d = 54C3_h$ C02876 | PSM: Max. motor temperature From version 02.00.00 Setting range (min. value | unit | max. value) 200 Subcodes Lenze setting Info C02876/1 150°C PSM: Max. motor temperature ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 1 C02877 Data type: INTEGER_16 Index: 21698_d = 54C2_h Parameter | Name: C02877 | PSM temperature coefficient From version 02.00.00 Setting range (min. value | unit | max. value) 0.00 -0.30 %/°C **Subcodes** Lenze setting Info C02877/1 -0.11 %/°C PSM temperature coefficient ☑ Read access ☑ Write access □ CINH □ PLC STOP □ No transfer □ COM □ MOT Scaling factor: 100

Parameter reference Parameter list | C02878

C02878

Parameter | Name:

C02878 | KTY motor temperature compensation

Data type: UNSIGNED_16
Index: 21697_d = 54C1_h

From version 02.00.00

A temperature compensation over the detected motor temperature (display in $\underline{\text{C00063/1}}$) serves to compensate inaccuracies in the output torque within the motor control in case of temperature changes of the asynchronous or synchronous motor.

Note!

In the Lenze setting, the temperature compensation within the motor control is activated. The temperature compensation, however, is only active with speed encoder selection "3: Multi encoder" or "4: Resolver" in $\underline{\text{C00495}}$ as well as error-free KTY temperature detection (display in $\underline{\text{C00063/1}} \neq 255\,^{\circ}\text{C}$).

▶ <u>Temperature compensation within the motor control</u>

			remperature compen
Setting range (min.	hex value max. hex val	ue)	
0x0000		0xFFFF	
Value is bit-coded:	(☑ = bit set)		
Bit 0 □	for SC PSM		
Bit 1 □	for SC ASM		
Bit 2 □	Reserved		
Bit 3 □	Reserved		
Bit 4 □	Reserved		
Bit 5 □	Reserved		
Bit 6 □	Reserved		
Bit 7 □	Reserved		
Bit 8 □	Reserved		
Bit 9 □	Reserved		
Bit 10 □	Reserved		
Bit 11 □	Reserved		
Bit 12 □	Reserved		
Bit 13 □	Reserved		
Bit 14 □	Reserved		
Bit 15 □	Reserved		
Subcodes	Lenze setting		Info
C02878/1	3		KTY motor temperature compensation
☑ Read access ☑ Write	access 🗆 CINH 🗆 PLO	STOP 🗆 No transfer 🗆	COM □ MOT

Parameter reference Parameter list | C02879

C02879

C02994

C02995

C02996

Parameter Name: C02879 Slip calcu	lation from equivalent circuit diagram	Data type: UNSIGNED_16 Index: 21696 _d = 54C0 _h
From version 02.00 In order to achieve motor nameplate or resistance etc.).	a better speed stability and torque acc	curacy, the slip calculation can be either derived from the cor equivalent circuit diagram data (stator resistance, rotor
Setting range (min.	hex value max. hex value)	
0x0000	0xFFFF	
Value is bit-coded:	(☑ = bit set)	Info
Bit 0 □	SLVC	► Slip calculation for SLVC
Bit 1 □	SC ASM	► Slip calculation for SC
Bit 2 □	Reserved	
Bit 3 □	Reserved	
Bit 4 □	Reserved	
Bit 5 □	Reserved	
Bit 6 □	Reserved	
Bit 7 □	Reserved	
Bit 8 □	Reserved	
Bit 9 □	Reserved	
Bit 10 □	Reserved	
Bit 11 □	Reserved	
Bit 12 □	Reserved	
Bit 13 □	Reserved	
Bit 14 □	Reserved	
Bit 15 □	Reserved	
Subcodes	Lenze setting	Info
C02879/1	2	Slip calculation from equivalent circuit diagram
☑ Read access ☑ Write	access □ CINH □ PLC STOP □ No transfer □	ом □мот
Parameter Name: C02994 FB xy pos	ition	Data type: UNSIGNED_32 Index: 21581 _d = 544D _h
This code is for dev	rice-internal use only and must not be	written to by the user!
Parameter Name: C02995 FB displa	√ InnutΩutnut	Data type: UNSIGNED_32 Index: 21580 _d = 544C _h
	rice-internal use only and must not be	
	and make not be	
Parameter Name: C02996 FB displa	/ InputOutput2	Data type: UNSIGNED_32 Index: 21579 _d = 544B _h
	rice-internal use only and must not be	
Code is for det	and market be	

16.2.1 Selection lists for connection parameters

16.2.1.1 Selection list - analog signals

This selection list is relevant for the following parameters:

Parameter		
<u>C00410</u>	L_SignalMonitor_a: Signal sources	
<u>C00620</u>	System connection list: 16-bit	
<u>C00700</u>	LA_NCtrl: Analog connection list	
<u>C00710</u>	LA_TabPos: Analog connection list	
<u>C00760</u>	LA_SwitchPos: Analog connection list	

Selection li	ist - analog signals
0	Not connected
1000	LA_nCtrl_wDriveControlStatus
1001	LA_nCtrl_wFailNumber
1002	LA_nCtrl_nMotorCurrent_a
1003	LA_nCtrl_nMotorSpeedAct_a
1006	LA_nCtrl_nGPAnalogSwitchOut_a
1007	LA_nCtrl_nGPArithmetikOut_a
1008	LA_nCtrl_nGPMulDivOut_a
1009	LA_nCtrl_nGPSignalOut1_a
1010	LA_nCtrl_nGPSignalOut2_a
1011	LA_nCtrl_nGPSignalOut3_a
1012	LA_nCtrl_nGPSignalOut4_a
1013	LA_nCtrl_nMotorTorqueAct_a
1014	LA_nCtrl_nDCVoltage_a
1015	LA_nCtrl_nMotorVoltage_a
1016	LA_nCtrl_nMotorSpeedSet_a
1017	LA_nCtrl_wFailTypeDomain
1023	LA_nCtrl_wFreeOut1
1024	LA_nCtrl_wFreeOut2
1025	LA_nCtrl_wFreeOut3
1026	LA_nCtrl_wFreeOut4
1100	LA_TabPos_wDriveControlStatus
1101	LA_TabPos_wFailNoLow
1102	LA_TabPos_wFailNoHigh
1103	LA_TabPos_nMotorCurrent_a
1104	LA_TabPos_nMotorSpeedSet_a
1105	LA_TabPos_nMotorSpeedAct_a
1106	LA_TabPos_nMotorTorqueAct_a
1107	LA_TabPos_nDCVoltage_a
1108	LA_TabPos_nMotorVoltage_a
1109	LA_TabPos_wMckState1
1110	LA_TabPos_wMckState2
1111	LA_TabPos_wMckActOperationMode
1112	LA_TabPos_wActProfileNo
1113	LA_TabPos_wActPosMode
1114	LA_TabPos_nGPAnalogSwitchOut_a
1115	LA_TabPos_nGPArithmetikOut_a
1116	LA_TabPos_nGPMulDivOut_a

Selection li	ist - analog signals
1117	LA TabPos nGPSignalOut1 a
1118	LA TabPos nGPSignalOut2 a
1119	LA TabPos nGPSignalOut3 a
1120	LA TabPos nGPSignalOut4 a
1121	LA TabPos wGPCounter1Out
1122	LA TabPos wFreeOut1
1123	LA TabPos wFreeOut2
1124	LA TabPos wFreeOut3
1125	LA_TabPos_wFreeOut4
1126	LA TabPos nPosCtrlOutLimit a
1127	LA TabPos nPosCtrlPAdapt a
1128	LA TabPos wPosOutUnitsLW
1129	LA TabPos wPosOutUnitsHW
1200	LA SwitchPos wDriveControlStatus
1201	LA SwitchPos wFailNoLow
1201	LA SwitchPos wFailNoHigh
1202	LA SwitchPos nMotorCurrent a
1203	LA SwitchPos nMotorSpeedSet a
1204	LA SwitchPos nMotorSpeedAct a
1206	LA SwitchPos nMotorTorqueAct a
1207	LA SwitchPos nDCVoltage a
1207	LA SwitchPos nMotorVoltage a
1209	LA SwitchPos nGPAnalogSwitchOut a
1210	
1210	LA_SwitchPos_nGPArithmetikOut_a
1211	LA_SwitchPos_nGPMulDivOut_a
1212	LA_SwitchPos_nGPSignalOut1_a
1213	LA_SwitchPos_nGPSignalOut2_a LA_SwitchPos_nGPSignalOut3_a
1214	LA SwitchPos nGPSignalOut4 a
1213	LA SwitchPos wFreeOut1
1222	LA SwitchPos wFreeOut2
1223	LA SwitchPos wFreeOut3
1223	LA SwitchPos wFreeOut4
16000	AIN1 Out
	_
	AIN2_Out
	CAN1_wCtrl CAN1_wln2
	_
	CAN1_win3
16005	CAN1_wln4 CAN2 wln1
	-
	CAN2_win2
16008 16009	CAN2_wln3 CAN2_wln4
	_
16010	CAN3_win1
16011	CAN3_win2
	-
16013	CAN3_win4
16014	DIGIN_wCountIn1_LW

Selection li	st - analog signals
16015	DIGIN_wCountIn1_HW
16016	DIGIN_nFreqIn12_a
16017	DIGIN_nFreqIn12_v
16018	DIGIN_wCountIn6_LW
16019	DIGIN_wCountIn6_HW
16020	DIGIN_nFreqIn67_a
16021	DIGIN_nFreqIn67_v
16100	LS_DataAccess_Out1
16101	LS_DataAccess_Out2
16102	LS_DataAccess_Out3
16103	LS_DataAccess_Out4
16104	LP_Mciln_wCtrl
16105	LP_Mciln_wln2
16106	LP_Mciln_wln3
16107	LP_Mciln_wln4
16108	LP_Mciln_wln5
16109	LP_Mciln_wln6
16110	LP_Mciln_wln7
16111	LP_Mciln_wln8
16112	LP_Mciln_wln9
16113	LP_Mciln_wln10
16114	LP_Mciln_wln11
16115	LP_Mciln_wln12
16116	LP_Mciln_wln13
16117	LP_Mciln_wln14
16118	LP_Mciln_wln15
16119	LP_Mciln_wln16
16120	LS_Keypad_nTorqueMotLim_a
16121	LS_Keypad_nTorqueGenLim_a
16122	LS_Keypad_nMainSetValue_a
16123	LS_CANManagement_wNodeID
16130	LS_ParReadWrite_1_wOutHWord
16131	LS_ParReadWrite_1_wOutLWord
16132	LS_ParReadWrite_2_wOutHWord
16133	LS_ParReadWrite_2_wOutLWord
16134	LS_ParReadWrite_3_wOutHWord
16135	LS_ParReadWrite_3_wOutLWord
16136	LS_ParReadWrite_4_wOutHWord
16137	LS_ParReadWrite_4_wOutLWord
16138	LS_ParReadWrite_5_wOutHWord
16139	LS_ParReadWrite_5_wOutLWord
16140	LS_ParReadWrite_6_wOutHWord
16141	LS_ParReadWrite_6_wOutLWord
16170	LS_AxisBusIn_wLine1
16171	LS_AxisBusIn_wLine2
16172	LS_AxisBusIn_wLine3
16173	LS_AxisBusIn_wCas1
16174	LS_AxisBusIn_wCas2
16175	LS_AxisBusIn_wCas3
16176	LS_AxisBusIn_wCas4
16177	LS_AxisBusAux_wAuxIn1
16178	LS_AxisBusAux_wAuxIn2

Selection li	ist - analog signals
16179	LS_AxisBusAux_wAuxIn3
16180	LS AxisBusAux wAuxIn4
16181	LS AxisBusAux wSlaveNo
16300	
16301	LS_MultiEncoder_nActSpeed_a
16302	LS MultiEncoder wHighWord
16303	LS MultiEncoder wLowWord
16320	
16321	LS BUSEncoder nActSpeed a
16322	LS BUSEncoder wHighWord
16323	LS BUSEncoder wLowWord
16340	LS Resolver nActSpeed v
16340	
-	LS_Resolver_nActSpeed_a
16350	LS_RetainData_wOut1
16351	LS_RetainData_wOut2
16352	
16353	LS_RetainData_wOut4
20000	LS_ParFix_Pos100_a
20001	LS_ParFix_Neg100_a
20002	LS_ParFix_Pos199_99_a
20003	LS_ParFix_Neg199_99_a
20004	LS_ParFix_65535
20005	LS_ParFix_wDriveCtrl
20010	LS_ParFree_nC472_1_a
20011	LS_ParFree_nC472_2_a
20012	LS_ParFree_nC472_3_a
20013	LS_ParFree_nC472_4_a
20014	LS_ParFree_nC472_5_a
20015	LS_ParFree_nC472_6_a
20016	LS_ParFree_nC472_7_a
20017	LS_ParFree_nC472_8_a
20018	LS_ParFree_nC473_1_v
20019	LS_ParFree_nC473_2_v
20020	LS_ParFree_nC473_3_v
20021	LS_ParFree_nC473_4_v
20022	
20023	LS ParFree nC473 6 v
20024	
20025	LS_ParFree_nC473_8_v
20026	LS ParFree wC471 1
20027	LS_ParFree_wC471_2
20028	LS ParFree wC471 3
20029	LS ParFree wC471 4
20030	LS ParFree wC471 5
20031	LS ParFree wC471 6
20031	LS ParFree wC471 7
20032	LS ParFree wC471 8
20034	LS_ParFree_wC471_9
20035	LS_ParFree_wC471_10
20036	LS_ParFree_wC471_11
20037	LS_ParFree_wC471_12
20038	LS_ParFree_wC471_13

Selection li	ist - analog signals
20039	LS_ParFree_wC471_14
20040	LS_ParFree_wC471_15
20041	LS_ParFree_wC471_16
20042	LS_ParFree_wC471_17
20043	LS_ParFree_wC471_18
20044	LS_ParFree_wC471_19
20045	LS_ParFree_wC471_20
20046	LS_ParFree_wC471_21
20047	LS_ParFree_wC471_22
20048	LS_ParFree_wC471_23
20049	LS_ParFree_wC471_24
20050	LS_ParFree_wC471_25
20051	LS_ParFree_wC471_26
20052	LS ParFree wC471 27
20053	LS ParFree wC471 28
20054	LS ParFree wC471 29
20055	LS ParFree wC471 30
20056	LS ParFree wC471 31
20057	LS ParFree wC471 32
20058	LS ParFree nC472 9 a
20059	LS_ParFree_nC472_10_a
20060	LS_ParFree_nC472_11_a
20061	LS_ParFree_nC472_12_a
20062	LS_ParFree_nC472_13_a
20063	LS_ParFree_nC472_14_a
20064	LS ParFree nC472 15 a
20065	LS_ParFree_nC472_16_a
20066	LS ParFree nC476 1 a
20067	LS ParFree nC476 2 a
20068	LS ParFree nC476 3 a
20069	LS ParFree nC476 4 a
20070	LS ParFree nC476 5 a
20071	LS_ParFree_nC476_6_a
20072	LS_ParFree_nC476_7_a
20073	LS_ParFree_nC476_8_a
20074	LS ParFree nC476 9 a
20075	LS ParFree nC476 10 a
20076	LS ParFree nC476 11 a
20077	LS ParFree nC476 12 a
20078	LS ParFree nC476 13 a
20079	LS ParFree nC476 14 a
20080	LS ParFree nC476 15 a
20081	LS ParFree nC476 16 a
20082	LS ParFix2 Pos100 a
20082	LS ParFix2 Neg100 a
20083	LS ParFix2 Pos199 99 a
20084	LS ParFix2 Neg199 99 a
20085	LS ParFix2 65535
20086	LS ParFix2 wDriveCtrl
20087	LS ParFree wC477 1
20088	
_	LS_ParFree_wC477_2
20090	LS_ParFree_wC477_3

Selection I	ist - analog signals
20091	LS_ParFree_wC477_4
20092	LS_ParFree_wC477_5
20093	LS_ParFree_wC477_6
20094	LS_ParFree_wC477_7
20095	LS_ParFree_wC477_8
20096	LS_ParFree_wC477_9
20097	LS_ParFree_wC477_10
20098	LS_ParFree_wC477_11
20099	LS_ParFree_wC477_12
20100	LS_ParFree_wC477_13
20101	LS_ParFree_wC477_14
20102	LS_ParFree_wC477_15
20103	LS_ParFree_wC477_16
20104	LS_ParFree_wC477_17
20105	LS_ParFree_wC477_18
20106	LS_ParFree_wC477_19
20107	LS_ParFree_wC477_20
20108	LS_ParFree_wC477_21
20109	LS_ParFree_wC477_22
20110	LS_ParFree_wC477_23
20111	LS_ParFree_wC477_24
20112	LS_ParFree_wC477_25
20113	LS_ParFree_wC477_26
20114	LS_ParFree_wC477_27
20115	LS_ParFree_wC477_28
20116	LS_ParFree_wC477_29
20117	LS_ParFree_wC477_30
20118	LS_ParFree_wC477_31
20119	LS_ParFree_wC477_32
20120	LS_ParFree_nC478_1_v
20121	LS_ParFree_nC478_2_v
20122	LS_ParFree_nC478_3_v
20123	LS_ParFree_nC478_4_v
20124	LS_ParFree_nC478_5_v
20125	LS_ParFree_nC478_6_v
20126	LS_ParFree_nC478_7_v
20127	LS_ParFree_nC478_8_v
32000	MCTRL_nMotorSpeedAct_a
32001	MCTRL_nOutputSpeedCtrl_a
32002	MCTRL_nInputJerkCtrl_a
32003	MCTRL_nInputTorqueCtrl_a
32004	MCTRL_nMotorTorqueAct_a
32005	MCTRL_nActualFluxx_a
32006	MCTRL_nDCVoltage_a
32007	MCTRL_nStatorCurrentIS_a
32008	MCTRL_nEffCurrentIq_a
32009	MCTRL_nReaktCurrentId_a
32010	MCTRL_wMaxMotorSpeed
32011	MCTRL_wMaxMotorTorque
32012	MCTRL_nMotorVoltage_a
32013	MCTRL_nMotorFreqAct_a
32014	MCTRL_nEffSpeedSetValue_a

Selection li	st - analog signals
32015	LS DeviceMonitor MCTRL nlxTRate a
32016	LS DeviceMonitor MCTRL nl2xTRate a
32017	MCTRL nOutputPosCtrl a
32018	MCTRL nHlgSetValue a
32019	MCTRL nMotorSpeedAct v
32020	MCTRL nSpeedCtrllAct a
32100	DCTRL wDeviceStateWord
32101	DCTRL wDeviceAuxStateWord
32102	DCTRL_wDetermFailNoLow
32103	DCTRL wDetermFailNoHigh
32104	DCTRL wDetermFailNoShort
32200	MCK nSpeedSet v
32201	MCK nSpeedCtrll a
32202	MCK nSpeedSetValue a
32203	MCK_nTorqueSetValue_a
32204	MCK wActProfileNo
32205	MCK wFollowProfileNo
32206	MCK wMotionState1
32207	MCK wMotionState2
32208	MCK wAuxState
32209	MCK nPWMAngleOffset
32210	
32210	Reserved
34900	MCTRL OszCh1
34900	MCTRL_OszCh2
34901	MCTRL OszCh3
34902	MCTRL OszCh4
34903	MCTRL Status1
34904	MCTRL Status2
34905	_
34907	MCTRL_Status3
	LS_DeviceMonitor_wUB_24V L_Absolut_Out_1
	L_AddSub_Out_1
	L_OffsetGain_Out_1
36003	L_OffsetGain_Out_2
36004	L_OffsetGainP_1
36005	L_OffsetGainP_2 L GainOffset Out 1
36006 36007	L_GainOffset_Out_1 L GainOffset Out 2
	L_GainOffsetP 1
36008	
36009	L_GainOffsetP_2
36010	L_Negation_Out_1
36011	L_Aritmethik_Out_1
36012	L_Aritmethik_Out_2
36013	L_AnalogSwitch_Out_1
36014	L_AnalogSwitch_Out_2
36015	L_AnalogSwitch_Out_3
36016	L_Limit_Out_1
36017	L_Limit_Out_2
36018	L_NSet_NOut_1
36019	L_MotorPoti_1_Out
36020	L_PCTRL_1_Out

Calaatian 1	et analas damala
	st - analog signals
	L_SigMonitor_a_Out1
	L_SigMonitor_a_Out2
	L_NLim_1_nOut_a
36024	L_Counter_1_wOut
	L_OffsetGainP_3
36026	L_GainOffsetP_3
36027	L_SigMonitor_a_Out3
36028	L_SigMonitor_a_Out4
36029	L_MulDiv_1_nOut_a
36030	L_NLim_1_wState
36031	L_NSet_1_wState
36032	L_NSet_1_nSetValue
36033	L_PT1_1_nOut_a
36034	L_Absolut_Out_2
36035	L_AnalogSwitch_4_Out
36036	L_AnalogSwitch_5_Out
36037	L_Aritmethik_3_Out
36038	L_Aritmethik_4_Out
36039	L_Aritmethik_5_Out
36045	L_GainOffset_Out_3
36053	L_MulDiv_2_nOut_a
36054	L_Negation_2_Out
36055	L_NLim_2_nOut_a
36056	L_NLim_2_wState
36057	L_OffsetGain_Out_3
36058	L_PT1_2_nOut_a
36059	L_PT1_3_nOut_a
36064	L_SampleHold_1_nOut_a
36065	L_SampleHold_2_nOut_a
36068	L_Counter_2_wOut
36069	L_Counter_3_wOut
36073	L_DT1_1_nOut_a
36074	L_ConvBitsToWord_1_wOut
36075	L_ConvBitsToWord_2_wOut
36076	L_ConvBitsToWord_3_wOut
36077	L_ConvDIntToWords_1_wOutLWord
36078	L_ConvDIntToWords_1_wOutHWord
36079	L_ConvDIntToWords_2_wOutLWord
36080	L_ConvDIntToWords_2_wOutHWord
36081	L_ConvDIntToWords_3_wOutLWord
36082	L_ConvDIntToWords_3_wOutHWord
36083	L_MckCtrlInterface_1_wOutMckPosCtrl_1
36084	L_MckCtrlInterface_1_wOutMckPosCtrl_2
36085	L_MckCtrlInterface_1_wFailState
36086	L_MckStateInterface_1_wOperationMode
36087	L_MckStateInterface_1_wActProfileNo
36088	L_MckStateInterface_1_wActPosMode
36089	L_PosiShaftCtrlInterface_1_wOutMckPosCtrl_1
36090	L_PosiShaftCtrlInterface_1_wOutMckPosCtrl_2
36091	L_PCTRL_1_nPIDOut1_a
36092	L_PCTRL_1_nPIDOut2_a
36093	L_PCTRL_1_nInfluenceOut_a

Selection li	ist - analog signals
36094	L_Curve_1_nOut_a
36095	L_Interpolator_1_nPhdOut_v
36096	L_Interpolator_1_nNOut_a
36097	L_ConvW_1_wOut
36098	L_ConvW_2_wOut
36099	L_ConvW_3_wOut
36100	L_ConvW_4_wOut
36101	L_SRFG_1_nOut_a
36102	L_SRFG_2_nOut_a
36103	L_MckStateInterface_1_wPosUnitsLW
36104	L_MckStateInterface_1_wPosUnitsHW
36105	L_SignalSwitch_1_wOut
36106	L_SignalSwitch_2_wOut
36107	L_SignalSwitch_3_wOut
36108	L_SignalSwitch_4_wOut
36109	L_SRFG_1_nDeltaOut_a
36110	L_SRFG_2_nDeltaOut_a
36111	L_Odometer_1_wLastMeasure
36112	L_FixSet_a_1_nOut_a
36113	L_FixSet_a_1_wSelect
36114	L_FixSet_w_1_wOut
36115	L_FixSet_w_1_wSelect
36116	L_FixSet_w_2_wOut
36117	L_FixSet_w_2_wSelect
36120	L_CalcDiameter_nDiameter_a
36121	L_CalcDiameter_nReziprDiameter_a
36122	L_CalcDiameter_nNReel_v
36123	L_CalcDiameter_nDMin_a
36124	L_ProcessCtrl_nOut_a
36125	L_ProcessCtrl_nOutRed_a
36126	L_ProcessCtrl_nDeviation_a
36127	L_ProcessCtrl_nDComponent
36128	L_PhiIntegrator_nOut16
36129	L_PhiIntegrator_nSpeedGearAdd_v
36130	L_PosCtrlLin_1_nNOut_v
36131	L_PosCtrlLin_2_nNOut_v
36132	L_PhiIntegrator_nSpeedGear_v
36133	L_DFSet_nSetGain_v
36134	L_DFSet_nSetGearTrim_v
36135	L_DFSet_nSetGearTrim_a
36136	L_DFRFG_nOut_v
36137	L_ConvPA_1_nOut
36138	L_ConvPA_2_nOut
36139	L_ConvPA_3_nOut
36140	L_ConvX_1_nOut
36141	L_ConvX_2_nOut
36142	L_ConvX_3_nOut
36143	MCK_wGearNum
36144	MCK_wGearDenom
36145	L_DFSet_nSpeedSetOut_v
36146	L_Curve_2_nOut_a
36147	L_Curve_3_nOut_a

Selection li	ist - analog signals
42000	LA_nCtrl_In_wCANDriveControl
42001	LA nCtrl In wCCMDriveControl
42002	LA nCtrl In nTorqueMotLim
42003	LA nCtrl In nTorqueGenLim
42004	LA nCtrl In nPIDVpAdapt a
42005	LA nCtrl In nPIDActValue a
42006	LA nCtrl In nMainSetValue
42007	LA nCtrl In nAuxSetValue
42008	LA nCtrl In nGPAnalogSwitchIn1 a
42009	LA nCtrl In nGPAnalogSwitchIn2 a
42010	LA nCtrl In nGPArithmetikIn1 a
42011	
42012	
42013	LA nCtrl In nGPCompareIn1 a
42014	LA nCtrl In nGPCompareIn2 a
42014	LA nCtrl In nVoltageAdd a
42016	LA nCtrl In nPIDInfluence a
42010	LA nCtrl In nPIDSetValue a
42017	
	LA_nCtrl_in_nPWMAngleOffset
	LA_nCtrl_in_nBoost_a
	LA_NCtrl_In_wSMControl
42025	LA_nCtrl_In_wFreeIn1
42026	LA_nCtrl_In_wFreeIn2
42027	LA_nCtrl_In_wFreeIn3
42028	LA_nCtrl_In_wFreeIn4
42100	LA_TabPos_In_wCanDriveControl
42101	LA_TabPos_In_wMciDriveControl
42102	LA_TabPos_In_nTorqueMotLim_a
42103	LA_TabPos_In_nTorqueGenLim_a
42104	LA_TabPos_In_nMainSetValue_a
42105	LA_TabPos_In_nAuxSetValue_a
42106	LA_TabPos_In_wMckCtrl1
	LA_TabPos_In_wMckCtrl2
	LA_TabPos_In_wMckOperationMode
42109	LA_TabPos_In_wPosProfileMode
42110	LA_TabPos_In_wPosProfileNo
42111	
42112	LA_TabPos_In_nGPAnalogSwitchIn2_a
42113	LA_TabPos_In_nGPArithmetikIn1_a
42114	LA_TabPos_In_nGPArithmetikIn2_a
42115	LA_TabPos_In_nGPMulDivIn_a
42116	LA_TabPos_In_nGPCompareIn1_a
42117	LA_TabPos_In_nGPCompareIn2_a
42118	LA_TabPos_In_wGPCounter1LdVal
42119	LA_TabPos_In_wGPCounter1CmpVal
42120	LA_TabPos_In_nSpeedOverride_a
42121	LA_TabPos_In_nAccOverride_a
42122	LA_TabPos_In_wFreeIn1
42123	LA_TabPos_In_wFreeIn2
42124	LA_TabPos_In_wFreeIn3
42125	LA_TabPos_In_wFreeIn4
42126	LA_TabPos_In_wSMControl

Selection list - analog signals		
42127	LA_TabPos_In_wPosProfileUnitsLW	
42128	LA_TabPos_In_wPosProfileUnitsHW	
42200	LA_SwitchPos_In_wCANDriveControl	
42201	LA_SwitchPos_In_wMCIDriveControl	
42202	LA_SwitchPos_In_nVoltageAdd_a	
42203	LA_SwitchPos_In_nBoost_a	
42204	LA_SwitchPos_In_nPWMAngleOffset	
42205	LA_SwitchPos_In_nTorqueMotLim_a	
42206	LA_SwitchPos_In_nTorqueGenLim_a	
42207	LA_SwitchPos_In_nMainSetValue_a	
42208	LA_SwitchPos_In_nAuxSetValue_a	
42209	LA_SwitchPos_In_nGPAnalogSwitchIn1_a	
42210	LA_SwitchPos_In_nGPAnalogSwitchIn2_a	
42211	LA_SwitchPos_In_nGPArithmetikIn1_a	
42212	LA_SwitchPos_In_nGPArithmetikIn2_a	
42213	LA_SwitchPos_In_nGPMulDivIn_a	
42214	LA_SwitchPos_In_nGPCompareIn1_a	
42215	LA_SwitchPos_In_nGPCompareIn2_a	
42216	LA_SwitchPos_In_wSMControl	
42221	LA_SwitchPos_In_wFreeIn1	
42222	LA_SwitchPos_In_wFreeIn2	
42223	LA_SwitchPos_In_wFreeIn3	
42224	LA_SwitchPos_In_wFreeIn4	

16.2.1.2 Selection list - digital signals

This selection list is relevant for the following parameters:

Parameter	
C00411	L_SignalMonitor_b: Signal sources
C00621	System connection list: Bool
<u>C00701</u>	LA_NCtrl: Digital connection list
<u>C00711</u>	LA_TabPos: Digital connection list
<u>C00761</u>	LA_SwitchPos: Digital connection list

Selection li	st - digital signals
0	Not connected
1000	LA_nCtrl_bDriveReady
1001	LA_nCtrl_bDriveFail
1002	LA_nCtrl_bCInhActive
1003	LA_nCtrl_bQSPIsActive
1004	LA_nCtrl_bSpeedCcw
1005	LA_nCtrl_bSpeedActCompare
1008	LA_nCtrl_bGPDigitalDelayOut
1009	LA_nCtrl_bGPLogicOut
1010	LA_nCtrl_bGPSignalOut1
1011	LA_nCtrl_bGPSignalOut2
1012	LA_nCtrl_bGPSignalOut3
1013	LA_nCtrl_bGPSignalOut4
1014	LA_nCtrl_bOverLoadActive
1015	LA_nCtrl_bBrakeReleaseOut
1016	LA_nCtrl_bBrakeReleased
1017	LA_nCtrl_bGPCompareOut
1018	LA_nCtrl_bUnderLoadActive
1019	LA_nCtrl_bImaxActive
1020	LA_nCtrl_bSpeedSetReached
1021	LA_nCtrl_bSpeedActEqSet
1022	LA_nCtrl_bGPDFlipFlopOut
1023	LA_nCtrl_bGPDFlipFlopNegOut
1029	LA_nCtrl_bFreeOut1
1030	LA_nCtrl_bFreeOut2
1031	LA_nCtrl_bFreeOut3
1032	LA_nCtrl_bFreeOut4
1033	LA_nCtrl_bFreeOut5
1034	LA_nCtrl_bFreeOut6
1035	LA_nCtrl_bFreeOut7
1036	LA_nCtrl_bFreeOut8
1100	LA_TabPos_bDriveFail
1101	LA_TabPos_bDriveReady
1102	LA_TabPos_bCInhActive
1103	LA_TabPos_bQSPIsActive
1104	LA_TabPos_bSpeedCcw
1105	LA_TabPos_bSpeedActCompare
1106	LA_TabPos_blmaxActive
1107	LA_TabPos_bSpeedSetReached
1108	LA_TabPos_bMBrakeReleaseOut

	ist - digital signals
1109	LA TabPos bMBrakeReleased
1110	LA TabPos bHomeDone
1111	LA TabPos bHomePosAvailable
	LA TabPos bProfileDone
1113	LA TabPos bProfileBusy
1113	
1114	LA_TabPos_bAccelerating
	LA_TabPos_bConstantDuty
1116	LA_TabPos_bDecelerating
1117	LA_TabPos_bDwellTime
	LA_TabPos_binTarget
1119	LA_TabPos_bGPDigitalDelayOut
1120	LA_TabPos_bGPLogicOut
1121	LA_TabPos_bGPCompareOut
1122	LA_TabPos_bGPSignalOut1
1123	LA_TabPos_bGPSignalOut2
1124	LA_TabPos_bGPSignalOut3
1125	LA_TabPos_bGPSignalOut4
1126	LA_TabPos_bGPDFlipFlop_Out
1127	LA_TabPos_bGPDFlipFlop_NegOut
1128	LA_TabPos_bGPCounter1Equal
1129	LA_TabPos_bFreeOut1
1130	LA_TabPos_bFreeOut2
1131	LA_TabPos_bFreeOut3
1132	LA_TabPos_bFreeOut4
1133	LA_TabPos_bFreeOut5
1134	LA_TabPos_bFreeOut6
1135	LA_TabPos_bFreeOut7
1136	LA_TabPos_bFreeOut8
1200	LA_SwitchPos_bDriveFail
1201	LA_SwitchPos_bWarningActive
1202	LA_SwitchPos_bSafeTorqueOff
1203	LA_SwitchPos_bDriveReady
1204	LA_SwitchPos_bCInhActive
1205	LA_SwitchPos_bImplsActive
1206	LA_SwitchPos_bQSPIsActive
1207	LA_SwitchPos_bSpeedCcw
1208	LA_SwitchPos_bSpeedActCompare
1209	LA_SwitchPos_blmaxActive
1210	LA_SwitchPos_bSpeedSetReached
1211	LA_SwitchPos_bSpeedActEqSet
1212	LA_SwitchPos_bBrakeReleaseOut
1213	LA_SwitchPos_bBrakeReleased
1214	LA_SwitchPos_bGPDigitalDelayOut
1215	LA_SwitchPos_bGPLogicOut
1216	LA_SwitchPos_bGPCompareOut
1217	LA_SwitchPos_bGPDFlipFlop_Out
1218	LA_SwitchPos_bGPDFlipFlop_NegOut
	LA SwitchPos bGPSignalOut1
1219	23
1219	LA_SwitchPos_bGPSignalOut2

C. I	the Potted Comple
Selection II	st - digital signals
1222	LA_SwitchPos_bGPSignalOut4
1228	LA_SwitchPos_bFreeOut1
1229	LA_SwitchPos_bFreeOut2
1230	LA_SwitchPos_bFreeOut3
1231	LA_SwitchPos_bFreeOut4
1232	LA_SwitchPos_bFreeOut5
1233	LA_SwitchPos_bFreeOut6
1234	LA_SwitchPos_bFreeOut7
1235	LA_SwitchPos_bFreeOut8
16000	Digln_bln1
16001	Digln_bln2
16002	DigIn_bIn3
16003	DigIn_bln4
16004	DigIn_bln5
16005	DigIn_bln6
16006	DigIn_bln7
16008	DigIn_CInh
16009	DigIn_bCountIn1_Compare
16010	DigIn_bCountIn6_Compare
16011	Ain_bCurrentErrorIn1
16012	Ain_bCurrentErrorIn2
16013	CAN1_bCtrl1_B0
16014	CAN1_bCtrl1_B1
16015	CAN1_bCtrl1_B2
16016	CAN1_bCtrl1_B3
16017	CAN1_bCtrl1_B4
16018	CAN1_bCtrl1_B5
16019	CAN1_bCtrl1_B6
16020	CAN1_bCtrl1_B7
16021	CAN1_bCtrl1_B8
16022	CAN1_bCtrl1_B9
16023	CAN1_bCtrl1_B10
16024	CAN1_bCtrl1_B11
16025	CAN1_bCtrl1_B12
16026	CAN1_bCtrl1_B13
16027	CAN1_bCtrl1_B14
16028	CAN1_bCtrl1_B15
16029	CAN2_bln1_B0
16030	CAN2_bln1_B1
16031	CAN2_bln1_B2
16032	CAN2_bln1_B3
16033	CAN2_bln1_B4
16034	CAN2_bln1_B5
16035	CAN2_bln1_B6
16036	CAN2_bln1_B7
16037	CAN2_bln1_B8
16038	CAN2_bln1_B9
16039	CAN2_bln1_B10
16040	CAN2_bln1_B11
16041	CAN2_bln1_B12
16042	CAN2_bln1_B13
16043	CAN2_bln1_B14

Selection I	ist - digital signals
16044	CAN2 bln1 B15
16045	CAN3 bln1 B0
16046	CAN3 bln1 B1
16047	CAN3 bln1 B2
16048	
16049	
16050	
	CAN3 bln1 B6
	CAN3_bln1_B7
	CAN3_bln1_B8
	CAN3 bln1 B9
	CAN3 bln1 B10
	CAN3 bln1 B11
	CAN3_bln1_B12
	CAN3_bln1_B13
	CAN3_bln1_B14
16060	CAN3_bln1_B15
16061	Mciln_bCtrl_B0
16062	Mciln_bCtrl_B1
16063	
	Mciln_bCtrl_B3
16065	Mciln_bCtrl_B4
16066	Mciln_bCtrl_B5
16067	Mciln_bCtrl_B6
16068	Mciln_bCtrl_B7
16069	Mciln_bCtrl_B8
16070	Mciln_bCtrl_B9
16071	Mciln_bCtrl_B10
16072	Mciln_bCtrl_B11
16073	Mciln_bCtrl_B12
16074	Mciln_bCtrl_B13
16075	Mciln_bCtrl_B14
16076	MciIn_bCtrl_B15
16077	Mciln_bln2_B0
16078	Mciln_bln2_B1
16079	Mciln_bln2_B2
16080	Mciln_bln2_B3
16081	Mciln_bln2_B4
16082	Mciln_bln2_B5
16083	Mciln_bln2_B6
16084	Mciln_bln2_B7
16085	Mciln_bln2_B8
16086	Mciln_bln2_B9
16087	Mciln_bln2_B10
16088	Mciln_bln2_B11
16089	Mciln_bln2_B12
16090	Mciln_bln2_B13
16091	Mciln_bln2_B14
16092	Mciln bln2 B15
16093	LS Keypad bSetQuickstop
16094	LS Keypad bSetDCBrake
16095	LS_Keypad_bSetSpeedCcw
20033	7

Selection li	st - digital signals
16096	LS_Keypad_bJogSpeed1
16097	LS_Keypad_bJogSpeed2
16098	LS_Keypad_bMPotEnable
16099	LS_Keypad_bMPotUp
16100	LS_Keypad_bMPotDown
16101	DigIn_bPosIn12_State
16110	LS_ParReadWrite_1_bDone
16111	LS_ParReadWrite_1_bFail
16112	LS_ParReadWrite_2_bDone
16113	LS_ParReadWrite_2_bFail
16114	LS_ParReadWrite_3_bDone
16115	LS_ParReadWrite_3_bFail
16116	LS_ParReadWrite_4_bDone
16117	LS_ParReadWrite_4_bFail
16118	LS_ParReadWrite_5_bDone
16119	LS_ParReadWrite_5_bFail
16120	LS_ParReadWrite_6_bDone
16121	LS_ParReadWrite_6_bFail
16122	LS_WriteParamList_bDone
16123	LS_WriteParamList_bFail
16161	LS_CANManagement_bFail
16162	LS_CANManagement_bOperational
16165	LS_MultiEncoder_bFail
16166	LS_Resolver_bFail
16200	LS_SyncManagement_bSyncSignalOK
16201	LS_SyncManagement_bSyncPhaseOK
16202	LS_MultiEncoder_bState
16303	LS_TouchProbe_bTP_DigIn3_Received
16304	LS_TouchProbe_bTP_DigIn4_Received
16305	LS_TouchProbe_bTP_DigIn5_Received
16306	LS_TouchProbe_bTP_DigIn6_Received
16307	LS_TouchProbe_bTP_DigIn7_Received
16308	LS_AxisBusIO_bFail_DigIn
16309	LS_AxisBusIO_bResetFail_In
16310	LS_RetainData_bOut1
16311	LS_RetainData_bOut2
16312	LS_RetainData_bOut3
16313	LS_RetainData_bOut4
16320	LS_AxisBusAux_bDone
16321	LS_AxisBusAux_bFail
20000	LS_ParFix_True
20001	bC470_1
20002	bC470_2
20003	bC470_3
20004	bC470_4
20005	bC470_5
20006	bC470_6
20007	bC470_7
20008	bC470_8
20009	bC470_9
20010	bC470_10
20011	bC470_11

Selection l	st - digital signals
20012	bC470_12
20013	bC470_13
20014	bC470_14
20015	bC470_15
20016	bC470_16
20017	bC470_17
20018	bC470_18
20019	bC470_19
20020	bC470_20
20021	bC470_21
20022	bC470_22
20023	bC470_23
20024	bC470_24
20025	bC470_25
20026	bC470_26
20027	bC470_27
20028	bC470_28
20029	bC470_29
20030	bC470_30
20031	bC470_31
20032	bC470_32
20033	b100Hz
20034	b10Hz
20035	b2Hz
20036	b1Hz
20037	b1HzFlash
20038	b2HzFlash
20039	bSingleFlash1
20040	bSingleFlash2
20041	bDoubleFlash
20042	bSquareWave
20043	bFirstCycle
20044	LS_ParFix2_True
20045	LS_ParFreeUnit_bDataValid
20046	LS_ParFreeUnit2_bDataValid
32000	LS_DeviceMonitor_MCTRL_bFanFault
32001	LS_DeviceMonitor_MCTRL_bHeatSinkTemp
32002	MCTRL_bLimPosCtrlOut
32003	MCTRL_bLimSpeedCtrlOut
32004	MCTRL_bLimSpeedSetVal
32005	MCTRL_bLimTorqueSetVal
32006	MCTRL_bLimCurrentSetVal
32007	LS_DeviceMonitor_MCTRL_bUVDetected
32008	LS_DeviceMonitor_MCTRL_bOVDetected
32009	LS_DeviceMonitor_MCTRL_bMotorPhaseFault
32010	LS_DeviceMonitor_MCTRL_bEncoderComFault
32011	LS_DeviceMonitor_MCTRL_blxtOverload
32012	LS_DeviceMonitor_MCTRL_bl2xtOverload
32013	MCTRL_bldentificationActive
32014	MCTRL_bFlyingSyncActive
32015	LS_DeviceMonitor_MCTRL_bTorqueMax
32016	LS_DeviceMonitor_MCTRL_bNMax

6 L 11 L	
Selection II	st - digital signals
32017	LS_DeviceMonitor_MCTRL_bFChopReduced
32018	LS_DeviceMonitor_MCTRL_bMotorPTC
32019	LS_DeviceMonitor_MCTRL_bMotorTemp
32020	MCTRL_bAutoGSBIsActive
32021	LS_DeviceMonitor_MCTRL_bBrakeChopper
32022	MCTRL_bQsplsActive
32023	MCTRL_bHlgLoad
32024	MCTRL_bHlgStop
32025	LS_DeviceMonitor_MCTRL_bImpActive
32026	LS_DeviceMonitor_MCTRL_bClampActive
32027	LS_DeviceMonitor_MCTRL_bMainsFault
32028	LS_DeviceMonitor_MCTRL_bNmaxForFChop
32029	LS_DeviceMonitor_MCTRL_bShortCircuit
32030	LS_DeviceMonitor_MCTRL_bEarthFault
32100	DCTRL_blnit
32101	DCTRL_bReady
32102	DCTRL_bReadyToSwitchOn
32103	DCTRL_bOperationEnable
32104	DCTRL_bWarning
32105	DCTRL_bTrouble
32106	DCTRL_bFail
32107	DCTRL_bCollectedFail
32108	DCTRL_bSafeTorqueOff
32109	DCTRL_bIMPIsActive
32110	DCTRL_bCINHIsActive
32111	DCTRL_bSafetyIsActive
32112	DCTRL_bCwCcw
32113	DCTRL_bNactCompare
32200	MCK_bPosCtrlOn
32201	MCK_bSpeedCtrllOn
32202	MCK_bTorquemodeOn
32203	MCK_bDcBrakeOn
32204	MCK_bBrkReleaseOut
32205	MCK_bBrkReleased
32206	MCK_bDeltaPosOn
32207	MCK_bPosDerivativeOn
32208	MCK_bMotorRefOffsetOn
32209	MCK_bQspOn
32210	MCK_bPosBusy
32211	MCK_bPosDone
32212	MCK_bHomDone
32213	MCK_bHomAvailable
32214	MCK_bTorqueLimitAdaptOn
32215	Reserved
32216	Reserved
32217	Reserved
32218	Reserved
36000	L_AND_Out_1
36001	L_AND_Out_2
36002	L_AND_Out_3
36003	L_OR_Out_1
36004	L_OR_Out_2

Selection I	ist - digital signals
36005	L_OR_Out_3
36006	L NOT Out 1
36007	L NOT Out 2
36008	L NOT Out 3
36009	L_DFlipFlop_Out_1
36010	
36011	L RLQ 1 Ccw
	L_DigDelay_Out_1
	L_Compare_Out_1
	L_Compare_Out_2
	L Compare Out 3
	L Nset RfgEq0 1
	L DigitalLogic 1 bOut
	L Counter 1 bEqual
	L SigMonitor b bOut1
36020	_ 0
36021	_ 0
	L_SigMonitor_b_bOut4
	L_PCTRL_1_bActEqSet
	L_NLim_1_bLimitActive
	L_DFlipFlop_1_NegOut
	L_AND5_1_Out
	L_AND5_2_Out
	L_Compare_4_bOut
	L_Compare_5_bOut
36030	L_Compare_6_bOut
36031	L_Compare_7_bOut
36032	L_Compare_8_bOut
36033	L_Compare_9_bOut
36034	L_Compare_10_bOut
36035	L_DFlipFlop_2_bOut
36036	L_DFlipFlop_2_bNegOut
36037	L_DigDelay_2_Out
36038	L_DigDelay_3_Out
36039	L_OR_Out_4
36040	L_DigitalLogic_3_bOut
36041	L_DigitalLogic_2_bOut
36042	L_DigitalLogic5_1_bOut
36043	L_DigitalLogic5_2_bOut
36044	L_NLim_2_bLimitActive
36045	L_OR5_1_Out
36046	L_OR5_2_Out
36047	L_NOT_4_Out
36048	L_NOT_5_Out
36049	L_NOT_6_Out
36050	L_NOT_7_Out
36055	L_PhaseIntK_1_bState
36056	L_PhaseIntK_2_bState
36057	L_Counter_2_bEqual
36058	L_Counter_3_bEqual
36059	L_RSFlipflop_1_bOut
36060	L_RSFlipflop_1_bNegOut
	_ : :== 0

Selection li	ist - digital signals
36061	L RSFlipflop 2 bOut
36062	L RSFlipflop 2 bNegOut
36063	L Transient 5 bOut
36064	L Transient 6 bOut
36065	L Transient 7 bOut
36066	L Transient 8 bOut
36067	L ConvWordToBits 1 bBit0
36068	L ConvWordToBits 1 bBit1
36069	
36070	L_ConvWordToBits_1_bBit2
	L_ConvWordToBits_1_bBit3
36071	L_ConvWordToBits_1_bBit4
36072	L_ConvWordToBits_1_bBit5
36073	L_ConvWordToBits_1_bBit6
36074	L_ConvWordToBits_1_bBit7
36075	L_ConvWordToBits_1_bBit8
36076	L_ConvWordToBits_1_bBit9
36077	L_ConvWordToBits_1_bBit10
36078	L_ConvWordToBits_1_bBit11
36079	L_ConvWordToBits_1_bBit12
36080	L_ConvWordToBits_1_bBit13
36081	L_ConvWordToBits_1_bBit14
36082	L_ConvWordToBits_1_bBit15
36083	L_ConvWordToBits_2_bBit0
36084	L_ConvWordToBits_2_bBit1
36085	L_ConvWordToBits_2_bBit2
36086	L_ConvWordToBits_2_bBit3
36087	L_ConvWordToBits_2_bBit4
36088	L_ConvWordToBits_2_bBit5
36089	L_ConvWordToBits_2_bBit6
36090	L_ConvWordToBits_2_bBit7
36091	L_ConvWordToBits_2_bBit8
36092	L_ConvWordToBits_2_bBit9
36093	L_ConvWordToBits_2_bBit10
36094	L ConvWordToBits 2 bBit11
36095	L ConvWordToBits 2 bBit12
36096	L ConvWordToBits 2 bBit13
36097	L ConvWordToBits 2 bBit14
36098	L_ConvWordToBits_2_bBit15
36099	L ConvWordToBits 3 bBit0
36100	L ConvWordToBits 3 bBit1
36100	L ConvWordToBits 3 bBit2
36102	L ConvWordToBits 3 bBit3
36102	L ConvWordToBits 3 bBit4
36103	
	L_ConvWordToBits_3_bBit5
36105	L_ConvWordToBits_3_bBit6
36106	L_ConvWordToBits_3_bBit7
36107	L_ConvWordToBits_3_bBit8
36108	L_ConvWordToBits_3_bBit9
36109	L_ConvWordToBits_3_bBit10
36110	L_ConvWordToBits_3_bBit11
36111	L_ConvWordToBits_3_bBit12
36112	L_ConvWordToBits_3_bBit13

Selection li	ist - digital signals
	L_ConvWordToBits_3_bBit14
	L_ConvWordToBits_3_bBit15
	L_MckCtrlInterface_1_bFail
	L_MckStateInterface_1_bAccelerating
	L_MckStateInterface_1_bDecelerating
	L_MckStateInterface_1_bConstantSpeedDuty
36119	L_MckStateInterface_1_bSShaping
	,
	L_MckStateInterface_1_bHomingPosAvailable
	L_MckStateInterface_1_bHomingDone
36124	L_MckStateInterface_1_bDwellTime
36125	L_MckStateInterface_1_bInTarget
36126	L_MckStateInterface_1_bPosDone
36127	L_PosiShaftCtrlInterface_1_bQsp
36128	L_PosiShaftCtrlInterface_1_bRsp
	L_PosiShaftCtrlInterface_1_bTripSet
36130	L_PosiShaftCtrlInterface_1_bTripReset
36131	L_JogCtrlExtension_bRfgOut
36132	L_JogCtrlExtension_bJog1Out
36133	L_JogCtrlExtension_bJog2Out
36134	L_Curve_1_bLimit
36135	L_Interpolator_1_bIPulse
36136	L_Interpolator_1_bSignalError
36137	L_MckCtrlInterface_1_bPosSetDataValid
36138	L_Transient_1_bOut
36139	L_Transient_2_bOut
36140	L_Transient_3_bOut
36141	L_Transient_4_bOut
36142	L_CalcDiameter_bDMaxLimit
36143	L_CalcDiameter_bDMinLimit
36144	L_CalcDiameter_bWebBreak
36145	L_PhiIntegrator_bOvfl32
36146	L_PhiIntegrator_bOvfl16
36147	L_PhiIntegrator_bInitDone
36148	L_PosCtrlLin_1_bInTarget
36149	L_PosCtrlLin_2_bInTarget
36150	L_SwitchPoint_bOut1
36151	L_SwitchPoint_bOut2
36152	L_SwitchPoint_bOut3
36153	L_SwitchPoint_bOut4
36154	L_DFSet_bAck_b
36155	L_DFSet_bFollowingErr_b
36156	L_DFSet_bPosOverflow_b
36157	L_DFRFG_bSync_b
36158	L_DFRFG_bFail_b
36159	L_Curve_2_bLimit
36160	L_Curve_3_bLimit
42000	LA_NCtrl_In_bCInh
42001	LA_NCtrl_In_bFailReset
42002	LA_NCtrl_In_bSetQuickstop
42003	LA_NCtrl_In_bSetDCBrake

Selection li	st - digital signals
42004	LA_NCtrl_In_bRFG_Stop
42005	LA_NCtrl_In_bRFG_0
42007	LA_NCtrl_In_bSetSpeedCcw
42008	LA_NCtrl_bJogSpeed1
42009	LA_NCtrl_bJogSpeed2
42010	LA_NCtrl_bJogSpeed4
42011	LA_NCtrl_bJogSpeed8
42012	LA_NCtrl_bJogRamp1
42013	LA_NCtrl_bJogRamp2
42014	LA_NCtrl_bJogRamp4
42015	LA_NCtrl_bJogRamp8
42017	LA_NCtrl_bMPOTInAct
42018	LA_NCtrl_bMPOTUp
42019	LA_NCtrl_bMPOTDown
42020	LA_NCtrl_bMBRKRelease
42021	LA_NCtrl_bMANJogPos
42022	LA_NCtrl_bMANJogNeg
42023	LA_NCtrl_bGPAnalogSwitchSet
42024	LA_NCtrl_bGPDigitalDelayIn
42025	LA_NCtrl_bGPLogicIn1
42026	LA_NCtrl_bGPLogicIn2
42027	LA_NCtrl_bGPLogicIn3
42028	LA_NCtrl_bGPDFlipFlopInD
42029	LA_NCtrl_bGPDFlipFlopInClk
42030	LA_NCtrl_bGPDFlipFlopInClr
42031	LA_NCtrl_bMPotEnable
42032	LA_NCtrl_bPIDEnableInfluenceRamp
42033	LA_NCtrl_bPIDIOff
42034	LA_NCtrl_bRLQCw
42035	LA_NCtrl_bRLQCcw
42041	LA_NCtrl_bFreeIn1
42042	LA_NCtrl_bFreeIn2
42043	LA_NCtrl_bFreeIn3
42044	LA_NCtrl_bFreeIn4
42045	LA_NCtrl_bFreeIn5
42046	LA_NCtrl_bFreeIn6
42047	LA_NCtrl_bFreeIn7
42048	LA_NCtrl_bFreeIn8
42100	LA_TabPos_In_bCInh
42101	LA_TabPos_In_bFailReset
42102	LA_TabPos_In_bSetQuickstop
42103	LA_TabPos_In_bSetSpeedCcw
42104	LA_TabPos_In_bJogSpeed1
42105	LA_TabPos_In_bJogSpeed2
42106	LA_TabPos_In_bMPotEnable
42107	LA_TabPos_In_bMPotUp
42108	LA_TabPos_In_bMPotDown
42109	LA_TabPos_In_bMBrakeRelease
42110	LA_TabPos_In_bPosCtrlOn
42111	LA_TabPos_In_bLimitSwitchPos
42112	LA_TabPos_In_bLimitSwitchNeg
42113	LA TabPos In bReleaseLimitSwitch

Selection I	ist - digital signals
42114	LA_TabPos_In_bManJogPos
42115	LA TabPos In bManJogNeg
42116	LA TabPos In bManEnable2ndSpeed
42117	
42118	
42119	LA TabPos In bHomeStartStop
42120	LA TabPos In bHomeSetPosition
42121	LA TabPos In bHomeResetPosition
42122	LA TabPos In bHomeMark
42123	LA TabPos In bPosSetProfilePosition
42124	
42125	LA TabPos In bPosExecute
	LA TabPos In bPosFinishTarget
42127	
42128	LA TabPos In bPosStop
42129	LA TabPos In bGPAnalogSwitchSet
42130	
42130	
42131	0
42132	_ · ·· · · · · · · · · · ·
42134	
42135	LA_TabPos_In_bGPDFlipFlop_InClk
42136	
42137	,
42138	LA_TabPos_In_bGPCounter1ClkDown
42139	LA_TabPos_In_bGPCounter1Load
42140	LA_TabPos_In_bMckOperationMode_1
42141	
42142	LA_TabPos_In_bMckOperationMode_4
42143	LA_TabPos_In_bMckOperationMode_8
42144	LA_TabPos_In_bPosProfileNo_1
42145	LA_TabPos_In_bPosProfileNo_2
	LA_TabPos_In_bPosProfileNo_4
42147	LA_TabPos_In_bPosProfileNo_8
42148	LA_TabPos_in_bFreeIn1
	LA_TabPos_In_bFreeIn2
	LA_TabPos_In_bFreeIn3
42151	
42152	
42153	LA_TabPos_In_bFreeIn6
42154	
42155	LA_TabPos_In_bFreeIn8
42200	
42201	
42202	
42203	LA_SwitchPos_bSetDCBrake
42204	LA_SwitchPos_bRFG_Stop
42205	LA_SwitchPos_bSetSpeedCcw
42206	
42207	LA_SwitchPos_bRLQCcw
42208	LA_SwitchPos_bJogCtrlInputSel1
42209	LA_SwitchPos_bJogCtrlInputSel2

8400 TopLine C | Software Manual Parameter reference

Parameter list

Selection li	st - digital signals
42210	LA_SwitchPos_bJogCtrlRfgIn
42211	LA_SwitchPos_bJogCtrlJog1
42212	LA_SwitchPos_bJogCtrlJog2
42213	LA_SwitchPos_bJogCtrlSlowDown1
42214	LA_SwitchPos_bJogCtrlStop1
42215	LA_SwitchPos_bJogCtrlSlowDown2
42216	LA_SwitchPos_bJogCtrlStop2
42217	LA_SwitchPos_bJogCtrlSlowDown3
42218	LA_SwitchPos_bJogCtrlStop3
42219	LA_SwitchPos_bJogSpeed4
42220	LA_SwitchPos_bJogSpeed8
42221	LA_SwitchPos_bJogRamp1
42222	LA_SwitchPos_bJogRamp2
42223	LA_SwitchPos_bJogRamp4
42224	LA_SwitchPos_bJogRamp8
42225	LA_SwitchPos_bMBrkRelease
42226	LA_SwitchPos_bGPAnalogSwitchSet
42227	LA_SwitchPos_bGPDigitalDelayIn
42228	LA_SwitchPos_bGPLogicIn1
42229	LA_SwitchPos_bGPLogicIn2
42230	LA_SwitchPos_bGPLogicIn3
42231	LA_SwitchPos_bGPDFlipFlop_InD
42232	LA_SwitchPos_bGPDFlipFlop_InClk
42233	LA_SwitchPos_bGPDFlipFlop_InClr
42239	LA_SwitchPos_bFreeIn1
42240	LA_SwitchPos_bFreeIn2
42241	LA_SwitchPos_bFreeIn3
42242	LA_SwitchPos_bFreeIn4
42243	LA_SwitchPos_bFreeIn5
42244	LA_SwitchPos_bFreeIn6
42245	LA_SwitchPos_bFreeIn7
42246	LA_SwitchPos_bFreeIn8

16.2.1.3 Selection list - angle signals

This selection list is relevant for the following parameters:

Parameter	
<u>C00622</u>	System connection list: Angle
C00712	LA_TabPos: phi connection list

Selection li	ist - angle signals
0	Not connected
1005	LA NCtrl dnFreeOut1 p
1006	LA NCtrl dnFreeOut1 p
1100	LA TabPos dnTargetPos p
1101	LA TabPos dnSetPos p
1102	LA TabPos dnFreeOut1 p
1103	LA TabPos dnFreeOut2 p
1104	LA TabPos dnPosAct p
1105	LA TabPos dnDeltaPosAct p
1205	LA_SwitchPos_dnFreeOut1_p
1206	LA SwitchPos dnFreeOut2 p
16000	CAN1_dnln34_p
16001	CAN2_dnln34_p
16002	CAN3_dnln34_p
16003	LP_Mciln_dnln34_p
16006	CAN1_dnln12_p
16007	CAN2_dnln12_p
16008	CAN3_dnln12_p
16009	LP_Mciln_dnln56_p
16010	LP_Mciln_dnln78_p
17000	LS_MultiEncoder_dnPosition_p
17001	LS_Resolver_dnPosition_p
17010	LS_BusEncoder_dnPosition_p
17020	DigIn_dnPosIn12_p
17101	LS_TouchProbe_TPDigIn1_dnPosition_p
17102	LS_TouchProbe_TPDigIn2_dnPosition_p
17103	LS_TouchProbe_TPDigIn3_dnPosition_p
17104	LS_TouchProbe_TPDigIn4_dnPosition_p
17105	LS_TouchProbe_TPDigIn5_dnPosition_p
17106	LS_TouchProbe_TPDigIn6_dnPosition_p
17107	LS_TouchProbe_TPDigIn7_dnPosition_p
17120	LS_RetainData_dnOut1
17121	LS_RetainData_dnOut2
17122	LS_RetainData_dnOut3
17123	LS_RetainData_dnOut4
17130	LS_AxisBusIn_dnLine12
17131	LS_AxisBusIn_dnCas12
17132	LS_AxisBusIn_dnCas34
17133	LS_AxisBusAux_dnAuxIn12
17134	LS_AxisBusAux_dnAuxIn34
20000	dnC474_1_p
20001	dnC474_2_p
20002	dnC474_3_p

Calastian li	ist analosianals
	ist - angle signals
	dnC474_4_p
	dnC474_5_p
	dnC474_6_p
	dnC474_7_p
	dnC474_8_p
20008	dnC479_1
20009	dnC479_2
20010	dnC479_3
	dnC479_4
20012	dnC479_5
	dnC479_6
20014	dnC479_7
	dnC479_8
20016	dnC475_1
20017	dnC475_2
20018	dnC475_3
20019	dnC475_4
20020	dnC475_5
20021	dnC475_6
20022	dnC475_7
20023	dnC475_8
20024	dnC475_9
20025	dnC475_10
20026	dnC475_11
20027	dnC475_12
20028	dnC475_13
20029	dnC475_14
20030	dnC475_15
20031	dnC475_16
20032	dnC475_17
20033	dnC475_18
20034	dnC475_19
20035	dnC475_20
20036	dnC475_21
20037	dnC475_22
20038	dnC475_23
20039	dnC475_24
20040	dnC475_25
20041	dnC475_26
20042	dnC475_27
20043	dnC475_28
20044	dnC475_29
20045	dnC475_30
20046	dnC475_31
20047	dnC475_32
32000	MCTRL_dnMotorPosAct_p
32001	MCTRL_dnMotorDeltaPosAct_p
32200	MCK_dnPosTarget_p
32201	MCK_dnPosSetValue_p
32202	MCK_dnDeltaPos_p

Selection list - angle signals		
32204 MCK_dnPosSet_P 32205 MCK_dnPosSetRelative_p 36040 L_ArithmetikPhi_1_Out_p 36040 L_GainOffsetParPhi_1_Out_p 36051 L_LimitPhi_1_Out_p 36051 L_LimitPhi_1_Out_p 36052 L_LimitPhi_2_Out_p 36060 L_OffsetGainParPhi_1_Out_p 36060 L_OffsetGainParPhi_1_Out_p 36061 L_OffsetGainParPhi_2_Out_p 36060 L_PhaseIntK_1_dnOut_p 36061 L_PhaseIntK_2_dnOut_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_1_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_1_dnOut_p 36079 L_ConvUnitsToIncr_1_dnOut_p 36079 L_ConvUnitsToIncr_1_dnOut_p 36070 L_ConvUnitsToIncr_1_dnOut_p 36071 L_ConvUnitsToIncr_1_dnOut_p 36072 L_ConvUnitsToIncr_1_dnPout_p 36073 L_ConvUnitsToIncr_1_dnPout_p 36074 L_ConvUnitsToIncr_1_dnPout_p 36075 L_ConvUnitsToIncr_1_dnPout_p 36076 L_ConvUnitsToIncr_1_dnPout_p 36079 L_ConvUnitsToIncr_1_dnPout_p 36079 L_ConvUnitsToIncr_1_dnPout_p 36080 L_Interpolator_1_dnPout_p 36081 L_MckCtrlInterface_1_dnPosOut_p 36082 L_Odometer_1_dnPosOut_p 36083 L_Odometer_1_dnPosOut_p 36084 L_Odometer_1_dnPosOut_p 36091 L_Odometer_1_dnPosOut_p 36091 L_Odometer_1_dnPosOut_s_p 36091 L_Odometer_1_dnPosOut_s_p 36091 L_Odometer_1_dnPosOut_s_p 36091 L_Odometer_1_dnPosOut_s_p 36091 L_Odometer_1_dnPosOut_s_p 36091 L_Odometer_1_dnPosOut_s_p 36091 L_Odometer_1_dnPotPosOut_s_p 36091 L_Odometer_1_dnPotPosOut_s_p 36091 L_Odometer_1_dnDeltaPos_31_p 36091 L_Odometer_1_dnDeltaPos_31_p 36091 L_Odometer_1_dnDeltaPos_31_p 36091 L_Odometer_1_dnDeltaPos_56_p 36010 L_Odometer_1_dnDeltaPos_56_p 36010 L_Odometer_1_dnDeltaPos_56_p 36010 L_Odometer_1_dnDeltaPos_90_1_p 36010 L_Odometer_1_dnDeltaPos_0ut_p 36010 L_Odometer_1_dnDeltaPos_0ut_p 36010 L_Odometer_1_dnDeltaPos_0ut_p 36010 L_Odometer_1_dnDeltaPos_0ut_p 36101 L_Odometer_1_dnDeltaPos_0ut_p 36102 L_Odometer_1_dnDeltaPos_0ut_p 36103 L_PosCtrlLin_2_dnPosOut_p 36104 L_PosCtrlLin_2_dnPosOut_p	Selection l	ist - angle signals
32205 MCK_dnPosSetRelative_p 36040 L_ArithmetikPhi_1_Out_p 36046 L_GainOffsetParPhi_1_Out_p 36047 L_GainOffsetParPhi_2_Out_p 36050 L_LimitPhi_1_Out_p 36051 L_LimitPhi_2_Out_p 36052 L_LimitPhi_3_Out_p 36060 L_OffsetGainParPhi_1_Out_p 36060 L_OffsetGainParPhi_2_Out_p 36060 L_PhaseIntK_1_dnOut_p 36060 L_PhaseIntK_2_dnOut_p 36060 L_ArithmetikPhi_3_Out_p 36070 L_ArithmetikPhi_3_Out_p 36071 L_ArithmetikPhi_3_Out_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_1_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrIInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36088 L_Odometer_1_dnPosOut_2 p 36089 L_Odometer_1_dnPosOut_2 p 36089 L_Odometer_1_dnPosOut_2 p 36080 L_Odometer_1_dnPosOut_5 p 36090 L_Odometer_1_dnPosOut_5 p 36090 L_Odometer_1_dnPosOut_5 p 36091 L_Odometer_1_dnPosOut_5 p 36092 L_Odometer_1_dnPosOut_5 p 36093 L_Odometer_1_dnPosOut_5 p 36094 L_Odometer_1_dnPosOut_5 p 36095 L_Odometer_1_dnPosOut_5 p 36096 L_Odometer_1_dnPosOut_8 p 36097 L_Odometer_1_dnPosOut_8 p 36098 L_Odometer_1_dnPosOut_8 p 36099 L_Odometer_1_dnPosOut_8 p 36090 L_Odometer_1_dnPosOut_8 p 36090 L_Odometer_1_dnDeltaPos_32_p 36090 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnPosOut_p 36100 L_Odometer_1_dnPosOut_p 36101 L_Odometer_1_dnPosOut_p 36101 L_Odometer_1_dnPosOut_p 36101 L_Odometer_1_dnPosOut_p 36101 L_Odometer_1_dnPosOut_p 36101 L_PosCtrILin_2_dnPosOut_p	32203	MCK_dnMotorRefOffset_p
36040 LArithmetikPhi_1_Out_p	32204	MCK_dnPosSet_p
36046	32205	MCK_dnPosSetRelative_p
GainOffsetParPhi 2 Out p GainOffsetParPhi 2 Out p GainOffsetParPhi 2 Out p GainOffsetGainParPhi 1 Out p GainOffsetGainParPhi 1 Out p GainOffsetGainParPhi 2 Out p GainOffset	36040	L_ArithmetikPhi_1_Out_p
36050 LimitPhi_1_Out_p	36046	L_GainOffsetParPhi_1_Out_p
36051 L_LimitPhi_2_Out_p 36052 L_LimitPhi_3_Out_p 36060 L_OffsetGainParPhi_1_Out_p 36061 L_OffsetGainParPhi_2_Out_p 36066 L_PhaseIntK_1_dnOut_p 36067 L_PhaseIntK_2_dnOut_p 36067 L_PhaseIntK_2_dnOut_p 36070 L_ArithmetikPhi_2_Out_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36084 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_2_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnDeltaPos_23_p 36091 L_Odometer_1_dnDeltaPos_23_p 36091 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_56_p 36000 L_Odometer_1_dnDeltaPos_56_p 36000 L_Odometer_1_dnDeltaPos_56_p 36000 L_Odometer_1_dnDeltaPos_78_p 36101 L_Odometer_1_dnDeltaPos_18_p 36102 L_Odometer_1_dnDeltaPos_018_p 36103 L_CalcDiameter_dnPos_D 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_2_dnPosOut_p	36047	L_GainOffsetParPhi_2_Out_p
36052 L_LimitPhi_3_Out_p 36060 L_OffsetGainParPhi_1_Out_p 36061 L_OffsetGainParPhi_2_Out_p 36061 L_OffsetGainParPhi_2_Out_p 36062 L_PhaseIntK_1_dnOut_p 36067 L_PhaseIntK_2_dnOut_p 36070 L_ArithmetikPhi_3_Out_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_1_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36099 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_5_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnPosOut_8_p 36096 L_Odometer_1_dnPosOut_8_p 36097 L_Odometer_1_dnPosOut_8_p 36098 L_Odometer_1_dnPosOut_8_p 36099 L_Odometer_1_dnPosOut_8_p 36090 L_Odometer_1_dnPoltaPos_12_p 36091 L_Odometer_1_dnPoltaPos_23_p 36091 L_Odometer_1_dnDeltaPos_34_p 36093 L_Odometer_1_dnDeltaPos_56_p 36091 L_Odometer_1_dnDeltaPos_78_p 36091 L_Odometer_1_dnDeltaPos_78_p 36091 L_Odometer_1_dnDeltaPos_78_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_0u_p 36104 L_Philntegrator_dnOut32_p 36105 L_PosCtrlLin_2_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	36050	L_LimitPhi_1_Out_p
36060 L_OffsetGainParPhi_1_Out_p 36061 L_OffsetGainParPhi_2_Out_p 36061 L_PhaseIntK_1_dnOut_p 36066 L_PhaseIntK_1_dnOut_p 36067 L_PhaseIntK_2_dnOut_p 36070 L_ArithmetikPhi_2_Out_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36090 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_5_p 36094 L_Odometer_1_dnPosOut_5_p 36095 L_Odometer_1_dnPosOut_5_p 36096 L_Odometer_1_dnPosOut_5_p 36096 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_12_p 36097 L_Odometer_1_dnDeltaPos_56_p 36099 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_56_p 36091 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_78_p L_Odometer_1_dnDeltaPos_18_p 36090 L_Odometer_1_dnDeltaPos_18_p 36100 L_Odometer_1_dnDeltaPos_18_p 36101 L_Odometer_1_dnDeltaPos_18_p 36101 L_PosCtrlLin_2_dnPosOut_p 36100 L_PosCtrlLin_2_dnPosOut_p	36051	L_LimitPhi_2_Out_p
1.00	36052	L_LimitPhi_3_Out_p
36066 L_PhaseIntK_1_dnOut_p 36070 L_ArithmetikPhi_2_Out_p 36070 L_ArithmetikPhi_2_Out_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrIInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_4_p 36089 L_Odometer_1_dnPosOut_5_p 36090 L_Odometer_1_dnPosOut_5_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_8_p 36091 L_Odometer_1_dnPosOut_8_p 36091 L_Odometer_1_dnPosOut_8_p 36091 L_Odometer_1_dnPosOut_8_p 36091 L_Odometer_1_dnPosOut_8_p 36091 L_Odometer_1_dnDeltaPos_12_p 36091 L_Odometer_1_dnDeltaPos_23_p 36091 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_56_p 36001 L_Odometer_1_dnDeltaPos_56_p 36001 L_Odometer_1_dnDeltaPos_56_p 36001 L_Odometer_1_dnDeltaPos_56_p 36001 L_Odometer_1_dnDeltaPos_56_p 36001 L_Odometer_1_dnDeltaPos_58_p 36002 L_Odometer_1_dnDeltaPos_58_p 36001 L_Odometer_1_dnDeltaPos_0Ut_p 36001 L_PosCtrILin_2_dnPosOut_p	36060	L_OffsetGainParPhi_1_Out_p
36067 L_PhaseIntK_2_dnOut_p 36070 L_ArithmetikPhi_2_Out_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36099 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_8_p 4_Odometer_1_dnPosOut_8_p 4_Odometer_1_dnDeltaPos_12_p 36094 L_Odometer_1_dnDeltaPos_12_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 46105 L_PosCtrlLin_1_dnPosOut_p	36061	L_OffsetGainParPhi_2_Out_p
36070 L_ArithmetikPhi_2_Out_p 36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_2_p 36088 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_5_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnPosOut_8_p 36096 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_24_p 36098 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_56_p 36091 L_Odometer_1_dnDeltaPos_56_p 36002 L_Odometer_1_dnDeltaPos_56_p 36091 L_Odometer_1_dnDeltaPos_56_p 36002 L_Odometer_1_dnDeltaPos_56_p 36003 L_Odometer_1_dnDeltaPos_78_p 36004 L_Odometer_1_dnDeltaPos_18_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	36066	L_PhaseIntK_1_dnOut_p
36071 L_ArithmetikPhi_3_Out_p 36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_4_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_5_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_78_p 36103 L_CalcDiameter_dnPos_p L_PhiIntegrator_dnOut32_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36067	L_PhaseIntK_2_dnOut_p
36072 L_Sqrt_1_Out_p 36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_2_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36094 L_Odometer_1_dnPosOut_7_p 36095 L_Odometer_1_dnPosOut_8_p 36096 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_45_p 36098 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_78_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPosOut_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36070	L_ArithmetikPhi_2_Out_p
36073 L_Mux_1_Out_p 36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36090 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_5_p 36094 L_Odometer_1_dnPosOut_7_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_12_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_56_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_0t_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36071	L_ArithmetikPhi_3_Out_p
36074 L_ConvWordsToDInt_1_dnOut_p 36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_6_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_8_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_56_p 36098 L_Odometer_1_dnDeltaPos_56_p 36099 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_78_p 36101 L_Odometer_1_dnDeltaPos_18_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_2_dnPosOut_p	36072	L_Sqrt_1_Out_p
36075 L_ConvWordsToDInt_2_dnOut_p 36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_6_p 36092 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_7_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_56_p 36098 L_Odometer_1_dnDeltaPos_66_p 36099 L_Odometer_1_dnDeltaPos_67_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36073	L_Mux_1_Out_p
36076 L_ConvWordsToDInt_3_dnOut_p 36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_6_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_12_p 36097 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_23_p 36098 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36074	L_ConvWordsToDInt_1_dnOut_p
36077 L_ConvUnitsToIncr_1_dnOut_p 36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36090 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeItaPos_12_p 36096 L_Odometer_1_dnDeItaPos_23_p 36097 L_Odometer_1_dnDeItaPos_245_p 36098 L_Odometer_1_dnDeItaPos_56_p 36100 L_Odometer_1_dnDeItaPos_67_p 36101 L_Odometer_1_dnDeItaPos_67_p 36101 L_Odometer_1_dnDeItaPos_78_p 36102 L_Odometer_1_dnDeItaPos_18_p 36103 L_CalcDiameter_dnPosOut_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_2_dnPosOut_p	36075	L_ConvWordsToDInt_2_dnOut_p
36078 L_ConvUnitsToIncr_2_dnOut_p 36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_5_p 36093 L_Odometer_1_dnPosOut_6_p 36094 L_Odometer_1_dnPosOut_7_p 36095 L_Odometer_1_dnPosOut_8_p 36096 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_245_p 36098 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_2_dnPosOut_p	36076	L_ConvWordsToDInt_3_dnOut_p
36079 L_ConvUnitsToIncr_3_dnOut_p 36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36090 L_Odometer_1_dnPosOut_3_p 36091 L_Odometer_1_dnPosOut_5_p 36091 L_Odometer_1_dnPosOut_6_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_245_p 36098 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_78_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36077	L_ConvUnitsToIncr_1_dnOut_p
36080 L_Interpolator_1_dnPhiOut_p 36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_7_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_58_p 36102 L_Odometer_1_dnDeltaPos_78_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36078	L_ConvUnitsToIncr_2_dnOut_p
36081 L_MckCtrlInterface_1_dnPosSetOut_p 36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_7_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_34_p 36097 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_34_p 36099 L_Odometer_1_dnDeltaPos_45_p 36090 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_67_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36079	L_ConvUnitsToIncr_3_dnOut_p
36082 L_PhaseDiff_1_dnOut_p 36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_66_p 36090 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_58_p 36091 L_Odometer_1_dnDeltaPos_58_p 36091 L_Odometer_1_dnDeltaPos_58_p 36091 L_Odometer_1_dnDeltaPos_58_p 36091 L_Odometer_1_dnDeltaPos_58_p 36001 L_Odometer_1_dnDeltaPos_58_p 36001 L_Odometer_1_dnDeltaPos_58_p 36001 L_Odometer_1_dnDeltaPos_18_p 36001 L_Odometer_1_dnDeltaPos_18_p 36001 L_PosCtrlLin_1_dnPosOut_p 36010 L_PosCtrlLin_2_dnPosOut_p	36080	L_Interpolator_1_dnPhiOut_p
36083 L_PhaseDiff_2_dnOut_p 36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_6_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_34_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_578_p 36102 L_Odometer_1_dnDeltaPos_78_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36081	L_MckCtrlInterface_1_dnPosSetOut_p
36086 L_MckStateInterface_1_dnPosOut_p 36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36082	L_PhaseDiff_1_dnOut_p
36087 L_Odometer_1_dnPosOut_1_p 36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_7_p 36096 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_56_p 36090 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p	36083	L_PhaseDiff_2_dnOut_p
36088 L_Odometer_1_dnPosOut_2_p 36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	36086	L_MckStateInterface_1_dnPosOut_p
36089 L_Odometer_1_dnPosOut_3_p 36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_18_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	36087	L_Odometer_1_dnPosOut_1_p
36090 L_Odometer_1_dnPosOut_4_p 36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p		
36091 L_Odometer_1_dnPosOut_5_p 36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_56_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36092 L_Odometer_1_dnPosOut_6_p 36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36093 L_Odometer_1_dnPosOut_7_p 36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36094 L_Odometer_1_dnPosOut_8_p 36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36095 L_Odometer_1_dnDeltaPos_12_p 36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36096 L_Odometer_1_dnDeltaPos_23_p 36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	_	
36097 L_Odometer_1_dnDeltaPos_34_p 36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36098 L_Odometer_1_dnDeltaPos_45_p 36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36099 L_Odometer_1_dnDeltaPos_56_p 36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	_	
36100 L_Odometer_1_dnDeltaPos_67_p 36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	_	
36101 L_Odometer_1_dnDeltaPos_78_p 36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36102 L_Odometer_1_dnDeltaPos_18_p 36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	_	
36103 L_CalcDiameter_dnPos_p 36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36104 L_PhiIntegrator_dnOut32_p 36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p		
36105 L_PosCtrlLin_1_dnPosOut_p 36106 L_PosCtrlLin_2_dnPosOut_p	_	
36106 L_PosCtrlLin_2_dnPosOut_p		
		L DFSet dnPosDiffOut p
36108 L_DFSet_dnPosSetOut_p		
36109 L_GearComp_dnOut_p		
36110 L_ConvAP_1_dnOut_p	36110	L_ConvAP_1_dnOut_p

Selection li	Selection list - angle signals							
36111	L_ConvAP_2_dnOut_p							
36112	L_ConvAP_3_dnOut_p							
36113	_ConvPP_1_dnOut_p							
36114	ConvPP_2_dnOut_p							
36115	L_ConvPP_3_dnOut_p							
36116	L_SignalSwitch32_1_dnOut							
36117	L_SignalSwitch32_2_dnOut							
36118	L_SignalSwitch32_3_dnOut							
36119	_CalcDiameter_dwDiameter							
42005	A_NCtrl_dnFreeIn1_p							
42006	LA_NCtrl_dnFreeIn2_p							
42100	LA_TabPos_In_dnPosProfilePosition							
42101	LA_TabPos_In_dnFreeIn1_p							
42102	LA_TabPos_In_dnFreeIn2_p							
42205	LA_SwitchPos_dnFreeIn1_p							
42206	LA_SwitchPos_dnFreeIn2_p							

16.3 Table of attributes

The table of attributes contains information required for a communication with the controller via parameters.

How to read the table of attributes:

Column		Meaning	Entry						
Code		Parameter name	Cxxxxx						
Name		Parameter short text (display text)	Text						
Code	dec	Index under which the parameter is addressed.	24575 - Lenze code number	Is only required for access via a bus					
	hex	The subindex for array variables corresponds to the Lenze subcode number.	Cxxxxx Text d. 24575 - Lenze code number Is only requires system. E Single variab (only one part A Array variable (several para Number INTEGER_16 2 bytes with INTEGER_32 4 bytes with UNSIGNED_8 1 byte witho UNSIGNED_16 2 bytes with UNSIGNED_16 2 bytes with UNSIGNED_32 4 bytes with UNSIGNED_32 4 bytes with VISIBLE_STRING [xx] ASCII string (or The string of the string of the string or The string or	system.					
Code Name Index dec her Data DS DA DT Access R W	DS	Data structure	Е	Single variable (only one parameter element)					
			Α	Array variable (several parameter elements)					
	DA	Number of array elements (subcodes)	Number						
	DT	Data type	INTEGER_16	2 bytes with sign					
			INTEGER_32	4 bytes with sign					
			UNSIGNED_8	1 byte without sign					
			UNSIGNED_16	2 bytes without sign					
			UNSIGNED_32	4 bytes without sign					
			VISIBLE_STRING [xx]	ASCII string (with character length xx)					
	Factor	Factor for data transmission via a bus system, depending on the number of decimal positions	Factor	1 ≡ no decimal positions 10 ≡ 1 decimal position 100 ≡ 2 decimal positions 1000 ≡ 3 decimal positions 10000 ≡ 4 decimal positions					
Access	R	Read access	☑ Reading permitted						
	W	Write access	☑ Writing permitted						
	CINH	Controller inhibit required	☑ Writing is only possible if the controller is inhibited						

Code	Name	Ind	Index Data			Access				
		dec	hex	DS	DA	DT	Factor	R	W	CINH
<u>C00002</u>	Device commands	24573	5FFD	Α	34	UNSIGNED_8	1		☑	
C00003	Status of the last device command	24572	5FFC	E	1	UNSIGNED_8	1	☑		
<u>C00005</u>	Application	24570	5FFA	E	1	UNSIGNED_16	1		☑	
<u>C00006</u>	Motor control	24569	5FF9	E	1	UNSIGNED_8	1	☑	☑	
<u>C00007</u>	Control mode	24568	5FF8	E	1	UNSIGNED_16	1		☑	
<u>C00008</u>	Original application control source	24567	5FF7	E	1	UNSIGNED_16	1			
C00010	AIN1: Characteristic	24565	5FF5	Α	8	INTEGER_16	100		☑	
C00011	Appl.: Reference speed	24564	5FF4	E	1	UNSIGNED_16	1		☑	
<u>C00012</u>	Accel. time - main setpoint	24563	5FF3	E	1	UNSIGNED_32	1000		☑	
C00013	Decel. time - main setpoint	24562	5FF2	E	1	UNSIGNED_32	1000		☑	
<u>C00015</u>	VFC: V/f base frequency	24560	5FF0	E	1	UNSIGNED_16	10		☑	
<u>C00016</u>	VFC: Vmin boost	24559	5FEF	E	1	UNSIGNED_16	100	☑	☑	
C00018	Switching frequency	24557	5FED	E	1	UNSIGNED_8	1		☑	
<u>C00019</u>	Auto DCB: Threshold	24556	5FEC	E	1	UNSIGNED_16	1		☑	
<u>C00020</u>	AIN2: Characteristic	24555	5FEB	Α	8	INTEGER_16	100	☑	☑	
C00021	Slip comp.	24554	5FEA	E	1	INTEGER_16	100		☑	
<u>C00022</u>	Imax in motor mode	24553	5FE9	E	1	UNSIGNED_16	100		Ø	
<u>C00023</u>	Imax in generator mode	24552	5FE8	E	1	INTEGER_16	100	☑	Ø	
C00024	LS_DriveInterface: bNActCompare	24551	5FE7	E	1	INTEGER_16	100	$\overline{\mathbf{v}}$	Ø	
<u>C00026</u>	AINx: Offset	24549	5FE5	Α	2	INTEGER_16	100	☑	☑	

Table of attributes

Code	Name	Index				Data		Access		
		dec hex		DS	DA	DT	Factor	R W		CINH
C00027	AlNx: Gain	24548	5FE4	Α	2	INTEGER_32	10000		Ø	
C00028	AINx: Input voltage	24547	5FE3	Α	2	INTEGER_16	100	☑		
C00029	AINx: Input current	24546	5FE2	Α	2	INTEGER_16	100			
C00033	AINx: Output value	24542	5FDE	Α	2	INTEGER_16	100			
C00034	AINx: Configuration	24541	5FDD	Α	2	UNSIGNED_8	1	$\overline{\mathbf{A}}$	☑	
C00036	DC braking: Current	24539	5FDB	Е	1	INTEGER_16	100	$\overline{\mathbf{A}}$	☑	
C00039	Fixed setpoint x (L_NSet_1 n-Fix)	24536	5FD8	Α	15	INTEGER_16	100	$\overline{\mathbf{A}}$	☑	
C00050	MCTRL: Speed setpoint	24525	5FCD	Е	1	INTEGER 32	1			
C00051	MCTRL: Actual speed value	24524	5FCC	Е	1	INTEGER_32	1	☑		
C00052	Motor voltage	24523	5FCB	Е	1	UNSIGNED 16	1			
C00053	DC-bus voltage	24522	5FCA	Е	1	UNSIGNED 16	1			
C00054	Motor current	24521	5FC9	Е	1	UNSIGNED 16	100			
C00055	Actual values	24520	5FC8	Α	4	INTEGER 16	1	☑		_
C00056	Torque	24519	5FC7	Α	2	INTEGER 32	100	\square		
C00057	Maximum torque	24518	5FC6	E	1	UNSIGNED 32	100	<u> </u>		-
C00058	Output frequency	24517	5FC5	E	1	INTEGER 32	100	<u> </u>		_
C00059	Appl.: Reference frequency C11	24516	5FC4	E	1	UNSIGNED 32	100	<u> </u>		-
C00059	Motor rotor position	24515	5FC3	E	1	UNSIGNED 16	100	<u> </u>		-
			5FC2	E	_	_		<u> </u>		
C00061	Heatsink temperature	24514		-	1	INTEGER_16	1			-
C00062	Interior temperature	24513	5FC1	A	1	INTEGER_16	1	☑		-
C00063	Motor temperature	24512	5FC0	A	3	INTEGER_16	1	☑		-
<u>C00064</u>	Device utilisation (Ixt)	24511	5FBF	Α	3	INTEGER_16	100	Ø		-
<u>C00065</u>	Supply voltage 24V	24510	5FBE	E	1	INTEGER_16	10	☑		-
<u>C00066</u>	Thermal motor load (I²xt)	24509	5FBD	E	1	INTEGER_16	100	☑		-
C00070	Vp speed controller	24505	5FB9	Α	3	UNSIGNED_16	100	☑	☑	_
C00071	Ti speed controller	24504	5FB8	Α	3	UNSIGNED_16	10	☑	☑	
<u>C00072</u>	SC: Tdn speed controller	24503	5FB7	E	1	UNSIGNED_16	100	☑	☑	_
C00073	Imax/M controller gain	24502	5FB6	Α	2	UNSIGNED_16	100	☑	☑	
C00074	Reset time Imax/M controller	24501	5FB5	Α	2	UNSIGNED_16	1	☑	☑	
C00075	Vp current controller	24500	5FB4	E	1	UNSIGNED_16	100	Ø	☑	
C00076	Ti current controller	24499	5FB3	E	1	UNSIGNED_16	100	☑	☑	
C00077	SC: Vp field controller	24498	5FB2	E	1	UNSIGNED_16	100	☑	Ø	
C00078	SC: Tn field controller	24497	5FB1	E	1	UNSIGNED_16	10	☑	Ø	
C00079	SC: Settings	24496	5FB0	Α	4	UNSIGNED_8	1	$\overline{\checkmark}$		
C00080	Override point of field weakening	24495	5FAF	E	1	INTEGER_16	1	\square		
C00081	Rated motor power	24494	5FAE	E	1	UNSIGNED_16	100	\square	Ø	
C00082	Motor rotor resistance	24493	5FAD	E	1	UNSIGNED_32	1	$\overline{\mathbf{Z}}$	☑	
C00083	Motor rotor time constant	24492	5FAC	E	1	UNSIGNED_16	1			
C00084	Motor stator resistance	24491	5FAB	E	1	UNSIGNED_32	1	☑	Ø	
C00085	Motor stator leakage inductance	24490	5FAA	Е	1	UNSIGNED_16	100	$\overline{\mathbf{A}}$	☑	
C00087	Rated motor speed	24488	5FA8	Е	1	UNSIGNED_16	1	$\overline{\mathbf{Z}}$	Ø	
C00088	Rated motor current	24487	5FA7	Е	1	UNSIGNED_16	100	$\overline{\mathbf{V}}$	Ø	
C00089	Rated motor frequency	24486	5FA6	Е	1	UNSIGNED_16	1	$\overline{\mathbf{v}}$	Ø	
C00090	Rated motor voltage	24485	5FA5	E	1	UNSIGNED 16	1		☑	
C00091	Motor cosine phi	24484	5FA4	Е	1	UNSIGNED 8	100	V		
C00092	Motor magnetising inductance	24483	5FA3	E	1	UNSIGNED 16	10	<u> </u>		1
C00093	Power section ID	24482	5FA2	E	1	UNSIGNED 16	1		_	_
C00095	Motor magnetising current	24480	5FA0	E	1	UNSIGNED_16	100		\square	-
C00097	Rated motor torque	24478	5F9E	E	1	UNSIGNED 32	100	<u> </u>		+-
C00097	Rated device current	24478	5F9D	E	1	UNSIGNED_32	100	<u> </u>		-
C00098	Firmware version	24477	5F9C	E	1	VISIBLE_STRING [<u> </u>		-

Code	Name	Ind	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	w	CINH
C00100	Firmware version	24475	5F9B	Α	4	UNSIGNED_8	1	☑		
C00101	Add. acceleration time x	24474	5F9A	Α	15	UNSIGNED_32	1000	☑	☑	
C00103	Add. deceleration time x	24472	5F98	Α	15	UNSIGNED_32	1000	☑	☑	
C00104	Position control at quick stop	24471	5F97	Α	1	UNSIGNED_16	1	☑	Ø	
C00105	Decel. time - quick stop	24470	5F96	Е	1	UNSIGNED_32	1000	☑	☑	
C00106	Auto DCB: Hold time	24469	5F95	Е	1	UNSIGNED_32	1000	☑	Ø	
C00107	DC braking: Hold time	24468	5F94	Е	1	UNSIGNED_32	1000	☑	Ø	
C00114	DigInX: Inversion	24461	5F8D	Е	1	UNSIGNED_16	1	☑	☑	
C00115	DI 1/2 & 6/7: Function	24460	5F8C	Α	2	UNSIGNED_8	1	☑	☑	
C00117	Status of brake output BD	24458	5F8A	Е	1	UNSIGNED_8	1	$\overline{\mathbf{A}}$		
C00118	DigOutX: Inversion	24457	5F89	Е	1	UNSIGNED_8	1	☑	☑	
C00120	Setting of motor overload (I2xt)	24455	5F87	Е	1	INTEGER_16	100	☑	☑	
C00121	Warning threshold motor temperature	24454	5F86	Α	2	UNSIGNED_16	1	☑	Ø	
C00123	Device utilisat. threshold (Ixt)	24452	5F84	Е	1	INTEGER_16	100	$\overline{\mathbf{A}}$	Ø	
C00129	Brake resistance value	24446	5F7E	Е	1	UNSIGNED_16	10	\square	☑	
C00130	Rated brake resistor power	24445	5F7D	Е	1	UNSIGNED_16	1	\square	☑	
C00131	Thermal capacity - brake resistor	24444	5F7C	Е	1	UNSIGNED 16	10	☑	\square	
C00133	Brake resistor utilisation	24442	5F7A	Е	1	UNSIGNED_16	1	☑		
C00134	L_NSet_1: Ramp smoothing	24441	5F79	Е	1	UNSIGNED_8	1	☑	☑	
C00136	Communication control words	24439	5F77	Α	2	UNSIGNED_16	1	☑		
C00137	Device status	24438	5F76	Е	1	UNSIGNED_16	1	☑		
C00138	Internal control signals	24437	5F75	Α	3	UNSIGNED 16	1	$\overline{\mathbf{v}}$		
C00142	Auto-start option	24433	5F71	Е	1	UNSIGNED 8	1	$\overline{\mathbf{A}}$	\square	
C00144	Thermal switching frequency reduction	24431	5F6F	E	1	UNSIGNED_8	1	☑	Ø	
<u>C00148</u>	LS_DriveInterface: Error message config.	24427	5F6B	E	1	UNSIGNED_16	1	☑	Ø	
C00150	Status word	24425	5F69	Е	1	UNSIGNED_16	1	☑		
C00155	Extended status word	24420	5F64	E	1	UNSIGNED_16	1			
C00158	Cause of controller inhibit	24417	5F61	Е	1	UNSIGNED_16	1	☑		
C00159	Cause of quick stop QSP	24416	5F60	E	1	UNSIGNED_16	1			
C00160	Status determining error (16-bit)	24415	5F5F	Α	1	UNSIGNED_16	1	\square		
C00161	LS_SetError_x: Error number	24414	5F5E	Α	8	UNSIGNED_16	1			
C00163	Logbook - binary elements	24412	5F5C	Α	2	UNSIGNED_16	1			
C00164	Logbook - analog elements	24411	5F5B	Α	1	UNSIGNED_16	1	\square	Ø	
C00165	Error information	24410	5F5A	Α	2	VISIBLE_STRING [1	.4]			
C00166	Error information text	24409	5F59	Α	6	VISIBLE_STRING [3	80]	☑		
C00168	Status determining error	24407	5F57	E	1	UNSIGNED_32	1	☑		
C00169	Logbook setting	24406	5F56	Е	1	UNSIGNED_16	1	☑	\square	
C00170	Current error	24405	5F55	Е	1	UNSIGNED_32	1	\square		
C00173	Mains voltage	24402	5F52	Е	1	UNSIGNED_8	1	$\overline{\mathbf{v}}$	Ø	V
C00174	Reduc. brake chopper threshold	24401	5F51	Е	1	UNSIGNED_8	1	☑	☑	
C00175	Brake energy management	24400	5F50	Е	1	UNSIGNED_8	1	$\overline{\mathbf{v}}$	Ø	V
C00177	Switching cycles	24398	5F4E	Α	5	UNSIGNED_32	1	\square		
C00178	Elapsed-hour meter	24397	5F4D	Е	1	UNSIGNED_32	1	☑		
C00179	Power-on time meter	24396	5F4C	Е	1	UNSIGNED_32	1	\square		
C00180	Running time	24395	5F4B	Α	3	UNSIGNED_32	1	☑		
C00181	Time settings	24394	5F4A	Α	1	UNSIGNED_16	1	☑	☑	
C00182	L_NSet_1: S-ramp time PT1	24393	5F49	Е	1	INTEGER_16	100	☑	☑	
C00184	AutoFailReset repetition time	24391	5F47	Е	1	UNSIGNED_16	1	☑	☑	
C00185	AutoFailReset residual runtime	24390	5F46	Е	1	UNSIGNED 16	1	$\overline{\mathbf{v}}$		

Code	Name	Inc	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C00186	Max. number of AutoFailReset processes	24389	5F45	E	1	UNSIGNED_8	1	☑	Ø	
C00187	Current AutoFailReset processes	24388	5F44	Е	1	UNSIGNED_8	1	☑		
C00188	AutoFailReset configuration	24387	5F43	E	1	UNSIGNED_8	1	☑	☑	
C00189	Resp. to too frequent AutoFailReset	24386	5F42	Е	1	UNSIGNED_8	1		☑	
C00190	L_NSet_1: Setpoint arithmetic	24385	5F41	Е	1	UNSIGNED_8	1	☑	\square	
C00199	Description data	24376	5F38	Α	1	VISIBLE_STRING [2	4]	☑	\square	
C00200	Firmware product type	24375	5F37	Е	1	VISIBLE_STRING [1	9]	☑		
C00201	Firmware	24374	5F36	Α	9	VISIBLE_STRING [2	2]	☑		
C00203	Product type code	24372	5F34	Α	9	VISIBLE_STRING [2	4]	☑		
C00204	Serial number	24371	5F33	Α	9	VISIBLE_STRING [2	4]	☑		
<u>C00220</u>	L_NSet_1: Acceleration time - add. setpoint	24355	5F23	E	1	UNSIGNED_32	1000	☑	Ø	
C00221	L_NSet_1: Deceleration time - add. setpoint	24354	5F22	E	1	UNSIGNED_32	1000	Ø	Ø	
<u>C00222</u>	L_PCTRL_1: Vp	24353	5F21	E	1	INTEGER_16	10	☑	☑	
<u>C00223</u>	L_PCTRL_1: Tn	24352	5F20	Е	1	UNSIGNED_16	1	☑	☑	
C00224	L_PCTRL_1: Kd	24351	5F1F	E	1	UNSIGNED_16	10	☑	☑	
C00225	L_PCTRL_1: MaxLimit	24350	5F1E	E	1	INTEGER_16	100	☑	☑	
C00226	L_PCTRL_1: MinLimit	24349	5F1D	Е	1	INTEGER_16	100		☑	
C00227	L_PCTRL_1: Accel. time	24348	5F1C	Е	1	UNSIGNED_32	1000	☑	\square	
C00228	L_PCTRL_1: Deceleration time	24347	5F1B	Е	1	UNSIGNED_32	1000	Ø	Ø	
C00231	L_PCTRL_1: Operating range	24344	5F18	Α	4	INTEGER_16	100	☑	\square	
C00233	L_PCTRL_1: Root function	24342	5F16	Е	1	UNSIGNED_8	1	☑	☑	
C00234	Oscillation damping influence	24341	5F15	Е	1	UNSIGNED_16	100	☑	☑	
C00235	Oscillation damping filter time	24340	5F14	Е	1	UNSIGNED_8	1	V	Ø	
C00236	Oscillation damping field weakening	24339	5F13	Е	1	UNSIGNED_8	1		✓	
C00241	L NSet 1: Hyst. NSet reached	24334	5F0E	Е	1	INTEGER 16	100	☑	\square	
C00242	L PCTRL 1: Operating mode	24333	5F0D	Е	1	UNSIGNED 8	1	☑	\square	
C00243	L_PCTRL_1: Accel. time influence	24332	5F0C	Е	1	UNSIGNED_32	1000		✓	
C00244	L PCTRL 1: Decel. time influence	24331	5F0B	Е	1	UNSIGNED 32	1000	☑	☑	
C00245	L PCTRL 1: PID output value	24330	5F0A	Е	1	INTEGER 16	100	☑		
C00246	L PCTRL 1: nAct a internal	24329	5F09	Е	1	INTEGER 16	100	☑		
C00247	L PCTRL 1: Window setpoint reached	24328	5F08	Е	1	INTEGER 16	100		\square	
C00249	L PT1 1: Time constant	24326	5F06	Е	1	UNSIGNED_16	1	$\overline{\mathbf{V}}$	☑	
C00250	L PT1 2-3: Time constant	24325	5F05	Α	2	INTEGER 16	1		\square	
C00251	L DT1 1: Time constant	24324	5F04	Е	1	INTEGER 16	1	☑	\square	
C00252	L DT1 1: Gain	24323	5F03	Е	1	INTEGER 16	100		\square	
C00253	L DT1 1: Sensitivity	24322	5F02	E	1	UNSIGNED 8	1			
C00254	Kp position controller	24321	5F01	E	1	UNSIGNED 16	100	_ _	\square	-
C00270	SC: Freq. current setpoint filter	24305	5EF1	E	1	UNSIGNED 16	10			
C00271	SC: Current setpoint filter width	24304	5EF0	E	1	UNSIGNED 16	10			
C00272	SC: Current setpoint filter depth	24303	5EEF	E	1	UNSIGNED 16	1	<u> </u>		_
C00272	Moment of inertia	24302	SEEE	E	1	UNSIGNED 32	100	Ø		_
C00274	SC: Max. change in acceleration	24301	5EED	E	1	UNSIGNED_16	10			
C00275	Setpoint feedforward control filtering	24300	5EEC	E	1	UNSIGNED 16	10			
C00276	SC: max. output voltage	24299	5EEB	E	1	UNSIGNED 8	1	<u> </u>		-
C00270	SC: Filter time const. DC detection	24295	SEE7	E	1	UNSIGNED_16	1	Ø		
C00312	System runtimes	24263	5EC7	A	1	UNSIGNED_32	1000			+
C00312	Main program runtime	24254	5EBE	A	2	UNSIGNED_32	1000	<u>v</u>		\vdash
C00321	Transmission mode CAN TxPDOs	24254	5EBD	A	3	UNSIGNED_16 UNSIGNED 8	1	☑		-
<u>C00322</u>	Transmission mode CAN Rx PDOs	24253	5EBC	A	3	UNSIGNED_8	1	☑		-

Code	Name	Ind	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C00324	CAN transmit blocking time	24251	5EBB	Α	4	UNSIGNED_16	1	☑		
C00338	L_Arithmetik_1: Function	24237	5EAD	Е	1	UNSIGNED_8	1	Ø	Ø	
C00339	L_Arithmetik_2: Function	24236	5EAC	Е	1	UNSIGNED_8	1	☑	Ø	
<u>C00341</u>	CAN management - error configuration	24234	5EAA	Е	1	UNSIGNED_16	1	Ø	Ø	
C00342	CAN decoupling PDOInOut	24233	5EA9	Α	2	UNSIGNED_16	1	☑	Ø	
C00343	LP_CanIn decoupling value	24232	5EA8	Α	12	UNSIGNED_16	1	☑	Ø	
C00344	LP_CanOut decoupling value	24231	5EA7	Α	12	UNSIGNED_16	1	☑	Ø	
C00345	CAN error status	24230	5EA6	Е	1	UNSIGNED_8	1	☑		
C00347	CAN status HeartBeat producer	24228	5EA4	Α	15	UNSIGNED_8	1	☑		
C00349	CAN setting - DIP switch	24226	5EA2	Е	1	UNSIGNED_16	1	☑		
C00350	CAN node address	24225	5EA1	Е	1	UNSIGNED 8	1	☑	Ø	
C00351	CAN baud rate	24224	5EA0	Е	1	UNSIGNED 8	1	☑	Ø	
C00352	CAN Slave/Master	24223	5E9F	Е	1	UNSIGNED 8	1	☑	☑	
C00353	CAN IN/OUT COBID source	24222	5E9E	Α	3	UNSIGNED 8	1	☑	\square	_
C00354	COBID	24221	5E9D	Α	6	UNSIGNED 32	1		\square	_
C00355	Active COBID	24220	5E9C	Α	6	UNSIGNED_16	1	Ø		
C00356	CAN time settings	24219	5E9B	Α	5	UNSIGNED 16	1	Ø	✓	_
C00357	CAN monitoring times	24218	5E9A	A	3	UNSIGNED 16	1	<u> </u>		-
C00358	CANx OUT data length	24217	5E99	A	3	UNSIGNED 8	1	☑		-
C00359	CAN status	24216	5E98	E	1	UNSIGNED 8	1	☑		\vdash
C00355	CAN telegram counter	24215	5E97	A	12	UNSIGNED_6	1	☑		-
C00364		24213	5E93	E	1	_	1	☑		\vdash
	CAN MessageError			E		UNSIGNED_8		☑		-
C00366	Number of CAN SDO channels	24209	5E91	_	1	UNSIGNED_8	1			-
C00367	CAN Sync-Rx-Identifier	24208	5E90	E	1	UNSIGNED_16	1	☑		-
C00368	CAN Sync-Tx-Identifier	24207	5E8F	E	1	UNSIGNED_16	1	☑		-
C00369	CAN Sync transmission cycle time	24206	5E8E	E	1	UNSIGNED_16	1	☑		-
<u>C00370</u>	SyncTxRxTimes	24205	5E8D	Α	2	INTEGER_16	1	 ✓		-
C00372	CAN_Tx_Rx_Error	24203	5E8B	Α -	4	UNSIGNED_8	1	☑	_	-
C00381	CAN Heartbeat producer time	24194	5E82	E	1	UNSIGNED_16	1	☑		-
C00385	CAN node addr. HeartBeat producer	24190	5E7E	Α	15	UNSIGNED_8	1	☑		-
C00386	CAN HeartBeat-ConsumerTime	24189	5E7D	Α	15	UNSIGNED_16	1	☑	☑	-
<u>C00400</u>	LS_PulseGenerator	24175	5E6F	Α	3	UNSIGNED_16	1	☑	☑	-
C00401	CANxInOut: Inversion	24174	5E6E	Α	6	UNSIGNED_16	1	☑	☑	-
C00408	LP_CanIn mapping selection	24167	5E67	Α	3	UNSIGNED_8	1	☑	☑	-
C00409	LP_CanIn mapping	24166	5E66	Α	12	UNSIGNED_16	1	☑	☑	-
C00410	L_SignalMonitor_a: Signal sources	24165	5E65	Α	4	UNSIGNED_16	1	☑	☑	
C00411	L_SignalMonitor_b: Signal sources	24164	5E64	Α	4	UNSIGNED_16	1	☑	☑	
C00412	L_SignalMonitor_b: Inversion	24163	5E63	Е	1	UNSIGNED_8	1	☑	☑	
C00413	L_SignalMonitor_a: Offs./gain	24162	5E62	Α	8	INTEGER_16	100	☑	☑	
C00417	Activate resolver error comp.	24158	5E5E	E	1	UNSIGNED_8	1	☑	☑	
<u>C00420</u>	Encoder number of increments	24155	5E5B	Α	3	UNSIGNED_16	1	☑	☑	
C00421	LS_Multi-Encoder: Supply voltage	24154	5E5A	E	1	UNSIGNED_16	10	☑	☑	
C00422	LS_Multi-Encoder: Encoder type	24153	5E59	E	1	UNSIGNED_8	1		☑	✓
C00423	DOx: Delay times	24152	5E58	Α	10	UNSIGNED_16	1000		Ø	
C00424	Pulse form TTL encoder	24151	5E57	E	1	UNSIGNED_8	1		Ø	
C00425	Encoder scanning time	24150	5E56	Α	2	UNSIGNED_8	1	☑	☑	☑
C00426	SSI encoder: Data bits	24149	5E55	Α	7	UNSIGNED_8	1	☑	☑	☑
C00427	SSI encoder: Bit rate	24148	5E54	E	1	UNSIGNED_8	1		Ø	☑
C00428	SSI encoder: Coding	24147	5E53	Е	1	UNSIGNED_8	1	☑	Ø	☑
C00434	OxU/I: Gain	24141	5E4D	Α	4	INTEGER_16	100	☑	\square	

Code	Name	Inc	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C00435	OxU/I: Offset	24140	5E4C	Α	4	INTEGER_16	100	✓	☑	
C00436	OxU: Voltage	24139	5E4B	Α	2	INTEGER_16	100	✓		
C00437	OxI: Current	24138	5E4A	Α	2	INTEGER_32	1000	☑		
C00439	OxU/I: Input value	24136	5E48	Α	4	INTEGER_16	100			
C00440	LS_AnalogIn1: PT1 time constant	24135	5E47	Α	2	UNSIGNED_16	1	✓	☑	
C00441	Decoupling AnalogOut	24134	5E46	Е	1	UNSIGNED_16	1	✓	☑	
C00442	AOutx: Decoupling value	24133	5E45	Α	4	INTEGER_16	100	☑	☑	
C00443	Dlx: Level	24132	5E44	Α	2	UNSIGNED_16	1	☑		
C00444	DOx: Level	24131	5E43	Α	2	UNSIGNED_16	1	✓		
C00445	FreqInxx_nOut_v	24130	5E42	Α	2	INTEGER_16	1	☑		
C00446	FreqInxx_nOut_a	24129	5E41	Α	2	INTEGER_16	100			
C00447	DigOut decoupling	24128	5E40	Е	1	UNSIGNED 16	1	$\overline{\mathbf{v}}$	V	
C00448	DigOut decoupling value	24127	5E3F	Е	1	UNSIGNED 16	1	$\overline{\mathbf{v}}$	V	
C00449	FreqInxx dnOut p	24126	5E3E	Α	1	INTEGER 32	1	$\overline{\mathbf{v}}$		
C00461	Remote: Acceleration/deceleration time	24114	5E32	Α	1	UNSIGNED_32	1000	Ø	Ø	
C00462	Remote: Control	24113	5E31	Α	2	UNSIGNED_16	1	$\overline{\mathbf{V}}$	✓	-
C00463	Remote: MCK control	24112	5E30	A	1	UNSIGNED 32	1	<u> </u>		
C00464	Remote: Monitoring timeout	24111	5E2F	A	1	UNSIGNED_16	1	I		
C00465	Keypad: Time-out welcome screen	24110	5E2E	E	1	INTEGER 32	1	<u> </u>		-
C00466	Keypad: Default parameter	24109	5E2D	E	1	INTEGER 32	1	<u> </u>		
C00467	Keypad: Default welcome screen	24108	5E2C	E	1	INTEGER 32	1	<u> </u>		
C00469	Keypad: STOP key function	24106	5E2A	E	1	INTEGER 32	1	<u> </u>		V
C00470	LS ParFree b	24105	5E29	A	32	UNSIGNED 8	1	<u> </u>		
C00471	LS_ParFree	24104	5E28	A	32	UNSIGNED 16	1	I		
C00472	LS ParFree a	24103	5E27	A	16	INTEGER 16	100	I		
C00473	LS_ParFree_v	24102	5E26	A	8	INTEGER 16	1	I		
C00474	LS_ParFree_p	24101	5E25	A	8	INTEGER_32	1	<u> </u>		-
C00475	LS ParFreeUnit 1 2	24100	5E24	A	32	INTEGER 32	10000	I		
C00476	LS_ParFree_a_2	24099	5E23	A	16	INTEGER 16	100	<u> </u>		-
C00477	LS_ParFree_2	24098	5E22	A	32	UNSIGNED 16	1	I		
C00478	LS_ParFree_v_2	24097	5E21	A	8	INTEGER 16	1	<u> </u>		
C00478	LS ParFree32	24096	5E20	A	8	INTEGER 32	1	<u> </u>	2	
C00480	LS_DisFree_b	24095	5E1F	E	1	UNSIGNED_16	1	<u> </u>		
C00481	LS DisFree	24094	5E1E	A	8	UNSIGNED 16	1	I		
C00482	LS_DisFree_a	24093	5E1D	A	8	INTEGER 16	100			
C00483	LS_DisFree_p	24092	5E1C	A	8	INTEGER_32	1			
C00484	Application units: Offset	24091	5E1B	A	4	INTEGER 16	100	I		
C00485	Application units display factor	24090	5E1A	A	4	INTEGER 32	10000			
C00486	Application units:	24089	5E19	A	4	VISIBLE STRING [7]	10000	I		
C00487	Application units	24088	5E18	A	4	INTEGER 32	100	I		-
C00487	L JogCtrlEdgeDetect 1	24088	5E17	A	6	UNSIGNED 8	100	<u> </u>	\square	-
C00490	Position encoder selection	24087	5E17	E	1	UNSIGNED_8	1	<u>v</u>		
C00490	Hiperface: Detected TypCode	24083	5E13	E	1	UNSIGNED 8	1	<u> </u>		-
C00492	Hiperface: TypCode	24083	5E12	E	1	UNSIGNED_8	1	<u>v</u>	\square	
C00494	Hiperface: Resolutions	24082	5E12	A	2	UNSIGNED_8 UNSIGNED 32	1	<u>v</u>		
	Speed sensor selection	24081	5E10	E	1	UNSIGNED 8	1	<u> </u>		-
(()()()()()()	Specia serisor serection			-	1	UNSIGNED_8	1	<u> </u>		
C00495	Encoder evaluation method DigIn12	24079	5-0-							
<u>C00496</u>	Encoder evaluation method DigIn12	24079	5E0F	Ε	-					
	Encoder evaluation method DigIn12 Nact filter time constant Open-circuit monitoring	24079 24078 24077	5E0F 5E0E 5E0D	A	4	UNSIGNED_16 UNSIGNED 8	10	<u> </u>	✓	

Code	Name	Ind	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	w	CINH
C00507	Current password protection	24068	5E04	Α	1	UNSIGNED_16	1	☑		
C00517	User menu	24058	5DFA	Α	32	INTEGER_32	1000	Ø	☑	
C00560	Fan switching status	24015	5DCF	Α	2	UNSIGNED_8	1	☑		
C00561	Failure indication	24014	5DCE	Α	5	UNSIGNED_8	1	☑		
C00565	Resp. to mains phase failure	24010	5DCA	Е	1	UNSIGNED_8	1	☑	Ø	
C00566	Resp. to fan failure	24009	5DC9	E	1	UNSIGNED_8	1	☑	\square	
C00567	Resp. to speed controller limited	24008	5DC8	Е	1	UNSIGNED_8	1	☑	☑	
C00569	Resp. to peak current	24006	5DC6	Α	1	UNSIGNED_8	1	Ø	☑	
C00570	Resp. to controller limitations	24005	5DC5	Α	4	UNSIGNED_8	1	☑	Ø	
C00572	Brake resistor overload threshold	24003	5DC3	E	1	UNSIGNED_8	1	☑	Ø	
<u>C00574</u>	Resp. to brake resist. overtemp.	24001	5DC1	E	1	UNSIGNED_8	1		Ø	
<u>C00576</u>	SC: Field feedforward control	23999	5DBF	E	1	UNSIGNED_16	1		☑	
<u>C00577</u>	SC: Vp field weakening controller	23998	5DBE	E	1	UNSIGNED_16	10000	☑	☑	
C00578	SC: Tn field weakening controller	23997	5DBD	E	1	UNSIGNED_16	10		☑	
<u>C00579</u>	Resp. to max. speed/output freq. reached	23996	5DBC	E	1	UNSIGNED_8	1	☑	Ø	
C00580	Resp. to operating system error	23995	5DBB	Α	1	UNSIGNED_8	1	Ø	☑	
C00581	Resp. to LS_SetError_x	23994	5DBA	Α	8	UNSIGNED_8	1	Ø	☑	
C00582	Resp. to heatsink temp.> shutdown temp5°C	23993	5DB9	E	1	UNSIGNED_8	1	☑	Ø	
C00583	Resp. to motor temperature KTY	23992	5DB8	Α	6	UNSIGNED_8	1	☑	Ø	
C00585	Resp. to motor overtemp. PTC	23990	5DB6	Е	1	UNSIGNED_8	1	☑	Ø	
C00586	Resp. to encoder open circuit HTL	23989	5DB5	E	1	UNSIGNED_8	1	Ø	☑	
C00588	Resp. to max. speed at switching freq.	23987	5DB3	E	1	UNSIGNED_8	1	Ø	☑	
C00590	Resp. to switch. frequency red.	23985	5DB1	E	1	UNSIGNED_8	1	☑	☑	
C00592	Resp. to CAN bus connection	23983	5DAF	Α	5	UNSIGNED_8	1	☑	Ø	
C00593	Resp. to CANx_IN monitoring	23982	5DAE	Α	3	UNSIGNED_8	1	☑	☑	
C00594	Resp. to control word error	23981	5DAD	Α	2	UNSIGNED_8	1		Ø	
C00595	MCK: Resp. to MCK error	23980	5DAC	Α	15	UNSIGNED_8	1		☑	
C00597	Resp. to motor phase failure	23978	5DAA	E	1	UNSIGNED_8	1		☑	
<u>C00598</u>	Resp. to open circuit AINx	23977	5DA9	Α	2	UNSIGNED_8	1	☑	☑	
C00599	Motor phase failure threshold	23976	5DA8	E	1	INTEGER_16	100	☑	Ø	
<u>C00600</u>	Resp. to DC bus voltage	23975	5DA7	Α	1	UNSIGNED_8	1	☑	Ø	
C00601	Delayed resp. to fault: DC bus overvoltage	23974	5DA6	Α	1	UNSIGNED_16	1000	☑	☑	
C00602	Resp. to earth fault	23973	5DA5	E	1	UNSIGNED_8	1	☑	Ø	
C00603	Resp. to feedback	23972	5DA4	Α	4	UNSIGNED_8	1	☑	Ø	
C00604	Resp. to device overload (Ixt)	23971	5DA3	E	1	UNSIGNED_8	1	☑	Ø	
C00606	Resp. to motor overload (I²xt)	23969	5DA1	E	1	UNSIGNED_8	1	☑	Ø	
C00607	Resp. to max. freq. feedb. DIG12/67	23968	5DA0	E	1	UNSIGNED_8	1		Ø	
C00608	Resp. to maximum torque	23967	5D9F	E	1	UNSIGNED_8	1		☑	
<u>C00609</u>	Resp. to maximum current	23966	5D9E	E	1	UNSIGNED_8	1		☑	
C00620	System connection list: 16-bit	23955	5D93	Α	104	UNSIGNED_16	1		☑	
C00621	System connection list: Bool	23954	5D92	Α	175	UNSIGNED_16	1	☑	☑	
<u>C00622</u>	System connection list: Angle	23953	5D91	Α	24	UNSIGNED_16	1	☑	☑	
<u>C00630</u>	L_Limit 1-2: Min/Max	23945	5D89	Α	4	INTEGER_16	100	☑	☑	
C00631	L_LimitPhi 1-3: Min/Max	23944	5D88	Α	6	INTEGER_32	1	☑	☑	
<u>C00632</u>	L_NSet_1: Max. skip freq.	23943	5D87	Α	3	INTEGER_16	100	☑	☑	
C00633	L_NSet_1: Min. skip freq.	23942	5D86	Α	3	INTEGER_16	100	☑	☑	
C00634	L_NSet_1: wState	23941	5D85	E	1	UNSIGNED_16	1	☑		
C00635	L_NSet_1: nMaxLimit	23940	5D84	E	1	INTEGER_16	100	☑	☑	
C00636	L_NSet_1: nMinLimit	23939	5D83	E	1	INTEGER_16	100	\square	☑	

Code	Name	Ind	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C00637	L_NSet_1: Output blocking zones	23938	5D82	E	1	INTEGER_16	100	☑		
C00638	L_NSet_1: Output ramp rounding	23937	5D81	E	1	INTEGER_16	100	$\overline{\mathbf{A}}$		
C00639	L_NSet_1: Output add.value	23936	5D80	E	1	INTEGER_16	100	☑		
C00640	L_NSet_1: nNOut_a	23935	5D7F	E	1	INTEGER_16	100			
C00643	Resp. to PLI monitoring	23932	5D7C	Α	1	UNSIGNED_8	1	☑	\square	
C00644	PLI traversing direction	23931	5D7B	Α	1	UNSIGNED_8	1	☑	\square	
C00645	PLI max. permissible deflection	23930	5D7A	Α	2	INTEGER_16	10	☑	\square	
C00646	PLI current amplitude	23929	5D79	Α	2	UNSIGNED 16	1	$\overline{\mathbf{Z}}$	\square	
C00647	PLI ramp time	23928	5D78	Α	2	UNSIGNED 16	1	$\overline{\mathbf{Z}}$	\square	
C00650	L Arithmetik 3-5: Function	23925	5D75	Α	3	UNSIGNED 8	1	$\overline{\square}$	\square	
C00660	L FixSet a 1: Analog values	23915	5D6B	Α	16	INTEGER 16	100	\square	\square	
C00661	L FixSet w 1: Fixed values	23914	5D6A	Α	16	UNSIGNED 16	1	<u> </u>		
C00662	L_FixSet_w_2: Fixed values	23913	5D69	A	16	UNSIGNED 16	1	<u> </u>		-
C00670	L OffsetGainP 1: Gain	23905	5D61	E	1	INTEGER 32	10000	<u> </u>		
C00671	L OffsetGainP 2: Gain	23904	5D60	E	1	INTEGER_32	10000	I		
C00672		23903	5D5F	E	1	INTEGER_32	10000	I		
	L_OffsetGainP_3: Gain				_	_	_			
C00673	L_OffsetGainPhiP 1-2: Offset	23902	5D5E	A	2	INTEGER_32	1	☑		-
C00674	L_OffsetGainPhiP 1-2: Gain	23901	5D5D	A	2	INTEGER_32	1	☑		-
C00677	L_GainOffsetP 1-3: Parameter	23898	5D5A	A	6	INTEGER_16	100	☑		
C00678	L_GainOffsetPhiP 1-2: Parameter	23897	5D59	Α	4	INTEGER_32	1	∅		-
<u>C00679</u>	L_MulDiv_2: Parameter	23896	5D58	Α	2	INTEGER_16	1	☑	☑	-
C00680	L_Compare_1: Fct.	23895	5D57	E	1	UNSIGNED_8	1	☑	☑	
C00681	L_Compare_1: Hysteresis	23894	5D56	E	1	INTEGER_16	100	☑	☑	
C00682	L_Compare_1: Window	23893	5D55	E	1	INTEGER_16	100	☑	☑	
C00685	L_Compare_2: Fct.	23890	5D52	E	1	UNSIGNED_8	1	☑	☑	
C00686	L_Compare_2: Hysteresis	23889	5D51	E	1	INTEGER_16	100	Ø	☑	
C00687	L_Compare_2: Window	23888	5D50	E	1	INTEGER_16	100	☑	☑	
<u>C00690</u>	L_Compare_3: Fct.	23885	5D4D	E	1	UNSIGNED_8	1	☑	☑	
C00691	L_Compare_3: Hysteresis	23884	5D4C	E	1	INTEGER_16	100	☑	☑	
C00692	L_Compare_3: Window	23883	5D4B	E	1	INTEGER_16	100		☑	
C00693	L_Compare 4-5: Fct.	23882	5D4A	Α	2	UNSIGNED_8	1	\square		
C00694	L_Compare 4-5: Hysteresis	23881	5D49	Α	2	INTEGER_16	100		\square	
C00695	L_Compare 4-5: Window	23880	5D48	Α	2	INTEGER_16	100	☑	$\overline{\mathbf{Z}}$	
C00696	L_OffsetGainP_1: Offset	23879	5D47	E	1	INTEGER_16	100	☑	$\overline{\mathbf{A}}$	
C00697	L_OffsetGainP_2: Offset	23878	5D46	E	1	INTEGER_16	100	☑	$\overline{\mathbf{A}}$	
C00698	L_OffsetGainP_3: Offset	23877	5D45	Е	1	INTEGER_16	100	☑	Ø	
C00699	L_MulDiv_1: Parameter	23876	5D44	Α	2	INTEGER_16	1	$\overline{\mathbf{A}}$	$\overline{\mathbf{Z}}$	
C00700	LA NCtrl: Analog connection list	23875	5D43	Α	29	UNSIGNED 16	1	\square		
C00701	LA_NCtrl: Digital connection list	23874	5D42	Α	48	UNSIGNED_16	1	\square		
C00710	LA TabPos: Analog connection list	23865	5D39	Α	31	UNSIGNED_16	1		\square	
C00711	LA TabPos: Digital connection list	23864	5D38	Α	56	UNSIGNED 16	1		Ø	
C00712	LA TabPos: phi connection list	23863	5D37	Α	3	UNSIGNED_16	1		Ø	
C00720	L DigitalDelay 1: Delay	23855	5D2F	A	2	UNSIGNED_32	1000	<u> </u>		_
C00721	L DigitalDelay 2,3: Delay	23854	5D2E	Α	4	UNSIGNED 32	1000	<u> </u>	<u> </u>	
C00725	Current switching frequency	23850	5D2A	E	1	UNSIGNED_8	1	<u> </u>		_
C00727	LS Keypad digital values	23848	5D28	A	8	UNSIGNED_8	1	<u> </u>		-
	Analog values - keypad			A	3		100	<u> </u>		-
C00728		23847	5D27			INTEGER_16		<u> </u>		-
C00729	Remote: Setpoint selection	23846	5D26	A	2	INTEGER_16	100			-
C00760	LA_SwitchPos: Analog connection list	23815	5D07	A	25	UNSIGNED_16	1	☑		-
C00761	LA SwitchPos: Digital connection list	23814	5D06	Α	47	UNSIGNED_16	1		✓	

Code	Name	Ind	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C00801	L_MPot_1: Lower limit	23774	5CDE	Е	1	INTEGER_16	100	☑	☑	
C00802	L_MPot_1: Accel. time	23773	5CDD	Е	1	UNSIGNED_16	10	Ø	☑	
C00803	L_MPot_1: Decel. time	23772	5CDC	Е	1	UNSIGNED_16	10	☑	☑	
C00804	L_MPot_1: Inactive fct.	23771	5CDB	Е	1	UNSIGNED_8	1	☑	☑	
C00805	L MPot 1: Init fct.	23770	5CDA	Е	1	UNSIGNED 8	1	☑	☑	
C00806	L MPot 1: Use	23769	5CD9	Е	1	UNSIGNED 8	1	☑	☑	
C00807	L NLim 1: Max.SkipFrq.	23768	5CD8	Α	3	INTEGER 16	100	☑	☑	
C00808	L NLim 1: Min.SkipFrq.	23767	5CD7	Α	3	INTEGER 16	100		☑	
C00809	L NLim 2: Max.SkipFrq.	23766	5CD6	Α	3	INTEGER 16	100		☑	
C00810	L NLim 2: Min.SkipFrq.	23765	5CD5	Α	3	INTEGER 16	100		☑	
C00811	L NLim 1: Current output value	23764	5CD4	Α	2	INTEGER 16	100	☑		
C00812	L NLim: Current status	23763	5CD3	Α	2	UNSIGNED 16	1	<u> </u>		
C00820	L_DigitalLogic_1: Function	23755	5CCB	E	1	UNSIGNED 8	1	<u> </u>	☑	
C00821	L DigitalLogic 1: Truth table	23754	5CCA	A	8	UNSIGNED 8	1	Ø		
C00822	L_DigitalLogic_2: Function	23753	5CC9	E	1	UNSIGNED 8	1	Ø		
	+	23752	5CC9	A	8	_	1	Ø		
C00823	L_DigitalLogic_2: Truth table			-		UNSIGNED_8				
C00824	L_DigitalLogic5_1: Function	23751	5CC7	E	1	UNSIGNED_8	1	☑		
C00825	L_DigitalLogic5_1: Truth table	23750	5CC6	A	32	UNSIGNED_8	1	☑		
C00826	L_DigitalLogic5_2: Function	23749	5CC5	E	1	UNSIGNED_8	1	☑		-
C00827	L_DigitalLogic5_2: Truth table	23748	5CC4	Α -	32	UNSIGNED_8	1	☑		-
C00828	L_DigitalLogic_3: Function	23747	5CC3	E	1	UNSIGNED_8	1	 ✓		
C00829	L_DigitalLogic_3: truth table	23746	5CC2	Α	8	UNSIGNED_8	1	☑	☑	
C00830	16-bit inputs [%]	23745	5CC1	Α	95	INTEGER_16	100	☑		
C00831	16-bit inputs	23744	5CC0	Α	95	UNSIGNED_16	1	☑		
C00832	16-bit inputs [rpm]	23743	5CBF	Α	95	INTEGER_16	1	☑		
C00833	Binary inputs	23742	5CBE	Α	129	UNSIGNED_8	1	☑		
<u>C00834</u>	32-bit inputs [incr]	23741	5CBD	Α	8	INTEGER_32	1	☑		
C00835	16-bit inputs [%] (Set2)	23740	5CBC	Α	140	INTEGER_16	100	☑		
C00836	16-bit inputs (Set2)	23739	5CBB	Α	140	UNSIGNED_16	1	☑		
<u>C00837</u>	16-bit inputs [rpm] (Set2)	23738	5CBA	Α	140	INTEGER_16	1	☑		
C00838	Binary inputs (Set2)	23737	5CB9	Α	201	UNSIGNED_8	1	☑		
<u>C00839</u>	32-bit inputs [incr] (Set2)	23736	5CB8	Α	76	INTEGER_32	1	☑		
<u>C00840</u>	16-bit inputs I/O level [%]	23735	5CB7	Α	73	INTEGER_16	100	☑		
C00841	16-bit inputs I/O level	23734	5CB6	Α	73	UNSIGNED_16	1	☑		
C00843	Binary inputs I/O level	23732	5CB4	Α	175	UNSIGNED_8	1	☑		
C00844	32-bit inputs I/O level [incr]	23731	5CB3	Α	12	INTEGER_32	1	\square		
C00866	CAN input words	23709	5C9D	Α	12	UNSIGNED_16	1	☑		
C00868	CAN output words	23707	5C9B	Α	12	UNSIGNED_16	1	☑		
C00876	MCI input words	23699	5C93	Α	16	UNSIGNED_16	1	☑		
C00877	MCI output words	23698	5C92	Α	16	UNSIGNED_16	1	☑		
C00890	MCI_InOut: Inversion	23685	5C85	Α	4	UNSIGNED_16	1	☑	Ø	
C00905	Motor phase direction of rotation	23670	5C76	Е	1	UNSIGNED_8	1	☑	☑	☑
C00909	Speed limitation	23666	5C72	Α	2	INTEGER_16	100	☑	Ø	
C00910	Frequency limitation	23665	5C71	Α	2	UNSIGNED_16	1	☑	☑	
C00915	Motor cable length	23660	5C6C	Е	1	UNSIGNED 16	10	☑	☑	
C00916	Motor cable cross-section	23659	5C6B	Е	1	UNSIGNED 16	100	Ø	☑	
C00917	Motor cable resistance	23658	5C6A	E	1	UNSIGNED 16	1	<u> </u>		
C00918	SC: Start motor magnetising current	23657	5C69	E	1	UNSIGNED 8	1	<u> </u>	☑	
C00925	LS Resolver: Number of pole pairs	23650	5C62	E	1	UNSIGNED 8	1			
C00925	Pole position	23649	5C61	A	2	INTEGER 16	10	☑		
C00927	Motor rotor position	23649	5C60	E	1	UNSIGNED 16	10	<u>✓</u>		

Code	Name	Inc	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C00937	Field-oriented motor currents	23638	5C56	Α	2	INTEGER 16	100	☑		
C00938	PSM: Maximum motor current field weakening	23637	5C55	E	1	UNSIGNED_16	100	☑	Ø	
C00939	Ultimate motor current	23636	5C54	E	1	UNSIGNED_16	10	☑	Ø	
C00940	L_ConvW numerator	23635	5C53	Α	4	INTEGER_16	1	☑	Ø	
C00941	L_ConvW denominator	23634	5C52	Α	4	INTEGER_16	1	☑	☑	
C00942	L_ConvW conversion method	23633	5C51	Α	4	UNSIGNED_8	1	☑	✓	
C00950	L_Interpolator_1: Activation FB functions	23625	5C49	Α	3	UNSIGNED_8	1	☑	Ø	
C00951	L_Interpolator_1: No. of interpolation steps	23624	5C48	E	1	UNSIGNED_16	1	☑	Ø	
C00952	L_Interpolator_1: Limit value - error cycles	23623	5C47	E	1	UNSIGNED_16	1	Ø	Ø	
C00953	L_Interpolator_1: Speed-up	23622	5C46	E	1	UNSIGNED_8	1		☑	
C00959	L_Curve: Current output value	23616	5C40	Α	3	INTEGER_16	100	☑		
C00960	L_Curve_1: Selected curve type	23615	5C3F	Α	1	UNSIGNED_8	1	☑	Ø	
C00961	L_Curve_1: Input limitation	23614	5C3E	Α	2	INTEGER_16	100	☑	Ø	
C00963	L_Curve_1: Table X-values	23612	5C3C	Α	32	INTEGER_16	1	☑	☑	
C00964	L_Curve_1: Table Y-values	23611	5C3B	Α	32	INTEGER_16	1	☑	☑	
C00965	Max. motor speed	23610	5C3A	E	1	UNSIGNED_16	1	☑	☑	
C00966	VFC: Time const. slip comp.	23609	5C39	E	1	UNSIGNED_16	1	☑	☑	
C00967	VFC: Frequency interpol. point n	23608	5C38	Α	11	INTEGER_16	10	☑	☑	
C00968	VFC: Voltage interpol. point n	23607	5C37	Α	11	UNSIGNED_16	100	☑	☑	
C00971	VFC: V/f +encoder limitation	23604	5C34	Α	2	UNSIGNED_16	100	☑	☑	
C00972	VFC: Vp V/f +encoder	23603	5C33	E	1	UNSIGNED_16	1000	☑	☑	
C00973	VFC: Ti V/f +encoder	23602	5C32	E	1	UNSIGNED_16	10	☑	☑	
C00975	VFC-ECO: Vp CosPhi controller	23600	5C30	Е	1	UNSIGNED_16	1000	Ø	☑	
C00976	VFC-ECO: Ti CosPhi controller	23599	5C2F	Е	1	UNSIGNED_16	10	☑	☑	
C00977	VFC-ECO: Minimum voltage V/f	23598	5C2E	Е	1	INTEGER_16	100		☑	
C00978	VFC-ECO: Voltage reduction	23597	5C2D	Е	1	INTEGER_16	1			
C00979	Cosine phi	23596	5C2C	Α	2	INTEGER_16	100	☑		
C00980	Output power	23595	5C2B	Α	2	INTEGER_32	1000	☑		
C00981	Energy display	23594	5C2A	Α	2	INTEGER_32	100	☑		
C00982	VFC-ECO: Voltage reduction ramp	23593	5C29	Е	1	UNSIGNED_8	10	☑	Ø	
C00985	SLVC: Field current controller gain	23590	5C26	E	1	INTEGER_16	100	☑	✓	
C00986	SLVC: Cross current controller gain	23589	5C25	Е	1	INTEGER_16	100	☑	✓	
C00987	Inverter motor brake: nAdd	23588	5C24	Е	1	INTEGER_16	1	Ø	☑	
C00988	Inverter motor brake: PT1 filter time	23587	5C23	Е	1	INTEGER_16	10	Ø	☑	
C00990	Flying restart fct.: Activate	23585	5C21	Е	1	UNSIGNED_8	1		☑	☑
C00991	Flying restart fct.: Process	23584	5C20	Е	1	UNSIGNED_16	1		☑	
C00992	Flying restart fct.: Start frequency	23583	5C1F	Е	1	INTEGER_16	1	☑	Ø	
C00993	Flying restart fct: Int. time	23582	5C1E	E	1	UNSIGNED_16	10	☑	Ø	
C00994	Flying restart fct.: Current	23581	5C1D	Е	1	INTEGER_16	100		☑	
C00995	SLPSM: Controlled current setpoint	23580	5C1C	Α	2	UNSIGNED_16	100	Ø	Ø	
C00996	SLPSM: Switching speed	23579	5C1B	Α	2	INTEGER_16	100	Ø	Ø	
C00997	SLPSM: Filter cutoff frequency	23578	5C1A	E	1	INTEGER_16	100		☑	
C00998	SLPSM: Filter time rotor position	23577	5C19	Α	2	INTEGER_16	10	☑	V	
<u>C00999</u>	SLPSM: PLL gain	23576	5C18	E	1	INTEGER_16	1	☑	V	
C01000	MCTRL: Status	23575	5C17	E	1	UNSIGNED_16	1	Ø		
C01010	L_ArithmetikPhi 1-3: Function	23565	5C0D	Α	3	UNSIGNED_8	1	☑	☑	
<u>C01020</u>	L_Odometer_1: Memory length	23555	5C03	E	1	UNSIGNED_8	1	☑	V	
C01021	L Odometer 1: Memory type	23554	5C02	Е	1	UNSIGNED_8	1	☑	✓	

Code	Name	Ind	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C01022	L Odometer 1: Input selection	23553	5C01	Е	1	UNSIGNED 8	1	☑		
C01023	L Odometer 1: Edge selection	23552	5C00	Е	1	UNSIGNED 8	1	☑	✓	
C01025	L_Curve_2: Selected curve type	23550	5BFE	Α	1	UNSIGNED_8	1	☑	☑	
C01026	L_Curve_2: Input limitation	23549	5BFD	Α	2	INTEGER_16	100	☑	\square	
C01028	L_Curve_2: Table X-values	23547	5BFB	Α	32	INTEGER_16	1	☑	\square	
C01029	L_Curve_2: Table Y-values	23546	5BFA	Α	32	INTEGER_16	1	☑	\square	
C01030	L_Curve_3: Selected curve type	23545	5BF9	Α	1	UNSIGNED_8	1	☑	\square	
C01031	L_Curve_3: Input limitation	23544	5BF8	Α	2	INTEGER_16	100	☑	\square	
C01033	L_Curve_3: Table X-values	23542	5BF6	Α	32	INTEGER_16	1	☑	☑	
C01034	L_Curve_3: Table Y-values	23541	5BF5	Α	32	INTEGER_16	1	☑	\square	
C01040	L_SRFG_12 linear ramp time	23535	5BEF	Α	2	UNSIGNED_32	1000	☑	☑	
C01041	L_SRFG_12 S-ramp time	23534	5BEE	Α	2	UNSIGNED_32	1000	☑	\square	
<u>C01042</u>	L_SRFG_12 limitations of output values	23533	5BED	Α	4	INTEGER_16	100	☑	☑	
<u>C01045</u>	L_ConvAP 1-3: numerator/denominator	23530	5BEA	Α	6	INTEGER_16	1		Ø	
<u>C01046</u>	L_ConvPA 1-3: byDivision	23529	5BE9	Α	3	INTEGER_8	1	☑	Ø	
<u>C01047</u>	L_GearComp: Offset	23528	5BE8	Α	1	INTEGER_16	1	☑	☑	
C01048	L_GearComp: Num_Denom	23527	5BE7	Α	2	INTEGER_16	1	☑	☑	
<u>C01049</u>	L_CalcDiameter: Status	23526	5BE6	Α	1	INTEGER_16	1			
<u>C01050</u>	L_CalcDiameter_1: Diameter recalculation	23525	5BE5	Α	2	UNSIGNED_32	1000	☑	☑	
C01051	L_CalcDiameter: Filter time constant	23524	5BE4	Α	1	UNSIGNED_16	1000	☑	☑	
<u>C01052</u>	L_CalcDiameter: Web break monitoring	23523	5BE3	Α	1	INTEGER_16	100	☑	☑	
C01053	L_ProcessCtrl: Controller times	23522	5BE2	Α	5	UNSIGNED_16	1000	☑	\square	
C01054	L_ProcessCtrl: System deviation	23521	5BE1	Α	2	INTEGER_16	100	☑	Ø	
<u>C01055</u>	L_ProcessCtrl: Correcting variable limitation	23520	5BE0	Α	1	UNSIGNED_8	1	☑	☑	
<u>C01056</u>	L_ProcessCtrl: Controller gain	23519	5BDF	Α	1	UNSIGNED_16	100	☑	☑	
<u>C01057</u>	L_CalcDiameter: Current diameter	23518	5BDE	Α	1	UNSIGNED_32	1000	☑		
<u>C01058</u>	L_PosCtrlLin_1-2: bDisable	23517	5BDD	Α	2	UNSIGNED_8	1	☑	☑	
<u>C01059</u>	L_PosCtrlLin 1-2: Positioning behaviour	23516	5BDC	Α	2	UNSIGNED_8	1	☑	☑	
<u>C01060</u>	L_PosCtrlLin 1-2: Ramps	23515	5BDB	Α	6	INTEGER_32	1000	☑	☑	
C01061	L_PosCtrlLin 1-2: Traversing speed	23514	5BDA	Α	4	INTEGER_16	1	☑	☑	
<u>C01062</u>	L_SwitchPoint: Dead time	23513	5BD9	Α	4	UNSIGNED_16	1		☑	
<u>C01063</u>	L_SwitchPoint: Hysteresis	23512	5BD8	Α	4	UNSIGNED_16	1	☑	☑	
<u>C01064</u>	L_SwitchPoint: CenterMode	23511	5BD7	Α	4	UNSIGNED_8	1	☑	☑	
<u>C01065</u>	L_SwitchPoint: Running time	23510	5BD6	Α	4	UNSIGNED_16	1	☑	☑	
C01066	L_SwitchPoint: Status	23509	5BD5	Α	4	INTEGER_16	1	☑		
C01067	Inversion of gearbox stages	23508	5BD4	Α	3	UNSIGNED_8	1	☑	☑	
<u>C01069</u>	L_DFSET: Ramp settings	23506	5BD2	Α	2	UNSIGNED_16	1	☑	☑	
<u>C01070</u>	L_DFSET: Angular trimming	23505	5BD1	Α	1	INTEGER_32	1	☑	☑	
<u>C01071</u>	L_DFSET: Following error limit	23504	5BD0	Α	1	UNSIGNED_32	1	☑	☑	
<u>C01072</u>	L_DFSET: Multiplier - angular trimming	23503	5BCF	Α	1	INTEGER_16	1	☑	☑	
<u>C01073</u>	L_DFSET: Evaluation - setpoint angle integrator	23502	5BCE	Α	1	UNSIGNED_8	1	☑	☑	
<u>C01074</u>	L_DFSET: Zero pulse divider	23501	5BCD	Α	2	UNSIGNED_16	1	☑	☑	
<u>C01075</u>	L_DFSET: Synchronisation mode	23500	5BCC	Α	1	UNSIGNED_8	1	☑	☑	
<u>C01076</u>	L_DFRFG: Times	23499	5BCB	Α	2	UNSIGNED_32	1000	☑	☑	
<u>C01077</u>	L_DFRFG: Max. speed-up	23498	5BCA	Α	1	INTEGER_16	1	☑	☑	
C01078	L_DFRFG: Following error	23497	5BC9	Α	1	UNSIGNED_32	1	\square	☑	

Code	Name	Inc	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C01079	L_DFRFG: Synchronisation window	23496	5BC8	Α	1	UNSIGNED_16	1	$\overline{\mathbf{v}}$		
C01080	L_DFRFG: Offset	23495	5BC7	Α	1	INTEGER_32	1	$\overline{\mathbf{A}}$	Ø	
C01081	L_DFRFG: Sync. direction / TP function	23494	5BC6	Α	1	UNSIGNED_8	1			
C01082	LS_WriteParamList: Execute Mode	23493	5BC5	Е	1	UNSIGNED_8	1		\square	
C01083	LS_WriteParamList: Error status	23492	5BC4	Е	1	UNSIGNED_16	1	$\overline{\mathbf{A}}$		
C01084	LS_WriteParamList: Error line	23491	5BC3	Е	1	UNSIGNED_8	1	$\overline{\mathbf{A}}$		
C01085	LS_WriteParamList: Index	23490	5BC2	Α	32	INTEGER_32	1000	☑	☑	
C01086	LS_WriteParamList: WriteValue_1	23489	5BC1	Α	32	INTEGER_32	1		\square	
C01087	LS_WriteParamList: WriteValue_2	23488	5BC0	Α	32	INTEGER_32	1		\square	
C01088	LS_WriteParamList: WriteValue_3	23487	5BBF	Α	32	INTEGER_32	1	☑	☑	
C01089	LS_WriteParamList: WriteValue_4	23486	5BBE	Α	32	INTEGER_32	1		\square	
C01090	LS_ParReadWrite 1-6: Index	23485	5BBD	Α	6	INTEGER_32	1000		Ø	
C01091	LS ParReadWrite 1-6: Cycle time	23484	5BBC	Α	6	UNSIGNED 16	1	☑	\square	
C01092	LS ParReadWrite 1-6: FailState	23483	5BBB	Α	6	UNSIGNED 16	1	☑		
<u>C01093</u>	LS_ParReadWrite 1-6: Arithmetic mode	23482	5BBA	Α	6	UNSIGNED_8	1	☑	Ø	
C01094		23481	5BB9	Α	6	INTECED 16	1			-
	LS_ParReadWrite 1-6: Numerator			-	_	INTEGER_16	1	☑		-
C01100	LS_ParReadWrite 1-6: Denominator	23480	5BB8	A	6	INTEGER_16	1	☑		-
C01100 C01101	Function L_Counter 1-3	23475	5BB3 5BB2	A	3	UNSIGNED_8	1	☑		-
C011101	Comparison L_Counter 1-3	23474		E	1	UNSIGNED_8	1	☑		-
	LS_MultiEncoder: Solid measure		5BA9	A	-	UNSIGNED_8	1	☑		-
C01111	SSI: Encoder constant	23464	5BA8	-	2	INTEGER_32		☑		-
C01112	LS_MultiEncoder: PosValues	23463	5BA7	A	3	INTEGER_32	10000			-
C01119	LS_MultiEncoder: Current position	23456	5BA0	A	2	INTEGER_32	10000	☑		-
C01120	Sync signal source	23455	5B9F	E	1	UNSIGNED_8	1	☑		-
C01121	Sync cycle time setpoint	23454	5B9E	E	1	UNSIGNED_16	1	☑		-
C01122	Sync phase position	23453	5B9D	E	1	UNSIGNED_16	1	☑		-
C01123	Sync window	23452	5B9C	E	1	UNSIGNED_16	1	☑		-
C01124	Sync correction width	23451	5B9B	E	1	UNSIGNED_8	1	☑		-
C01130	LS_RetainData: Selection	23445	5B95	A	4	UNSIGNED_16	1	☑		-
C01131	LS_RetainData: 16Bit data	23444	5B94	A	4	UNSIGNED_16	1	☑		-
C01132	LS_RetainData: 32Bit data	23443	5B93	A	4	INTEGER_32	1	☑		-
C01133	LS_RetainData: Bool data	23442	5B92	A	4	UNSIGNED_8	1	☑		-
C01138	L_Transient 1-4: Function	23437	5B8D	A	4	UNSIGNED_8	1	✓		
<u>C01139</u>	L_Transient 1-4: Pulse duration	23436	5B8C	A	4	UNSIGNED_16	1000	☑		
C01140	L_Transient 5-8: Function	23435	5B8B	A	4	UNSIGNED_8	1	☑		-
C01141	L_Transient 5-8 pulse duration	23434	5B8A	A	4	UNSIGNED_16	1000	☑		
C01150	L_PhaseIntK: Function	23425	5B81	A	2	UNSIGNED_8	1	☑		
C01151	L_PhaseIntK: Compare	23424	5B80	A	2	INTEGER_32	1	☑		-
<u>C01190</u>	Motor thermal sensor	23385	5B59	A	2	UNSIGNED_8	1	 ✓		-
C01191	PTC characteristic: Temperature 1/2	23384	5B58	A	2	UNSIGNED_8	1	☑		-
C01192	PTC characteristic: Resistance 1/2	23383	5B57	A	2	INTEGER_32	1	☑		-
C01193	Feedback system motor temperature	23382	5B56	E	1	UNSIGNED_8	1	☑		-
C01201	MCK: Cycle	23374	5B4E	A	1	INTEGER_32	10000	☑		-
C01202	MCK: iM motor/process	23373	5B4D	A	2	UNSIGNED_16	1	☑		-
<u>C01203</u>	MCK: iG motor/position encoder	23372	5B4C	A	2	UNSIGNED_16	1	 ✓		-
<u>C01204</u>	MCK: Feed constant	23371	5B4B	E	1	INTEGER_32	10000	 ✓		-
C01205	MCK: Position resolution	23370	5B4A	E	1	INTEGER_32	10000	☑		-
C01206	MCK: Mounting direction	23369	5B49	Α	2	UNSIGNED_8	1	☑	☑	☑
<u>C01210</u>	MCK: Current positions	23365	5B45	Α	7	INTEGER_32	10000	Ø		
C01211	MCK: Speed	23364	5B44	Α	1	INTEGER_32	10000	\checkmark		

Code	Name	Ind	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	w	CINH
C01213	MCK: Max. traversing distance	23362	5B42	Α	1	INTEGER_32	1			
C01215	MCK: Following error	23360	5B40	Α	2	INTEGER_32	10000		v	
C01216	MCK: Positioning setting	23359	5B3F	Е	1	UNSIGNED_8	1	☑	☑	
C01218	PosFolger: Setting	23357	5B3D	Е	1	UNSIGNED 8	1	☑	✓	
C01219	MCK: Speed follower setting	23356	5B3C	Е	1	UNSIGNED 8	1	☑	✓	
C01221	MCK: Ref. mode	23354	5B3A	Е	1	UNSIGNED 8	1	☑	✓	
C01222	MCK: Ref. M limit mode 14/15	23353	5B39	Е	1	INTEGER 16	100	☑	✓	
C01223	MCK: Ref. waiting time mode 14/15	23352	5B38	Е	1	UNSIGNED 16	1	$\overline{\square}$	\square	
C01224	MCK: Ref. speeds	23351	5B37	Α	2	INTEGER 32	10000	$\overline{\square}$	\square	
C01225	MCK: Ref. accelerations	23350	5B36	Α	2	INTEGER 32	10000	$\overline{\square}$	\square	
C01226	MCK: Ref. S-ramp time	23349	5B35	Α	1	UNSIGNED 16	1000			
C01227	MCK: Ref. positions	23348	5B34	Α	2	INTEGER 32	10000	Ø		
C01228	MCK: Ref. sequence profile	23347	5B33	Е	1	UNSIGNED 8	1			
C01229	MCK: Position limiting values	23346	5B32	Α	2	INTEGER 32	10000	Ø	✓	
C01230	Manual jog: Setting	23345	5B31	E	1	UNSIGNED 8	1			
C01231	MCK: Manual jog speeds	23344	5B30	Α	2	INTEGER 32	10000			
C01232	MCK: Manual jog accelerations	23343	5B2F	A	2	INTEGER 32	10000			
C01232	MCK: Manual jog S-ramp time	23342	5B2E	A	1	UNSIGNED 16	1000	Ø		
C01234	MCK: Manual jog breakpoints	23341	5B2D	Α	4	INTEGER 32	10000	<u> </u>		_
C01235	MCK: Manual jog waiting times	23340	5B2C	A	1	UNSIGNED 16	1000	Ø		-
C01235	MCK: Speed follower	23339	5B2B	A	1	INTEGER 32	10000	=		-
C01237	MCK: Acceleration follower	23333	5B2A	A	2	INTEGER_32	10000	=		-
	MCK: S-ramp time follower	23337	5B29	A	1		1000	Ø		-
C01238	Reserved		5B29	E	1	UNSIGNED_16	1000	☑		-
C01239	MCK: Control word	23336		E	1	UNSIGNED_32	1000	<u>v</u>	E	-
C01240		23335	5B27	_	_	UNSIGNED_32	_			-
C01241	MCK: Status word	23334	5B26	E	1	UNSIGNED_32	1	☑		-
C01242	MCK: Current pos profile number	23333	5B25	E	1	UNSIGNED_8	1	☑		-
C01243	MCK: Current operating mode	23332	5B24	E	1	UNSIGNED_8	1	☑		-
C01244	MCK: Target detection - times	23331	5B23	A	3	UNSIGNED_16	10000	☑	☑	-
C01245	MCK: Target detection - positions	23330	5B22	Α	3	INTEGER_32	10000	☑		-
C01246	MCK: Select signal source	23329	5B21	A	2	UNSIGNED_8	10000	☑		-
C01251	MCK: Acceleration stop	23324	5B1C	A	1	INTEGER_32	10000	☑		-
C01252	MCK: S-ramp times stop	23323	5B1B	Α -	1	UNSIGNED_16	1000	☑		-
<u>C01295</u>	L_MCKStateInterface_1: Pos. selection	23280	5AF0	E	1	UNSIGNED_8	1	☑		-
C01296	Mode: Position calculation	23279	5AEF	Α -	2	UNSIGNED_8	1	☑		-
<u>C01297</u>	L_MckStateInterface_1: Alternative function	23278	5AEE	E	1	UNSIGNED_8	1	☑	☑	
<u>C01298</u>	MCK: Operating mode change with profile no.	23277	5AED	A	4	UNSIGNED_8	1	☑	☑	
<u>C01299</u>	MCKI: Status MCKInterface	23276	5AEC	E	1	UNSIGNED_8	1	☑		
C01300	Profile data: Positioning mode	23275	5AEB	Α	15	UNSIGNED_8	1	☑	☑	
C01301	Profile data: Position	23274	5AEA	Α	15	INTEGER_32	10000	☑	☑	
C01302	Profile data: Speed	23273	5AE9	Α	15	INTEGER_32	10000	☑	☑	
C01303	Profile data: Acceleration	23272	5AE8	Α	15	INTEGER_32	10000	☑	☑	
<u>C01304</u>	Profile data: Deceleration	23271	5AE7	Α	15	INTEGER_32	10000		Ø	
<u>C01305</u>	Profile data: Final speed	23270	5AE6	Α	15	INTEGER_32	10000	☑	☑	
<u>C01306</u>	Profile data: S-ramp time	23269	5AE5	Α	15	UNSIGNED_16	1000	☑	☑	
<u>C01307</u>	Profile data: Sequence profile	23268	5AE4	Α	15	UNSIGNED_8	1	☑		
<u>C01308</u>	Profile data: TP profile	23267	5AE3	Α	15	UNSIGNED_8	1	☑		
<u>C01309</u>	Profile data: TP signal source	23266	5AE2	Α	15	UNSIGNED_8	1	☑		
C01501	Resp. to communication error with	23074	5A22	Α	2	UNSIGNED 8	1	☑	☑	

Code	Name	Inc	lex			Data			Access	
		dec	hex	DS	DA	DT	Factor	R	W	CINE
C01670	L_ComparePhi 1-5: Function	22905	5979	Α	5	UNSIGNED_8	1	☑	Ø	
C01671	L_ComparePhi 1-5: Hysteresis	22904	5978	Α	5	INTEGER_32	1	☑	Ø	
C01672	L_ComparePhi 1-5: Window	22903	5977	Α	5	INTEGER_32	1	☑	Ø	
<u>C01770</u>	Filter time - earth-fault detect. is running	22805	5915	E	1	UNSIGNED_8	1	☑	Ø	
C01902	Diagnostics X6: Max. baud rate	22673	5891	Е	1	UNSIGNED_16	1	☑	Ø	
C01903	Diagnostics X6: Change baud rate	22672	5890	Е	1	UNSIGNED_8	1	☑	Ø	
C01905	Diagnostics X6: Current baud rate	22670	588E	Е	1	UNSIGNED_32	1	☑		
C02430	Axis bus address and no. of nodes	22145	5681	Α	2	UNSIGNED_8	1	☑	☑	
C02431	Axis bus time settings	22144	5680	Α	3	UNSIGNED_16	1	☑	Ø	
C02435	Axis bus status	22140	567C	Е	1	UNSIGNED_8	1	☑		
C02436	Axis bus error status	22139	567B	Е	1	UNSIGNED_8	1	☑		
C02437	Axis bus MessageError	22138	567A	Е	1	UNSIGNED_8	1	☑		
C02440	AxisBusIO slave/master	22135	5677	Α	1	UNSIGNED_8	1	☑	☑	
C02580	Holding brake: Operating mode	21995	55EB	Е	1	UNSIGNED_8	1	☑	Ø	
C02581	Holding brake: Speed thresholds	21994	55EA	Α	5	INTEGER_16	100	☑	Ø	
C02582	Holding brake: Setting	21993	55E9	Е	1	UNSIGNED_8	1	☑	☑	
C02589	Holding brake: Time system	21986	55E2	Α	4	UNSIGNED_16	1	☑	Ø	
C02593	Holding brake: Activation time	21982	55DE	Α	4	UNSIGNED_32	1000	☑	Ø	
C02607	Holding brake: Status	21968	55D0	Е	1	UNSIGNED_16	1	☑		
C02610	MCK: Accel./decel. times	21965	55CD	Α	3	UNSIGNED 32	1000	☑	Ø	
C02611	MCK: Limitations	21964	55CC	Α	4	INTEGER 16	100	☑	Ø	
C02652	Memorise positions at power-off	21923	55A3	Е	1	UNSIGNED 16	1	☑	Ø	
C02810	TP: Edge selection	21765	5505	Α	7	UNSIGNED 8	1	☑	☑	
C02811	TP: Sensor delay	21764	5504	Α	7	UNSIGNED 16	1	☑	Ø	
C02812	TP: Position offset	21763	5503	Α	7	INTEGER 32	10000	☑	☑	
C02813	TP: Pos window start	21762	5502	Α	3	INTEGER 32	10000	☑	Ø	
C02814	TP: Pos window end	21761	5501	Α	3	INTEGER_32	10000	☑	Ø	
C02815	TP: Position source	21760	5500	Α	7	UNSIGNED_8	1	☑	Ø	
C02816	TP: Signal counter	21759	54FF	Α	7	UNSIGNED_16	1	☑		
C02817	TP: TouchProbe position	21758	54FE	Α	7	INTEGER_32	10000	☑		
C02830	Dlx: Debounce time	21745	54F1	Α	7	UNSIGNED_8	1	☑	Ø	
C02840	Countinx: Parameter	21735	54E7	Α	4	UNSIGNED_32	1	☑	☑	
C02841	Countinx: Counter content	21734	54E6	Α	2	UNSIGNED_32	1	☑		
C02842	FreqInxx: Offset	21733	54E5	Α	2	INTEGER_16	100	☑	Ø	
C02843	FreqInxx: Gain	21732	54E4	Α	2	INTEGER_16	100	☑	Ø	
C02844	FreqIn12: Function	21731	54E3	Α	1	UNSIGNED_8	1	☑	Ø	
C02845	FreqIn12: PosIn comparison value	21730	54E2	Е	1	INTEGER_32	1	☑	Ø	
C02853	PSM: Lss saturation characteristic	21722	54DA	Α	17	UNSIGNED_8	1	☑	Ø	
C02855	PSM: Imax Lss saturation characteristic	21720	54D8	E	1	UNSIGNED_16	10		Ø	П
C02859	PSM: Activate Ppp saturation char.	21716	54D4	Е	1	UNSIGNED_8	1	☑	Ø	
C02862	Resolver gain	21713	54D1	Α	2	UNSIGNED_16	100	☑	Ø	
C02863	Resolver: Phase error	21712	54D0	Е	1	INTEGER_16	100	☑	Ø	
C02866	MCTRL: Special settings	21709	54CD	Α	2	UNSIGNED_8	1	☑	Ø	☑
C02867	Identification process	21708	54CC	Α	1	UNSIGNED_8	1	☑	Ø	☑
<u>C02870</u>	PLI without motion: Optimisation factor	21705	54C9	Α	1	INTEGER_16	100	☑		
C02871	PLI without motion: Running time	21704	54C8	Α	1	INTEGER_16	100	☑		
<u>C02872</u>	PLI without motion: Adaptation of time duration	21703	54C7	Α	1	INTEGER_8	1	☑	Ø	
C02873	PLI without motion: Ident. el. rotor displ. angle	21702	54C6	Α	1	INTEGER_16	1	☑		

8400 TopLine C | Software Manual

Parameter reference Table of attributes

Code	Name	Index		Data			Access			
		dec	hex	DS	DA	DT	Factor	R	W	CINH
C02874	PLI without motion	21701	54C5	Α	1	UNSIGNED_16	1	☑	☑	
<u>C02875</u>	PLI without motion: Adaptation of ident angle	21700	54C4	Α	1	INTEGER_8	1	Ø	Ø	
C02876	PSM: Max. motor temperature	21699	54C3	Α	1	UNSIGNED_8	1	☑	☑	
C02877	PSM temperature coefficient	21698	54C2	Α	1	INTEGER_16	100	☑	☑	
C02878	KTY motor temperature compensation	21697	54C1	Α	1	UNSIGNED_16	1	☑	☑	
<u>C02879</u>	Slip calculation from equivalent circuit diagram	21696	54C0	Α	1	UNSIGNED_16	1	Ø	Ø	

17 Working with the FB Editor

The function block editor (in the following called "FB Editor") is available in the "Engineer" from the "StateLine" device version.

The FB Editor serves, for example, to:

- execute an online monitoring of the technology application running in the device (e.g. for diagnostic purposes).
- ▶ reconfigure the I/O interconnection of the technology application.
- ▶ implement an individual drive solution (from the "HighLine" version).

Note!

The illustrations of the FB Editor user interface and the dialog boxes in this documentation are based on the »Engineer« V2.10.

17.1 Basics

Using the function block interconnection, any signal interconnection can be implemented. Various FBs are available for digital signal processing, signal conversion and logic modules.

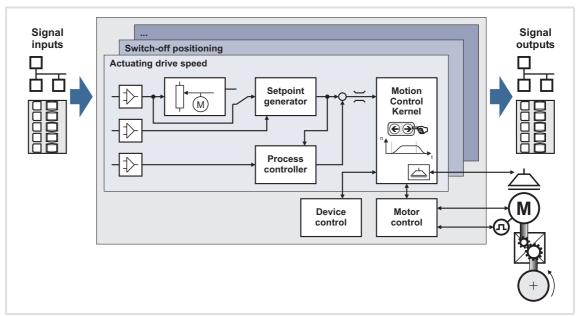
For special tasks it has proved of value to use the integrated technology applications as a basis for modifications or extensions of the available FB interconnections. Moreover, from the HighLine device version experienced users are offered the opportunity to implement their own drive solutions independent of the predefined technology applications by using so-called "free interconnections".

For this purpose, the FB Editor provides the following functions:

- ► Copying & pasting of interconnection elements (also device-independent)
- ► Export & import of the interconnection
- ► Comparison of two interconnections (also online <-> offline comparison)
- Overview window and zoom functions
- ► Comments on the signal flow
- ▶ Online monitoring

The option to mask out non-used inputs and outputs of modules is also sensible to minimise the complexity of the FB interconnection and to adapt the clarity of the interconnection to the customers need.

All graphical information of the FB interconnection view (positions of the FBs, line or flag presentation of the connection, visibility of the inputs/outputs) are saved with the parameter set in the memory module of the controller and can be uploaded anytime into the FB Editor of the »Engineer« even if the Engineer project is not available.


Note!

With the "StateLine" version, the interconnection shown in the application level cannot be edited.

17.1.1 Basic components of a drive solution

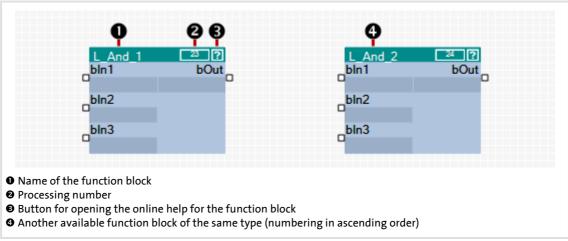
A drive solution consists of the following basic components:

- ► Signal inputs (for control and setpoint signals)
- ► Signal flow of the technology application
- ► Signal outputs (for status and actual value signals)

[17-1] Basic components of a drive solution

Regarding the 8400 device series, these three components are available for the FB interconnection and classified as follows:

Module type	Name	Task	Example
Function block	L_name	General function block for free interconnection (only HighLine)	L Compare 1 L PCTRL 1
System block	LS_name	Signal interface to inverter-internal functions	LS_DigitalInput LS_DriveInterface
Port block	LP_name	Process data communication via a fieldbus using a communication module Process data communication via CAN on board	LP CanIn1 LP CanOut1 LP Mciln LP MciOut
Application block	LA_name	Block for a technology application	LA_NCtrl LA_SwitchPos


Further information on the individual modules can be obtained from the following subchapters!

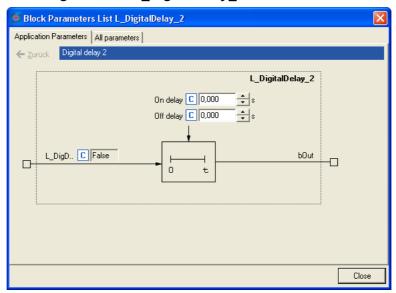
17.1.1.1 What is a function block?

A function block (FB) can be compared with an integrated circuit that contains a specific control logic and delivers one or several values when being executed.

- ▶ The function blocks are classified alphabetically in a "function library".
- ► Each function block has a unique identifier and a processing number which defines the position at which the function block is calculated during runtime.

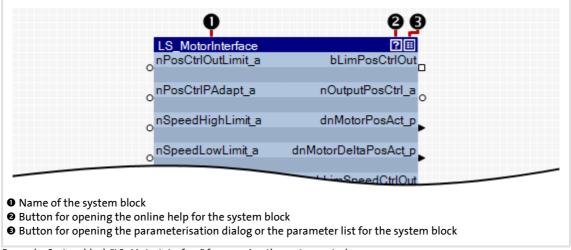
[17-2] Information on a function block in the FB Editor

A detailed description of all available function blocks can be found in the main chapter "Function library". (1110)


17.1.1.2 Parameterisable function blocks

Some function blocks have parameters which serve to change particular settings during operation, if required, or which display actual values & status information.

► The ☐ icon in the head of the module, a double-click on the module, or the Parameter... command in the Context menu of the module serve to open the parameterisation dialog or the parameter list for the module.

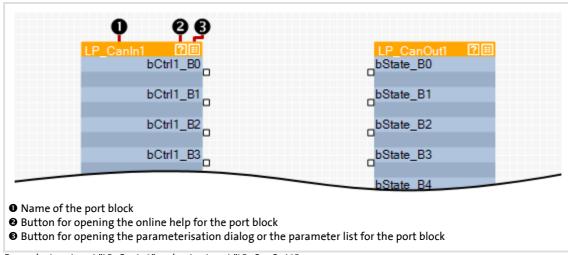

Example

Parameterisation dialog for the FB L_DigitalDelay_2:

17.1.1.3 What is a system block?

System blocks are a special variant of a function block. They partly activate real hardware, e. g. the digital and analog inputs/outputs and the motor control.

[17-3] Example: System block "LS_MotorInterface" for mapping the motor control


Working with the FB Editor Basics

17.1.1.4 What is a port block?

A port block is a signal interface to a fieldbus. Input/output ports represent the input and output process data of the fieldbus.

- ▶ Port blocks LP CanIn/LP CanOut: Signal interface to the CAN bus
- ▶ Port blocks LP MciIn/LP MciOut: Signal interface to a plugged fieldbus module

If, for instance, the controller is to be controlled via CAN bus or a fieldbus module, the input/output ports are connected to the application block (device-internal signal processing) in the I/O level of the FB Editor.

[17-4] Example: Input port "LP_CanIn1" and output port "LP_CanOut1"

17.1.1.5 What is an application block?

The application/technology function set in <u>C00005</u> is shown as application block in the I/O level of the FB Editor.

The application block comprises the signal flow processing generated via function block interconnection for the selected application in each case (e.g. "actuating drive speed" or "switch-off positioning"). The function block interconnection is shown in detail on the application level.

17.1.2 Conventions used for input/output identifiers

This chapter describes the conventions used for the identifiers of the inputs/outputs of the blocks. The conventions ensure a uniform and consistent terminology and make reading and comprehending the interconnection and application easier.

The conventions used by Lenze are based on the "Hungarian Notation". This ensures that the most significant characteristics of the corresponding input/output (e.g. the data type) can be instantly recognised from its identifier.

An identifier consists of

- ► a data type entry
- ▶ an identifier (the "proper" name of the input/output)
- ► an (optional) signal type specification

Data type entry

The data type entry provides information about the data type of the corresponding input/output:

Data type entry	Meaning	Resolution	Value range
b	BOOL	1bit	$0 \equiv FALSE / 1 \equiv TRUE$
dn	DINT	32 bits	-2147483647 2147483647
n	INT	16 bits	-32767 32767
w	WORD	16 bits	0 65535

Identifier

The identifier is the proper name of the input/output and should indicate the application or function.

- ▶ Identifiers always start with a capital letter.
- ▶ If an identifier consists of several "words", then each "word" must start with a capital letter.
- ► All other letters are written in lower case.

Working with the FB Editor Basics

Signal type entry

In general, it is possible to assign a certain signal type to the inputs and outputs of the Lenze function blocks. There are e.g. digital, scaled, position, acceleration and speed signals.

▶ A corresponding ending (preceded by an underscore) is added to the identifier of the corresponding input/output to indicate the signal type.

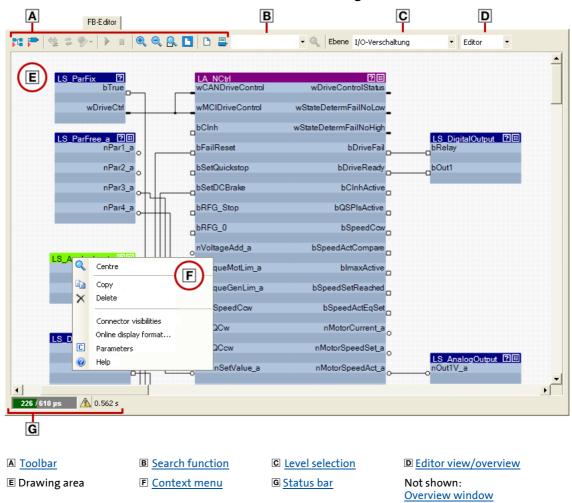
Signal type entry & port symbol in the FB Editor		Meaning	Resolution	Value range
_a	0	Analog/scaled	16 bits	± 199.99 %
_v	4/ ▶	Angular velocity	16 bits	± 30000.0 rpm
_p	◄/▶	Position	32 bits	-2 ³¹ 2 ³¹ -1 increments
		Digital (BOOL)	8 bits	0 ≡ FALSE; 1 ≡ TRUE
	-	Other (WORD)	16 bits	0 65535
		Other (DINT)	32 bits	-2147483647 2147483647

17.1.3 Scaling of physical units

With regard to the parameter setting & configuration of the controller it is very helpful to know the signal types and their scaling listed in the following table, which are used to process physical values (e.g. an angular velocity or position) in the function block interconnection.

Signal type entry & port symbol in the FB Editor		Meaning	Scaling external value	≡ internal value
_a	0	Analog/scaled	100 %	= 2 ¹⁴ = 16384
_v	4/ ▶	Angular velocity	15000 rpm	$\equiv 2^{14} \equiv 16384$
_p	⋖/ ▶	Position	1 encoder revolution	≡ 2 ¹⁶ increments

17.2 User interface



How to access the FB Editor:

- 1. Go to Project View and select the 8400 controller.
- 2. Go to Workspace and select the FB Editor tab.

The FB Editor displays the wiring of the technology function selected in <u>C00005</u>. The interconnection of the I/Os of the controller depend on the control mode selected in <u>C00007</u>.

The user interface of the FB Editor includes the following control and function elements:

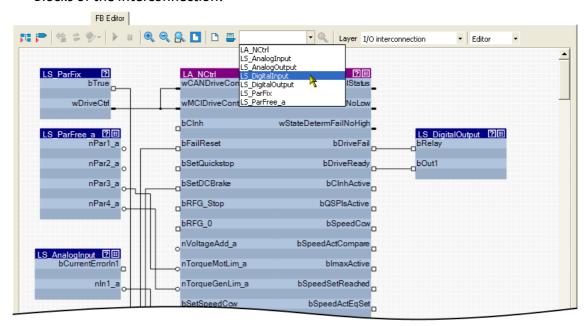
Go to the »Engineer« toolbar and click the icon to hide the Project View and the Message Window. This increases the Workspace available for the FB Editor. A renewed click on the symbol shows the Project View and the Message Window again.

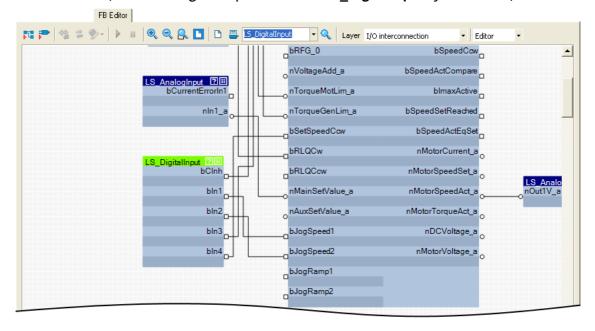
Working with the FB Editor User interface

17.2.1 Toolbar

The FB Editor is provided with an individual toolbar in the upper position which in the following text is called FB Editor toolbar.

► Click an icon to execute the corresponding function.


Symbol	Function
T	Insert function block or system block ► Inserting a function block (□ 1080) ► Inserting a system block (□ 1082)
-	Inserting a port block (11084)
⇔	Adjusting online and offline interconnection (1103)
*	Acknowledge error in the interconnection / reload interconnection
*	Correct interconnection
>	Start online monitoring
UU	Interrupt online monitoring
	Close online monitoring
•	Enlarge view of interconnection
9	Reduce view of interconnection
<u>-</u>	Enlarge cutout of interconnection
	Show total interconnection in the drawing area
<u> </u>	Show print view
=	Printing the interconnection (1104)
Q	Search function (11 1067)


17.2.2 Search function

Use the search function to get quickly to a certain module of the interconnection.

► The list field of the search function contains all function blocks, system blocks, and port blocks of the interconnection:

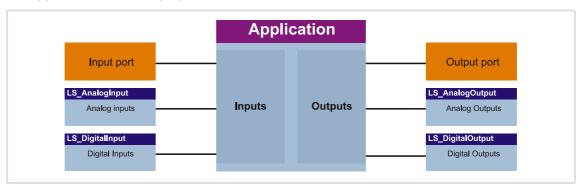
▶ When you select a module in the list field, this module is zoomed in and selected at the same time (the following example shows the LS_DigitalInput system block):

Working with the FB Editor User interface

- Tip!

You can also enter any search text in the input field.

- If you click the <a> icon, the cutout is moved to the object which contains this search text.
- Another click on the <a> icon leads to a new search. Thus, you can navigate successively to all objects which contain the entered search text.
- The search text does not consider case sensitivity.

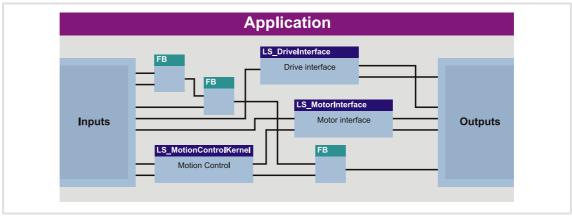

17.2.3 Level selection

Go to the Level selection list field and select the interconnection level to be displayed.

"I/O interconnection" level

This level displays only the I/O interconnection of the currently selected technology application for a better overview.

- ▶ Details of the application are masked out in this level.
- ▶ The interconnection of the I/Os of the controller with the inputs and outputs of the application in detail depends on the control mode selected in C00007.
- ► The parameterisation dialogs on the **Application parameter** tab correspond to the application block displayed in this level.


[17-5] Schematic diagram of "I/O interconnection"

"Application interconnection" level

This level displays the interconnection of the application selected in C00005 in detail. All function blocks used in the application and the system blocks which provide the interfaces to the drive and motor interface and to the MotionControlKernel (MCK) are displayed with their connections.

▶ The interconnection of the I/Os of the controller with the inputs and outputs of the application is masked out in this level.

[17-6] Schematic diagram of "Application interconnection"

Note!

With the "StateLine" version, the interconnection shown in the application level cannot be edited.

Every application block features so-called "free inputs and outputs" which you can use to transfer signals from the I/O level to the application level and vice versa.

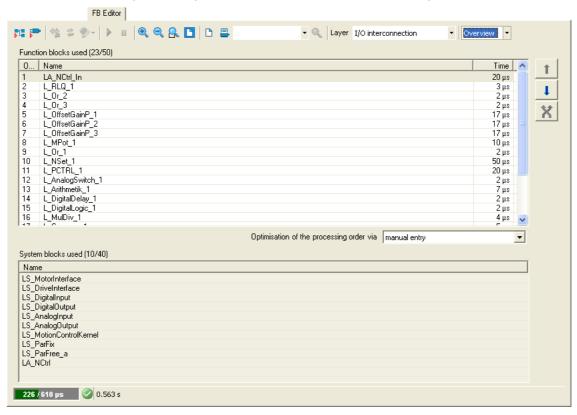
- In the Lenze setting, these connectors are hidden in the function block editor.
- These connections can be shown via the Connector visibilities command in the Context menu of the application block.

Working with the FB Editor User interface

"Free interconnection" level

This level serves to implement an individual drive solution for the "HighLine" version.

Note!

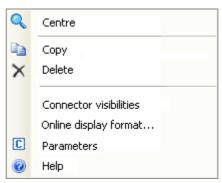

When you select the "Free interconnection" level for the first time, you are prompted to confirm whether the interconnection from the I/O level and the application level are to be combined and copied into this level.

When you confirm this confirmation prompt with **Yes**, the I/O level and the application level are not available anymore. This action can only be undone by resetting the application to a predefined Lenze application! • Resetting changed interconnection (1102)

17.2.4 Editor view/overview

Use the list field at the top right to change from the Editor to the overview and vice versa.

The overview shows all function blocks used of the interconnection in the upper list field in the order of their processing. The lower list field shows all used system blocks.


The processing order of the function blocks can be optimised manually or according to an automatically generated selection. ▶ Changing the processing order (☐ 1097)

17.2.5 Context menu

You can open a *context menu* via the right mouse button for each object (function block, system block, line, comment, etc.) and for the drawing area:

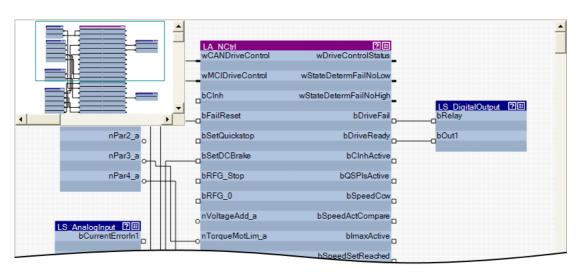
- ▶ The contents of the *context menu* depend on the type of object you click on.
- ► Example: *Context menu* for a function block:

17.2.6 Status bar

The status bar of the FB Editor shows, among other things, information about the system load and the error status of the interconnection:

Symbol	Meaning			
■ System load				
226 / 610 µs	Here: out of the available computing time of 610 μ s, 226 μ s are required by the application.			
B Error status of the in	nterconnection			
Ø	The interconnection has no errors and no warnings			
<u> </u>	The interconnection has errors and/or warnings			
© Communication sta	tus			
*	Offline			
4	Online			
۵	Communication error			
Adjustment status				
=	Offline and online interconnection match			
#	Offline and online interconnection are different			
E Update rate for monitoring values				

17.2.7 **Overview window**


The overview window shows the drawing area in a reduced view. The overview window serves to e.g. move quickly through a more complex interconnection.

How to show the monitor window:

Go to the Context Menu of the drawing area and select the Overview Window.

• If you execute this command again, the overview window is hidden again.

- ▶ The green frame in the overview window indicates the interconnection cutout that is currently displayed in the drawing area.
- ▶ Use the mouse pointer to shift and resize the cutout to be displayed.

How to shift the cutout presented in the drawing area:

- 1. Position the mouse pointer to the green frame in the overview window.
 - The mouse pointer symbol becomes a positioning cross.
- 2. Click left mouse button and shift the green frame to its new position by keeping the mouse button pressed, so that the desired cutout of the interconnection is displayed in the drawing area.

How to redefine the cutout to be presented:

In the overview window draw a frame around the area of the interconnection which is to be presented in the drawing window by keeping the left mouse button pressed:

- The aspect ratio of the frame is automatically adapted to the aspect ratio of the drawing area.
- According to the size of the frame that is drawn, also the presentation size of the objects in the drawing area changes.

Go to the FB Editor toolbar and click the icon to adapt the view size so that all objects included in the interconnection are visible in the drawing area.

Automatic scroll ("AutoScroll function")

If you reach a window limitation in the drawing area when shifting an object or in the overview window when shifting the green frame, and if you then shortly hold the mouse pointer in this position, an automatic scrolling into the corresponding direction is carried out:

Working with the FB Editor Using the FB Editor as "Viewer"

17.3 Using the FB Editor as "Viewer"

The main purpose of the FB Editor is the individual configuration of the selected technology application. However, you can also use the FB Editor to

- ▶ make a diagnosis of the application (when an online connection has been established),
- ▶ get a better understanding for the operating mode of the application,
- ▶ use the interconnection as an alternative parameterisation access.

Diagnostics of the application

When an online connection to the controller has been established, the current values are displayed at the inputs and outputs of the objects.

▶ Process-scaled signals can be scaled in a "user-defined" way for easy diagnostics in the FB Editor. ▶ Change online display format (□ 1077)

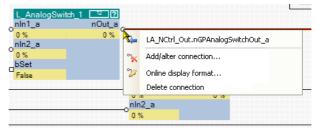
Getting a better understanding for the operating mode of the application

Make yourself familiar with the signal flow of the interconnection to get a better understanding of the operating mode of the application or individual functional areas.

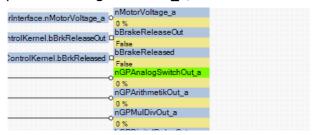
▶ The ☑ symbol in the head of the block or the Help command in the context menu for the block serve to open the online help for the block.

Using the interconnection as an alternative parameterisation access

► The icon in the head of the module, a double-click on the module, or the Parameter... command in the Context menu of the module serve to open the parameterisation dialog or the parameter list for the module.


17.3.1 Following connections of inputs and outputs

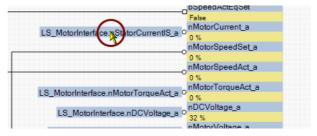
In addition to the Search function you can use the context menu of inputs and outputs to follow connections and quickly reach certain signals.



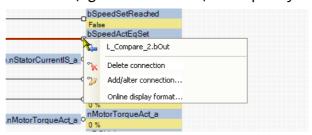
How to navigate from one output to another connected input:

- 1. Open the context menu (right mouse button) of the port symbol at the output.
 - The context menu for the port symbol contains all inputs which are connected to the output:

- 2. Select input in the *context menu* to which you want to navigate.
 - · As a result, the selected input is displayed in the centre of the drawing area (in this example: nGPAnalogSwitchOut a):


Working with the FB Editor Using the FB Editor as "Viewer"

How to navigate from one input to another connected output:


If the input is connected to a flag:

• Double-click the flag:

If the input is connected to a line:

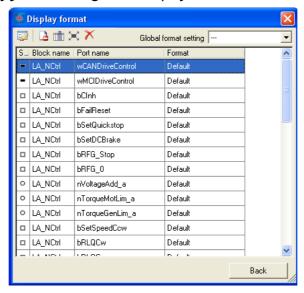
1. Open the context menu (right mouse button) of the port symbol at the output:

- 2. Select output in the context menu.
 - Since an output can only be connected to an input, the context menu contains only an output.

The output is displayed in the centre of the drawing area.

Keyboard commands for navigation 17.3.2

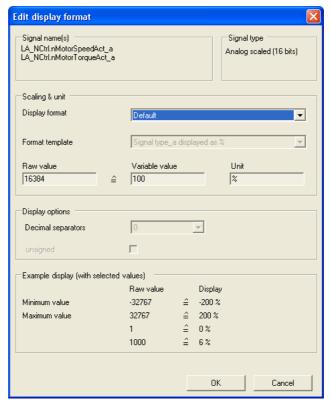
Keyboard command	Function
<picture ▲=""></picture>	Scroll up
<picture ▼=""></picture>	Scroll down
<shift> + <picture ▲=""></picture></shift>	Scroll to the left
<shift> + <picture ▼=""></picture></shift>	Scroll to the right
<pos1></pos1>	Scroll to the left edge of the interconnection
<end></end>	Scroll to the right edge of the interconnection
<ctrl> + <pos1></pos1></ctrl>	Scroll to the left upper corner of the interconnection
<ctrl> + <end></end></ctrl>	Scroll to the right lower corner of the interconnection


17.3.3 Change online display format

For online monitoring in the FB Editor the display format of the input and output data of a block can be adapted individually. Process-scaled signals can be scaled in a "user-defined" way for easy diagnostics in the FB Editor. Thus, the display of these signals gets a process reference.

How to change the data display format of block inputs/outputs:

- 1. Go to the *context menu* of the block and select the **Online display format** command.
 - **Tip**: You can call the *context menu* of a block by clicking with the right mouse button on the header of the block.
 - The Display format dialog box is displayed:



- 2. Select the inputs/outputs from the list the display format of which is to be changed.
 - **Note**: In the **Global format setting** list field the "---" entry must be selected so that the display format can be changed.
 - If you click further inputs/outputs while pressing **<Ctrl>** they are added to an already existing selection (multi-selection).
 - The **<Shift>** key serves to select a related area of inputs/outputs.
 - More functions:
 - Display masked out connections
 - mi Display additional information
 - ➤ Select all inputs/outputs
 - X Reset all format information

Working with the FB Editor Using the FB Editor as "Viewer"

- 3. Click the 👺 symbol to edit the display format of the selected inputs/outputs.
 - The Edit display format dialog box is displayed:

- 4. Go to the Display format list field and select the "User-defined" entry.
- 5. Go to the Format template list field and select "No template".
- 6. Select the required scaling, unit, number of decimal positions, and sign handling.
- 7. Click **OK** to accept the settings and close the *Edit display format* dialog box.
 - The *Display format* dialog box now displays the text "User-defined" for the changed inputs/outputs in the **Format** column.

After all required formats have been changed:

- 8. Click **Back** to close the *Display format* dialog box.
 - · For online monitoring, the changed format is used.

17.4 Reconfiguring the predefined interconnection

How to proceed:

- 1. Insert additionally required objects into the interconnection.
- 2. Hide unneeded inputs/outputs of function blocks and system blocks to obtain a clearly arranged interconnection.
- 3. Arrange the objects in the drawing area in a reasonable manner.
- 4. Establish the connections required for the desired function.
- 5. If required, change (optimise) the processing order of the function blocks.

Detailed information on the individual steps can be obtained from the following subchapters!

Note!

With the "StateLine" version, the interconnection shown in the application level cannot be edited.

17.4.1 **Inserting/Deleting objects**

Objects can be inserted in the interconnection via the FB Editor toolbar and the context menu of the drawing area. The following subchapters provide detailed information on how to insert/delete the different objects.

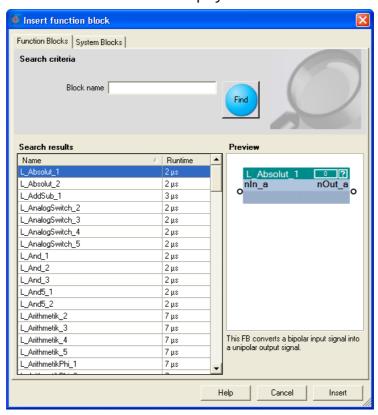
Symbol	Function
ī	Inserting a function block (🕮 1080)
	Inserting a system block (🕮 1082)
-	Inserting a port block (1084)
	Inserting a comment (11 1086)

Use the context menu of the drawing area to insert a function block, system block, port block or comment directly to the current position of the mouse pointer in the drawing area.

If you insert an object via the corresponding icon in the FB Editor toolbar, the object is always placed at the top left corner in the drawing area.

Interconnection elements cannot only be copied within the same interconnection but also across all devices within the same project, as long as the devices stem from the same product family. ▶ Copying interconnection elements (across all devices) (1099)

17.4.1.1 Inserting a function block


Note!

In the FB Editor, function blocks are only available in the "Application interconnection" level!

How to insert a function block into the interconnection:

- 1. In the FB Editor toolbar, click the 📜 icon.
 - The Insert Function Block dialog box appears:
- 2. Unless it is already displayed, select the Function Blocks tab.
 - All function blocks available are displayed in the Search results list field.

- A preview of the selected function block is displayed.
- A detailed description of all available function blocks can be found in the main chapter "Function library". (2 1110)
- 3. If required, define **Search criteria** to narrow down the available function blocks:
 - Block name: String which must be contained in the name of the function block.
- 4. After changing the search criteria, press the **Find** button to update the selection.
 - Then, only the function blocks complying with the features set in the search criteria are shown in the **Search Results** list field.
 - If no search criteria are set, all function blocks available are shown.

8400 TopLine C | Software Manual

Working with the FB Editor Reconfiguring the predefined interconnection

- 5. Select the function block to be inserted in the **Search results** list field.
- 6. Press Insert button.
 - The dialog box is closed and the selected function block is inserted into the interconnection.

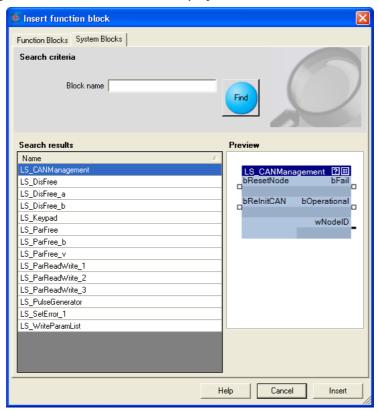
Context menu for the function block

If you right-click on the header of a function block, a *context menu* opens via which you can execute the following functions in addition to the general processing functions (Copy, Insert, Delete):

Command		Function
Q	Center	Move the visible cutout of the drawing area so that the block is centred.
Connector visibilities		Define visible inputs and outputs of the block. ▶ Changing connector visibilities (□ 1089)
Online display format		Adapt the display format of the input and output data of the block individually for online monitoring. • Change online display format (11077)
C	Parameter	Open the parameter list/parameterisation dialog for the block. Only if function block is parameterisable.
0	Help	Show online help for the block.

Related topics

- ▶ Deleting objects that are no longer required (☐ 1088)
- ► Changing connector visibilities (🕮 1089)
- ▶ Arranging objects in the drawing area (☐ 1090)
- ► <u>Creating/deleting connections</u> (🕮 1091)
- ▶ Changing the processing order (☐ 1097)


Inserting a system block 17.4.1.2

A system block is inserted similarly to the way a function block is inserted.

How to insert a system block into the interconnection:

- 1. In the FB Editor toolbar, click the 📜 icon.
 - The Insert Function Block dialog box appears:
- 2. Unless it is already displayed, select the **System Blocks** tab.
 - All system blocks available are displayed in the Search results list field.

- A preview of the selected function block is displayed.
- 3. If required, define **Search criteria** to accordingly narrow down the system blocks available:
 - · Block name: String which must be contained in the name of the system block.
- 4. After changing the search criteria, press the **Find** button to update the selection.
 - Then, only the system blocks complying with the features set in the search criteria are shown in the Search Results list field.
 - If no search criteria are set, all system blocks available are shown.

- 5. Select the system block to be inserted in the **Search results** list field.
- 6. Press Insert button.
 - The dialog box is closed and the selected system block is inserted into the interconnection.

Context menu for the system block

If you right-click on the header of a system block, a *context menu* opens via which you can execute the following functions in addition to the general processing functions (Copy, Insert, Delete):

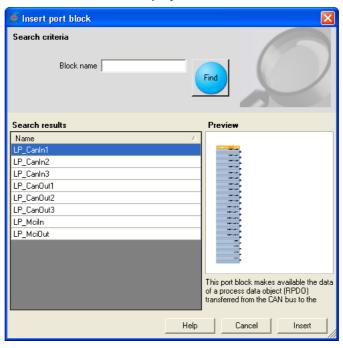
Command		Function
Q	Center	Move the visible cutout of the drawing area so that the block is centred.
Connector visibilities		Define visible inputs and outputs of the block. ▶ Changing connector visibilities (□ 1089)
	Online display format	Adapt the display format of the input and output data of the block individually for online monitoring. • Change online display format (11 1077)
C	Parameter	Open the parameter list/parameterisation dialog for the block.
0	Help	Show online help for the block.

Related topics

- ▶ Deleting objects that are no longer required (☐ 1088)
- ► Changing connector visibilities (🗆 1089)
- ▶ Arranging objects in the drawing area (☐ 1090)
- ► <u>Creating/deleting connections</u> (□ 1091)

Inserting a port block 17.4.1.3

All input/output ports defined for the application on the **Ports** tab can be inserted into the interconnection in the form of port blocks in order to get access to the associated element variables.



You can change between the Ports and FB Editor tabs at any time to define new ports and afterwards insert them into the interconnection.

How to insert a port block into the interconnection:

- 1. In the FB Editor toolbar, click the 🔁 icon.
 - The Insert port block dialog box appears.
 - All port blocks available are displayed in the Search results list field.

- A preview of the selected port block is displayed.
- 2. If required, define search criteria to accordingly narrow down the port blocks available:
 - · Block name: String which must be contained in the name of the port block.
- 3. After changing the search criteria, press the **Find** button to update the selection.
 - Then, only the port blocks complying with the features set in the search criteria are shown in the Search Results list field.
 - If no search criteria are set, all port blocks available are shown.
- 4. Select the port block to be inserted in the **Search results** list field.

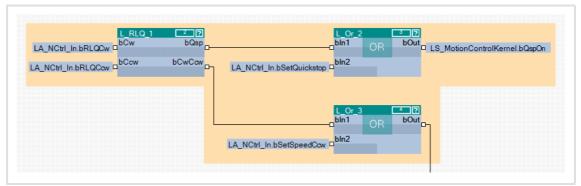
- 5. Press Insert button.
 - The dialog box is closed and the selected port block is inserted into the interconnection.

Context menu for the port block

If you right-click on the header of a port block, a *context menu* opens via which you can execute the following functions in addition to the general processing functions (Copy, Insert, Delete):

Command		Function
Center		Move the visible cutout of the drawing area so that the block is centred.
Connector visibilities		Define visible inputs and outputs of the block. ▶ Changing connector visibilities (□ 1089)
	Online display format	Adapt the display format of the input and output data of the block individually for online monitoring. • Change online display format (11077)
C	Parameter	Open the parameter list/parameterisation dialog for the block.
0	Help	Show online help for the block.

Related topics

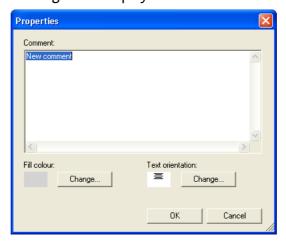

- ▶ Deleting objects that are no longer required (☐ 1088)
- ▶ Changing connector visibilities (☐ 1089)
- ▶ Arranging objects in the drawing area (☐ 1090)
- ► <u>Creating/deleting connections</u> (□ 1091)

17.4.1.4 **Inserting a comment**

Comments can be inserted at any position in the drawing area.

As of the »Engineer« V2.10, the interior colour and text alignment of a comment can be changed via a properties dialog. Now the sizes of comments can also be changed using the mouse pointer. When using different interior colours you can use comments to graphically arrange areas that belong together in terms of function or separate them from other areas:

[17-7] Example: Graphical arrangement of FBs by means of two comments that overlap.


Note!

The term "Arrangement" does not mean a logical arrangement of the function blocks. The comments are only graphical presentation elements of the FB Editor.

How to insert a new comment into the interconnection:

- 1. Move the mouse pointer to the (free) position in the drawing area where the comment is to be inserted.
- 2. Go to the Context menu (right mouse key) and select the New comment command.
 - The Properties dialog box is displayed:

3. Enter the required comment into the text field.

- 4. Optional: Change preset interior colour.
 - For this purpose, click the left **Change...** button to open the *Colour* dialog box to select another interior colour.
- 5. Optional: Change preset text alignment.
 - For this purpose, click the right **Change...** button to open the *Text alignment* dialog box to select another text alignment.
- 6. Press **OK** to close the *Properties* dialog box and insert the comment.
 - After being inserted, the corner points of the comment are shown:

- 7. Optional: Change size of the comment.
 - For this purpose click one of the corner points with the left mouse button and enlarge the comment to the required size with the mouse button pressed.

- 8. Optional: Drag comment.
 - For this purpose click the comment with the left mouse button and move the comment to the required position with the mouse button pressed.

The *Properties* dialog box for a comment already available can be opened by double-clicking the comment.

Related topics

- ▶ Deleting objects that are no longer required (☐ 1088)
- ▶ Arranging objects in the drawing area (☐ 1090)
- ► Creating/deleting connections (□ 1091)

17.4.1.5 Deleting objects that are no longer required

Objects that are no longer required can be easily deleted again. "Delete" only means that the object is removed from the drawing area. If you have deleted an object from the drawing area, you can reinsert it any time into the interconnection.

Note!

Deleting an object cannot be undone.

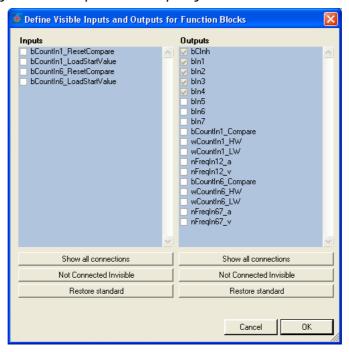
Together with the object, all available connections to this object are deleted.

How to delete objects that are no longer required:

- 1. Select objects to be deleted.
 - You can select a single object by clicking the header of the object.
 - You can select objects that are placed together by drawing a frame around these objects while keeping the mouse button pressed.
 - If you click the header of further objects while pressing **<Ctrl>**, these will be added to an already existing selection (multi-selection).
 - All selected objects are highlighted by a light green header.
- 2. Press < Del>.

Related topics

▶ Deleting connections that are no longer required (□ 1096)


17.4.2 **Changing connector visibilities**

Inputs and outputs that are not connected can be hidden for each block. This serves to reduce the dimension of the block. The interconnection becomes clearer.

How to define the visible inputs and outputs:

- 1. Go to the context menu of the block and select the Connector visibilities command.
 - The Define Visible Inputs and Outputs for Function Blocks is displayed:

- · All visible connections have a checkmark.
- In case of a block that is inserted anew, all inputs and outputs are visible at first.
- Inputs and outputs with a light grey checkbox are already connected and thus cannot be hidden.
- 2. By setting/removing the checkmarks or via the buttons you can define the visible inputs and outputs.
- 3. Press **OK** to accept the selected definition and close the dialog box.

17.4.3 Arranging objects in the drawing area

All objects can be freely arranged in the drawing area by dragging with the mouse.

We recommend to make an arrangement in which the required connections between the inputs and outputs can be created easily. A division into functional areas may also be sensible to get a better understanding of the application.

Objects which are already connected, can also be dragged to another (free) position in the drawing area. The available connections will be automatically re-routed after dragging.

How to drag an object:

- 1. Click the header of the object (and keep the button pressed).
- 2. Keep the button pressed and drag the object to the required position in the drawing area.
 - Via **<Esc>** you can cancel this action.

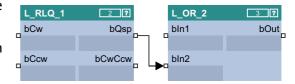
How to drag several objects at the same time:

- 1. Select the objects to be dragged.
 - You can select a single object by clicking the header of the object.
 - If you click the header of further objects while pressing **<Ctrl>**, these will be added to an already existing selection (multi-selection).
 - You can easily select objects that are placed together by drawing a frame around these objects while keeping the mouse button pressed.
 - All selected objects are highlighted by a light green header.
- 2. Keep the mouse button pressed on the header of one of the selected objects and drag it to the required position in the drawing area.
 - Via **Esc>** you can cancel this action.

Note!

A red header indicates that the object overlaps with other objects in the drawing area!

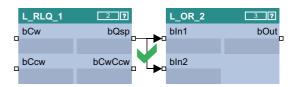
Arrange the objects so that no overlap occurs.



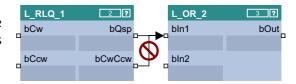
17.4.4 Creating/deleting connections

After adding objects and arranging them in a reasonable manner within the drawing area, you can create the connections between the available objects which are required for the desired function.

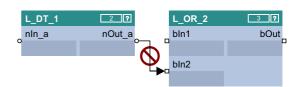
A connection always has a direction and therefore always has a source and a target.


- ► An output represents a possible source in the interconnection.
- ► An input represents a possible target in the interconnection.

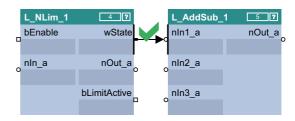
Permissible/impermissible connections


Several connections can lead from one output.

► Therefore it is always possible to start a new connection from an output.


However, maximally one connection may end in an input.

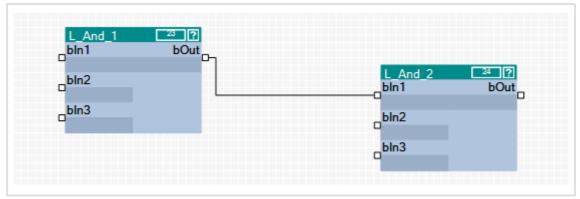
► Therefore it is only possible to start a new connection from an input if there is no connection already ending in this input.


Only inputs/outputs of the same signal type can be connected.

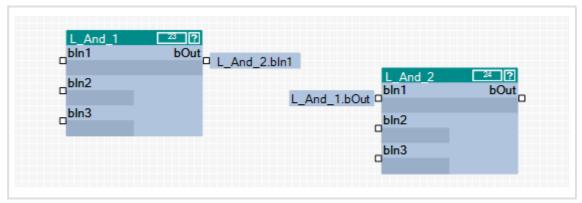
Thus, a connection between different port symbol cannot be established.

From the "Engineer" V2.12 "Analog/scaled" (_a) and "Miscellaneous (WORD)" signal types can also be interconnected.

► The implicit type conversion is indicated by a vertical black bar at the port symbol.



From the »Engineer« V2.13 "Analog/scaled" (_a) and "Angular velocity" (_v) signal types can also be interconnected.



Connection types

Connections can either be created by means of connection lines or port identifiers ("flags")

[17-8] Example 1: Connection via connection line

[17-9] Example 2: Connection via flags

The commands Show as flag or Show as line in the context menu of a connection serve to change the representation of the connection at any time.

When an output is connected to several inputs via flags, three points are displayed ("...") at the output instead of the concrete input identifier. The context menu of the port symbol shows all inputs which are connected to the output.

17.4.4.1 Creating a connection using the connection line

How to create a connection using the connection line:

- 1. Click the port symbol from which the new connection is to be started.
 - It is only possible to start a new connection from an input if there is no connection already ending in this input.
 - If you then move the mouse pointer away from the port symbol, a new connection is "drawn" from this port symbol.
 - Via **<Esc>** you can cancel this action.
- 2. Click the port symbol where the connection is to end.
 - Thereupon the corresponding connection is routed automatically if the connection is permissible.

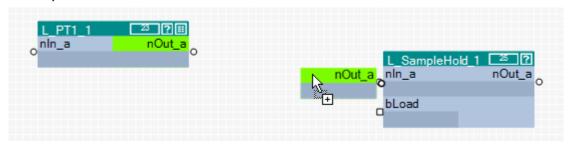
If you move the mouse pointer across the port symbol while drawing a new connection, you can see whether the connection is permissible or not from the colour of the drawn line and from the mouse pointer symbol.

· Permissible connection:

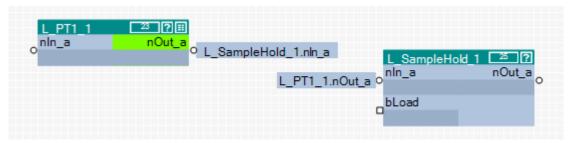
• Impermissible connection (different port symbol):

The command Show as flag in the context menu of a line serves to change the representation of the connection at any time.

17.4.4.2 Creating a connection using port identifiers



How to create a connection with port identifiers:


- 1. Click the port identifier.
 - The selected port is highlighted in light green:

2. Drag the port segment to the required port while keeping the left mouse button pressed:

After releasing the mouse button, the connection via port identifiers (flags) is created. The corresponding port identifier consists of the block name and the name of the input/output:

The command Show as line in the context menu of a flag serves to change the representation of the connection at any time.

17.4.4.3 Creating a connection via connection dialog

You can also create connections by means of a selection dialog instead of dragging by mouse. This especially makes sense if there is a great distance between the ports to be connected in the drawing area.

How to create a connection using the selection dialog:

- 1. Right-click the port identifier or click the port symbol from which the connection is to start.
 - The context menu for the port is displayed.
- 2. Go to the context menu for the port and select the Add/change connection... command.
 - The Add/change connection dialog box is displayed:

- In a tree structure all inputs and outputs of the application are shown to which a connection is permissible.
- You can enter an optional text into the Filter input field to reduce the selection to the blocks or ports which contain the entered text.
- If you activate the **Show hidden ports** control field, the hidden ports for system and function blocks are shown as well.
- 3. Select the port where the connection is to end from the tree structure.
- 4. Activate the Add connection as flag control field if a port identifier (flag) is to be inserted instead of a connection line.
- 5. Press **OK** to create the connection to the selected port and close the dialog box.

8400 TopLine C | Software Manual

Working with the FB Editor Reconfiguring the predefined interconnection

17.4.4.4 Deleting connections that are no longer required

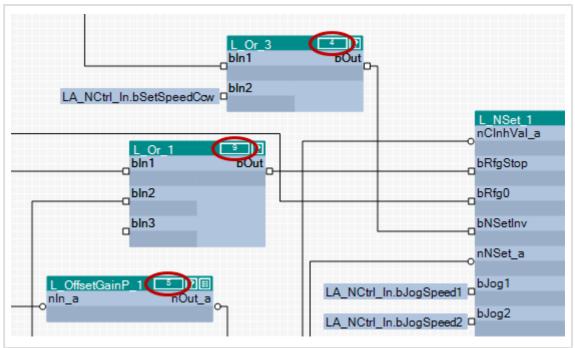
How to delete connection lines:

- 1. Select connection lines to be deleted.
 - Select a single connection line by directly clicking on the connection line with the right mouse button.
 - If you click further connection lines while pressing **<Ctrl>** they are added to an already existing selection (multi-selection).
 - All connection lines are highlighted in red.
- 2. Press < Del>.

How to delete port identifiers/flags:

- 1. Select the port identifiers to be deleted.
 - Select a single port identifier by directly clicking on the port identifier with the left mouse button.
 - If you click further port identifiers while pressing **<Ctrl>** they are added to an already existing selection (multi-selection).
 - All selected port identifiers are highlighted by a light green header.
- 2. Press < Del>.

Related topics


▶ Deleting objects that are no longer required (□ 1088)

17.4.5 Changing the processing order

If you insert a function block into the interconnection, an order index is automatically assigned to this function block. By means of this order index it is defined in which order the individual function blocks are calculated at runtime.

- ► The first function block inserted contains the order index "1", the next function block inserted contains the order index "2", etc.
- ► The respective order index is displayed in the header of the function block in the rectangle after the block name.

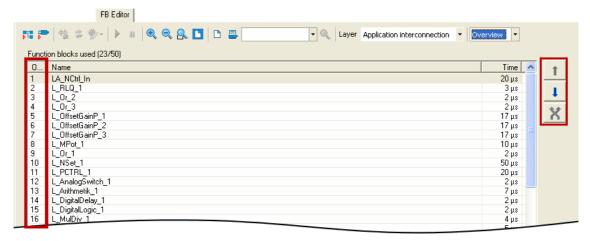
[17-10] Example: Function blocks with order index

Note!

When a function block is shifted, its order index is maintained.

The processing order influences the result!

• In certain cases it may be sensible to change the processing order, but if you select an unfavourable processing order, errors may arise!


8400 TopLine C | Software Manual

Working with the FB Editor Reconfiguring the predefined interconnection

How to change the processing order manually:

- 1. Use the list field at the top right to change from the Editor to the overview.
 - The overview displays all function blocks of the interconnection in the order of their processing
 - In the first "Order" column the order index of each function block is listed.
- 2. Unless already selected, select the entry "Manual selection" in the **Optimisation...** list field.

- 3. Select the function block which is to receive a different position within the processing order.
 - If you click further function blocks while pressing <Ctrl> they are added to an already existing selection (multi-selection).
 - The **<Shift>** key serves to select a related area of function blocks.
- 4. Move the function block(s) to the desired position using the 1 and 1 buttons.
 - The X button serves to exchange two selected function blocks with regard to their order.
- 5. Repeat steps 3 and 4 until the required processing order has been established.

Changing the processing order according to an automatically generated selection

In addition to the manual selection, the Optimisation... list field also offers two options for an automatic adaptation of the processing order:

- ▶ **Signal flow**: The processing order is optimised according to the signal flow.
- ▶ Topology: The processing order is optimised according to the x/y arrangement of the function blocks in the FB Editor.

As long as an automatic adaptation has been selected, a manual change of the processing order is not possible.

17.4.6 Copying interconnection elements (across all devices)

Interconnection elements can be copied across the devices within the project if the devices belong to the same product family (e.g. Inverter Drives 8400).

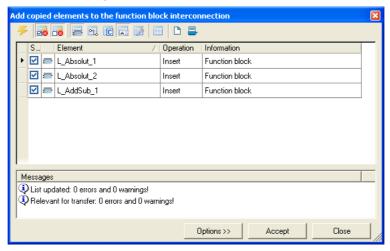
All types of blocks and comments can be copied to the clipboard via the Copy command or the **<Ctrl>+<c>** shortcut and then be inserted into the FB interconnection of the same or another project device of the same product family using the Paste command or the <Ctrl>+<v> shortcut.

- ▶ During the copy process into the clipboard, existing connections between copied blocks are copied as well, and the layout is kept too. Moreover, the separate technical objects (e.g port definition) are copied. Selected connections cannot be copied on their own.
- ▶ The Paste command is available if the clipboard is not empty and if it was copied from a device of the same product family. Within this product family, all device types (e.g. 8400 xxxxLine Vxx.xx) are permitted.
- ▶ After the Paste command has been selected, a dialog box is displayed which serves to select which elements are to be inserted from the clipboard and how to solve name conflicts, if any.
- ▶ After inserting the elements, they are marked in the target interconnection in order to be repositioned or deleted again to undo the insertion.
- ▶ Inserting from the clipboard can be repeated. The originally copied contents of the clipboard remains unchanged when it is inserted.

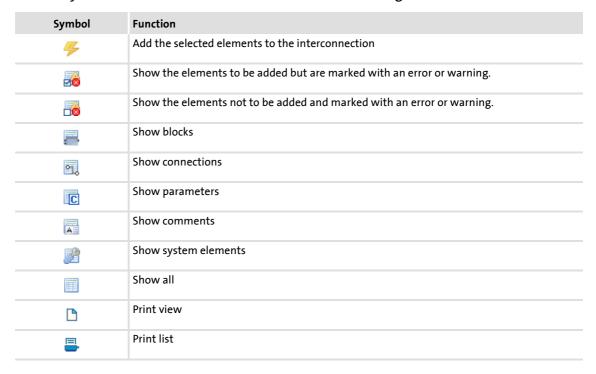
How to copy one or several interconnection elements:

- 1. Select the objects to be copied.
 - You can select a single object by clicking the header of the object.
 - If you click the header of further objects while pressing **<Ctrl>**, these will be added to an already existing selection (multi-selection).
 - You can easily select elements that are placed together by drawing a frame around these elements while keeping the mouse button pressed.
 - All selected objects are highlighted by a light green header.
- 2. Go to the context menu and select the Copy command (or <Ctrl>+<c>).
 - The selected elements are copied into the clipboard of the FB Editor.

8400 TopLine C | Software Manual


Working with the FB Editor Reconfiguring the predefined interconnection

- 3. If the elements are to be copied into a function block interconnection of another project device, change to the corresponding interconnection via the *project view*.
- 4. Go to the *context menu* and select the **Paste** command (or **<Ctrl>+<v>**).
- 5. Go to the *Insert FB interconnection* dialog box and select the elements to be inserted from the clipboard.
 - Detailed information on this dialog box can be obtained from the following subchapter "Insert options for copied elements". (21101)
- 6. Click **Insert** to insert the selected elements into the target interconnection as defined.
 - Only possible if at least one element in the list has been selected for insertion.
 - Insertion is also possible via the **<Enter>** button if at least one element is selected from the list for insertion.
 - The original layout and the relative position of the inserted blocks to each other are maintained.
 - When copying across the devices, you also insert the corresponding separate technical objects (e.g. port definition).
 - The inserted elements are deleted from the list. If the list is empty, the dialog box is closed and the connections are inserted depending on the selected option.
- 7. If there are still elements to be entered in the list, repeat steps 5 and 6 until all elements are inserted as intended.
- 8. Press **Close** to stop the insertion and close the dialog box.
 - You can also use **<Esc>** or **<Enter>** to close the dialog box if "Insert" is not active.
 - The elements inserted into the target interconnection so far are maintained.
 - The connections for the blocks inserted so far are inserted depending on the selected option.


17.4.6.1 Insert options for copied elements

If interconnection elements have been copied to the clipboard, the »Engineer« will display a list of all elements contained in the clipboard when selecting the command **Insert** in the *Insert FB interconnection* dialog box:

The list shows the elements which can be added to the target interconnection, and the elements which cannot be added.

- ▶ In the "Selection" column, you can check/uncheck the elements to be added.
- ► Connections are only inserted when the dialog box is closed, which applies to all modules inserted so far. They are displayed as lines or flags, like in the original, but rerouted.
- ▶ The symbols in the *Toolbar* serve to execute the following functions:

▶ The buttons serve to execute the following functions:

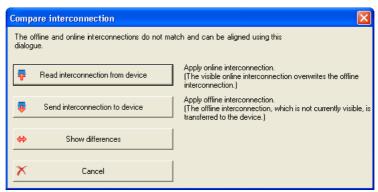
Button	Function				
Insert	 Add elements selected in the list to the target interconnection Only possible if at least one element in the list has been selected for insertion. Insertion is also possible via the <enter> button if at least one element is selected from the list for insertion.</enter> The original layout and the relative position of the inserted blocks to each other are maintained. When copying across the devices, you also insert the corresponding separate technical objects (e.g. port definition). The added elements are simultaneously deleted from the list. The connections are added depending on the selected option. 				
Close	 Close dialog box. You can also use <esc> or <enter> to close the dialog box if "Insert" is not active.</enter></esc> The elements inserted into the target interconnection so far are maintained. The connections for the blocks inserted so far are inserted depending on the selected option. 				

17.4.7 **Resetting changed interconnection**

If you only made changes on the I/O level, you can reset them by selecting a predefined control scheme in C00007. If you have also made changes on the application level, you must first reset the changed application to a predefined application in C00005.

How to reset the application interconnection to a predefined application:

- 1. Go to the **Application parameters** tab.
- 2. Select the required application in the **Application** list field.


How to reset the I/O interconnection to a predefined control scheme:

- 1. Go to the Application parameters tab.
- 2. Select the required control scheme in the **Control source** list field.

17.5 Adjusting online and offline interconnection

If the »Engineer« detects that online and offline interconnection differ from each other, the *Compare interconnection* dialog box is displayed with various options for the adjustment:

The dialog box can also be opened via the 🔩 symbol in the FB Editor toolbar.

Button	Function
Accepting the interconnection from the device	Add the interconnection in the device to the FB Editor. The interconnection existing in the FB Editor will be overwritten by this action.
Transferring the interconnection to the device	Transfer the offline interconnection which is currently not visible in the FB Editor to the device. The interconnection existing in the device will be overwritten by this action.
Showing differences	Showing differences between online and offline interconnection.
Cancel	Close the Adjust interconnection dialog box without making an adjustment.

8400 TopLine C | Software Manual

Working with the FB Editor Printing the interconnection

17.6 **Printing the interconnection**

The interconnection can be printed for documentation purposes, optionally on one page, on four pages, or not scaled.

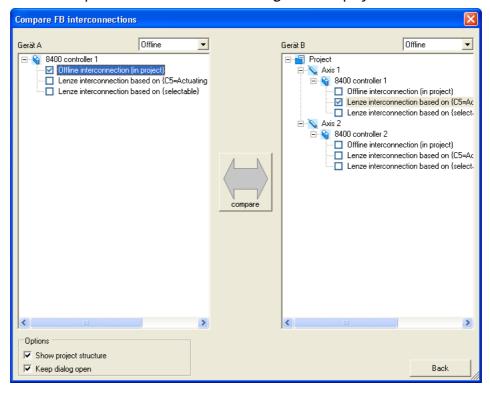
By clicking the icon in the FB Editor toolbar, you can get a print view before printing.

How to print the interconnection:

- 1. In the FB Editor toolbar, click the 🖶 icon.
 - The Circuit print size dialog box is displayed.
- 2. Select the desired size and press OK.
 - The standard dialog box *Print* appears.
- 3. Press **OK** to start the printing process.

17.7 Comparing interconnections

The comparison operation serves to compare FB interconnections of 8400 devices within the project. An offline<>online comparison and the comparison of two online devices are possible.

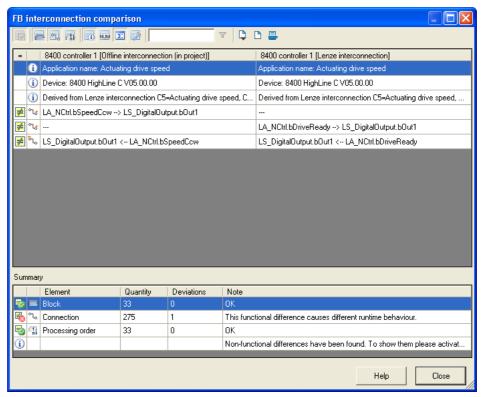

Note!

Only applications can be compared which have been enabled in the FB Editor! Block positions, line representations, and connector visibilities are not compared.

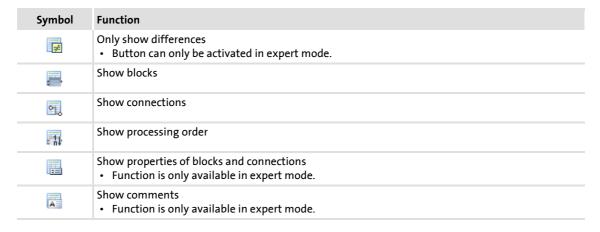
How to compare two FB interconnections:

- 1. Select the command Application data→Compare FB interconnections....
 - The Compare FB interconnections dialog box is displayed:

- 2. Select the interconnections to be compared in the project view represented on the left and right.
 - In order to execute a comparison with an online device, select "Online" in one of the two upper list fields. Then all available online devices are displayed for selection.
 - If you select "Online" in one of the two upper list fields, you can also compare the interconnections of two available online devices.



Working with the FB Editor Comparing interconnections


- 3. Click Compare.
 - If the comparison was executed successfully, the comparison result is displayed as a list (see the following section).
 - If a comparison of the selected interconnections is not possible, a corresponding message is displayed.
- 4. In order to stop the comparison operation and close the dialog box: Press **Back**.

Representation of the comparison result

The comparison result is displayed in the form of a list in the FB interconnection comparison dialog box:

► The symbols in the *Toolbar* serve to show or hide different details and export and print the shown list.

8400 TopLine C | Software Manual
Working with the FB Editor
Comparing interconnections

Symbol	Function
C	Show block parameters • Function is only available in expert mode.
C	Show application parameters • Function is only available in expert mode.
圃	Show all • Function is only available in expert mode.
	Show general information
Σ	Show summary
<u></u>	Activate expert mode In the expert mode, also non-functional differences are shown.
▼	 Apply filter Only show list entries which contain the text entered in the input field. Function is only available in expert mode.
	Export shown list as comma-separated list (*.csv)
<u> </u>	Print view
=	Print list

17.8 Copying an interconnection

In contrast to copying/inserting selected interconnection elements via the clipboard, the function described in this chapter serves to replace the current FB interconnection of a device completely by the FB interconnection of another project device.

Note!

The complete FB interconnection can only be copied between devices of the same device type and version (e.g. 8400 HighLine C V1.0).

A complete interconnection comprises:

- Function blocks (use and parameter values)
- System blocks (application and parameter values)
- ► Port blocks (use and parameter values)
- Connections
- ▶ Comments
- ► Interconnection layout (arrangement of the modules)
- ▶ Port definition of the ports used in the FB interconnection

How to copy the complete interconnection into another project device:

- 1. Select the application with the FB interconnection to be copied in the *project view*.
- 2. Select the command Application data→Copy FB interconnections....
- 3. Go to project view and select the application which is to be inserted into the copied FB interconnection.
- 4. Select the command Application data→Add FB interconnection....
 - The command can only be activated if an FB interconnection has been copied from a device of the same device type and version.
 - · After the command has been executed, the module assembly is compared. If there are relevant deviations, the insertion is refused and a corresponding message is displayed.
 - If an insertion is possible, you are asked if the FB interconnection is to be inserted.
- 5. Confirm the question if the copied FB interconnection is to be inserted with Yes.
 - After the insertion, an update of the project is required.

17.9 **Exporting/Importing an interconnection**

The interconnection existing in the project can be exported to a file for reuse/transfer to other devices.

Note!

The file can only be imported to devices of the same device type and version (e.g. 8400 HighLine C V1.0).

How to export the interconnection from the project to a file:

- 1. Go to the *Project view* in the *context menu* of the controller and select the **Export** FB interconnection... command.
- 2. Enter the memory location and the file name for the interconnection to be exported in the Export FB interconnection dialog box.
- 3. Click **Save** to export the interconnection and close the dialog box.

How to import the interconnection from a file to the project:

- 1. Go to the *Project view* in the *context menu* of the controller and select the **Import FB** interconnection... command.
- 2. Select the file with the interconnection to be imported in the Import FB interconnection dialog box.
- 3. Click **Open** to import the interconnection and close the dialog box.

18 Function library

18.1 Function blocks

This chapter describes the function blocks which are available for the controller in the FB Editor.

The system blocks are described in the chapter "System blocks". (🗆 1382)

Note!

A maximum of 75 function blocks can be used for a function block interconnection. The maximum calculating time is approx. 300 μ s.

Overview of function blocks available

Function block	Runtime	Function
L Absolute 1 L Absolute 2	2 μs	converts a bipolar input signal into a unipolar output signal.
L_AddSub_1	3 μs	adds / subtracts analog input signals.
L AnalogSwitch 1 L AnalogSwitch 2 L AnalogSwitch 3 L AnalogSwitch 4 L AnalogSwitch 5	2 μs	switches between two analog input signals.
L And 1 L And 2 L And 3	2 μs	ANDs three binary signals.
L And5 1 L And5 2	2 μs	ANDs five binary signals.
L Arithmetik 1 L Arithmetik 2 L Arithmetik 3 L Arithmetik 4 L Arithmetik 5	7 μs	combines two analog signals arithmetically.
L ArithmetikPhi 1 L ArithmetikPhi 2 L ArithmetikPhi 3	7 μs	combines two angle signals arithmetically.
L_CalcDiameter_1	2 μs	can calculate the reel diameter from line speed and winding speed. • This FB is available from version 02.00.00.
L Compare 1 L Compare 2 L Compare 3 L Compare 4 L Compare 5	5 μs	compares two analog signals and can be used e.g. to implement a trigger.
L ComparePhi 1 L ComparePhi 2 L ComparePhi 3 L ComparePhi 4 L ComparePhi 5	5 μs	compares two angle signals.

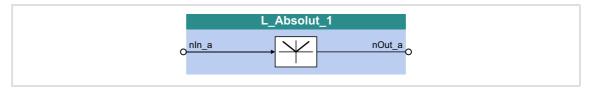
Function block	Runtime	Function
L_ConvAP_1	0 μs	converts an analog value into a position.
L ConvAP 2 L ConvAP 3		This FB is available from version 02.00.00.
L ConvAP 3 L ConvBitsToWord 1	2 116	converts 16 bit input values of the type "POOL" into an output value of
L ConvBitsToWord 2	3 μs	converts 16 bit input values of the type "BOOL" into an output value of the type "WORD".
L ConvBitsToWord 3		
L_ConvDintToWords_1	3 μs	converts an input value of the type "DINT" into two output values of
L ConvDIntToWords 2 L ConvDIntToWords 3		the type "WORD".
L ConvPA 1	3 μs	converts a position into an analog value.
L ConvPA 2		This FB is available from version 02.00.00.
L ConvPA 3	2	
L ConvPP 1 L ConvPP 2	3 μs	converts a position with dynamic fraction. • This FB is available from version 02.00.00.
L ConvPP 3		
L_ConvUnitsToIncr_1	3 μs	FB in preparation!
L ConvUnitsToIncr 2 L ConvUnitsToIncr 3		converts a position value provided in the real unit of the machine into an internal 32-bit position value.
L ConvW 1	2 μs	enables parameterisable conversion between analog signal forms.
L ConvW 2	'	Division is remainder considered.
L ConvW 3 L ConvW 4		
L ConvWordsToDInt 1	3 μs	converts two inputs values of the type "WORD" into an output value of
L ConvWordsToDInt 2	σ μσ	the type "DINT".
L_ConvWordsToDInt_3		
L ConvWordToBits 1 L ConvWordToBits 2	3 μs	converts an input value of "WORD" type into 16 individual binary signals.
L ConvWordToBits 3		
L ConvX 1	0 μs	scales an analog value.
L ConvX 2 L ConvX 3		This FB is available from version 02.00.00.
L Counter 1	3 μs	is a digital upcounter and downcounter.
L Counter 2		
L_Counter_3		
L Curve 1 L Curve 2	4 μs	can optionally display a characteristic function or a curve function y=f(x), the X axis being the input signal and the Y axis being the output
L Curve 3		signal.
I DEliacian 1	2	L_Curve_2 and L_Curve_3 are available from version 02.00.00. The state of
L DFlipFlop 1 L DFlipFlop 2	3 μs	provides two stable states depending on the input signals.
L DFRFG 1	3 μs	synchronises a drive (slave) to the master value of a master drive and
		then executes a angular synchronism with regard to the digital frequency.
		This FB is available from version 02.00.00.
L_DFSET_1	3 μs	prepares the master value for a slave drive. This FB enables the
		controller to follow the master drive true to speed and angle. • This FB is available from version 02.00.00.
L DigitalDelay 1	2 μs	delays binary signals.
L_DigitalDelay_2	'	
L_DigitalDelay_3		
L DigitalLogic 1 L DigitalLogic 2	2 μs	provides a binary output signal which is generated by the logic combination of three input signals.
L DigitalLogic 3		L_DigitalLogic_3 is available from version 02.00.00.
L_DigitalLogic5_1	2 μs	provides a binary output signal which is generated by the logic
L_DigitalLogic5_2		combination of five input signals.

Function block	Runtime	Function
<u>L DT1 1</u>	3 μs	differentiates signals. The function block can, for instance, be used to apply an acceleration (dv/dt).
L_FixSet_a_1	2 μs	outputs one of 16 parameterisable analog signals.
L FixSet w 1 L FixSet w 2	2 μs	outputs one of 16 parameterisable data words.
L GainOffset 1 L GainOffset 2 L GainOffset 3	3 μs	can amplify an analog input signal and then add an offset to it. Gain and offset can be set via FB inputs.
L GainOffsetP 1 L GainOffsetP 2 L GainOffsetP 3	3 μs	 can amplify an analog input signal and then add an offset to it.Gain and offset can be set via parameters.
L GainOffsetPhiP 1 L GainOffsetPhiP 2	3 μs	 can amplify an angle signal and then add an offset to it.Gain and offset can be set via parameters.
L GearComp 1	3 μs	 compensates elasticities in the drive train (gearbox compensation). This FB is available from version 02.00.00.
L Interpolator 1	5 μs	can interpolate a position setpoint and/or an analog value e.g. to compensate for larger bus transmission cycles or to continue signal characteristics if data telegrams are missing.
L_JogCtrlExtension_1	5 μs	can be connected upstream to the <u>L_NSet</u> ramp generator to implement a switch-off positioning at limit switch.
L Limit 1 L Limit 2	3 μs	limits an analog input signal to an adjustable value range.
L LimitPhi 1 L LimitPhi 2 L LimitPhi 3	3 μs	limits an angle signal to an adjustable value range.
L_MckCtrlInterface_1	5 μs	provides the application with process inputs for controlling various basic functions of the Motion Control Kernel. • MCKInterface (487)
L_MckStateInterface_1	5 μs	provides the application with various items of status information of the Motion Control via process outputs. MCKInterface (487)
L_MPot_1	10 μs	replaces a hardware motor potentiometer as setpoint source.
L MulDiv 1 L MulDiv 2	4 μs	multiplies the analog input signal with a factor. Not remainder considered.
L_Mux_1	3 μs	switches one of eight selectable input signals to the output.
L Negation 1 L Negation 2	2 μs	negates an analog input signal.
L NLim 1 L NLim 2	3 μs	can suppress up to three parameterisable blocking zones within a continuous signal characteristic of an analog input signal.
L Not 1 L Not 2 L Not 3 L Not 4 L Not 5 L Not 6 L Not 7	2 μs	inverts a digital input signal.
L_NSet_1	50 μs	contains a ramp generator with comprehensive parameterisation and control options to condition a setpoint signal.
L_Odometer_1	2 μs	detects positions and calculates distances.
L OffsetGain 2 L OffsetGain 3	4 μs	can add an offset to an analog input signal and amplify it afterwards. Offset and gain can be set via FB inputs.
L OffsetGainP 2 L OffsetGainP 3	17 μs	 can add an offset to an analog input signal and amplify it afterwards.Offset and gain can be set via parameters.

Function block	Runtime	Function
L OffsetGainPhiP 1 L OffsetGainPhiP 2	17 μs	can add an offset to an angle signal and amplify it afterwards. Offset and gain can be set via parameters.
L Or 1 L Or 2 L Or 3 L Or 4	2 μs	ORs three binary signals. • L_Or_4 is available from version 02.00.00.
L Or5 1 L Or5 2	2 μs	ORs five binary signals.
L_PCTRL_1	20 μs	is a PID controller and can be used for various control tasks.
L PhaseDiff 1 L PhaseDiff 2	2 μs	generates a position difference for the defined position setpoint from a position value and a speed signal.
L PhaseIntK 1 L PhaseIntK 2	5 μs	integrates a speed to an angle.
L_PhiIntegrator_1	2 μs	 evaluates a speed with a gearbox factor and adds them in an integrator. This FB is available from version 02.00.00.
L PosCtrlLin 1 L PosCtrlLin 2	2 μs	is a simple linear profile generator. • This FB is available from version 02.00.00.
L_PosiShaftCtrlInterface_1	5 μs	FB in preparation!
L ProcessCtrl 1	2 μs	can realise a dancer position or tension control. • This FB is available from version 02.00.00.
L PT1 1 L PT1 2 L PT1 3	3 µs	filters and delays analog signals.
L_RLO_1	3 μs	links a selected direction of rotation to the QSP function with wirebreak protection.
L RSFlipFlop 1 L RSFlipFlop 2	3 μs	saves a binary input information element and resets it on command
L SampleHold 1 L SampleHold 2	3 μs	saves a value.
L_SignalMonitor_a	15 μs	serves to output analog output signals of other FBs, SBs or LAs.
L_SignalMonitor_b	3 μs	serves to output binary output signals of other FBs, SBs or LAs.
L SignalSwitch 2 L SignalSwitch 3 L SignalSwitch 4	2 μs	switches between two input signals of the "WORD" data type.
L SignalSwitch32 1 L SignalSwitch32 2 L SignalSwitch32 3	2 μs	switches between two input signals of "DINT" data type. • This FB is available from version 02.00.00.
L_SOrt_1	3 µs	outputs the square root for a DINT input value.
L SRFG 1 L SRFG 2	2 μs	is a ramp function generator with S-shaped ramps for limiting the temporal rise of analog signals.
L SwitchPoint 1	3 µs	provides four position switch points, i.e. digital switches the binary statuses (FALSE/TRUE) of which depend on the actual position. • This FB is available from version 02.00.00.
L Transient 1 L Transient 2 L Transient 3 L Transient 4 L Transient 5 L Transient 6 L Transient 7 L Transient 8	3 μs	evaluates digital signal edges and converts them into timed pulses.

8400 TopLine C | Software Manual

Function library Function blocks

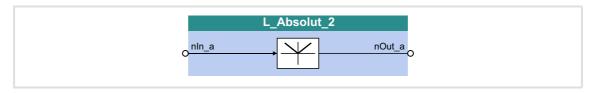

Related topics:

- ▶ Overview of system blocks available (☐ 1382)
- ▶ Working with the FB Editor (☐ 1058)

18.1.1 L_Absolute_1

This FB converts a bipolar input signal into a unipolar output signal.

Inputs


Identifier	Information/possible settings
Data type	
nIn_a	Input signal

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal

18.1.2 L_Absolute_2

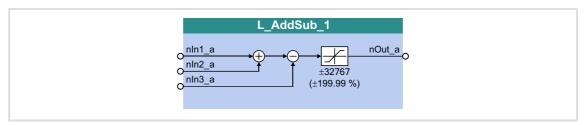
This FB converts a bipolar input signal into a unipolar output signal.

Inputs

Identifier Data	a type	Information/possible settings
nln_a	INT	Input signal

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal



Function library
Function blocks | L_AddSub_1

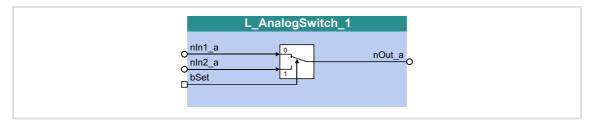
18.1.3 L_AddSub_1

This FB is provided with two adding inputs and one subtracting input.

▶ The value provided at the *nOut_a* output is internally limited to ±32767.

Inputs

Identifier Data ty	Information/possible settings
nIn1_a	Input signal 1 This input is added
nIn2_a	Input signal 2 This input is added
nln3_a	Input signal 3 • This input is subtracted


Outputs

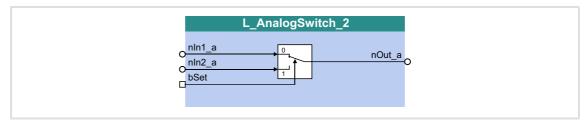
Identifier Data typ	Value/meaning
nOut_a	Output signal • nOut_a = nln1_a + nln2_a - nln3_a • Internal limitation to ±32767 (±199.99 %)

18.1.4 L_AnalogSwitch_1

This function block switches between two analog input signals. The switching is controlled via a boolean input signal.

Inputs

Identifier		Information/possible settings		
	Data type			
nln1_a	INT	Input signal 1		
1.0				
nln2_a	INT	Input signal 2		
16.1				
bSet		Selection of the input signal for the output to nOut_a		
	BOOL	FALSE nln1_a		
		TRUE nln2_a		

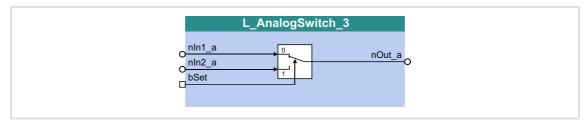

Identifier Data type	Value/meaning
nOut_a	Output signal

Function library
Function blocks | L_AnalogSwitch_2

18.1.5 L_AnalogSwitch_2

This function block switches between two analog input signals. The switching is controlled via a boolean input signal.

Inputs


Identifier	Data type	Information/possible settings		
nln1_a	INT	Input signal 1		
nln2_a	INT	Input signal 2		
bSet		Selection of th	e input signal for the output to nOut_a	
	BOOL	FALSE	nIn1_a	
		TRUE	nln2_a	

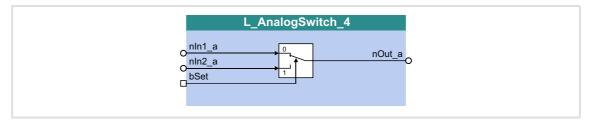
Identifier Data type	Value/meaning
nOut_a	Output signal

18.1.6 L_AnalogSwitch_3

This function block switches between two analog input signals. The switching is controlled via a boolean input signal.

Inputs

Identifier	Data type	Information/possible settings	
nIn1_a	INT	Input signal 1	
nIn2_a	INT	Input signal 2	
bSet		Selection of th	e input signal for the output to <i>nOut_a</i>
BOOL	FALSE	nln1_a	
		TRUE	nIn2_a

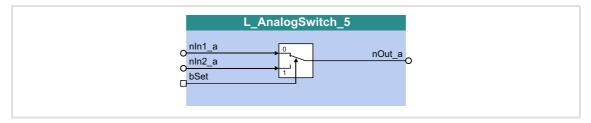

Identifier Data type	Value/meaning
nOut_a	Output signal

Function library
Function blocks | L_AnalogSwitch_4

18.1.7 L_AnalogSwitch_4

This function block switches between two analog input signals. The switching is controlled via a boolean input signal.

Inputs


Identifier		Information/possible settings	
	Data type		
nln1_a		Input signal 1	
	INT		
nln2 a		Input signal 2	
_	INT		
bSet		Selection of the input signal for the output to nOut_a	
	BOOL	FALSE nln1_a	
		TRUE nln2_a	

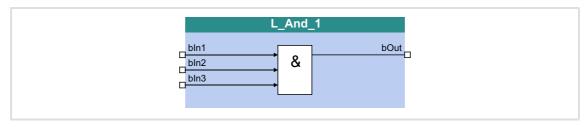
Identifier Data type	Value/meaning
nOut_a	Output signal

18.1.8 L_AnalogSwitch_5

This function block switches between two analog input signals. The switching is controlled via a boolean input signal.

Inputs

Identifier		Information/possible settings		
	Data type			
nln1_a	INT	Input signal 1		
1.0				
nln2_a	INT	Input signal 2		
16.1				
bSet		Selection of the input signal for the output to nOut_a		
	BOOL	FALSE nln1_a		
		TRUE nln2_a		


Identifier	Value/meaning
Data type	
nOut_a	Output signal
INT	

Function library
Function blocks | L_And_1

18.1.9 L_And_1

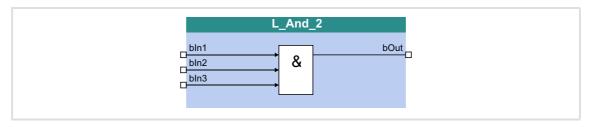
This FB implements the ANDing of the input signals.

Inputs

Identifier	Data type	Information/possible settings
bin1 bin2 bin3		Input signal
	BOOL	

Outputs

Identifier Data type	Value/meaning
bOut	Output signal


	Inputs		Output
bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	
FALSE	TRUE	FALSE	
FALSE	TRUE	TRUE	
TRUE	FALSE	FALSE	
TRUE	FALSE	TRUE	
TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE

[18-1] Truth table of the FB L_And_1

18.1.10 L_And_2

This FB implements the ANDing of the input signals.

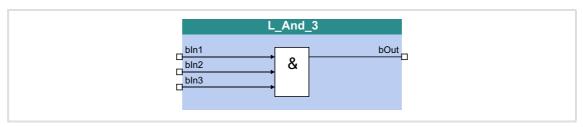
Inputs

Identifier	ata type	Information/possible settings
bin1 bin2 bin3		Input signal
	BOOL	

Outputs

Identifier Data type	Value/meaning
bOut	Output signal

	Inputs		Output
bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	
FALSE	TRUE	FALSE	
FALSE	TRUE	TRUE	
TRUE	FALSE	FALSE	
TRUE	FALSE	TRUE	
TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE


[18-2] Truth table of the FB L_And_2

Function library
Function blocks | L_And_3

18.1.11 L_And_3

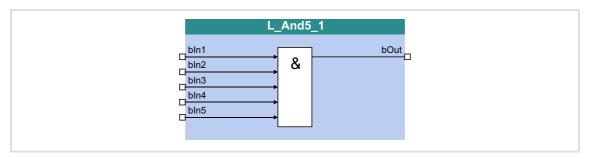
This FB implements the ANDing of the input signals.

Inputs

Identifier	Data type	Information/possible settings
bin1 bin2 bin3		Input signal
	BOOL	

Outputs

Identifier Data type	Value/meaning
bOut	Output signal


	Inputs		Output
bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	
FALSE	TRUE	FALSE	
FALSE	TRUE	TRUE	
TRUE	FALSE	FALSE	
TRUE	FALSE	TRUE	
TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE

[18-3] Truth table of the FB L_And_3

18.1.12 L_And5_1

This FB implements the ANDing of the input signals.

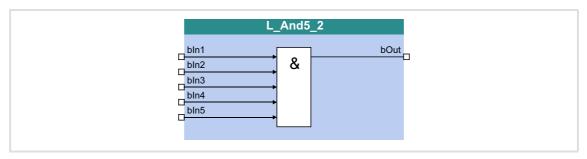
Inputs

Identifier		Information/possible settings
	Data type	
bln1		Input signal
 bIn5		
	BOOL	

Outputs

Identifier		Value/meaning
Da	ta type	
bOut		Output signal
	BOOL	

		Output			
bln5	bin4	bIn3	bln2	bin1	bOut
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE	FALSE	TRUE	
FALSE	FALSE	FALSE	TRUE	FALSE	
FALSE	FALSE	FALSE	TRUE	TRUE	
FALSE	FALSE	TRUE	FALSE	FALSE	
TRUE	TRUE	TRUE	FALSE	TRUE	
TRUE	TRUE	TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE	TRUE	TRUE


[18-4] Truth table of the FB L_And5_1

Function library
Function blocks | L_And5_2

18.1.13 L_And5_2

This FB implements the ANDing of the input signals.

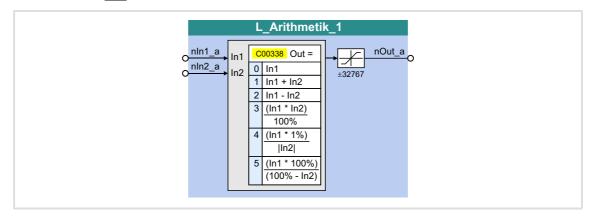
Inputs

Identifier		Information/possible settings
	Data type	
bln1		Input signal
 bIn5		
	BOOL	

Outputs

Identifier		Value/meaning
Da	ta type	
bOut		Output signal
	BOOL	

		Output			
bln5	bln4	bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE	FALSE	TRUE	
FALSE	FALSE	FALSE	TRUE	FALSE	
FALSE	FALSE	FALSE	TRUE	TRUE	
FALSE	FALSE	TRUE	FALSE	FALSE	
TRUE	TRUE	TRUE	FALSE	TRUE	
TRUE	TRUE	TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE	TRUE	TRUE


[18-5] Truth table of the FB L_And5_2

18.1.14 L Arithmetik 1

This FB can combine two analog signals arithmetically.

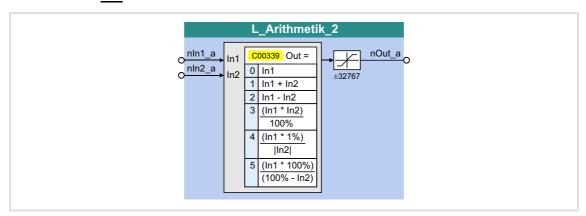
- ▶ The arithmetic function is selected in C00338.
- ▶ All internal intermediate results and the value output at the *nOut_a* output are internally limited to ±32767.
- Division is <u>not</u> remainder considered.

Inputs

Identifier		Information/possible settings
Data	a type	
nln1_a	INT	Input signal 1
nln2_a	INT	Input signal 2

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±32767 (±199.99 %)

8400 TopLine C | Software ManualFunction library
Function blocks | L_Arithmetik_1


Parameter	Possible settings		Info
<u>C00338</u>			Function selection
	0	nOut_a = nIn1_a	
	1	nOut_a = nIn1_a + nIn2_a	
	2	nOut_a = nIn1_a - nIn2_a	
	3	$nOut_a = \frac{nln1_a \cdot nln2_a}{16384}$	
	4	$nOut_a = \frac{nIn1_a}{ nIn2_a } \cdot 164$	When the denominator has the value "0", it will be set to "1".
	5	$nOut_a = \frac{nln1_a}{16384 - nln2_a} \cdot 16384$	

18.1.15 L Arithmetik 2

This FB can combine two analog signals arithmetically.

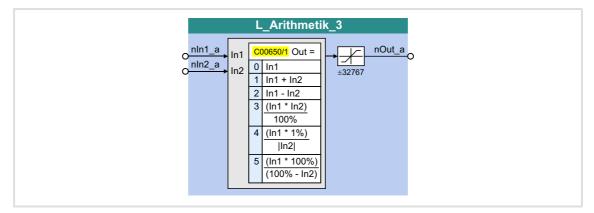
- ▶ The arithmetic function is selected in C00339.
- ▶ All internal intermediate results and the value output at the *nOut_a* output are internally limited to ±32767.
- Division is <u>not</u> remainder considered.

Inputs

Identifier		Information/possible settings
Data	a type	
nln1_a	INT	Input signal 1
nln2_a	INT	Input signal 2

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±32767 (±199.99 %)

8400 TopLine C | Software Manual Function library Function blocks | L_Arithmetik_2


Parameter	Possible	settings	Info
<u>C00339</u>			Function selection
	0	nOut_a = nIn1_a	
	1	nOut_a = nIn1_a + nIn2_a	
	2	nOut_a = nIn1_a - nIn2_a	
	3	$nOut_a = \frac{nln1_a \cdot nln2_a}{16384}$	
	4	$nOut_a = \frac{nIn1_a}{ nIn2_a } \cdot 164$	When the denominator has the value "0", it will be set to "1".
	5	$nOut_a = \frac{nln1_a}{16384 - nln2_a} \cdot 16384$	

18.1.16 L Arithmetik 3

This FB can combine two analog signals arithmetically.

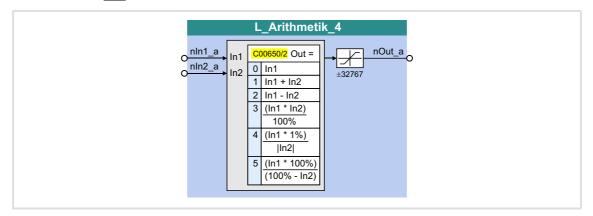
- ► The arithmetic function is selected in C00650/1.
- ▶ All internal intermediate results and the value output at the *nOut_a* output are internally limited to ±32767.
- Division is <u>not</u> remainder considered.

Inputs

Identifier		Information/possible settings
Data	a type	
nln1_a	INT	Input signal 1
nln2_a	INT	Input signal 2

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±32767 (±199.99 %)

8400 TopLine C | Software ManualFunction library
Function blocks | L_Arithmetik_3


Parameter	Possible settings		Info
C00650/1			Function selection
	0	nOut_a = nIn1_a	
	1	nOut_a = nln1_a + nln2_a	
	2	nOut_a = nln1_a - nln2_a	
	3	$nOut_a = \frac{nln1_a \cdot nln2_a}{16384}$	
	4	$nOut_a = \frac{nIn1_a}{ nIn2_a } \cdot 164$	When the denominator has the value "0", it will be set to "1".
	5	$nOut_a = \frac{nln1_a}{16384 - nln2_a} \cdot 16384$	

18.1.17 L Arithmetik 4

This FB can combine two analog signals arithmetically.

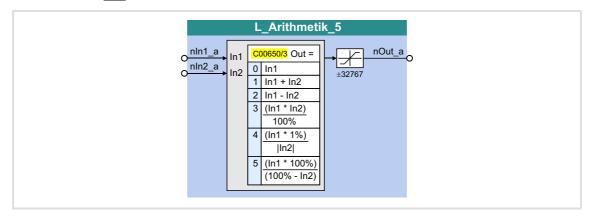
- ▶ The arithmetic function is selected in C00650/2.
- ▶ All internal intermediate results and the value output at the *nOut_a* output are internally limited to ±32767.
- ▶ Division is <u>not</u> remainder considered.

Inputs

Identifier		Information/possible settings
Data	a type	
nln1_a	INT	Input signal 1
nln2_a	INT	Input signal 2

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±32767 (±199.99 %)

8400 TopLine C | Software ManualFunction library
Function blocks | L_Arithmetik_4


Parameter	Possible	e settings	Info
C00650/2			Function selection
	0	nOut_a = nIn1_a	
	1	nOut_a = nln1_a + nln2_a	
	2	nOut_a = nln1_a - nln2_a	
	3	$nOut_a = \frac{nln1_a \cdot nln2_a}{16384}$	
	4	$nOut_a = \frac{nIn1_a}{ nIn2_a } \cdot 164$	When the denominator has the value "0", it will be set to "1".
	5	$nOut_a = \frac{nln1_a}{16384 - nln2_a} \cdot 16384$	

18.1.18 L Arithmetik 5

This FB can combine two analog signals arithmetically.

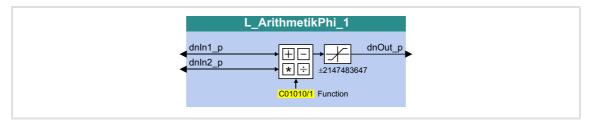
- ▶ The arithmetic function is selected in C00650/3.
- ▶ All internal intermediate results and the value output at the *nOut_a* output are internally limited to ±32767.
- ▶ Division is <u>not</u> remainder considered.

Inputs

Identifier		Information/possible settings
Data	a type	
nln1_a	INT	Input signal 1
nln2_a	INT	Input signal 2

Identifier Date	a type	Value/meaning
nOut_a		Output signal Internal limitation to ±32767 (±199.99 %)

8400 TopLine C | Software ManualFunction library
Function blocks | L_Arithmetik_5


Parameter	Possible	e settings	Info
C00650/3			Function selection
	0	nOut_a = nIn1_a	
	1	nOut_a = nln1_a + nln2_a	
	2	nOut_a = nln1_a - nln2_a	
	3	$nOut_a = \frac{nln1_a \cdot nln2_a}{16384}$	
	4	$nOut_a = \frac{nIn1_a}{ nIn2_a } \cdot 164$	When the denominator has the value "0", it will be set to "1".
	5	$nOut_a = \frac{nln1_a}{16384 - nln2_a} \cdot 16384$	

18.1.19 L ArithmetikPhi 1

This FB can combine two angle signals arithmetically.

- ▶ The arithmetic function is selected in C01010/1.
- ► All internal intermediate results and the value provided at the *dnOut_p* output are internally limited to ±2147483647 (±2³¹ 1).
- Division is <u>not</u> remainder considered.

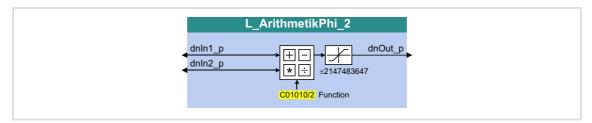
Inputs

Identifier	Information/possible settings
Data ty	ne
dnln1_p	Input signal 1
dnln2_p	Input signal 2

Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2147483647

Parameter	Possible settings		Info
<u>C01010/1</u>			Function selection
	0	dnOut_p = dnIn1_p	
	1	dnOut_p = dnIn1_p + dnIn2_p	
	2	dnOut_p = dnIn1_p - dnIn2_p	
	3	dnOut_p = dnIn1_p * dnIn2_p	
	4	dnOut_p = dnIn1_p / dnIn2_p	



Function library
Function blocks | L_ArithmetikPhi_2

18.1.20 L_ArithmetikPhi_2

This FB can combine two angle signals arithmetically.

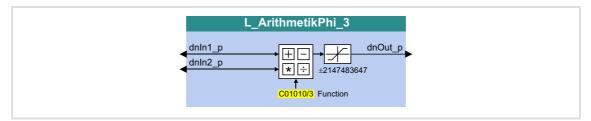
- ▶ The arithmetic function is selected in C01010/2.
- ► All internal intermediate results and the value provided at the *dnOut_p* output are internally limited to ±2147483647 (±2³¹ 1).
- Division is <u>not</u> remainder considered.

Inputs

Identifier		Information/possible settings
Data	a type	
dnln1_p	DINT	Input signal 1
dnIn2_p	DINT	Input signal 2

Outputs

Identifier	Data type	Value/meaning
dnOut_p	DINT	Output signal Internal limitation to ±2147483647


Parameter	Possible settings		Info
<u>C01010/2</u>			Function selection
	0	dnOut_p = dnIn1_p	
	1	dnOut_p = dnIn1_p + dnIn2_p	
	2	dnOut_p = dnIn1_p - dnIn2_p	
	3	dnOut_p = dnIn1_p * dnIn2_p	
	4	dnOut_p = dnIn1_p / dnIn2_p	

18.1.21 L ArithmetikPhi 3

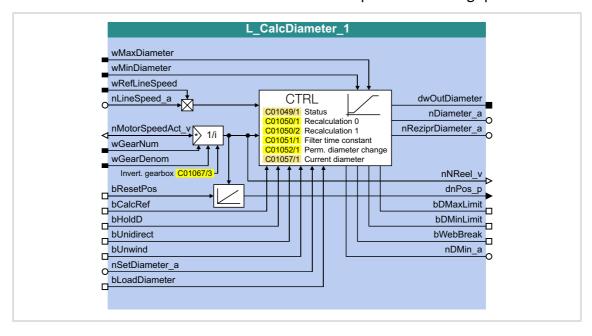
This FB can combine two angle signals arithmetically.

- ▶ The arithmetic function is selected in C01010/3.
- ► All internal intermediate results and the value provided at the *dnOut_p* output are internally limited to ±2147483647 (±2³¹ 1).
- Division is <u>not</u> remainder considered.

Inputs

Identifier		Information/possible settings
Data	a type	
dnln1_p	DINT	Input signal 1
dnIn2_p	DINT	Input signal 2

Outputs


Identifier	Data type	Value/meaning
dnOut_p	DINT	Output signal Internal limitation to ±2147483647

Parameter	Possible	e settings	Info
<u>C01010/3</u>			Function selection
	0	dnOut_p = dnIn1_p	
	1	dnOut_p = dnIn1_p + dnIn2_p	
	2	dnOut_p = dnIn1_p - dnIn2_p	
	3	dnOut_p = dnIn1_p * dnIn2_p	
	4	dnOut_p = dnIn1_p / dnIn2_p	

18.1.22 L_CalcDiameter_1

This FB serves to calculate the reel diameter from line speed and winding speed.

Inputs

Identifier	Data type	Information/possible settings				
wMaxDiameter	WORD	Maximum diameter in [mm] Internal limitation to 10000 mm (≡ 10 m)				
wMinDiameter	WORD	Minimum diameter in [mm] • Internal limitation to 10000 mm (≡ 10 m)				
wRefLineSpeed	WORD	Maximum material speed in [0.1 m/min] • Scaling: 2500 ≡ 250.0 m/min • Internal limitation to 3000 m/min				
nLineSpeed_a	INT	Material speed setpoint • Scaling: 16384 ≡ maximum material speed (wRefLineSpeed)				
nMotorSpeedAct_v	INT	Current motor speed in [increments/ms] • Scaling: 16384 ≡ 15000 rpm				
wGearNum	WORD	Gearbox factor (numerator) • Internal limitation to -327671 / 1 32767				
wGearDenom	WORD	Gearbox factor (denominator) Internal limitation to 1 32767				
bResetPos		Reset angle of rotation dnPos_p				
	BOOL	TRUE The angle of rotation <i>dnPos_p</i> is reset.				
bCalcRef		Selection of the calculation cycle				
	BOOL	FALSE Use diameter recalculation 0 (<u>C01050/1</u>).				
		TRUE Use diameter recalculation 1 (<u>C01050/2</u>).				
bHoldD	DOC:	Hold last diameter value				
	BOOL	TRUE The diameter value output last is not overwritten by the new values.				
bUnidirect		Enable of only one change of direction and activation of the web break monitoring				
	BOOL	TRUE Only the change of direction defined via bUnwind is enabled.				

Identifier	Data type	Information/possible settings		
bUnwind	BOOL	Selection of the enabled change or direction • Only when <i>bUnidirect</i> = TRUE		
		FALSE Clockwise rotation (Cw)		
		TRUE Counter-clockwise rotation (Ccw)		
nSetDiameter_a	DINT	Selection of an initial value/external diameter signal • Scaling: 16384 ≡ maximum diameter (wMaxDiameter) • The value is accepted by setting bLoadDiameter to TRUE.		
bLoadDiameter	BOOL	ccept initial value <i>nSetDiameter_a</i> This input has a higher priority than the <i>bHoldD</i> input.		
		TRUE Accept the value at nSetDiameter_a.		

Outputs

Identifier	Data type	Value/meaning				
dwOutDiameter	DWORD	Current diameter in [µm] Internal limitation to 10 m Unfiltered				
nDiameter_a	INT	Current diameter in [%] • 100 % ≡ Maximum diameter (wMaxDiameter) • filtered via PT1 element (filter time constant can be set in C01051/1)				
nReziprDiameter_a	INT	Reciprocal value of the current diameter in [%] • 100 % ≡ Minimum diameter (wMinDiameter)				
nNReel_v	INT	Current winding speed in [increments/ms] • Scaling: 16384 ≡ 15000 rpm				
bDMaxLimit		Limit value monitoring				
	BOOL	TRUE Upper limit value wMaxDiameter reached.				
bDMinLimit		Limit value monitoring				
	BOOL	TRUE Lower limit value wMinDiameter reached.				
bWebBreak		Web break monitoring				
	BOOL	TRUE Web break after passing the monitor window set in <u>C01052/1</u> .				
nDMin_a	INT	Minimum diameter in [%] • 100 % ≡ Maximum diameter (wMaxDiameter)				

Parameter	Possible	e settings	Info
C01049/1			Status
	-10	Line speed overflow	
	-1	wMinDiameter > wMaxDiameter	
	0	OK - diameter has been recalculated	
	10	Diameter has been initialised with minimum diameter (wMinDiameter)	
	20	Diameter is loaded (bLoadDiameter active)	
	30	Diameter is held (bHoldD active)	

8400 TopLine C | Software ManualFunction library
Function blocks | L_CalcDiameter_1

Parameter	Possible	e setting	gs		Info	
<u>C01050/1</u>	0.001		Rev.	2.000	 Diameter recalculation 0 Number of revolutions after which a diameter calculation is executed. Setting is effective when bCalcRef = FALSE. Initialisation: 1.000 	
<u>C01050/2</u>	0.001		Rev.	2.000	 Diameter recalculation 1 Number of revolutions after which a diameter calculation is executed. Setting is effective when bCalcRef = TRUE. Initialisation: 0.100 	
<u>C01051/1</u>	0.010		S	3.000	Filter time constant for calculated diameter values Initialisation: 1.000 s	
<u>C01052/1</u>	0.00		%	100.00	Permissible diameter change in opposite direction (web break monitoring) Only relevant when bUnidirect = TRUE. Referring to the maximum diameter (wMaxDiameter). Initialisation: 10.00 %	
<u>C01057/1</u>	0.000		mm	10000.000	Current diameter • Read only	
C01067/3					Invert. gearbox nMotorSpeedAct_v	
	0	not inv	verted			
	1	inverted				
	2	Automatically from MCK				

18.1.22.1 Set initial value

An initial value or an external diameter signal can be defined at the *nSetDiameter_a* input.

- ▶ this value is accepted if *bLoadDiameter* is set to TRUE.
- ► In case of acceptance, the diameter calculation will be reset and the filter for diameter calculation is loaded with the defined initial value.

18.1.22.2 Calculate diameter

For reel diameter calculation, the material speed and the current winding speed are integrated cyclically.

- ▶ The material speed is defined via *nLineSpeed a*.
- ► The winding speed is calculated from the *nMotorSpeedAct_v* motor speed and the current *wGearNum/wGearDenom* gearbox factor.
- ► <u>C01050/1...2</u> can be used to define two different calculation cycles. The setting to the used is selected via *bCalcRef*.
- ► At the end of each integration interval, a new diameter value results from the division of the integrator values.
- ► An absolute value generation and smoothing via a first order low pass is carried out. The time constant of this filter can be set in CO1051/1. The dwOutDiameter output is not filtered.

18.1.22.3 Select change direction, web break monitoring

By setting bUnidirect to TRUE, you only enable one change direction for diameter calculation and simultaneously activate the web break monitoring.

- ▶ The permissible change direction can be defined via *bUnwind*.
- ► A recalculated value is only accepted if it exceeds the value saved last in the permissible direction.

After a web break, the diameter values calculated successively mostly run very quickly in the opposite direction.

- ► <u>C01052/1</u> serves to define the maximally permissible deviation in the opposite direction. If it is exceeded, the *bWebBreak* output is set to TRUE.
- ▶ If bUnidirect is set to FALSE, both change directions are enabled and the internal memory is always overwritten with the recalculated value which switches off the web break monitoring.

18.1.22.4 Holding the current value

By setting bHoldD to TRUE, you fix the diameter value nDiameter a output last.

► The diameter calculation is reset and the filter for diameter calculation is loaded with the internally held diameter value.

8400 TopLine C | Software Manual

Function library
Function blocks | L_CalcDiameter_1

18.1.22.5 Limit value monitoring

wMinDiameter and wMaxDiameter serve to define the limit values for the given diameter values. If they are reached/exceeded, the corresponding ouput (bDMaxLimit/bDminLimit) is set to TRUE.

- ► The unfiltered diameter value *dwOutDiameter* and the filtered diameter value *nDiameter a* are limited.
- ▶ The limit values are entered in [mm].
- ► The hysteresis for resetting bDMaxLimit/bDminLimit is permanently set to 1 % of wMaxDiameter.
- ► For parameter setting of further FBs, the value in wMinDiameter with regard to wMaxDiameter is provided via the nDMin a output.

18.1.22.6 Converting diameter in 1/D

For evaluating the material speed with 1/D (speed-controlled winder), the reciprocal value of the reel diameter is provided via $nReziprDiameter\ a$.

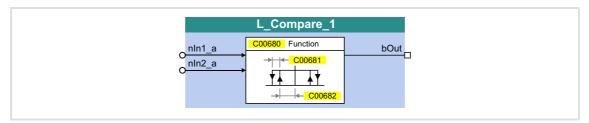
▶ This value refers to the limitation value *wMinDiameter*.

18.1.22.7 Physical state variables

The *dwOutDiameter* output provides the current diameter as physical quantity (1 LSB \equiv 1 m).

nNReel_v outputs the winding speed which results from the nMotorSpeedAct_v motor speed and the current (wGearNum/wGearDenom) gearbox factor.

For supporting further functions (e.g. a traversing control), the winding speed is integrated additionally.


- ► The angle of rotation is output via *dnPos_p*.
- ▶ By setting *bResetPos* to TRUE, the angle of rotation is reset.

18.1.23 L_Compare_1

This FB compares two analog signals and can be used e.g. to implement a trigger.

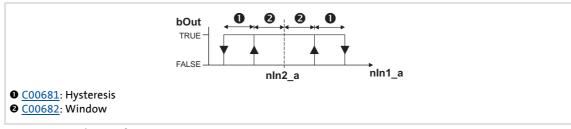
▶ Comparison operation, hysteresis and window size can be parameterised.

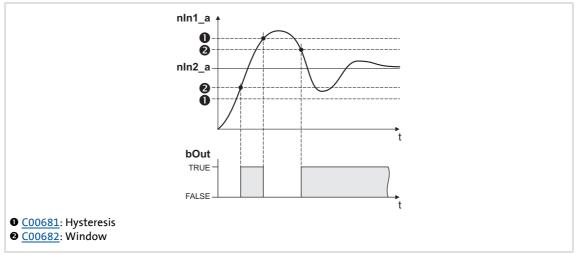
Inputs

Identifier Data ty	Information/possible settings
nln1_a	Input signal 1
nln2_a	Input signal 2

Outputs

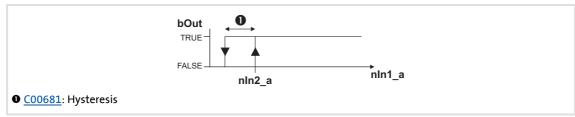
Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		


Parameter	Possible settings				Info
<u>C00680</u>					Function selection
	1	nIn1 =	nln2		
	2	nIn1 >	nln2		
	3	nIn1 <	nln2		
	4	nln1 :	= nln2		
	5	nln1 :	> nln2		
	6	nln1 ·	< nln2		
C00681	0.00		%	100.00	Hysteresis • Lenze setting: 0.50 %
<u>C00682</u>	0.00		%	100.00	Window • Lenze setting: 2.00 %


18.1.23.1 Function 1: nln1 = nln2

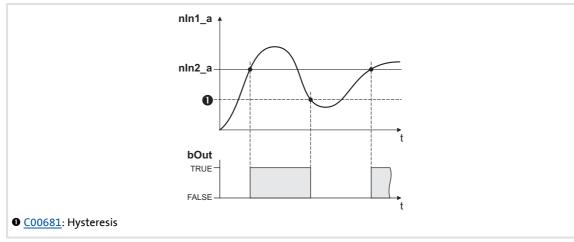
This function compares two signals with regard to equality. It can, for instance, provide the comparison "actual speed equals setpoint speed " $(n_{act} = n_{set})$.

- ▶ Use <u>C00682</u> to set the window within which the equality is to apply.
- ► Use <u>C00681</u> to set a hysteresis if the input signals are not stable and the output oscillates.


[18-6] Function 1: Switching performance

[18-7] Function 1: Example

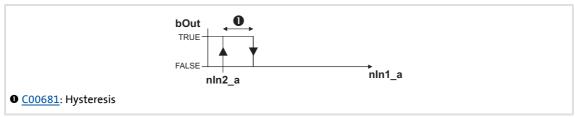
18.1.23.2 Function 2: nln1 > nln2


This function serves, for instance, to implement the comparison "actual speed is higher than a limit value" $(n_{act} > n_x)$ for one direction of rotation.

[18-8] Function 2: Switching performance

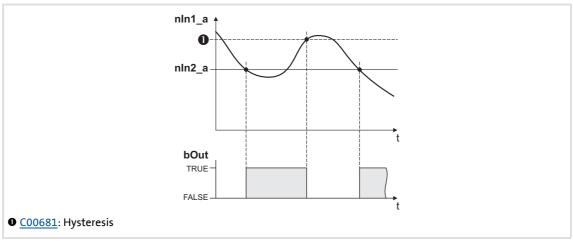
Functional sequence

- 1. If the value at nIn1_a exceeds the value nIn2_a, bOut changes from FALSE to TRUE.
- 2. Only if the signal at *nln1_a* falls below the value of *nln2_a hysteresis* again, *bOut* changes back from TRUE to FALSE.


[18-9] Function 2: Example

Function library
Function blocks | L_Compare_1

18.1.23.3 Function 3: nln1 < nln2


This function serves, for instance, to implement the comparison "actual speed is lower than a limit value" $(n_{act} < n_x)$ for one direction of rotation.

[18-10] Function 3: Switching performance

Functional sequence

- 1. If the value at nIn1_a falls below the value at nIn2_a, bOut changes from FALSE to TRUE.
- 2. Only if the signal at *nln1_a* exceeds the value of *nln2_a hysteresis* again, *bOut* changes back from TRUE to FALSE.

[18-11] Function 3: Example

18.1.23.4 Function 4: |nln1| = |nln2|

This function serves to implement e.g. the comparison " $n_{act} = 0$ ". This function is similar to function 1. However, the amount is generated by the input signals before signal processing (without sign).

▶ Function 1: nln1 = nln2

18.1.23.5 Function 5: |nln1| > |nln2|

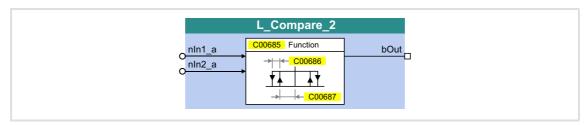
This function serves to implement e.g. the comparison " $|n_{act}| > |n_x|$ " irrespective of the direction of rotation. This function is similar to function 2. However, the amount is generated by the input signals before signal processing (without sign).

▶ Function 2: nln1 > nln2

18.1.23.6 Function 6: |nln1| < |nln2|

This function serves to implement the comparison " $|n_{act}| < |n_x|$ " independent of the direction of rotation. This function is similar to function 3. However, the amount is generated by the input signals before signal processing (without sign).

▶ Function 3: nln1 < nln2



Function library
Function blocks | L_Compare_2

18.1.24 L_Compare_2

This FB compares two analog signals and can be used e.g. to implement a trigger.

▶ Comparison operation, hysteresis and window size can be parameterised.

Inputs

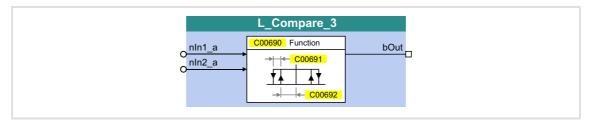
Identifier Data ty	Information/possible settings
nln1_a	Input signal 1
nln2_a	Input signal 2

Outputs

Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		

Parameter

Parameter	Possible settings				Info
<u>C00685</u>					Function selection
	1	nIn1 =	nln2		
	2	nln1 >	nln2		
	3	nln1 <	nln2		
	4	nln1 :	= nln2		
	5	nln1 :	> nln2		
	6	nln1	< nln2		
<u>C00686</u>	0.00		%	100.00	Hysteresis • Lenze setting: 0.50 %
<u>C00687</u>	0.00		%	100.00	Window • Lenze setting: 2.00 %


For a detailed functional description see <u>L Compare 1</u>.

18.1.25 L_Compare_3

This FB compares two analog signals and can be used e.g. to implement a trigger.

▶ Comparison operation, hysteresis and window size can be parameterised.

Inputs

Identifier Data ty	Information/possible settings
nln1_a	Input signal 1
nln2_a	Input signal 2

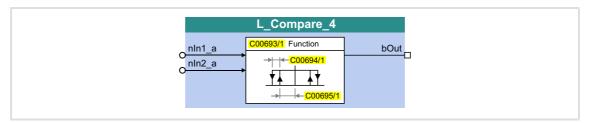
Outputs

Identifier	Data type	Value/meaning			
bOut		Status signal "Comparison statement is true"			
	BOOL	TRUE The statement of the selected comparison mode is true.			

Parameter

Parameter	Possible settings				Info
<u>C00690</u>					Function selection
	1 nln1 = nln2				
	2	2 nln1 > nln2			
	3	nln1 <	nln2		
	4	nln1 :	= nln2		
	5	5 nln1 > nln2			
	6	5 nln1 < nln2			
C00691	0.00		%	100.00	Hysteresis • Lenze setting: 0.50 %
<u>C00692</u>	0.00		%	100.00	Window • Lenze setting: 2.00 %

For a detailed functional description see <u>L Compare 1</u>.



Function library
Function blocks | L_Compare_4

18.1.26 L_Compare_4

This FB compares two analog signals and can be used e.g. to implement a trigger.

▶ Comparison operation, hysteresis and window size can be parameterised.

Inputs

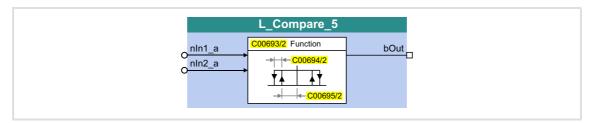
Identifier Data ty	Information/possible settings
nln1_a	Input signal 1
nln2_a	Input signal 2

Outputs

Identifier	Data type	Value/meaning			
bOut		Status signal "Comparison statement is true"			
	BOOL	TRUE The statement of the selected comparison mode is true.			

Parameter

Parameter	Possible settings				Info
<u>C00693/1</u>					Function selection
	1 nln1 = nln2				
	2	2 nln1 > nln2			
	3 nln1 < nln2				
	4	nln1 :	= nln2		
	5	nln1 :	> nln2		
	6	nln1 < nln2			
C00694/1	0.00		%	100.00	Hysteresis • Lenze setting: 0.00 %
<u>C00695/1</u>	0.00		%	100.00	Window • Lenze setting: 0.00 %


For a detailed functional description see <u>L Compare 1</u>.

18.1.27 L_Compare_5

This FB compares two analog signals and can be used e.g. to implement a trigger.

▶ Comparison operation, hysteresis and window size can be parameterised.

Inputs

Identifier	Information/possible settings
Data typ	e
nln1_a	Input signal 1
nln2_a	Input signal 2

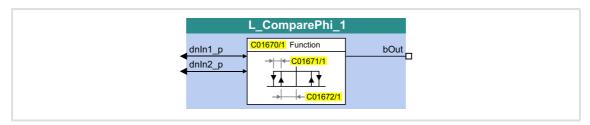
Outputs

Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		

Parameter

Parameter	Possible settings				Info
<u>C00693/2</u>					Function selection
	1	1 nln1 = nln2			
	2	nln1 >	nln2		
	3	3 nln1 < nln2			
	4 nln1 = nln2				
	5	5 nln1 > nln2			
	6	nln1	< nln2		
C00694/2	0.00		%	100.00	Hysteresis • Lenze setting: 0.00 %
C00695/2	0.00		%	100.00	Window • Lenze setting: 0.00 %

For a detailed functional description see <u>L Compare 1</u>.



Function library
Function blocks | L_ComparePhi_1

18.1.28 L_ComparePhi_1

This FB compares two angle signals.

▶ Comparison operation, hysteresis and window size can be parameterised.

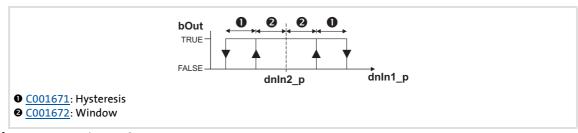
Inputs

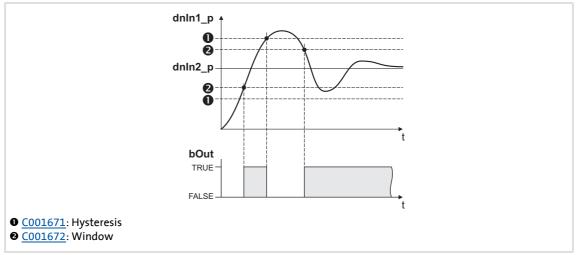
Identifier	ata type	Information/possible settings
dnln1_p	DINT	Input signal 1
dnln2_p	DINT	Input signal 2

Outputs

Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		

Parameter


Parameter	Possible settin	gs		Info
<u>C01670/1</u>				Function selection
	1 dnIn1	= dnIn2		
	2 dnIn1	> dnIn2		
	3 dnln1 < dnln2			
	4 dnIn1	. = dnIn2		
	5 dnIn1	. > dnIn2		
	6 dnIn1	. < dnIn2		
C01671/1	0	Incr.	1073741824	Hysteresis • Lenze setting: 0 incr.
<u>C01672/1</u>	0	Incr.	1073741824	Window • Lenze setting: 0 incr.


18.1.28.1 Function **1**: dnln**1** = dnln**2**

This function compares two signals with regard to equality. It can, for instance, provide the comparison "actual speed equals setpoint speed" $(n_{act} = n_{set})$.

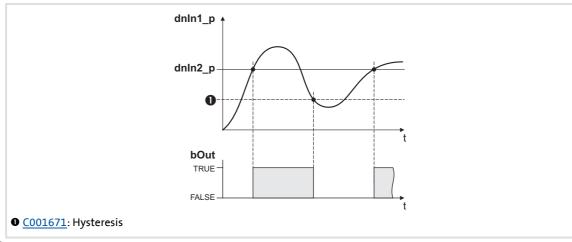
- ▶ Use <u>C01672</u> to set the window within which the equality is to apply.
- ▶ Use <u>C01671</u> to set a hysteresis if the input signals are not stable and the output oscillates.

[18-12] Function 1: Switching performance

[18-13] Function 1: Example

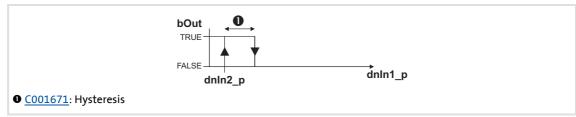
Function library
Function blocks | L_ComparePhi_1

18.1.28.2 Function 2: dnln1 > dnln2


This function serves, for instance, to implement the comparison "actual speed is higher than a limit value" $(n_{act} > n_x)$ for one direction of rotation.

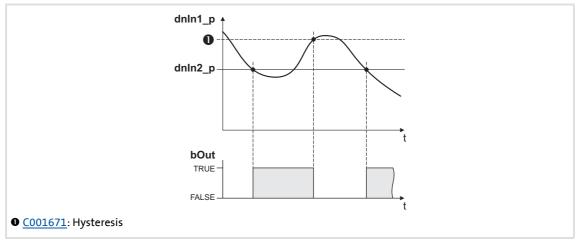
[18-14] Function 2: Switching performance

Functional sequence


- 1. If the value at dnIn1_p exceeds the value at dnIn2_p, bOut changes from FALSE to TRUE.
- 2. Only if the signal at *dnIn1_p* falls below the value of *dnIn2_p hysteresis* again, *bOut* changes back from TRUE to FALSE.

[18-15] Function 2: Example

18.1.28.3 Function 3: dnln1 < dnln2


This function serves, for instance, to implement the comparison "actual speed is lower than a limit value" $(n_{act} < n_x)$ for one direction of rotation.

[18-16] Function 3: Switching performance

Functional sequence

- 1. If the value at *dnIn1_p* falls below the value at *dnIn2_p*, *bOut* changes from FALSE to TRUE.
- 2. Only if the signal at *dnIn1_p* exceeds the value of *dnIn2_p hysteresis* again, *bOut* changes back from TRUE to FALSE.

[18-17] Function 3: Example

8400 TopLine C | Software Manual

Function library
Function blocks | L_ComparePhi_1

18.1.28.4 Function 4: |dnln1| = |dnln2|

This function serves to implement e.g. the comparison " $n_{act} = 0$ ". This function is similar to function 1. However, the amount is generated by the input signals before signal processing (without sign).

► Function 1: dnIn1 = dnIn2

18.1.28.5 Function 5: |dnln1| > |dnln2|

This function serves to implement e.g. the comparison " $|n_{act}| > |n_x|$ " irrespective of the direction of rotation. This function is similar to function 2. However, the amount is generated by the input signals before signal processing (without sign).

▶ Function 2: dnln1 > dnln2

18.1.28.6 Function 6: |dnln1| < |dnln2|

This function serves to implement the comparison " $|n_{act}| < |n_x|$ " independent of the direction of rotation. This function is similar to function 3. However, the amount is generated by the input signals before signal processing (without sign).

▶ Function 3: dnIn1 < dnIn2

18.1.29 L_ComparePhi_2

This FB compares two angle signals.

► Comparison operation, hysteresis and window size can be parameterised.

Inputs

Identifier Data type	Information/possible settings
dnIn1_p	Input signal 1
dnIn2_p	Input signal 2

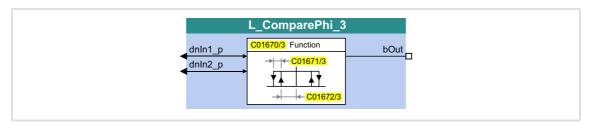
Outputs

Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		

Parameter

Parameter	Possible sett	ngs		Info
<u>C01670/2</u>				Function selection
	1 dnIn	1 = dnIn2		
	2 dnIn	1 > dnIn2		
	3 dnIn1 < dnIn2			
	4 dnlı	n1 = dnIn2		
	5 dnlı	n1 > dnIn2		
	6 dnlı	n1 < dnIn2		
C01671/2	0	Incr.	1073741824	Hysteresis • Lenze setting: 0 incr.
C01672/2	0	Incr.	1073741824	Window • Lenze setting: 0 incr.

For a detailed functional description see <u>L_ComparePhi_1</u>.



Function library
Function blocks | L_ComparePhi_3

18.1.30 L_ComparePhi_3

This FB compares two angle signals.

▶ Comparison operation, hysteresis and window size can be parameterised.

Inputs

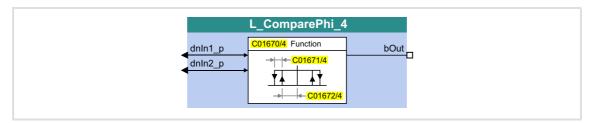
Identifier Data type	Information/possible settings
dnIn1_p	Input signal 1
dnIn2_p	Input signal 2

Outputs

Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		

Parameter

Parameter	Possible sett	ings		Info
<u>C01670/3</u>				Function selection
	1 dnIn	1 = dnIn2		
	2 dnIn	1 > dnIn2		
	3 dnIn1 < dnIn2			
	4 dnli	n1 = dnIn2		
	5 dnli	n1 > dnIn2		
	6 dnlı	n1 < dnIn2		
C01671/3	0	Incr.	1073741824	Hysteresis • Lenze setting: 0 incr.
<u>C01672/3</u>	0	Incr.	1073741824	Window • Lenze setting: 0 incr.


For a detailed functional description see <u>L_ComparePhi_1</u>.

18.1.31 L_ComparePhi_4

This FB compares two angle signals.

► Comparison operation, hysteresis and window size can be parameterised.

Inputs

Identifier	ata type	Information/possible settings
dnln1_p	DINT	Input signal 1
dnln2_p	DINT	Input signal 2

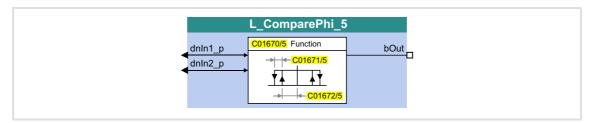
Outputs

Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		

Parameter

Parameter	Possible settings				Info
C01670/4					Function selection
	1 dı	lnIn1 =	dnIn2		
	2 dı	lnIn1 >	dnIn2		
	3 dı	3 dnln1 < dnln2 4 dnln1 = dnln2 5 dnln1 > dnln2			
	4 d				
	5 d				
	6 d	dnIn1	< dnIn2		
C01671/4	0		Incr.	1073741824	Hysteresis • Lenze setting: 0 incr.
C01672/4	0		Incr.	1073741824	Window • Lenze setting: 0 incr.

For a detailed functional description see <u>L_ComparePhi_1</u>.



Function library
Function blocks | L_ComparePhi_5

18.1.32 L_ComparePhi_5

This FB compares two angle signals.

▶ Comparison operation, hysteresis and window size can be parameterised.

Inputs

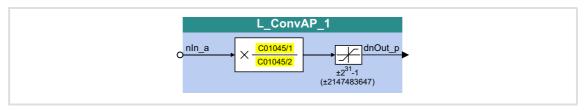
Identifier Data type	Information/possible settings
dnIn1_p	Input signal 1
dnIn2_p	Input signal 2

Outputs

Identifier	Data type	Value/meaning		
bOut		Status signal "Comparison statement is true"		
	BOOL	TRUE The statement of the selected comparison mode is true.		

Parameter

Parameter	Possible setti	ngs		Info
<u>C01670/5</u>				Function selection
	1 dnIn:	L = dnIn2		
	2 dnIn:	L > dnIn2		
	3 dnln1 < dnln2			
	4 dnIn	1 = dnIn2		
	5 dnIn	1 > dnIn2		
	6 dnIn	1 < dnIn2		
C01671/5	0	Incr.	1073741824	Hysteresis • Lenze setting: 0 incr.
<u>C01672/5</u>	0	Incr.	1073741824	Window • Lenze setting: 0 incr.



For a detailed functional description see <u>L ComparePhi 1</u>.

18.1.33 L_ConvAP_1

This FB converts an analog value into a position.

Inputs

Identifier	Data type	Information/possible settings
nln_a	INT	Input value • Scaling: 16384 ≡ 100 %

Outputs

Identifier	Data type	Value/meaning
dnOut_p	DINT	Output signal Internal limitation to ±2 ³¹ -1 (±2147483647)

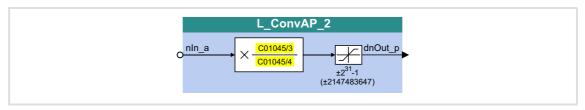
Parameter

Parameter	Possible settings	Info	
<u>C01045/1</u>	-32767	32767	Numerator • Lenze setting: 1
<u>C01045/2</u>	-32767	32767	Denominator • Lenze setting: 1

Function

Note!

$$dnOut_p = nln_a \cdot \frac{C01045/1}{C01045/2}$$



8400 TopLine C | Software Manual

Function library
Function blocks | L_ConvAP_2

18.1.34 L_ConvAP_2

This FB converts an analog value into a position.

Inputs

Identifier	Data type	Information/possible settings
nln_a	INT	Input value • Scaling: 16384 ≡ 100 %

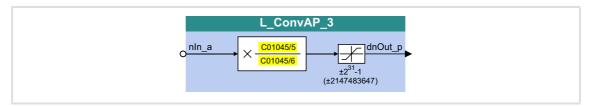
Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)

Parameter

Parameter	Possible settings	Info	
<u>C01045/3</u>	-32767	32767	Numerator • Lenze setting: 1
<u>C01045/4</u>	-32767	32767	Denominator • Lenze setting: 1

Function


Note!

$$dnOut_p = nln_a \cdot \frac{C01045/3}{C01045/4}$$

18.1.35 L_ConvAP_3

This FB converts an analog value into a position.

Inputs

Identifier	Data type	Information/possible settings
nln_a	INT	Input value • Scaling: 16384 ≡ 100 %

Outputs

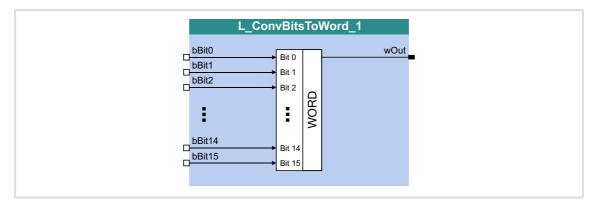
Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)

Parameter

Parameter	Possible settings		Info
<u>C01045/5</u>	-32767	32767	Numerator • Lenze setting: 1
<u>C01045/6</u>	-32767	32767	Denominator • Lenze setting: 1

Function

Note!

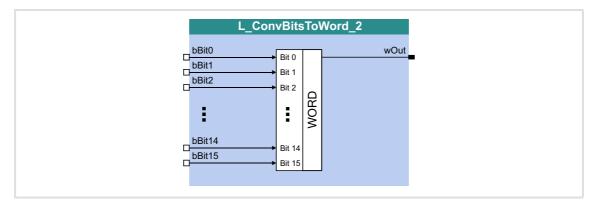

$$dnOut_p = nIn_a \cdot \frac{C01045/5}{C01045/6}$$

Function library
Function blocks | L_ConvBitsToWord_1

18.1.36 L_ConvBitsToWord_1

This FB converts 16 bit input values of the type "BOOL" into an output value of the type "WORD".

Inputs


Identifier	Data type	Information/possible settings
bBit0		Input signal
 bBit15	BOOL	

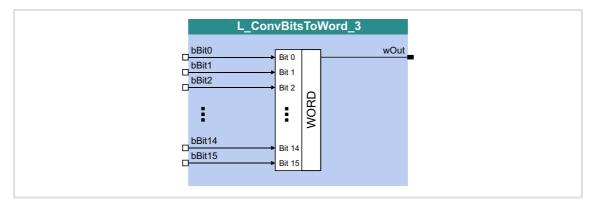
Identifier Data type	Value/meaning
wOut WORD	Output signal

18.1.37 L_ConvBitsToWord_2

This FB converts 16 bit input values of the type "BOOL" into an output value of the type "WORD".

Inputs

Identifier	Data type	Information/possible settings
bBit0		Input signal
 bBit15	BOOL	


Identifier Data type	Value/meaning
wOut WORD	Output signal

Function library
Function blocks | L_ConvBitsToWord_3

18.1.38 L_ConvBitsToWord_3

This FB converts 16 bit input values of the type "BOOL" into an output value of the type "WORD".

Inputs

Identifier	Data type	Information/possible settings
bBit0		Input signal
 bBit15	BOOL	

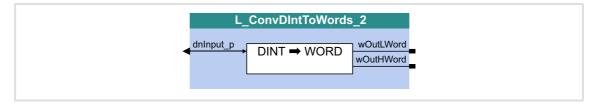
Identifier Data type	Value/meaning
wOut word	Output signal

18.1.39 L_ConvDIntToWords_1

This FB converts an input value of the type "DINT" into two output values of the type "WORD".

Inputs

Identifier		Information/possible settings
	Data type	
dnInput_p	DINT	Input signal

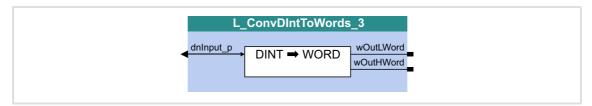

Identifier		Value/meaning
	Data type	
wOutLWord	WORD	Output signal Low Word
wOutHWord	WORD	Output signal High Word

Function library
Function blocks | L_ConvDIntToWords_2

18.1.40 L_ConvDIntToWords_2

This FB converts an input value of the type "DINT" into two output values of the type "WORD".

Inputs


Identifier		Information/possible settings
	Data type	
dnInput_p	DINT	Input signal

Identifier	Data type	Value/meaning
wOutLWord	WORD	Output signal Low Word
wOutHWord	WORD	Output signal High Word

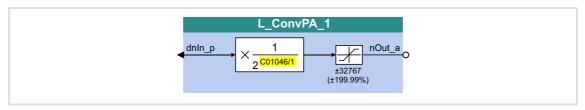
18.1.41 L_ConvDIntToWords_3

This FB converts an input value of the type "DINT" into two output values of the type "WORD".

Inputs

Identifier		Information/possible settings
	Data type	
dnInput_p	DINT	Input signal

Identifier		Value/meaning
Da	ta type	
wOutLWord	WORD	Output signal Low Word
wOutHWord	WORD	Output signal High Word



8400 TopLine C | Software Manual

Function library
Function blocks | L_ConvPA_1

18.1.42 L_ConvPA_1

This FB converts a position into an analog value.

Inputs

Identifier Data typ	Information/possible settings
dnIn_p	Input signal

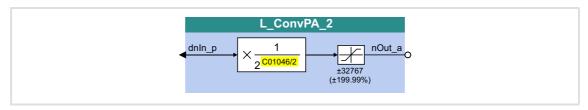
Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±199 % (100 % ≡ 16384)

Parameter

Parameter	Possible settings		Info
<u>C01046/1</u>	0	31	Division factor • Lenze setting: 1

Function



Note!

$$nOut_a = dnln_p \cdot \frac{1}{2^{C01046/1}}$$

18.1.43 L_ConvPA_2

This FB converts a position into an analog value.

Inputs

Identifier	Data type	Information/possible settings
dnIn_p	DINT	Input signal

Outputs

Identifier Data	Value/meaning pe
nOut_a	Output signal • Internal limitation to $\pm 199\%$ (100 % = 16384)

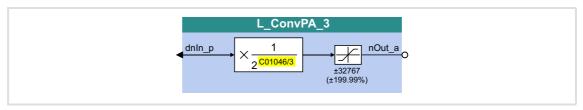
Parameter

Parameter	Possible settings		Info
<u>C01046/2</u>	0	31	Division factor • Lenze setting: 1

Function

Note!

$$nOut_a = dnIn_p \cdot \frac{1}{2^{C01046/2}}$$



8400 TopLine C | Software Manual

Function library
Function blocks | L_ConvPA_3

18.1.44 L_ConvPA_3

This FB converts a position into an analog value.

Inputs

Identifier	Information/possible settings
Data type	
dnIn_p	Input signal
dnIn_p	Input signal

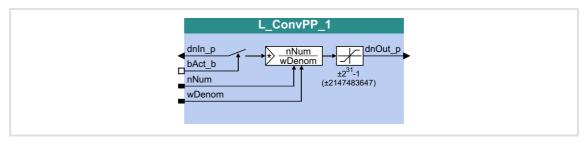
Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±199 % (100 % ≡ 16384)

Parameter

Parameter	Possible settings		Info
<u>C01046/3</u>	0	31	Division factor • Lenze setting: 1

Function



Note!

$$nOut_a = dnIn_p \cdot \frac{1}{2^{C01046/3}}$$

18.1.45 L_ConvPP_1

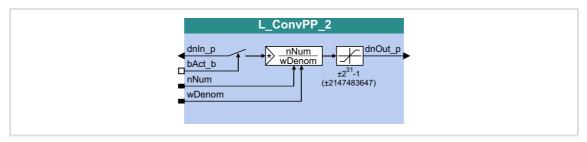
This FB converts a position with dynamic fraction.

Inputs

Identifier	Data type	Information/possible settings	
dnIn_p	DINT	Input signal	
bAct_b		Conversion mo	de
	BOOL	FALSE	$InOut_p = Remainder \cdot \frac{nNum}{wDenom}$
		TRUE	$dnOut_p = dnIn_p \cdot \frac{nNum}{wDenom}$
nNum	INT	Factor (numera Internal lim	ntor) itation to -327671 / 1 32767
wDenom	WORD	Factor (denominator) Internal limitation to 1 32767	

Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)


Note!

Function library
Function blocks | L_ConvPP_2

18.1.46 L_ConvPP_2

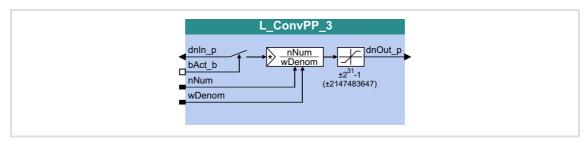
This FB converts a position with dynamic fraction.

Inputs

Identifier	ata type	Information/p	ossible settings
dnIn_p	DINT	Input signal	
bAct_b		Conversion mode	
	BOOL	FALSE	$InOut_p = Remainder \cdot \frac{nNum}{wDenom}$
		TRUE	$dnOut_p = dnIn_p \cdot \frac{nNum}{wDenom}$
nNum	INT	Factor (numerator) Internal limitation to -327671 / 1 32767	
wDenom	WORD	Factor (denominator) • Internal limitation to 1 32767	

Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)



Note!

18.1.47 L_ConvPP_3

This FB converts a position with dynamic fraction.

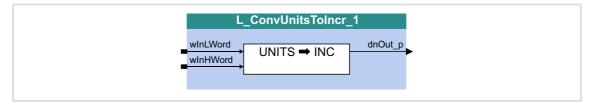
Inputs

Identifier	Data type	Information/possible settings		
dnIn_p	DINT	Input signal		
bAct_b		Conversion mo	Conversion mode	
	BOOL	FALSE	$InOut_p = Remainder \cdot \frac{nNum}{wDenom}$	
		TRUE	$dnOut_p = dnIn_p \cdot \frac{nNum}{wDenom}$	
nNum	INT	Factor (numera • Internal lim	ator) itation to -327671 / 1 32767	
wDenom	WORD	Factor (denominator) Internal limitation to 1 32767		

Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)

Note!


8400 TopLine C | Software Manual

Function library
Function blocks | L_ConvUnitsToIncr_1

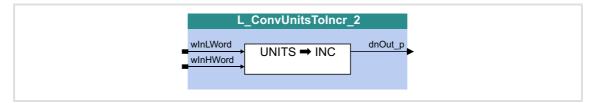
18.1.48 L_ConvUnitsToIncr_1

FB in preparation!

Taking into account the machine parameters, this FB converts a position value provided in the real unit of the machine into an internal 32-bit position value.

Inputs

Identifier	Data type	Information/possible settings
wInLWord	WORD	Input signal Low Word
wInHWord	WORD	Input signal High Word


Identifier	Value/meaning
Data	уре
dnOut_p	Output signal

18.1.49 L_ConvUnitsToIncr_2

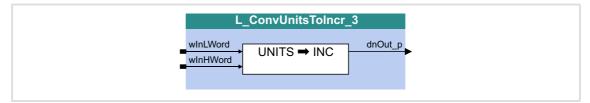
FB in preparation!

Taking into account the machine parameters, this FB converts a position value provided in the real unit of the machine into an internal 32-bit position value.

Inputs

Identifier	Data type	Information/possible settings
wInLWord	WORD	Input signal Low Word
wInHWord	WORD	Input signal High Word

Identifier	Value/meaning
Data	уре
dnOut_p	Output signal


8400 TopLine C | Software Manual

Function library
Function blocks | L_ConvUnitsToIncr_3

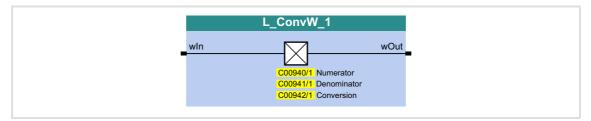
18.1.50 L_ConvUnitsToIncr_3

FB in preparation!

Taking into account the machine parameters, this FB converts a position value provided in the real unit of the machine into an internal 32-bit position value.

Inputs

Identifier	Data type	Information/possible settings
wInLWord	WORD	Input signal Low Word
wInHWord	WORD	Input signal High Word


Identifier Data type	Value/meaning
dnOut_p	Output signal

18.1.51 L_ConvW_1

This FB serves to convert analog signal forms. The following conversions per parameter can be selected:

- ▶ [%] → [incr/ms]
- ▶ [incr/ms] → [%]
- ► Conversion via parameterisable factors
- ▶ Input signal is passed through without conversion

Inputs

Identifier	Information/possible settings
Data ty	e
wIn	Input signal

Outputs

Identifier	Value/meaning
Data type	
wOut WORD	Output signal

Parameter

Parameter	Possible settings				Info
<u>C00940/1</u>	-2147483647			2147483647	Numerator • Lenze setting: 1
<u>C00941/1</u>	-2147483647			2147483647	Denominator • Lenze setting: 1
C00942/1					Selection of the conversion
	0	0 wOut = wIn (no conversion)			
	1	1 [%] → [incr/ms]			
	2	2 [incr/ms] → [%]			
	3	3 wOut = wIn * <u>C00940</u> / <u>C00941</u>			

8400 TopLine C | Software Manual

Function library
Function blocks | L_ConvW_1

Conversion formulae

Note!

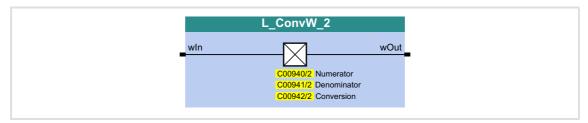
Division is remainder considered.

$$wOut [incr/ms] = \frac{wIn [\%] \cdot C00011 [rpm] \cdot 65536 [incr/rev.]}{100 \% \cdot 60 [s/min] \cdot 1000 [ms/s]}$$

[18-18] Conversion formula for selection 1: [%] → [incr/ms]

$$wOut \, [\%] \, = \, \frac{wln \, [incr/ms] \cdot 100 \, \% \cdot 60 \, [s/min] \cdot 1000 \, [ms/s]}{C00011 \, [rpm] \cdot 65536 \, [incr/rev.]}$$

[18-19] Conversion formula for selection 2: [incr/ms] → [%]


$$wOut = wIn \cdot \frac{C00940}{C00941}$$

[18-20] Conversion formula for selection 3: Parameterisable factors

18.1.52 L_ConvW_2

This FB serves to convert analog signal forms. The following conversions per parameter can be selected:

- ▶ [%] → [incr/ms]
- ▶ [incr/ms] → [%]
- ► Conversion via parameterisable factors
- ▶ Input signal is passed through without conversion

Inputs

Identifier	Information/possible settings
Data type	
wIn WORD	Input signal

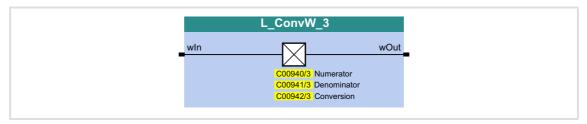
Outputs

Identifier	Value/meaning
Data type	
wOut WORD	Output signal

Parameter

Parameter	Possible settings				Info
<u>C00940/2</u>	-2147483647			2147483647	Numerator • Lenze setting: 1
<u>C00941/2</u>	-2147483647			2147483647	Denominator • Lenze setting: 1
C00942/2					Selection of the conversion
	0	0 wOut = wIn (no conversion)			
	1	1 [%] → [incr/ms]			
	2	2 [incr/ms] → [%]			
	3	3 $wOut = wIn * C00940 / C00941$			

For conversion formulae see <u>L ConvW 1</u>.



Function library
Function blocks | L_ConvW_3

18.1.53 L_ConvW_3

This FB serves to convert analog signal forms. The following conversions per parameter can be selected:

- ▶ [%] → [incr/ms]
- ▶ [incr/ms] → [%]
- ► Conversion via parameterisable factors
- ▶ Input signal is passed through without conversion

Inputs

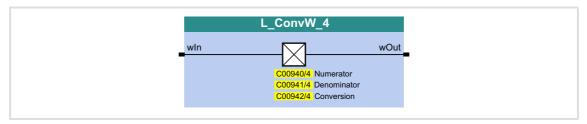
Identifier	Information/possible settings
Data type	
wIn WORD	Input signal

Outputs

Identifier	Value/meaning
Data type	
wOut WORD	Output signal

Parameter

Parameter	Possible settings				Info
<u>C00940/3</u>	-2147483647			2147483647	Numerator • Lenze setting: 1
<u>C00941/3</u>	-2147483647			2147483647	Denominator • Lenze setting: 1
C00942/3					Selection of the conversion
	0	0 wOut = wIn (no conversion)			
	1	1 [%] → [incr/ms]			
	2	2 [incr/ms] → [%]			
	3	3 $wOut = wIn * C00940 / C00941$			


For conversion formulae see <u>L ConvW 1</u>.

18.1.54 L_ConvW_4

This FB serves to convert analog signal forms. The following conversions per parameter can be selected:

- ▶ [%] → [incr/ms]
- ▶ [incr/ms] → [%]
- ► Conversion via parameterisable factors
- ▶ Input signal is passed through without conversion

Inputs

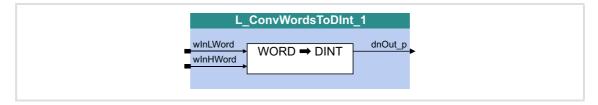
Identifier	Information/possible settings
Data ty	pe
wIn wor	Input signal D

Outputs

Identifier	Value/meaning
Data type	
wOut WORD	Output signal

Parameter

Parameter	Possible settings				Info
<u>C00940/4</u>	-2147483647			2147483647	Numerator • Lenze setting: 1
C00941/4	-2147483647			2147483647	Denominator • Lenze setting: 1
C00942/4					Selection of the conversion
	0	0 <i>wOut = wIn</i> (no conversion)			
	1	1 [%] → [incr/ms]			
	2	2 [incr/ms] → [%]			
	3	3 $wOut = wIn * C00940 / C00941$			


For conversion formulae see <u>L ConvW 1</u>.

Function library
Function blocks | L_ConvWordsToDInt_1

18.1.55 L_ConvWordsToDInt_1

This FB converts two input values of the type "WORD" into one output value of the type "DINT".

Inputs

Identifier		Information/possible settings
Dat	ta type	
wInLWord	WORD	Input signal Low Word
wInHWord	WORD	Input signal High Word

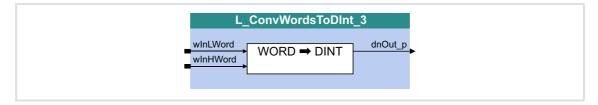
Identifier Data type	Value/meaning
dnOut_p	Output signal

18.1.56 L_ConvWordsToDInt_2

This FB converts two input values of the type "WORD" into one output value of the type "DINT".

Inputs

Identifier	Information/possible settings
Data type	
wInLWord WORD	Input signal Low Word
wInHWord WORD	Input signal High Word

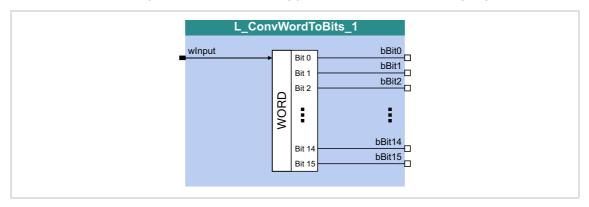

Identifier Data type	Value/meaning
dnOut_p	Output signal

Function library
Function blocks | L_ConvWordsToDInt_3

18.1.57 L_ConvWordsToDInt_3

This FB converts two input values of the type "WORD" into one output value of the type "DINT".

Inputs


Identifier		Information/possible settings
Dat	ta type	
wInLWord	WORD	Input signal Low Word
wInHWord	WORD	Input signal High Word

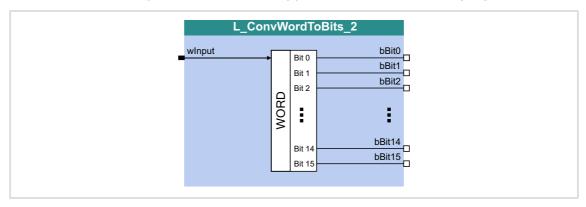
Identifier Data type	Value/meaning
dnOut_p	Output signal

18.1.58 L_ConvWordToBits_1

This FB converts an input value of "WORD" type into 16 individual binary signals.

Inputs

Identifier Data	type	Information/possible settings
wInput	ORD	Input signal


Identifier	Data type	Value/meaning
bBit0		Output signal
 bBit15	BOOL	

Function library
Function blocks | L_ConvWordToBits_2

18.1.59 L_ConvWordToBits_2

This FB converts an input value of "WORD" type into 16 individual binary signals.

Inputs

Identifier Data	type	Information/possible settings
wInput	ORD	Input signal

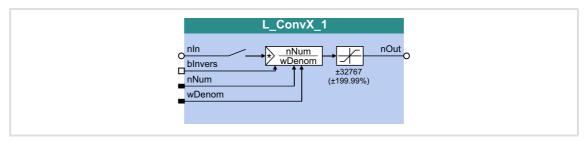
Identifier	Data type	Value/meaning
bBit0		Output signal
 bBit15	BOOL	

18.1.60 L_ConvWordToBits_3

This FB converts an input value of "WORD" type into 16 individual binary signals.

Inputs

Identifier Data	type	Information/possible settings
wInput	ORD	Input signal


Identifier	Data type	Value/meaning
bBit0		Output signal
 bBit15	BOOL	

Function library
Function blocks | L_ConvX_1

18.1.61 L_ConvX_1

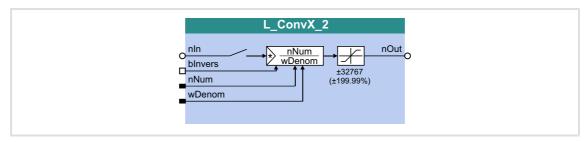
This FB scales an analog value.

Inputs

Identifier	Data type	Information/possible settings	
nIn	INT	Input signal	
bInvers		Invert sign of the output signal	
	BOOL	FALSE $nOut = nIn \cdot \frac{nNum}{wDenom}$	
		TRUE $nOut = nIn \cdot \frac{nNum}{wDenom} \cdot (-1)$	
nNum	INT	Factor (numerator) Internal limitation to -327671 / 1 32767	
wDenom	WORD	Factor (denominator) • Internal limitation to 1 32767	

Outputs

Identifier Data type	Value/meaning
nOut INT	Output signal • Internal limitation to $\pm 199\%$ (100 % $\equiv 16384$)


Note!

Conversion is remainder considered.

18.1.62 L_ConvX_2

This FB scales an analog value.

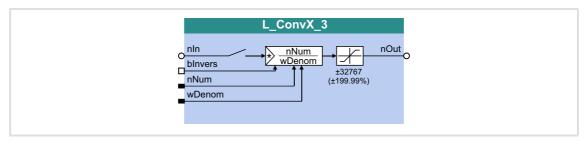
Inputs

Identifier	Data type	Information/possible settings	
nIn	INT	Input signal	
bInvers		Invert sign of the output signal	
	BOOL	FALSE $nOut = nIn \cdot \frac{nNum}{wDenom}$	
		TRUE $nOut = nIn \cdot \frac{nNum}{wDenom} \cdot (-1)$	
nNum	INT	Factor (numerator) Internal limitation to -327671 / 1 32767	
wDenom	WORD	Factor (denominator) • Internal limitation to 1 32767	

Outputs

Identifier Data typ	Value/meaning
nOut IN	Output signal Internal limitation to ±199 % (100 % = 16384)

Note!


Conversion is remainder considered.

Function library
Function blocks | L_ConvX_3

18.1.63 L_ConvX_3

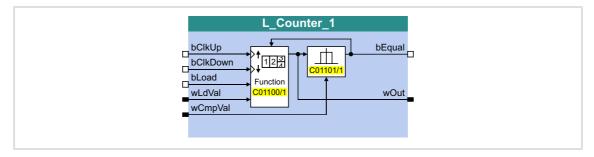
This FB scales an analog value.

Inputs

Identifier	Data type	Information/possible settings	
nIn	INT	Input signal	
bInvers		Invert sign of the output signal	
	BOOL	FALSE $nOut = nIn \cdot \frac{nNum}{wDenom}$	
		TRUE $nOut = nIn \cdot \frac{nNum}{wDenom} \cdot (-1)$	
nNum	INT	Factor (numerator) Internal limitation to -327671 / 1 32767	
wDenom	WORD	Factor (denominator) • Internal limitation to 1 32767	

Outputs

Identifier Data type	Value/meaning
nOut INT	Output signal • Internal limitation to $\pm 199\%$ (100 % $\equiv 16384$)


Note!

Conversion is remainder considered.

18.1.64 L_Counter_1

This FB is a digital upcounter and downcounter with a parameterisable comparison operation.

Inputs

Identifier	Data type	Information/possible settings					
bClkUp	BOOL	 Clock input With each edge, the module counts up by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input. 					
bClkDown	BOOL	 Clock input With each edge, the module counts down by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input. 					
bLoad BOO		Load input • The input has the highest priority.					
		TRUE Accept starting value wLdVal.					
wLdVal	WORD	Starting value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), i.e the most significant bit determines the sign.					
wCmpVal	WORD	Comparison value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), in the most significant bit determines the sign.					

Identifier	Data type	Value/meaning			
bEqual	BOOL	Status signal "Comparison statement is true" • The TRUE output is active in the Lenze setting if the current counter content greater than or equal to the comparison value wCmpVal.			
		TRUE The statement of the comparison mode selected in $\underline{\text{C01101/1}}$ is true.			
wOut	WORD	 Counter content Internal limitation to ± 32767 The most significant bit determines the sign! 			

Function library
Function blocks | L_Counter_1

Parameter

Parameter	Possible	e settings	Info
<u>C01100/1</u>			Function selection
	0	Normal counting	Lenze setting: Normal counting
	1	Auto reset	
	2	Manual reset	
C01101/1			Selection of comparison operation
	0	Counter content ≥ comparison value	 Lenze setting: Counter content ≥ comparison value
	1	$Countercontent{\leq}comparisonvalue$	content = companson value
	2	Counter content = comparison value	

General function

- ▶ Every FALSE/TRUE edge at the *bClkUp* input causes the block to count upwards by "1".
- ► Every FALSE/TRUE edge at the *bClkDown* input causes the block to count downwards by "1".

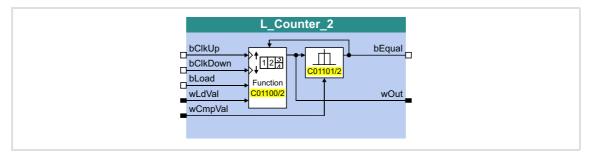
Function "Normal counting"

If the statement of the comparison mode selected in CO1101/1 is true, the *bCompare* output is set to TRUE.

Function "Auto reset"

If the statement of the comparison mode selected in C01101/1 is true, the *bCompare* output is set to TRUE for 1 ms and the counter is reset to the *wLdVal* starting value.

Function "Manual reset"


If the statement of the comparison mode selected in CO1101/1 is true, the *bCompare* output is set to TRUE and the counter stops.

- ► Edges at *bClkUp* and *bClkDown* are ignored.
- ▶ The counter must be reset via the *bLoad* input.

18.1.65 L_Counter_2

This FB is a digital upcounter and downcounter with a parameterisable comparison operation.

Inputs

Identifier	Data type	Information/possible settings					
bClkUp	BOOL	 Clock input With each edge, the module counts up by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input. 					
bClkDown	BOOL	 Clock input With each edge, the module counts down by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input. 					
bLoad BOO		Load input • The input has the highest priority.					
		TRUE Accept starting value wLdVal.					
wLdVal	WORD	Starting value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), i.e the most significant bit determines the sign.					
wCmpVal	WORD	Comparison value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), in the most significant bit determines the sign.					

Identifier	Data type	Value/meaning			
bEqual	BOOL	Status signal "Comparison statement is true" • The TRUE output is active in the Lenze setting if the current counter content greater than or equal to the comparison value wCmpVal.			
		TRUE The statement of the comparison mode selected in $\underline{\text{C01101/2}}$ is true.			
wOut	WORD	 Counter content Internal limitation to ± 32767 The most significant bit determines the sign! 			

Function library
Function blocks | L_Counter_2

Parameter

Parameter	Possible	e settings	Info
<u>C01100/2</u>			Function selection
	0	Normal counting	Lenze setting: Normal counting
	1	Auto reset	
	2	Manual reset	
C01101/2			Selection of comparison operation
	0	$Countercontent{\ge}comparisonvalue$	 Lenze setting: Counter content ≥ comparison value
	1	$Countercontent{\leq}comparisonvalue$	content _ companion value
	2	Counter content = comparison value	

General function

- ▶ Every FALSE/TRUE edge at the *bClkUp* input causes the block to count upwards by "1".
- ► Every FALSE/TRUE edge at the *bClkDown* input causes the block to count downwards by "1".

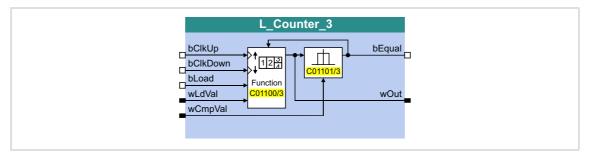
Function "Normal counting"

If the statement of the comparison mode selected in $\underline{\text{CO1101/2}}$ is true, the *bCompare* output is set to TRUE.

Function "Auto reset"

If the statement of the comparison mode selected in CO1101/2 is true, the *bCompare* output is set to TRUE for 1 ms and the counter is reset to the *wLdVal* starting value.

Function "Manual reset"


If the statement of the comparison mode selected in CO1101/2 is true, the *bCompare* output is set to TRUE and the counter stops.

- ► Edges at *bClkUp* and *bClkDown* are ignored.
- ▶ The counter must be reset via the *bLoad* input.

18.1.66 L_Counter_3

This FB is a digital upcounter and downcounter with a parameterisable comparison operation.

Inputs

Identifier	Data type	Information/possible settings					
bClkUp	BOOL	 Clock input With each edge, the module counts up by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input. 					
bClkDown	BOOL	 Clock input With each edge, the module counts down by "1". Only FALSE-TRUE edges are evaluated. Note: The static state "1" is not permissible at this input. 					
bLoad BOO		Load input • The input has the highest priority.					
		TRUE Accept starting value wLdVal.					
wLdVal	WORD	Starting value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), i.e the most significant bit determines the sign.					
wCmpVal	WORD	Comparison value • Assigned value is internally interpreted as "INT" data type (-32767 +32767), in the most significant bit determines the sign.					

Identifier	Data type	Value/meaning			
bEqual	BOOL	Status signal "Comparison statement is true" • The TRUE output is active in the Lenze setting if the current counter content is greater than or equal to the comparison value wCmpVal.			
		TRUE The statement of the comparison mode selected in $\underline{\text{C01101/3}}$ is true.			
wOut	WORD	Counter content Internal limitation to ± 32767 The most significant bit determines the sign!			

Function library
Function blocks | L_Counter_3

Parameter

Parameter	Possible	e settings	Info
<u>C01100/3</u>			Function selection
	0	Normal counting	Lenze setting: Normal counting
	1	Auto reset	
	2	Manual reset	
C01101/3			Selection of comparison operation
	0	Counter content ≥ comparison value	 Lenze setting: Counter content ≥ comparison value
	1	$Countercontent{\leq}comparisonvalue$	content = companson value
	2	Counter content = comparison value	

General function

- ▶ Every FALSE/TRUE edge at the *bClkUp* input causes the block to count upwards by "1".
- ► Every FALSE/TRUE edge at the *bClkDown* input causes the block to count downwards by "1".

Function "Normal counting"

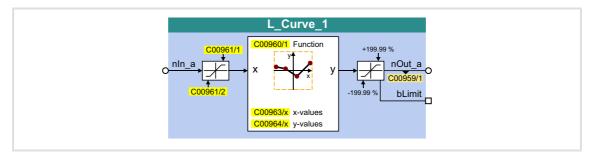
If the statement of the comparison mode selected in CO1101/3 is true, the *bCompare* output is set to TRUE.

Function "Auto reset"

If the statement of the comparison mode selected in CO1101/3 is true, the *bCompare* output is set to TRUE for 1 ms and the counter is reset to the *wLdVal* starting value.

Function "Manual reset"

If the statement of the comparison mode selected in CO1101/3 is true, the *bCompare* output is set to TRUE and the counter stops.


- ► Edges at *bClkUp* and *bClkDown* are ignored.
- ▶ The counter must be reset via the *bLoad* input.

18.1.67 L_Curve_1

This FB can optionally display a characteristic function or a curve function y=f(x), the X axis being the input signal and the Y axis being the output signal.

- ► A limitation of the input value can be set in <u>C00961/1</u> (upper limit) and <u>C00961/2</u> (lower limit).
- ► The output value is internally limited to ±199.99 %. If a limitation of the output value is active, *bLimit* is set to TRUE.

Inputs

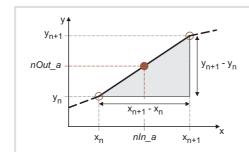
Identifier Data type	Information/possible settings
nln_a	 Input value (x) ±16384 ≡ ±100 % A limitation of the input value can be set in C00961/1 (upper limit) and C00961/2 (lower limit).

Outputs

Identifier	Data type	Value/meaning			
nOut_a	INT	Output value (y) • ±16384 ≡ ±100 % • Internal limitation to ±32767 (±199.99 %)			
bLimit		"Limitation active" status signal			
	BOOL	TRUE The output value is limited to ±199.99 %.			

Parameter

Parameter	Possible	setting	gs		Info
<u>C00959/1</u> From version 02.00.00	-199.99		%	199.99	Output value • Read only
C00960/1					Function selection
	0 <i>nOut_a</i> = 0 (FB deactivated)				Lenze setting
	1 nOut_a = nIn_a				
	2	nOut_	a = f(x)		In preparation!
	3	3 <i>nOut_a</i> = f(table)			► Function 3: nOut_a = f(table)
<u>C00961/1</u>	-199.99		%	199.99	Upper limit for input value • Lenze setting: 199.99 %



Parameter	Possible setting	;s		Info
<u>C00961/2</u>	-199.99	%	199.99	Lower limit for input value • Lenze setting: -199.99 %
C00963/132	-32767		32767	 X values for characteristic function Subcodes 1 32 correspond to interpolation point values X1 X32. Lenze setting: 0 Function 3: nOut a = f(table)
C00964/132	-32767		32767	 Y values for characteristic function Subcodes 1 32 correspond to interpolation point values Y1 Y32. Lenze setting: 0 Function 3: nOut a = f(table)

18.1.67.1 Function 3: nOut_a = f(table)

If function 3 has been selected in <u>C00960</u>, the output value is calculated according to a characteristic.

- ► The characteristic may comprise up to 32 interpolation points which are defined by parameters.
- ► If the *nln_a* input value is equal to one of the X interpolation points, the corresponding Y interpolation point will be output to *nOut a*.
- ▶ If the *nln_a* input value lies between two X interpolation points, the *nOut_a* output value will be interpolated linearly:

As per the equation,

$$\frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \frac{nln_a - x_n}{nOut_a - y_n}$$

output value nOut_a for nIn_a is calculated as follows:

$$nOut_a \ = \ \frac{(nIn_a - x_n) \cdot (y_{n+1} - y_n)}{x_{n+1} - x_n} + y_n$$

[18-21] Linear interpolation between two interpolation points

Selecting the characteristic

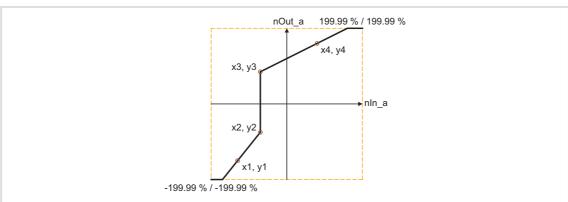
The max. 32 interpolation points of the characteristic are selected via the subcodes of C00963 and C00964.

► The same subcodes of $\underline{\text{C00963}}$ and $\underline{\text{C00964}}$ correspond to one pair of variates/interpolation point (x_n, y_n) .

	1	2		32
Х	C00963/ 1	C00963/ 2	C00963/	C00963/ 32
у	C00964/ 1	C00964/ 2	C00964/	C00964/ 32

- ▶ The first pair of variates (C00963/1 and C00964/1) is always valid.
- The X values of the characteristic must be entered in ascending order (x1 < x2 < ... < x32).</p>

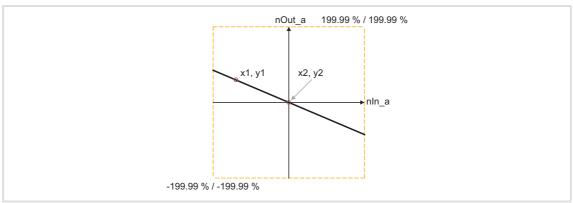
► An interruption of the ascending order of the X values represents the end of the characteristic (in our example: x5 < x4):


	1	2	3	4	5	6	7		32
X	-140 %	-90 %	70 %	145 %	0 %	0 %	0 %	0 %	0 %
у	-140 %	-40 %	115 %	160 %	0 %	0 %	0 %	0 %	0 %

► Starting at the last valid pairs of variates, extrapolation is performed on both sides until the end of the X value range (±199.99 %).

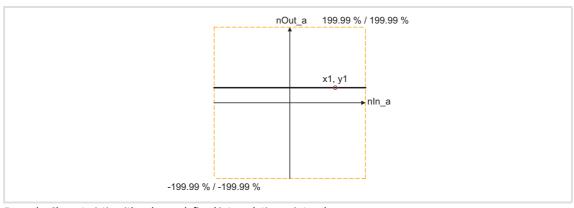
Exceptions

▶ Step changes/discontinuities can be displayed by using the same parameter setting for two consecutive X values. A step change is only valid if it has a valid pair of variates. Otherwise, extrapolation continues, starting at the last valid pair of variates.


	1	2	3	4	5	6	7		32
X	-130 %	-70 %	-70 %	80 %	0 %	0 %	0 %	0 %	0 %
y(x)	-150 %	-75 %	85 %	160 %	0 %	0 %	0 %	0 %	0 %

[18-22] Example: Characteristic with step change

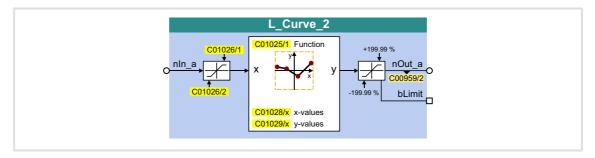
▶ If only one interpolation point, x1, in the negative range is defined, x2 exists with the "0 %" Lenze setting being the valid interpolation point (x2 > x1), and a line is drawn through both interpolation points:


	1	2	3	4	5	6	7	8	9
X	-130 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %
y(x)	40 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %

[18-23] Example: Characteristic with only one defined interpolation point and x1 < 0

▶ If only one interpolation point, x1, is defined in the positive range, a line is extrapolated:

	1	2	3	4	5	6	7	8	9
X	120 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %
y(x)	40 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %



[18-24] Example: Characteristic with only one defined interpolation point and x1 < 0 $\,$

18.1.68 L_Curve_2

This FB can optionally display a characteristic function or a curve function y=f(x), the X axis being the input signal and the Y axis being the output signal.

- ► A limitation of the input value can be set in <u>C01026/1</u> (upper limit) and <u>C01026/2</u> (lower limit).
- ► The output value is internally limited to ±199.99 %. If a limitation of the output value is active, *bLimit* is set to TRUE.

Inputs

Identifier Data type	Information/possible settings
nIn_a	 Input value (x) ±16384 = ±100 % A limitation of the input value can be set in C01026/1 (upper limit) and C01026/2 (lower limit).

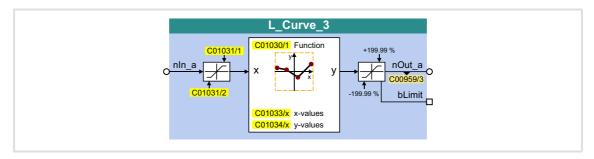
Outputs

Identifier	Data type	Value/meaning			
nOut_a	INT	Output value (y) • ±16384 ≡ ±100 % • Internal limitation to ±32767 (±199.99 %)			
bLimit		"Limitation active" status signal			
	BOOL	TRUE The output value is limited to ±199.99 %.			

Parameter

Parameter	Possible	setting	gs		Info
<u>C00959/2</u>	-199.99		% 199.99		Output value • Read only
C001025/1					Function selection
	0	nOut_	a = 0 (FB deact	ivated)	Lenze setting
	1	nOut_	a = nIn_a		
	2	nOut_	a = f(x)		In preparation!
	3	nOut_	a = f(table)		See description of L_Curve_1: ▶ Function 3: nOut_a = f(table)
<u>C01026/1</u>	-199.99		%	199.99	Upper limit for input value • Lenze setting: 199.99 %

8400 TopLine C | Software ManualFunction library
Function blocks | L_Curve_2


Parameter	Possible setting	gs	Info	
<u>C01026/2</u>	-199.99	%	199.99	Lower limit for input value • Lenze setting: -199.99 %
C01028/132	-32767		32767	 X values for characteristic function Subcodes 1 32 correspond to interpolation point values X1 X32. Lenze setting: 0 See description of L_Curve_1: Function 3: nOut a = f(table)
C01029/132	-32767		32767	Y values for characteristic function • Subcodes 1 32 correspond to interpolation point values Y1 Y32. • Lenze setting: 0 See description of L_Curve_1: ▶ Function 3: nOut a = f(table)

18.1.69 L_Curve_3

This FB can optionally display a characteristic function or a curve function y=f(x), the X axis being the input signal and the Y axis being the output signal.

- ► A limitation of the input value can be set in <u>C01031/1</u> (upper limit) and <u>C01031/2</u> (lower limit).
- ► The output value is internally limited to ±199.99 %. If a limitation of the output value is active, *bLimit* is set to TRUE.

Inputs

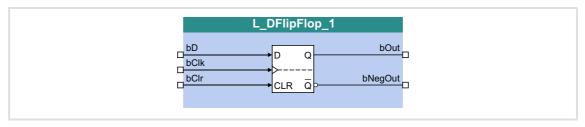
Identifier Data type	Information/possible settings
nln_a	 Input value (x) ±16384 ≡ ±100 % A limitation of the input value can be set in C01031/1 (upper limit) and C01031/2 (lower limit).

Outputs

Identifier	Data type	Value/meaning			
nOut_a	INT	Output value (y) • ±16384 ≡ ±100 % • Internal limitation to ±32767 (±199.99 %)			
bLimit		"Limitation active" status signal			
	BOOL	TRUE The output value is limited to ±199.99 %.			

Parameter

Parameter	Possible settings				Info
<u>C00959/3</u>	-199.99		%	199.99	Output value • Read only
C01030/1					Function selection
	0 <i>nOut_a</i> = 0 (FB deactivated)			ivated)	Lenze setting
	1				
	2 <i>nOut_a</i> = f(x)				In preparation!
	3	3 nOut_a = f(table)			See description of L_Curve_1: ▶ Function 3: nOut_a = f(table)
C01031/1	-199.99		%	199.99	Upper limit for input value • Lenze setting: 199.99 %

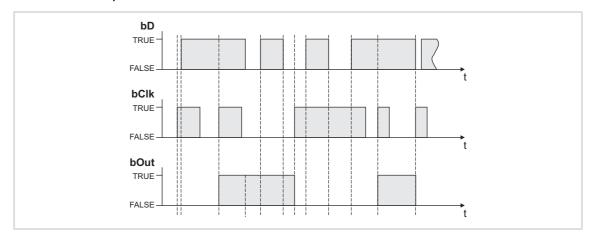

8400 TopLine C | Software ManualFunction library
Function blocks | L_Curve_3

Parameter	Possible settings			Info
<u>C01031/2</u>	-199.99	%	199.99	Lower limit for input value • Lenze setting: -199.99 %
C01033/132	-32767		32767	 X values for characteristic function Subcodes 1 32 correspond to interpolation point values X1 X32. Lenze setting: 0 See description of L_Curve_1: Function 3: nOut a = f(table)
C01034/132	-32767		32767	Y values for characteristic function • Subcodes 1 32 correspond to interpolation point values Y1 Y32. • Lenze setting: 0 See description of L_Curve_1: ► Function 3: nOut_a = f(table)

18.1.70 L_DFlipFlop_1

The FB saves binary signals (DFlipFlop) in a clock-controlled way.

Inputs

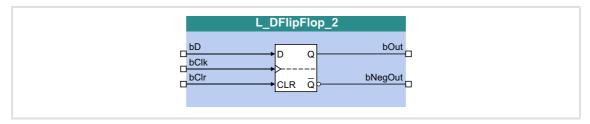

Identifier	Data type	Information/possible settings
bD	BOOL	Data input
bClk	BOOL	Clock input Only FALSE/TRUE edges are evaluated
bClr		Reset input
	BOOL	 TRUE The bOut output is set to FALSE. The bNegOut output is set to TRUE.

Outputs

Identifier		Value/meaning
	Data type	
bOut		Output signal
	BOOL	
bNegOut		Output signal, inverted
· ·	BOOL	

Function

If the bClr input = FALSE, a signal edge at the bClk input switches the static input signal bD to the bOut output, where it is retained:


Function library
Function blocks | L_DFlipFlop_2

If the *bClr* input = TRUE:

- ▶ Due to the priority *bClr* > *bClk*, *bD* the *bOut* output signal can be set any time to the *FALSE* status by the *bClr* input signal = TRUE.
- ▶ The output signal is kept in this status independent of the other input signals.

18.1.71 L_DFlipFlop_2

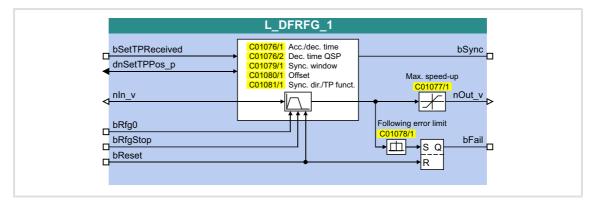
The FB saves binary signals (DFlipFlop) in a clock-controlled way.

Inputs

Identifier	Data type	Information/possible settings	
bD	BOOL	Data input	
bClk	BOOL	Clock input Only FALSE/TRUE edges are evaluated	
bClr		Reset input	
	BOOL	 TRUE The bOut output is set to FALSE. The bNegOut output is set to TRUE. 	

Outputs

Identifier		Value/meaning
	Data type	
bOut	BOOL	Output signal
bNegOut	BOOL	Output signal, inverted



For a detailed functional description see <u>L_DFlipFlop_1</u>.

18.1.72 L_DFRFG_1

This FB synchronises a drive (slave) to the master value of a master drive and then executes a angular synchronism with regard to the digital frequency.

Inputs

Identifier	Data type	Information/possible settings		
bSetTPReceived		Input for status signal "Touch probe detected"		
	BOOL	FALSE TRUE Touch probe or zero pulse received.		
dnSetTPPos_p	DINT	Input for accepting the position measured via touch probe		
nln_v	INT	Speed setpoint of the master • Scaling: 16384 ≡ 15000 rpm		
bRfg0	BOOL	Ramp down ramp function generator to "0" (quick stop function) This input can, for instance, be connected to the status signal "quick stop active".		
		 TRUE Ramp down the ramp function generator to "0" The drive is brought to a standstill with the deceleration time set in C01076/2. 		
bRfgStop		Stop ramp function generator		
	BOOL	 TRUE Stop ramp function generator The last status is output to nOut_v. The speed/angle setpoint nIn_v is saved. After bStop is reset to FALSE, the setpoint angle is approached via the ramp function generator. 		
bReset		Reset added angle setpoint		
В	BOOL	TRUE The internally added angle setpoint is reset and the ramp function generator is activated. If the status signal <i>bFail</i> is set, it will also be reset.		
		TRUE AFALSE Detect speed/angle setpoint.		

Outputs

Identifier	Data type	Value/meaning	
bSync		Status signal "Drive is running synchronously"	
	BOOL	TRUE The drive is running synchronously, the speed input id directly applied to the speed output.	
nOut_v	INT	Speed/angle setpoint • Scaling: 16384 ≡ 15000 rpm	
bFail	nil BOOL	Status signal "Angular difference exceeded"	
		TRUE The angular difference set in C01078/1 has been exceeded.	

Parameter

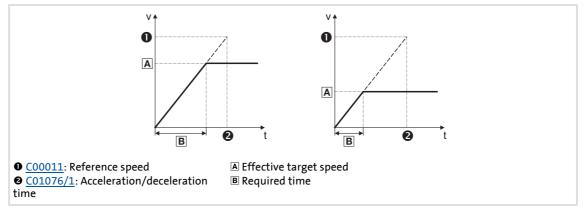
Parameter	Possible setting	gs		Info
<u>C01076/1</u>	0.000	S	999.900	 Acceleration and deceleration time Relating to the reference speed (constant acceleration and deceleration) set in C00011. It is a maximum value which limits the acceleration of the ramp function generator. Lenze setting: 1.000 s
<u>C01076/2</u>	0.000	S	999.900	Deceleration time for quick stop of the slave drive Relating to the reference speed (constant acceleration and deceleration) set in C00011. It is a maximum value which limits the deceleration of the ramp function generator. Lenze setting: 0.000 s
C01077/1	1	rpm	15000	Max. speed-up • Lenze setting: 3000 rpm
<u>C01078/1</u>	10	Incr.	2000000000	 Following error limit Scaling: a revolution is displayed with 65536 increments or steps. Lenze setting: 2000000000 incr.
<u>C01079/1</u>	0	Incr.	65535	 Synchronisation window (position) If the difference between the master and the slave is lower than the synchronisation window, the bSync status signal is set to TRUE. Lenze setting: 100 incr.
C01080/1	-2147483647	Incr.	2147483647	Offset Angular offset for the internal actual position of the FB Scaling: a revolution is displayed with 65536 increments or steps. Lenze setting: 0 incr.

Parameter	Possible settings	Info
C01081/1		Sync. direction/TP function
	1 cw/ccw - without TP (Lenze setting)	Selection of the direction of rotation for synchronising With high offset values and low
	2 cw - without TP	input speed, the drive may change
	3 ccw - without TP	its direction of rotation. In order to prevent this, a direction of
	4 cw/ccw - with TP	rotation can be permanently
	5 cw - with TP	defined via this parameter.
	6 ccw - with TP	

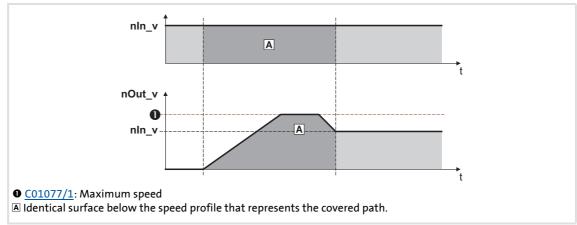
18.1.72.1 Ramp function generator (profile generator)

The ramp function generator accelerates the slave drive to the input master speed.

- ➤ Synchronising starts when the FB receives a touch probe edge from the master axis (e.g. a conveying belt) at the *bSetTPReceived* input.
- ▶ When the slave reaches the setpoint speed of the master and the made up path difference is lower than the synchronisation window set in C01079/1, the bSync output is set to TRUE. At the same time, the FB switches the profile generator to inactive and outputs the nIn_v input speed to nOut_v.


[18-25] Example: Synchronisation

► <u>C01077/1</u> serves to set a maximum speed which limits the speed of the slave.


Function library
Function blocks | L_DFRFG_1

- ► The acceleration or deceleration in the synchronous point results from the acceleration/deceleration time set in C01076/1.
 - Reference for the acceleration/deceleration time is the reference speed (C00011):

[18-26] Connection between acceleration time and acceleration

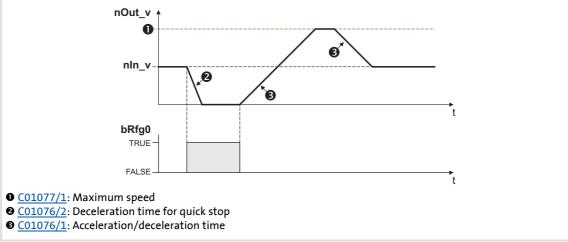
- ▶ Based on the input speed of the master axis, a setpoint angle is calculated from the starting time onwards which leads the actual angle of the slave.
- ▶ Dependent on the master speed and the settings for acceleration and offset, the FB may travel oversynchronously for reducing the angular difference, i.e. nOut_v is higher than nln_v:

[18-27] Speed/time diagram

Note!

- Set the maximum speed in C01077/1 higher than the master speed to be expected. The speed is selected on the motor side and is independent of the reference speed (C00011). The higher the difference between maximum speed and master speed, the less time to the synchronous time is required.
- In case of a heavily oscillating input speed it may occur that directly after setting the bSync status signal to TRUE the FB still executes slight angle corrections.
- Generally avoid acceleration or deceleration processes of the master axis while the slave axes are synchronising.

Set the synchronisation window in C01079/1 higher than the amplitude of beat available on the input signal:

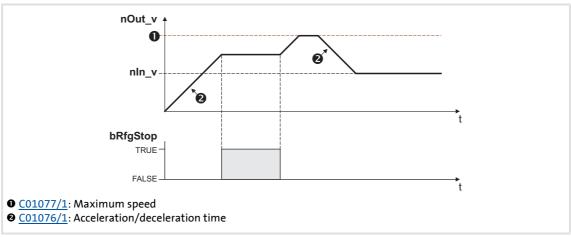

$$nln_v \xrightarrow{t} \hat{n}$$

[18-28] Example: Beat on the input signal

18.1.72.2 Quick stop

The quick stop function removes the drive from the interconnection and leads it to standstill.

- ▶ Quick stop is activated by setting *bRfg0* to TRUE.
- ► C01076/2 is used to set the delay time in [s] which refers as the acceleration/deceleration time to the reference speed (C00011).
- ▶ The angle setpoint created internally on the basis of the input signal nIn v is saved.
- ▶ After *bRfq0* is reset to FALSE, the angle setpoint is approached via the ramp function generator again.


[18-29] Example: Quick stop function (QSP)

18.1.72.3 Ramp function generator stop

The stop function holds the status of the ramp function generator during operation.

- ▶ The stop function is activated by setting *bRfqStop* to TRUE.
- ▶ The last status is output to *nOut* v (16384 \equiv 15000 rpm).
- ▶ The angle setpoint created internally on the basis of the input signal *nln_v* is saved, thus the monitoring function of the angular difference between the created setpoint angle and actual angle cannot be activated.
- ► After *bRfgStop* is reset to FALSE, the angle setpoint is approached via the ramp function generator again.

[18-30] Example: Stop function

18.1.72.4 Reset angle setpoint

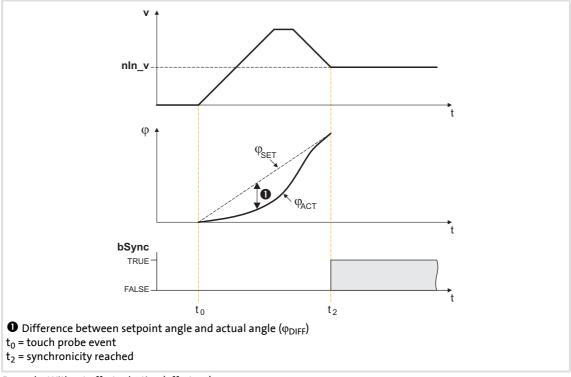
By setting *bReset* to TRUE, the internally created angle setpoint is set to "0" and the ramp function generator is activated.

18.1.72.5 Detecting the angular difference

In $\underline{\text{C01078/1}}$, a limit value for monitoring the angular difference between the created setpoint and actual angles can be set.

- ▶ Scaling: a revolution is displayed with 65536 increments or steps.
- ► The ramp function generator can accept a angular difference of up to ±2140000000 increments (≈32000 revolutions).
- ▶ If monitoring responds, the status signal *bFail* is set to TRUE.
- ▶ If the internally added angle setpoint is reset by setting *bReset* to TRUE, the *bFail* status signal is reset to FALSE.

18.1.72.6 Offset setting

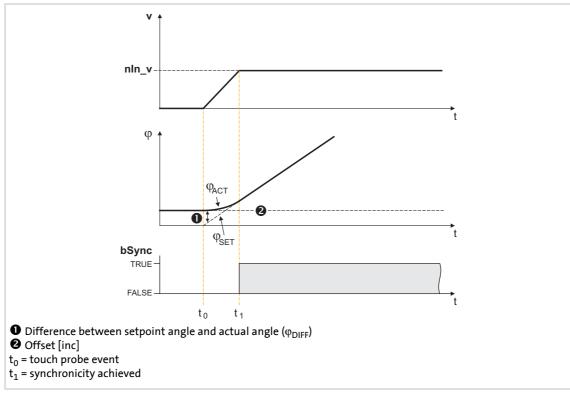

If the time to synchronicity is too long or the slave drive must not be operated oversynchronously, either the acceleration can be adapted or the touch probe initiator can be shifted. Since this is only possible to a limited extent due to construction conditions, in this case the better solution is selecting a virtual angular offset.

▶ In order to reach angle synchronicity, the difference between created setpoint and actual angle must be zero:

$$\phi_{DIFF} \, = \, \phi_{SET} - \phi_{ACT} \, = \, 0$$

Behaviour without offset

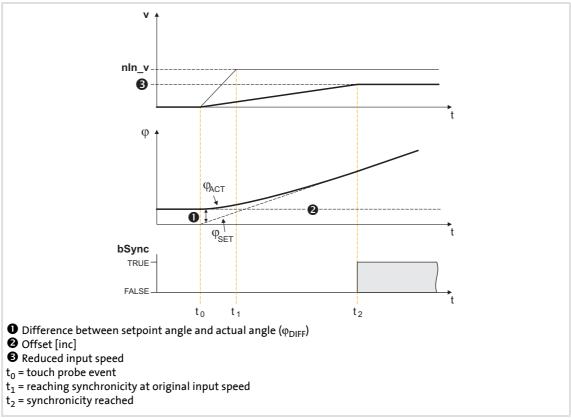
If the actual angle starts with an offset = 0, a higher difference between setpoint angle and actual angle develops:



[18-31] Example: Without offset selection (offset = 0)

Behaviour with offset

By selecting an offset, the actual position is preloaded with a non-zero value. This reduces the distance and the time to synchronicity.



[18-32] Example 1: With offset selection

- ▶ When a positive offset is selected, the sign of the distance between setpoint and actual value changes. This distance is reduced due to the acceleration of the slave from the input of the touch probe pulse. Thus, the time to synchronicity is shorter.
- ► The offset refers to the master value selection and is scaled with an encoder revolution (= 65536 increments).
- ► The offset can be determined empirically, but it is sensible to calculate the required acceleration distance and select this value as offset:

$$\phi_{ACC} = \frac{1}{2} \cdot \frac{\left(V_{SET}\right)^2}{C00011 \, [rpm]} \cdot C01076/1 \, [ms] \cdot \frac{16384 \, [incr./ms]}{15000 \, [rpm]}$$

$$\phi_{ACC} = \text{acceleration distance in [increments]}$$

$$v_{SET} = \text{setpoint speed in [rpm]}$$

$$\frac{C00011}{C01076/1} = \text{reference speed of the motor in [rpm]}$$

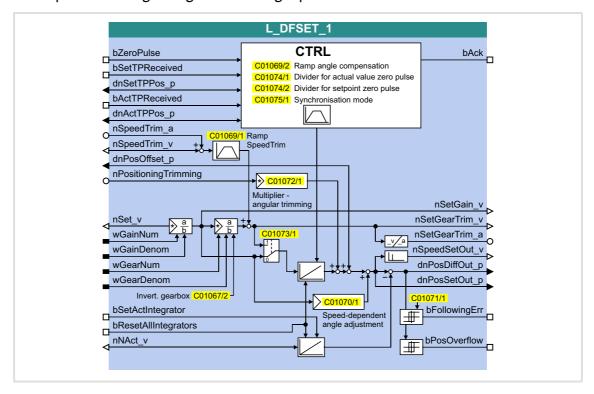
$$\frac{C01076/1}{C01076/1} = \text{acceleration/deceleration time of the ramp generator in [ms]}$$

The acceleration calculated from the acceleration/deceleration time ($\underline{\text{CO1076/1}}$) is a maximum acceleration that will not be reached if the input speed is reduced and the FB has to reach its target with a too high offset.

[18-33] Example 2: With offset selection and reduced input speed

Note!

With a very low input speed, the acceleration can also get negative which causes the slave drive to change its direction of rotation.


In order to prevent a change of the direction of rotation, $\underline{\text{CO1069/1}}$ serves to select a permanent direction of rotation.

18.1.73 L DFSET 1

This FB prepares the master value for a slave drive. This FB enables the controller to follow the master drive true to speed and angle.

- ▶ You can select values for the stretch factor and gearbox factor of the slave.
- ► A speed trimming or angular trimming is possible.

Inputs

Identifier	Data type	Information/possible settings		
bZeroPulse	BOOL	Enable of the zero pulse-/touch probe synchronisation for the modes 2, 10 13 • The mode is selected in C01075/1.		
		TRUE Synchronisation enabled.		
bSetTPReceived		Input for status signal "Touch probe detected"		
	BOOL	FALSE TRUE Touch probe or zero pulse received.		
dnSetTPPos_p	DINT	Input for accepting the position measured via touch probe		
bActTPReceived		Input for detecting an actual value touch probe or zero pulse		
	BOOL	FALSE TRUE Actual value touch probe or zero pulse received.		
dnActTPPos_p	DINT	Difference in [increments] between the occurrence of the actual value touch probe and the start of the task		
nSpeedTrim_a	INT	Speed trimming in [%] • Scaling: 16384 ≡ 100 %		
nSpeedTrim_v	INT	 Speed trimming in [increments/ms] Scaling: 16384 ≡ 15000 rpm Speed trimming via this input is more precise. 		
dnPosOffset_p	DINT	Angular offset in [increments] • Scaling: a revolution is displayed with 65536 increments or steps.		

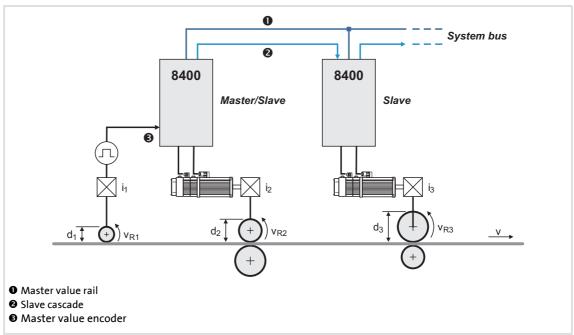
Identifier	Data type	Information/possible settings		
nPositionTrimming	INT	 Angular trimming in [increments] Scaling: a revolution is displayed with 65536 increments or steps. When analog values are selected: 100 % = 1/4 revolution = 16384 increments The setting range can be extended via C01072/1. 		
nSet_v	INT	Speed setpoint • Scaling: 16384 ≡ 15000 rpm		
wGainNum	WORD	Stretch factor (numerator)		
wGainDenom	WORD	Stretch factor (denominator)		
wGearNum	WORD	Gearbox factor (numerator)		
wGearDenom	WORD	Gearbox factor (denominator)		
bSetActIntegrator	BOOL	 Equalise angle integrators (current position = set position) This input has a higher priority than the bResetAllIntegrators input. 		
		FALSE \nearrow TRUE $dnPosDiffOut_p = 0$		
		TRUE Equalise angle integrators.		
bResetAllIntegrators	BOOL	Reset angle integrators • This input has a higher priority than the bResetAllIntegrators input.		
		TRUE Positional deviation, dnPosSetOut_p and dnPosDiffOut_p are set to "0".		
nNAct_v	INT	Actual value in [increments/ms] for calculating the actual position • Scaling: 16384 ≡ 15000 rpm		

Identifier	Data type	Value/meaning				
bAck	BOOL	Status signal "Synchronising is executed"				
		TRUE Synchronising is executed.				
nSetGain_v	INT	Speed setpoint in [increments/ms] evaluated with stretch factor • Scaling: 16384 ≡ 15000 rpm				
nSetGearTrim_v	INT	Speed setpoint in [increments/ms] evaluated with stretch factor and gearbox factor • Scaling: $16384 \equiv 15000 \text{ rpm}$				
nSetGearTrim_a	INT	Speed setpoint in [%] evaluated with stretch factor and gearbox factor • Scaling: 16384 ≡ 100 % reference speed (C00011)				
nSpeedSetOut_v	INT	 Speed setpoint Derived from angle setpoint dnPosSetOut_p. Can change abruptly if e.g. the angular offset changes abruptly. 				
dnPosDiffOut_p	DINT	Following error between set position and actual position This output can be used for display purposes.				
dnPosSetOut_p	DINT	 Angle setpoint Scaling: a revolution is displayed with 65536 increments or steps. 				
bFollowingErr	BOOL	Status signal "Following error"				
		TRUE Following error occurred. • The limit value set in C01071/1 has been exceeded.				
bPosOverflow	BOOL	Status signal "angle controller overflow"				
		TRUE Angle controller overflow occurred.				

8400 TopLine C | Software Manual Function library Function blocks | L_DFSET_1

Parameter

Parameter	Possible settings				Info
<u>C01067/2</u>					Invert. gearbox nSet_v
	0 not inv		nverted		
	1 inverte		ed		
	2 Autom		natically from MCK		
<u>C01069/1</u>	1		Incr./ms	32767	Ramp SpeedTrim • Lenze setting: 10 incr./ms
<u>C01069/2</u>	1		Incr./ms	32767	Ramp angle compensation • Lenze setting: 100 incr./ms
<u>C01070/1</u>	-134217728		Incr.	134217728	 Speed-dependent angle adjustment Scaling: a revolution is displayed with 65536 increments or steps. Lenze setting: 0 incr.
<u>C01071/1</u>	10		Incr.	2147483647	 Following error limit Scaling: a revolution is displayed with 65536 increments or steps. Lenze setting: 32768 incr.
C01072/1	-20000			20000	Multiplier - angular trimming • Lenze setting: 1
<u>C01073/1</u>					Evaluation - setpoint integrator
	0	Evalua	tion with gearbox factor		Lenze setting
	1 Evaluation without gearbox factor			earbox factor	
C01074/1	0			16384	 Divisor for actual value zero pulse Number of signals to be received at least until synchronisation gets active. Initialisation: 0
<u>C01074/2</u>	0			16384	 Divisor for setpoint zero pulse Number of signals to be received at least until synchronisation gets active. Initialisation: 0


Parameter	Possible	e settings	Info
<u>C01075/1</u>			Synchronisation mode
	0	Synchronisation inactive	Lenze setting
	1	Permanent synchronisation without enable via the <i>bZeroPulse</i> input • Correction is executed over the shortest possible path.	Synchronisation is only executed after 2 zero pulses have been received.
	2	Permanent synchronisation only with enable via the <i>bZeroPulse</i> input Correction is executed over the shortest possible path. 	When bZeroPulse is set to TRUE, a permanent zero pulse/touch probe synchronisation is executed. Synchronisation is only executed after 2 setpoint signals have been received.
	10	One-time synchronisation An angular difference is compensated over the shortest possible path.	Synchronisation is only executed after 2 setpoint signals have been received.
	11	One-time synchronisation • An angle difference is compensated in CW direction.	Synchronisation is only executed after 2 setpoint signals have been received.
	12	One-time synchronisation • An angular difference is compensated in CCW direction.	Synchronisation is only executed after 2 setpoint signals have been received.
	13	One-time synchronisation An angular difference is compensated over the shortest possible path.	Synchronisation is only executed after the 1. actual value signal has been received

18.1.73.1 Master value rail/slave cascade

If there is only one master speed that is transmitted to all slave drives involved, e.g. via system bus (CAN), it is called master value rail.

If a slave drive takes over the master value generation for the following slave, it is called slave cascade.

[18-34] Example: Master value rail/slave cascade

18.1.73.2 Setpoint conditioning with stretch factor and gearbox factor

Stretch factor

The stretch factor is required for the "speed synchronism via master value cascade" mode. It defines the ratio the slave drive is to be running with regard to its master value.

- ▶ The stretch factor evaluates the setpoint at the *nSet* v input.
- ► The stretch factor must be selected via the wGainNum and wGainDenom inputs in the form of numerators and denominators.
- ▶ The result is provided at the *nSetGain* v output.
 - Scaling: $16384 \equiv 15000 \text{ rpm}$

▶ If the stretch factor is 1 and the gearbox factors are selected correctly, the circumferential speeds of the rolls for master and slave 1 are identical in the example shown in the illustration [18-34].

Gearbox factor

The gearbox factor defines the gearbox ratio of the drive. Enter the ratio of the drive.

- ► The gearbox factor evaluates the setpoint at the *nSet_v* input multiplied by the stretch factor.
- ► The gearbox factor has to be selected via the inputs wGearNum and wGearDenom in the form of numerators and denominators.

- ► <u>C01073/1</u> serves to simply deactivate the evaluation with the gearbox factor (does not apply to the speed outputs *nSetGain v*, *nSetGearTrim v* and *nSetGearTrim a*).
- ▶ The result is provided at the outputs *nSetGearTrim_v* and *nSetGearTrim_a*.
 - Scaling $nSetGearTrim\ v: 16384 \equiv 15000\ rpm$
 - Scaling *nSetGearTrim a*: 16384 \equiv 100 % reference speed (C00011)

```
nSetGearTrim\_v = Stretch\ factor \cdot \frac{wGearNum}{wGearDenom} nSetGearTrim\_v = nSet\_v \cdot \frac{wGainNum}{wGainDenom} \cdot \frac{wGearNum}{wGearDenom} nSetGearTrim\_a = nSet\_v \cdot \frac{C00011}{15000} \cdot \frac{wGainNum}{wGainDenom} \cdot \frac{wGearNum}{wGearDenom}
```


Note!

The intermediate results and the result of the evaluation are limited to ± 32767 increments (16 bits).

If a limitation is active, increments and thus the real drive position will get lost!

When stretch factors are higher than "1", check if the FB gets in the limitation of calculation at maximum speed. If so, assign the required numerator and denominator values to the stretch and gearbox factors so that neither a limitation takes place in the end result nor in the intermediate result.

18.1.73.3 Processing correction values

Speed trimming

Speed trimming enables the connection of correction values, e.g. from a higher-level control loop. This permits an acceleration or deceleration of the drive.

The correction value can either be transmitted as an analog value via the nSpeedTrim_a input or for exact speed trimming as a speed value via the nSpeedTrim_v input.

- ► Scaling *nSpeedTrim a*: $16384 \equiv 100 \%$ reference speed (C00011)
- ► Scaling *nSpeedTrim* $v: 16384 \equiv 15000 \text{ rpm}$

Stop!

Change the speed trimming only step by step as the FB does not contain a ram generator for preventing torque impulses.

Angular trimming

Angular trimming enables the rotor position to be put forward or back with regard to the setpoint (the drive is leading or lagging).

The correction value must has to be defined in [increments] via the *nPositionTrimming* input. It is internally added to the angle setpoint.

- ▶ Scaling: a revolution is displayed with 65536 increments or steps.
- ► The maximum angular trimming amounts to ±½ motor revolution (±32767 increments).
- ▶ When analog values are selected: $100 \% \equiv \frac{1}{2} \text{ motor revolution} \equiv 16384 \text{ increments}.$
- ▶ The setting range can be extended with the multiplier to be set in C00072/1.

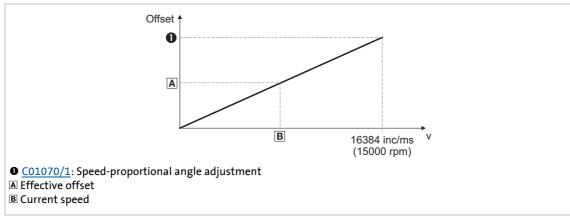
Angular offset

The *dnPosOffset_p* input serves to define a permanent angular offset for the setpoint of the drive.

- ▶ The maximum angular offset amounts to ±3750 motor revolutions.
- ▶ The adjustment is exclusively made via the following error (output *dnPosDiffOut p*).
- ► Example: A angular offset of 90° is to be set on the load side with a gearbox ratio of 3.8147:

dnPosOffset_p =
$$\frac{90^{\circ}}{360^{\circ}} \cdot 65535$$
 [increments] $\cdot 3.8147 = 62500$ [increments]

Stop!


Change the angular offset only step by step as the FB does not contain a ram generator for preventing torque impulses.

Otherwise limit the jump by limiting the position controller output: Enter a maximum compensating speed in [%] at the *nPosCtrlOutLimit_a* input of the SB LS MotorInterface with regard to the reference speed (C00011).

Speed-proportional angle adjustment

The speed-proportional angle adjustment enables a leading or lagging of the angle with increasing speed and serves to compensate dead times and transmission times.

The correction value selected in <u>CO1070/1</u>. in [increments] refers to a speed of 15000 rpm (linear relationship):

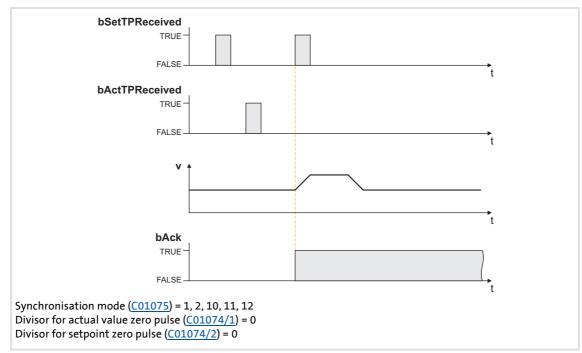
[18-35] Connection between offset/speed

18.1.73.4 Synchronising slave drive to master drive

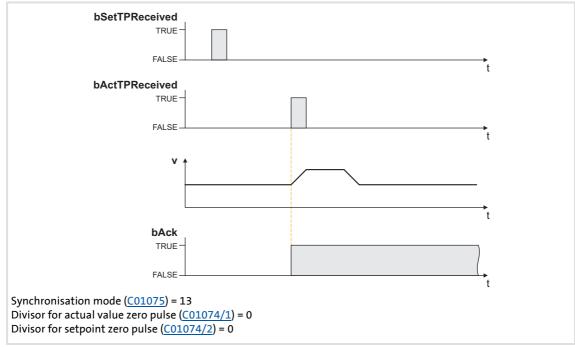
If a angular synchronism of the drives is required (e.g. in printing units), the slave drives must be synchronised to the master position since the FB **L_DFSET** as a master value can only receive and process on relative signal.

The FB **L_DFSET** receives the master value either via a real-time capable MotionBus as e.g. system bus (CAN) or via the master frequency channel that requires an additional module.

A master value cascade can be realised very easily via a master frequency connection of the drives.


For synchronisation purposes, the slave drive is informed cyclically or once about its drive position by a pulse generated by the master drive. This pulse is either the zero pulse of the master feedback or the edge of a touch probe sensor. Moreover, a pulse must be generated by the slave drive. Only if the FB **L_DFSET** receives both signals, it can execute a synchronisation.

Synchronisation mode


For synchronisation, the following modes are available in C01075:

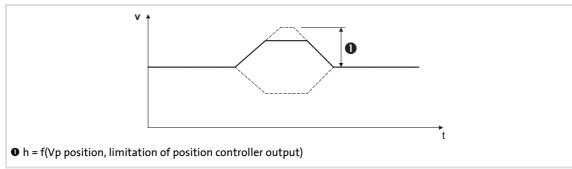
Mode		Info
0	Synchronisation inactive	
1	Permanent synchronisation without enable via the bZeroPulse input Correction is executed over the shortest possible path.	The synchronisation starts at the earliest after two touch probe pulses of the master drive and one touch probe pulse of the slave drive have been received. • See illustration [18-36]. (Ш 1228)
2	Permanent synchronisation only with enable via the bZeroPulse input Correction is executed over the shortest possible path.	
10	 One-time synchronisation only with enable via the bZeroPulse input An angular difference is compensated over the shortest possible path. 	
11	 One-time synchronisation only with enable via the bZeroPulse input An angle difference is compensated in CW direction. 	
12	 One-time synchronisation only with enable via the bZeroPulse input An angular difference is compensated in CCW direction. 	
13	 One-time synchronisation only with enable via the bZeroPulse input An angular difference is compensated over the shortest possible path. 	The synchronisation starts at the earliest after two touch probe pulses of the master drive and one touch probe pulse of the master drive have been received. • See illustration [18-37]. (**D 1228)

[18-36] Synchronisation process in the modes 1, 2, 10, 11, 12

[18-37] Synchronisation process in mode 13

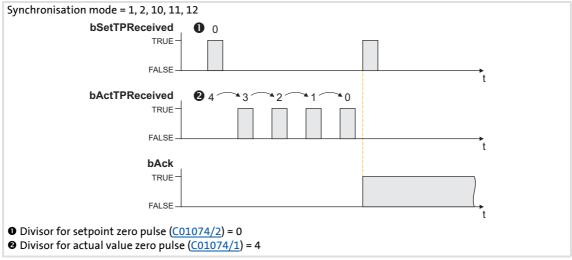
Compensating movement

When the second set or act touch probe pulse is received, the difference between master and slave position is detected which is then communicated via the following error output to the motor control and then compensated via the position controller.



Stop!

The compensating movement is executed abruptly (with jerk) as the FB has no ramp generator for preventing torque pulses!


Limit the jump by limiting the position controller output: Enter a maximum compensating speed in [%] at the *nPosCtrlOutLimit_a* input of the SB <u>LS MotorInterface</u> with regard to the reference speed (<u>C00011</u>).

[18-38] Compensating movement

18.1.73.5 Masking out touch probe signals

When passing-through material is used, e.g. printed foil, touch probe initiators may respond several times per cycle. For suppressing such "interference pulses", count values can be selected in $\underline{\text{C01074/1}}$ and $\underline{\text{C01074/2}}$ that are decremented when the touch probe pulse has been received. Only when the counter content is "0", the synchronisation will be enabled.

[18-39] Synchronisation process in the modes 1, 2, 10, 11, 12 with a masking out of the touch probe pulses

Function library
Function blocks | L_DFSET_1

18.1.73.6 Process monitoring functions

Following error

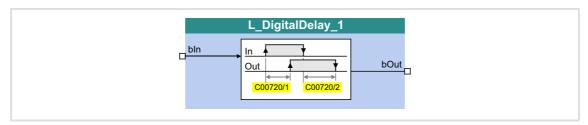
The bFollowingErr status output is set to TRUE if the drive cannot follow its setpoint angle.

- ▶ Possible causes:
 - The centrifugal mass is too high for the set acceleration or deceleration time.
 - The torque limit has been reached (load torque > drive torque).
- ▶ Remedy: Unload drive or increase torque limit at the servo controller (if the power limits of the controller have not yet been reached).

The following error is derived from the angular difference of the setpoint angle integrator minus the actual angle integrator. The comparison value (following error limit) can be set in C01071/1.

Angle controller overflow (bPosOverflow = TRUE)

The *bPosOverflow* status output is set to TRUE if the angular difference that can be displayed device-internally has been exceeded. Home positions get lost here.


If an error response is to be triggered in case of a following error and/or angle controller overflow, connect the corresponding status output with a free *bSetError* input of the SB <u>LS SetError 2</u> and parameterise the requested error response for this input in <u>C00581</u>.

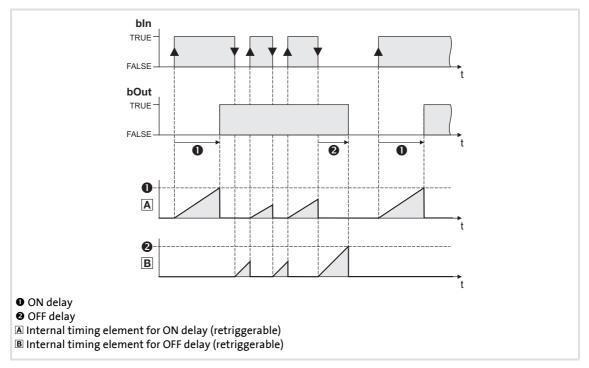
18.1.74 L_DigitalDelay_1

This FB delays binary signals.

▶ The ON and OFF delays can be parameterised independently of one another.

Inputs

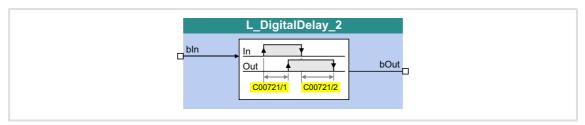
Identifier Data type	Information/possible settings
bIn BOOL	Input signal


Outputs

Identifier	Data type	Value/meaning
bOut	BOOL	Output signal (time-delayed input signal)

Parameter	Possible settings			Info
<u>C00720/1</u>	0.000	S	3600.000	ON delay • Lenze setting: 0.000 s
<u>C00720/2</u>	0.000	S	3600.000	OFF delay • Lenze setting: 0.000 s

Function library
Function blocks | L_DigitalDelay_1


- 1. A FALSE-TRUE edge at bln starts the internal timing element for the ON delay.
- 2. After the defined ON delay, the input signal bln is output at bOut.
- 3. A TRUE-FALSE edge at bln starts the internal timing element for the OFF delay.
- 4. After the defined OFF delay, the input signal bln is output at bOut.

18.1.75 L_DigitalDelay_2

This FB delays binary signals.

▶ The ON and OFF delays can be parameterised independently of one another.

Inputs

Identifier Data type	Information/possible settings
bln BOOL	Input signal

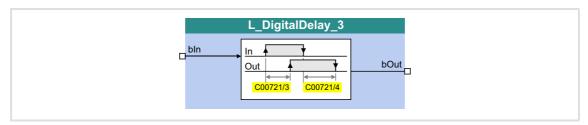
Outputs

Identifier	Data type	Value/meaning
bOut	BOOL	Output signal (time-delayed input signal)

Parameter

Parameter	Possible settings			Info
<u>C00721/1</u>	0.000	S	3600.000	ON delay • Lenze setting: 0.000 s
C00721/2	0.000	S	3600.000	OFF delay • Lenze setting: 0.000 s

For a detailed functional description see <u>L_DigitalDelay_1</u>.



Function library
Function blocks | L_DigitalDelay_3

18.1.76 L_DigitalDelay_3

This FB delays binary signals.

▶ The ON and OFF delays can be parameterised independently of one another.

Inputs

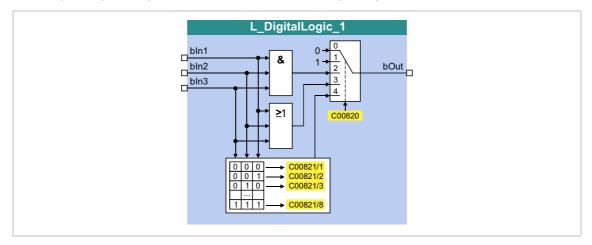
Identifier Data type	Information/possible settings
bln BOOL	Input signal

Outputs

Identifier	Data type	Value/meaning
bOut	BOOL	Output signal (time-delayed input signal)

Parameter

Parameter	Possible settings			Info
<u>C00721/3</u>	0.000	S	3600.000	ON delay • Lenze setting: 0.000 s
<u>C00721/4</u>	0.000	S	3600.000	OFF delay • Lenze setting: 0.000 s


For a detailed functional description see <u>L_DigitalDelay_1</u>.

18.1.77 L_DigitalLogic_1

This FB provides a binary output signal created by a logic operation of the input signals. Optionally, one of the constant binary values independent from the input signals can be output.

- ▶ Output of a constant binary value
- ► Logical ANDing of the inputs
- ► Logical ORing of the inputs
- ▶ Output depending on the combination of the input signals

Inputs

Identifier Data ty	Information/possible settings
bln1	Input signal 1
bln2	Input signal 2
bln3	Input signal 3

Outputs

Identifier Data type	Value/meaning
bOut	Output signal

Function library
Function blocks | L_DigitalLogic_1

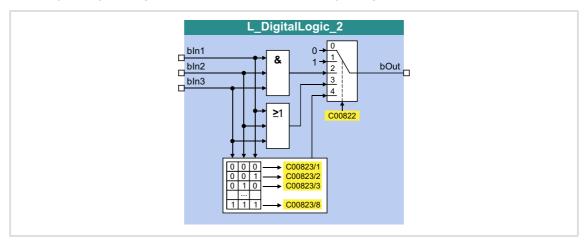
Parameter

Parameter	Possible settings		Info
<u>C00820</u>			Function selection
	0	"0"	Constant value "FALSE"
	1	"1"	Constant value "TRUE"
	2	bOut = bln1∧bln2∧bln3	AND operation
	3	bOut = bln1 v bln2 v bln3	OR operation
	4	bOut = f (truth table)	The output value depends on the parameterised truth table
<u>C00821</u>	see trut	th table	Truth table Each of the 8 possible input combinations can be assigned to the output value FALSE or TRUE.

Truth table for C00820 = 4

bln3	bln2	bln1	Output signal bOut
FALSE	FALSE	FALSE	<u>C00821/1</u> (FALSE or TRUE)
FALSE	FALSE	TRUE	C00821/2 (FALSE or TRUE)
FALSE	TRUE	FALSE	C00821/3 (FALSE or TRUE)
FALSE	TRUE	TRUE	C00821/4 (FALSE or TRUE)
TRUE	FALSE	FALSE	C00821/5 (FALSE or TRUE)
TRUE	FALSE	TRUE	C00821/6 (FALSE or TRUE)
TRUE	TRUE	FALSE	<u>C00821/7</u> (FALSE or TRUE)
TRUE	TRUE	TRUE	C00821/8 (FALSE or TRUE)

<u>Example</u>: If in case of the signal combination bln1 = FALSE, bln2 = FALSE and bln3 = TRUE, the output signal bOut is to be = TRUE, <u>C00821/5</u> must be set to "TRUE":


bln3	bln2	bln1	Output signal bOut
TRUE	FALSE	FALSE	<u>C00821/5</u> (TRUE)

18.1.78 L_DigitalLogic_2

This FB provides a binary output signal created by a logic operation of the input signals. Optionally, one of the constant binary values independent from the input signals can be output.

- ▶ Output of a constant binary value
- ► Logical ANDing of the inputs
- ► Logical ORing of the inputs
- ▶ Output depending on the combination of the input signals

Inputs

Identifier Data ty	Information/possible settings
bln1	Input signal 1
bln2	Input signal 2
bln3	Input signal 3

Outputs

Identifier Data type	Value/meaning
bOut	Output signal

Function library
Function blocks | L_DigitalLogic_2

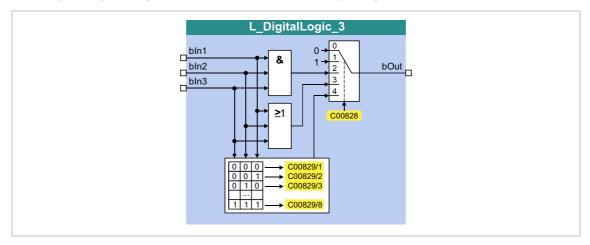
Parameter

Parameter	Possible settings		Info
<u>C00822</u>			Function selection
	0	"0"	Constant value "FALSE"
	1	"1"	Constant value "TRUE"
	2	bOut = bln1∧bln2∧bln3	AND operation
	3	bOut = bln1 v bln2 v bln3	OR operation
	4	bOut = f (truth table)	The output value depends on the parameterised truth table
<u>C00823</u>	see trut	th table	Truth table Each of the 8 possible input combinations can be assigned to the output value FALSE or TRUE.

Truth table for C00822 = 4

bln3	bln2	bln1	Output signal bOut
FALSE	FALSE	FALSE	C00823/1 (FALSE or TRUE)
FALSE	FALSE	TRUE	C00823/2 (FALSE or TRUE)
FALSE	TRUE	FALSE	C00823/3 (FALSE or TRUE)
FALSE	TRUE	TRUE	C00823/4 (FALSE or TRUE)
TRUE	FALSE	FALSE	C00823/5 (FALSE or TRUE)
TRUE	FALSE	TRUE	C00823/6 (FALSE or TRUE)
TRUE	TRUE	FALSE	C00823/7 (FALSE or TRUE)
TRUE	TRUE	TRUE	C00823/8 (FALSE or TRUE)

<u>Example:</u> If in case of the signal combination bln1 = FALSE, bln2 = FALSE and bln3 = TRUE, the output signal bOut is to be = TRUE, <u>C00823/5</u> must be set to "TRUE":


bln3	bln2	bln1	Output signal bOut
TRUE	FALSE	FALSE	<u>C00823/5</u> (TRUE)

18.1.79 L_DigitalLogic_3

This FB provides a binary output signal created by a logic operation of the input signals. Optionally, one of the constant binary values independent from the input signals can be output.

- ▶ Output of a constant binary value
- ► Logical ANDing of the inputs
- ► Logical ORing of the inputs
- ▶ Output depending on the combination of the input signals

Inputs

Identifier Data ty	Information/possible settings
bln1	Input signal 1
bln2	Input signal 2
bln3	Input signal 3

Outputs

Identifier Data type	Value/meaning
bOut	Output signal

Function library
Function blocks | L_DigitalLogic_3

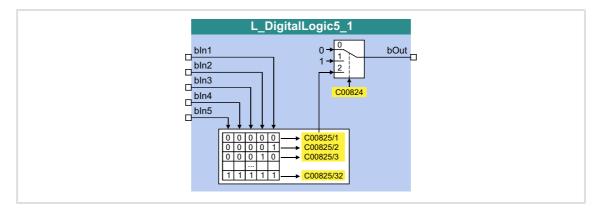
Parameter

Parameter	Possible settings		Info
<u>C00828</u>			Function selection
	0	"0"	Constant value "FALSE"
	1	"1"	Constant value "TRUE"
	2	bOut = bln1∧bln2∧bln3	AND operation
	3	bOut = bln1 v bln2 v bln3	OR operation
	4	bOut = f (truth table)	The output value depends on the parameterised truth table
<u>C00829</u>	see trut	h table	Truth table Each of the 8 possible input combinations can be assigned to the output value FALSE or TRUE.

Truth table for C00822 = 4

bln3	bln2	bln1	Output signal bOut
FALSE	FALSE	FALSE	C00829/1 (FALSE or TRUE)
FALSE	FALSE	TRUE	C00829/2 (FALSE or TRUE)
FALSE	TRUE	FALSE	C00829/3 (FALSE or TRUE)
FALSE	TRUE	TRUE	C00829/4 (FALSE or TRUE)
TRUE	FALSE	FALSE	C00829/5 (FALSE or TRUE)
TRUE	FALSE	TRUE	C00829/6 (FALSE or TRUE)
TRUE	TRUE	FALSE	<u>C00829/7</u> (FALSE or TRUE)
TRUE	TRUE	TRUE	C00829/8 (FALSE or TRUE)

<u>Example</u>: If in case of the signal combination bln1 = FALSE, bln2 = FALSE and bln3 = TRUE, the output signal bOut is to be = TRUE, <u>C00829/5</u> must be set to "TRUE":


bln3	bln2	bln1	Output signal bOut
TRUE	FALSE	FALSE	<u>C00829/5</u> (TRUE)

18.1.80 L_DigitalLogic5_1

This FB provides a binary output signal created by a logic operation of the input signals. Optionally, one of the constant binary values independent from the input signals can be output.

- ► Output of a constant binary value
- ▶ Output depending on the combination of the input signals

Inputs

Identifier		Information/possible settings
	Data type	
bln1		Input signal 1 5
 bln5	BOOL	

Outputs

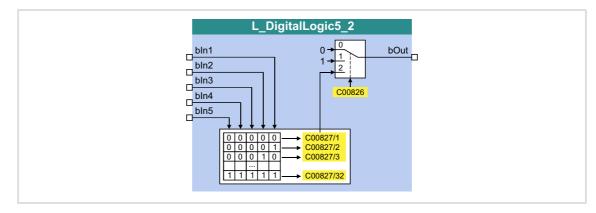
Identifier	ata type	Value/meaning
bOut	BOOL	Output signal

Parameter	Possible settings	Info
<u>C00824</u>		Function selection
	0 "0"	Constant value "FALSE"
	1 "1"	Constant value "TRUE"
	2 bOut = f (truth table)	The output value depends on the parameterised truth table
<u>C00825</u>	see truth table	Truth table Each of the 32 possible input combinations can be assigned to the output value FALSE or TRUE.

Function library
Function blocks | L_DigitalLogic5_1

Truth table for C00824 = 4

bln5	bln4	bln3	bln2	bln1	Output signal bOut
FALSE	FALSE	FALSE	FALSE	FALSE	C00825/1 (FALSE or TRUE)
FALSE	FALSE	FALSE	FALSE	TRUE	C00825/2 (FALSE or TRUE)
FALSE	FALSE	FALSE	TRUE	FALSE	C00825/3 (FALSE or TRUE)
					C00825/ (FALSE or TRUE)
TRUE	TRUE	TRUE	FALSE	TRUE	C00825/30 (FALSE or TRUE)
TRUE	TRUE	TRUE	TRUE	FALSE	C00825/31 (FALSE or TRUE)
TRUE	TRUE	TRUE	TRUE	TRUE	C00825/32 (FALSE or TRUE)


<u>Example:</u> If in case of the signal combination bln1 = TRUE, bln2 = FALSE, bln3 = TRUE, bln4 = TRUE and bln5 = TRUE, the output signal bOut is to be = TRUE, $\underline{C00825/30}$ must be set to "TRUE":

bIn5	bln4	bln3	bln2	bln1	Output signal bOut
TRUE	TRUE	TRUE	FALSE	TRUE	<u>C00825/30</u> (TRUE)

18.1.81 L_DigitalLogic5_2

This FB provides a binary output signal created by a logic operation of the input signals. Optionally, one of the constant binary values independent from the input signals can be output.

- ► Output of a constant binary value
- ▶ Output depending on the combination of the input signals

Inputs

lo	lentifier	Information/possible settings
	Data type	
b	ln1	Input signal 1 5
 b	ln5	
	BOOL	

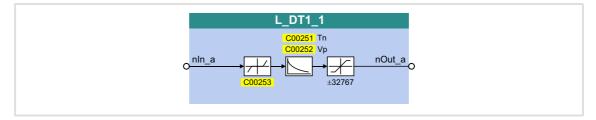
Outputs

Identifier	ata type	Value/meaning
bOut	BOOL	Output signal

Parameter	Possible settings	Info
<u>C00826</u>		Function selection
	0 "0"	Constant value "FALSE"
	1 "1"	Constant value "TRUE"
	2 bOut = f (truth table)	The output value depends on the parameterised truth table
<u>C00827</u>	see truth table	Truth table Each of the 32 possible input combinations can be assigned to the output value FALSE or TRUE.

Function library
Function blocks | L_DigitalLogic5_2

Truth table for C00826 = 4


bln5	bln4	bln3	bln2	bln1	Output signal bOut
FALSE	FALSE	FALSE	FALSE	FALSE	C00827/1 (FALSE or TRUE)
FALSE	FALSE	FALSE	FALSE	TRUE	C00827/2 (FALSE or TRUE)
FALSE	FALSE	FALSE	TRUE	FALSE	C00827/3 (FALSE or TRUE)
					<u>C00827/</u> (FALSE or TRUE)
TRUE	TRUE	TRUE	FALSE	TRUE	C00827/30 (FALSE or TRUE)
TRUE	TRUE	TRUE	TRUE	FALSE	C00827/31 (FALSE or TRUE)
TRUE	TRUE	TRUE	TRUE	TRUE	C00827/32 (FALSE or TRUE)

<u>Example:</u> If in case of the signal combination bln1 = TRUE, bln2 = FALSE, bln3 = TRUE, bln4 = TRUE and bln5 = TRUE, the output signal bOut is to be = TRUE, $\underline{C00827/30}$ must be set to "TRUE":

bln5	bln4	bln3	bln2	bln1	Output signal bOut
TRUE	TRUE	TRUE	FALSE	TRUE	<u>C00827/30</u> (TRUE)

18.1.82 L_DT1_1

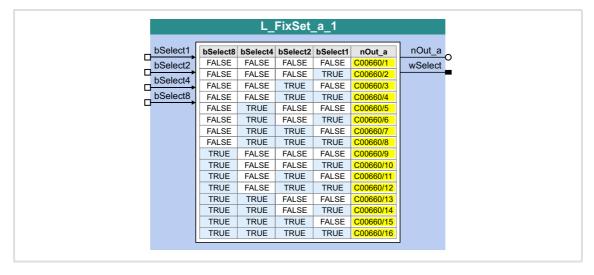
This FB differentiates signals. The function block can, for instance, be used to apply an acceleration (dv/dt).

Inputs

Identifier Data type	Information/possible settings
nln_a	Input signal

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal


Parameter	Possible	Possible settings			Info
<u>C00251</u>	10		ms	5000	Time constant Tn • Lenze setting: 1000 ms
<u>C00252</u>	-320.00)		320.00	Gain factor Vp • Lenze setting: 1.00
<u>C00253</u>	the sign	Note: The most significant bit determines the sign of the value, the remaining bits determine the numerical value.		aining bits	 Selection of sensitivity Depending on the selection, the number of indicated higher-order bits is evaluated. Lenze setting: 15 bit
	1 15 bits 2 14 bits 3 13 bits			Bit 0 bit 14 are evaluated	
					Bit 0 bit 13 are evaluated
					Bit 0 bit 12 are evaluated
	4	4 12 bits			Bit 0 bit 11 are evaluated
	5	11 bits			Bit 0 bit 10 are evaluated
	6	10 bits			Bit 0 bit 9 are evaluated
	7	9 bits			Bit 0 bit 8 are evaluated

Function library
Function blocks | L FixSet a 1

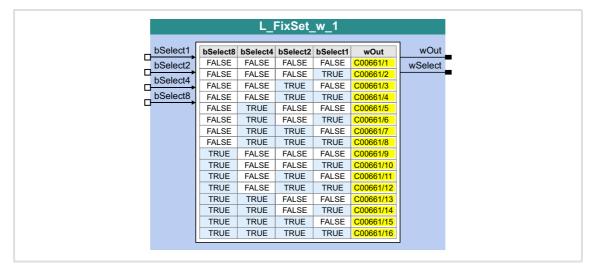
18.1.83 L_FixSet_a_1

This FB outputs one of 16 parameterisable analog signals. Binary coded selection of the "fixed value" to be output via the four selection inputs.

Inputs

Identifier	Data type	Information/possible settings
bSelect1 bSelect8	BOOL	Binary coded selection of the fixed value to be output • See truth table displayed in the FB above.

Outputs


Identifier Data type	Value/meaning
nOut_a	Output of the selected fixed value
wSelect word	Current selection (0 15)

Parameter	Possible settings			Info
C00660/116	-199.99	%	199.99	Fixed value 0 15 • Lenze setting: 0.00 %

18.1.84 L_FixSet_w_1

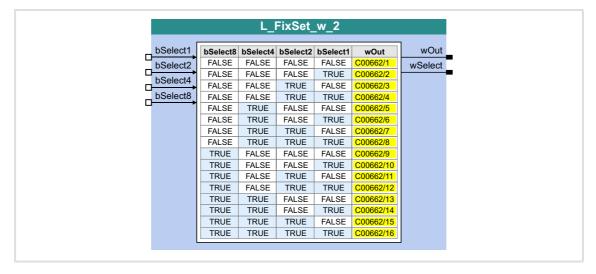
This FB outputs one of 16 parameterisable data words. Binary coded selection of the "fixed value" to be output via the four selection inputs.

Inputs

Identifier		Information/possible settings
	Data type	
bSelect1 bSelect8	BOOL	Binary coded selection of the fixed value to be output • See truth table displayed in the FB above.

Outputs

Identifier Data type	Value/meaning
wOut	Output of the selected fixed value
wSelect wort	Current selection (0 15)


Parameter	Possible settings		Info
C00661/116	0	65535	Fixed values 0 15 • Lenze setting: 0

Function library
Function blocks | L_FixSet_w_2

18.1.85 L_FixSet_w_2

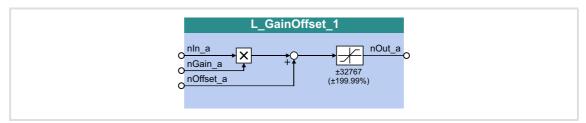
This FB outputs one of 16 parameterisable data words. Binary coded selection of the "fixed value" to be output via the four selection inputs.

Inputs

Identifier	Data type	Information/possible settings
bSelect1 bSelect8	BOOL	Binary coded selection of the fixed value to be output • See truth table displayed in the FB above.

Outputs

Identifier Data type	Value/meaning
wOut WORD	Output of the selected fixed value
wSelect WORD	Current selection (0 15)


Parameter	Possible settings		Info
C00662/116	0	65535	Fixed values 0 15 • Lenze setting: 0

18.1.86 L_GainOffset_1

This FB can amplify an analog input signal and then add an offset to it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via FB inputs.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

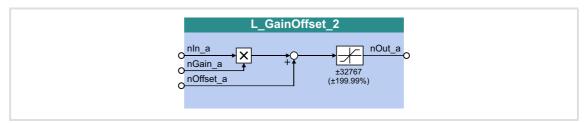
Inputs

Identifier Data	type	Information/possible settings
nln_a	INT	Input signal • Scaling: 16384 ≡ 100 %
nGain_a	INT	Gain factor • Scaling: 16384 ≡ 100 % • 199.99 % ≈2
nOffset_a	INT	Offset • Scaling: 16384 ≡ 100 %

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal Internal limitation to ±199.99 %

$$nOut_a = (nIn_a \cdot Gain factor) + Offset$$



Function library
Function blocks | L_GainOffset_2

18.1.87 L_GainOffset_2

This FB can amplify an analog input signal and then add an offset to it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via FB inputs.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

Identifier Data	type	Information/possible settings
nln_a	INT	Input signal • Scaling: 16384 ≡ 100 %
nGain_a	INT	Gain factor • Scaling: 16384 ≡ 100 % • 199.99 % ≈2
nOffset_a	INT	Offset • Scaling: 16384 ≡ 100 %

Outputs

Identifier	Data type	Value/meaning
nOut_a		Output signal • Internal limitation to ±199.99 %


$$nOut_a = (nIn_a \cdot Gain factor) + Offset$$

18.1.88 L_GainOffset_3

This FB can amplify an analog input signal and then add an offset to it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via FB inputs.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

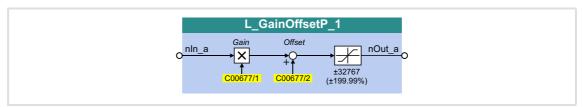
Inputs

Identifier Data	type	Information/possible settings
nln_a	INT	Input signal • Scaling: 16384 ≡ 100 %
nGain_a	INT	Gain factor • Scaling: 16384 ≡ 100 % • 199.99 % ≈2
nOffset_a	INT	Offset • Scaling: 16384 ≡ 100 %

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal Internal limitation to ±199.99 %

$$nOut_a = (nIn_a \cdot Gain factor) + Offset$$



Function library
Function blocks | L_GainOffsetP_1

18.1.89 L_GainOffsetP_1

This FB can amplify an analog input signal and then add an offset to it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via parameters.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

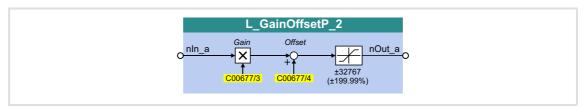
Identifier Data type	Information/possible settings
nln_a	Input signal • Scaling: 16384 ≡ 100 %

Outputs

Identifier	Value/meaning
Data type	
nOut_a	Output signal • Internal limitation to ±199.99 %

Parameter

Parameter	Possible settings			Info
<u>C00677/1</u>	-199.99	%	199.99	Gain factor • Lenze setting: 100.00 % • 199.99 % ≈2
<u>C00677/2</u>	-199.99	%	199.99	Offset • Lenze setting: 0.00 %


$$nOut_a = (nIn_a \cdot Gain factor) + Offset$$

18.1.90 L GainOffsetP 2

This FB can amplify an analog input signal and then add an offset to it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via parameters.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

Identifier Data typ	Information/possible settings
nIn_a IN	Input signal • Scaling: 16384 ≡ 100 %

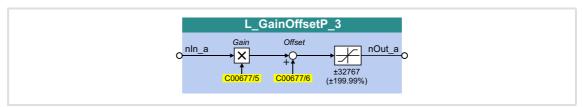
Outputs

Identifier	Value/meaning
Data type	
nOut_a	Output signal • Internal limitation to ±199.99 %

Parameter

Parameter	Possible settings			Info
<u>C00677/3</u>	-199.99	%	199.99	Gain factor • Lenze setting: 100.00 % • 199.99 % ≈2
<u>C00677/4</u>	-199.99	%	199.99	Offset • Lenze setting: 0.00 %

$$nOut_a = (nln_a \cdot Gain factor) + Offset$$



Function library
Function blocks | L_GainOffsetP_3

18.1.91 L_GainOffsetP_3

This FB can amplify an analog input signal and then add an offset to it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via parameters.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

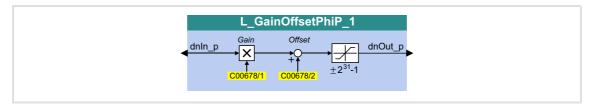
Identifier Data type	Information/possible settings
nln_a INT	Input signal • Scaling: 16384 ≡ 100 %

Outputs

Identifier	Value/meaning
Data type	
nOut_a	Output signal • Internal limitation to ±199.99 %

Parameter

Parameter	Possible settings			Info
<u>C00677/5</u>	-199.99	%	199.99	Gain factor • Lenze setting: 100.00 % • 199.99 % ≈2
<u>C00677/6</u>	-199.99	%	199.99	Offset • Lenze setting: 0.00 %


$$nOut_a = (nIn_a \cdot Gain factor) + Offset$$

18.1.92 L_GainOffsetPhiP_1

This FB can amplify an angle signal and add an offset to it afterwards.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via parameters.
- ▶ The value provided at the $dnOut_p$ output is internally limited to $\pm 2^{31}$ -1.

Inputs

Identifier	Information/possible settings
Data type	
dnIn_p	Input signal

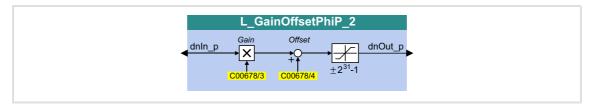
Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)

Parameter

Parameter	Possible settings			Info
<u>C00678/1</u>	-2147483647	Incr.	2147483647	Offset • Lenze setting: 0 incr.
<u>C00678/2</u>	-2147483647		2147483647	Gain factor • Lenze setting: 65536

$$dnOut_p = (dnIn_p \cdot Gain factor) + Offset$$



Function library
Function blocks | L_GainOffsetPhiP_2

18.1.93 L GainOffsetPhiP 2

This FB can amplify an angle signal and add an offset to it afterwards.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Gain and offset are selected via parameters.
- ▶ The value provided at the $dnOut_p$ output is internally limited to $\pm 2^{31}$ -1.

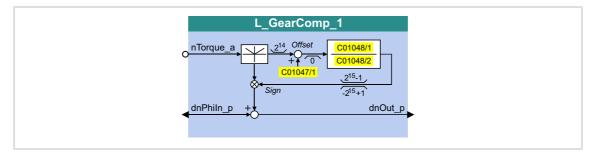
Inputs

Identifier D	ata type	Information/possible settings
dnIn_p	DINT	Input signal

Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)

Parameter


Parameter	Possible settings			Info
<u>C00678/3</u>	-2147483647	Incr.	2147483647	Offset • Lenze setting: 0 incr.
<u>C00678/4</u>	-2147483647		2147483647	Gain factor • Lenze setting: 65536

$$dnOut_p = (dnIn_p \cdot Gain factor) + Offset$$

18.1.94 L_GearComp_1

This FB is used for dynamic compensation of elasticities in the drive train that arise, e..g. by elastic coupling of speed reduction gearboxes or long transmission shafts.

Inputs

Identifier Data type	Information/possible settings
nTorque_a	Torque setpoint • 16384 ≡ 100 %
dnPhiln_p	Angle setpoint • 65536 increments ≡ 1 motor revolution

Outputs

Identifier Data	Value/meaning
dnOut_p	Corrected angle setpoint • 65536 increments ≡ 1 motor revolution

Parameter	Possible settings		Info
<u>C01047/1</u>	-16383	16383	Offset Static torque offset Lenze setting: 0
<u>C01048/1</u>	-32767	32767	Numerator Elastic constant Lenze setting: 1
<u>C01048/2</u>	1	32767	Denominator • Elastic constant • Lenze setting: 1

8400 TopLine C | Software Manual

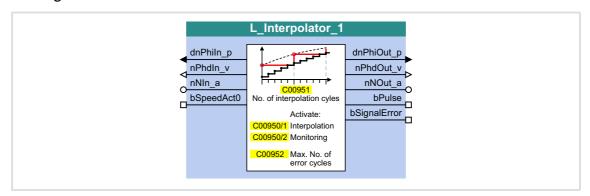
Function library
Function blocks | L_GearComp_1

Function

Elasticity is a measure of how far the load have moved from the ideal setpoint position at motor standstill due to mechanical force effect.

- ► Example: "Hoist":

 Due to elasticity of the mechanical transmission elements, the real position of the "hook" varies in loaded and unloaded status.
- ▶ In order to compensate errors caused by elasticity, the actual torque at the *nTorque_a* input is applied. This torque is a measure for the current load.
- ▶ The multiplication by an elasticity factor results in an angle compensation value which is added to the setpoint angle correctly signed depending on the direction of the torque. This serves to correct the false position of the load.
- ► The elasticity factor is selected in the form of numerator and denominator via C01048/1 and C01048/2.
- ► <u>C01047/1</u> serves to select a static correction value (offset).


Note!

Please note that the compensation may be reversed in case of a signed numerator/denominator selection of the elasticity factor!

18.1.95 L_Interpolator_1

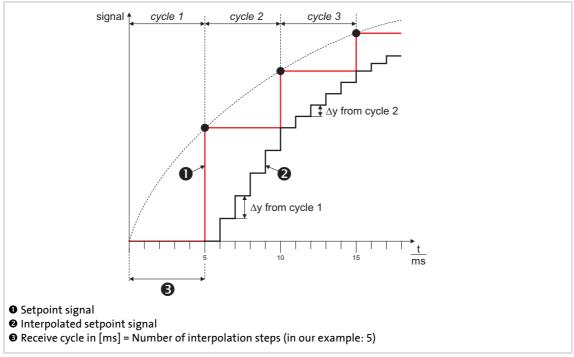
This FB interpolates a position setpoint and/or an analog value e.g. to compensate for larger bus transmission cycles or to continue signal characteristics if data telegrams are missing.

Inputs

Identifier	Data type	Information/possible settings		
dnPhIn_p	DINT	Position setpoint • Is interpolated and completed when signal interpolation is activated.		
nPhdIn_v	INT	Angular velocity Is only passed through to the nPhdOut_v output.		
nNIn_a	INT	Analog value Is interpolated when signal interpolation is activated.		
bSpeedAct0	BOOL	 Input for detecting the "Current speed is zero" status This status signal needs to be transmitted by the setpoint source to ensure trouble-free operation. 		
		TRUE Current speed is zero.		

Outputs

Identifier	Data type	Value/meaning				
dnPhOut_p	DINT	Output of the <i>dnPhIn_p</i> position setpoint which, if applicable, has been interpolated and completed				
nPhdOut_v	INT	Output of the <i>nPhdIn_v</i> angular velocity				
nNOut_a	INT	Output of the nNIn_a analog value which, if applicable, has been interpolated				
bPulse	BOOL	"Input values have been accepted" status signal				
		TRUE The input values have been accepted during this cycle.				
bSignalError	BOOL	"Signal error" status signal Only if signal monitoring is active (C00950/2 = "1: On").				
		TRUE The number of missing data telegrams has exceeded the limit value parameterised in C00952.				



Parameter

Parameter	Possible settings				
C00950/1	0 Off 1 On			Signal interpolation of the dnPhIn_p and nNIn_a input signals • Lenze setting: Off • Signal interpolation (□ 1260)	
C00950/2				Signal monitoring of the dnPhIn_p	
	0	Off		input signal Lenze setting: Off	
	1	On		▶ Signal monitoring (□ 1261)	
<u>C00951</u>	1 65535		Corresof the	of interpolation steps sponds to the receive cycle data telegrams in [ms]. setting: 1	
<u>C00952</u>	0	65	telegram • Lenze	ue for missing data s setting: 5 monitoring (🕮 1261)	
C00953	0		00 Speed-up		

18.1.95.1 Signal interpolation

If signal interpolation is active $(\underline{\text{C00950/1}} = 1)$, the output signal will not reach the level of the corresponding input signal until all interpolation steps parameterised in $\underline{\text{C00951}}$ have been performed:

[18-40] Signal characteristic

Note!

Do not change the number of interpolation steps during operation. Otherwise the interpolation becomes inaccurate.

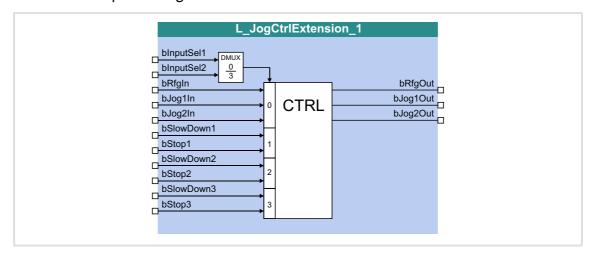
18.1.95.2 Signal monitoring

If signal monitoring is active $(\underline{\text{C00950/2}} = 1)$, the signal characteristic of the $dnPhIn_p$ input signal is continued even if the data telegram is missing (setpoint selection via CAN).

Monitoring is performed on the basis of the *dnPhIn_p* position setpoint and the *bSpeedAct0* status signal:

- ▶ If the *dnPhIn_p* position setpoint remains the same in the next device cycle, it is either because the speed is zero or because no data telegram has been received.
- ► The evaluation of the *bSpeedAct0* status signal gives information about which reason applies. This status signal needs to be transmitted by the setpoint source to ensure trouble-free operation:
 - bSpeedAct0 = FALSE means that the speed is <u>not</u> zero, so an error is assumed: The signal characteristic of the dnPhIn_p input signal is completed (the current slope is retained).
 - bSpeedAct0 = TRUE means that the speed is zero, so the unchanged position setpoint is not treated as an error.
- ► If the number of missing data telegrams exceeds the limit value parameterised in C00952, the bSignalError output is set to TRUE.
 - The bSignalError output is automatically reset to FALSE if correct signals are detected at dnPhIn p and bSpeedAct0 again.

Note!


The *nNIn* a analog value is not monitored!

18.1.96 L_JogCtrlExtension_1

This FB can be connected upstream to the <u>L NSet</u> ramp function generator/setpoint generator to implement a switch-off positioning at limit switch.

▶ Detailed information on this operating mode can be found in the description of the "Switch-off positioning" TA.

Inputs

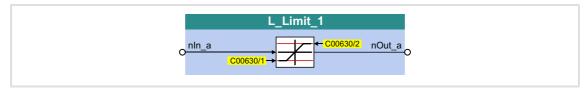
Identifier	Data type	Information/possible settings
bInputSel1 bInputSel2	BOOL	Activation of the bSlowDown1/bStop1, bSlowDown2/bStop2 and bSlowDown3/bStop3 signal pairs according to the Truth table
bRfgIn	BOOL	Ramping down of the setpoint generator in the downstream $\underline{\text{L} \ \ \text{NSet}}$ FB according to the $\underline{\text{Truth table}}$
bJog1in bJog2in	BOOL	 Selection inputs for setting fixed speeds in the setpoint generator If the pre-switch off is inactive (bInputSel1 and bInputSel2 are both set to FALSE), the two control signals are output one-to-one at the bJog1Out and bJog2Out outputs. To achieve the desired behaviour (starting at high speed, pre-switch off at low speed), both inputs must be set to TRUE. Fixed setpoint 2 must be less than fixed setpoint 3! Otherwise, the drive will start at a low speed and accelerate after the pre-switch off. If, in addition to the bJog1In and bJog2In inputs, other jog signals are set at the L NSet FB, new fixed setpoints are reached, and the drive traverses at speeds that differ from the selection via bJog1In and bJog2In.
bSlowDown1 bSlowDown2 bSlowDown3	BOOL	Activation of fixed setpoint 2 in the downstream <u>L_NSet</u> FB • These inputs only fulfil a function if they have been activated via <i>blnputSel1</i> and <i>blnputSel2</i> previously (see <u>Truth table</u>).
bStop1 bStop2 bStop3	BOOL	Ramping down of the ramp function generator in the downstream <u>L_NSet</u> FB • These inputs only fulfil a function if they have been activated via <i>blnputSel1</i> and <i>blnputSel2</i> previously (see <u>Truth table</u>).

Outputs

Identifier	Data type	Value/meaning
bRfgOut	BOOL	Control signal for ramping down the setpoint generator • Connect this output to the <i>bRfg0</i> input of the <u>L_NSet</u> FB.
bJog1Out	BOOL	Control signal for setting fixed speeds in the setpoint generator • Connect this output to the <i>blog1</i> input of the <u>L_NSet</u> FB.
bJog2Out	BOOL	Control signal for setting fixed speeds in the setpoint generator • Connect this output to the <i>blog2</i> input of the <u>L_NSet</u> FB.

Truth table

Input		Function	Response in the L_NSet FB		
binputSel1	bInputSel2				
FALSE	FALSE	Pre-switch off inactive	 No response The bRfgIn input signal is directly output at the bRfgOut output. The blogIn1 and blogIn2 input signals are directly output at the blog1Out and blog2Out outputs. 		
TRUE	FALSE	The bSlowDown1 and bStop1 inputs are evaluated.	Pre-switch off can be activated If the SlowDown function is activated via		
FALSE	TRUE	The <i>bSlowDown2</i> and <i>bStop2</i> inputs are evaluated.	the selected bSlowDown input, fixed setpoint 2 in the setpoint generator is activated via the bJoq1Out and bJoq2Out		
TRUE	TRUE	The <i>bSlowDown3</i> and <i>bStop3</i> inputs are evaluated.	 outputs. If the Stop function is activated via the selected bStop input, the bRfgOut output is set to TRUE and hence the setpoint generator is deactivated. 		


[18-1] Truth table for activating the pre-switch off

Function library Function blocks | L_Limit_1

18.1.97 L_Limit_1

This FB limits an analog input signal to a value range whose upper and lower limit can be set via parameters.

Inputs

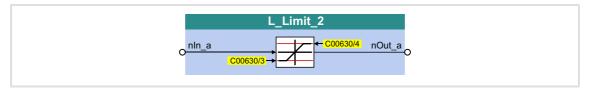
Identifier Data type	Information/possible settings		
nIn_a	Input signal • Scaling: 16384 ≡ 100 %		

Outputs

Identifier Data typ	Value/meaning
nOut_a	Output signal • Scaling: 16384 ≡ 100 %

Parameter

Parameter	Possible settings			Info
C00630/1	-199.99	%	199.99	Lower limit • Lenze setting: -100.00 %
C00630/2	-199.99	%	199.99	Upper limit • Lenze setting: 100.00 %



Always set the lower limit lower than the upper limit, otherwise value "0" is provided at the *nOut* a output.

18.1.98 L_Limit_2

This FB limits an analog input signal to a value range whose upper and lower limit can be set via parameters.

Inputs

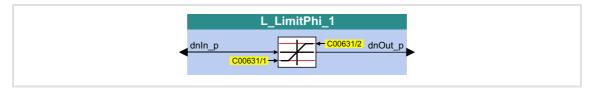
Identifier Data type	Information/possible settings		
nIn_a	Input signal • Scaling: 16384 ≡ 100 %		

Outputs

Identifier	Value/meaning	
Data type		
nOut_a	Output signal • Scaling: 16384 ≡ 100 %	

Parameter

Parameter	Possible settings			Info
C00630/3	-199.99	%	199.99	Lower limit • Lenze setting: -100.00 %
C00630/4	-199.99	%	199.99	Upper limit • Lenze setting: 100.00 %


Always set the lower limit lower than the upper limit, otherwise value "0" is provided at the *nOut_a* output.

Function library Function blocks | L_LimitPhi_1

18.1.99 L_LimitPhi_1

This FB limits an angle signal to a value range whose upper and lower value range can be set via parameters.

Inputs

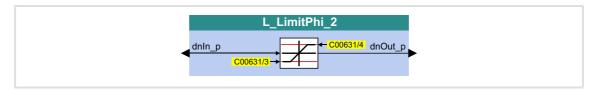
Identifier	Information/possible settings	
Data type		
dnIn_p	Input signal	
INT		

Outputs

Identifier	Value/meaning
Data type	
dnOut_p	Output signal

Parameter

Parameter	Possible settings			Info
C00631/1	-2147483647 Incr. 2147483647			Lower limit • Lenze setting: -2147483647 incr.
C00631/2	-2147483647	Incr.	2147483647	Upper limit • Lenze setting: 2147483647 incr.



Always set the lower limit lower than the upper limit, otherwise value "0" is provided at the dnOut_p output.

18.1.100 L_LimitPhi_2

This FB limits an angle signal to a value range whose upper and lower value range can be set via parameters.

Inputs

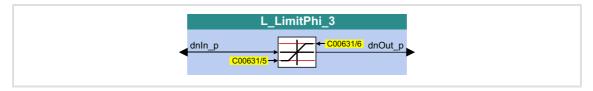
Identifier	Information/possible settings
Data type	
dnln_p	Input signal

Outputs

Identifier	Value/meaning
Data type	
dnOut_p	Output signal

Parameter

Parameter	Possible settings			Info
C00631/3	-2147483647	Incr.	2147483647	Lower limit • Lenze setting: -2147483647 incr.
C00631/4	-2147483647	Incr.	2147483647	Upper limit • Lenze setting: 2147483647 incr.


Always set the lower limit lower than the upper limit, otherwise value "0" is provided at the dnOut_p output.

Function library Function blocks | L_LimitPhi_3

18.1.101 L_LimitPhi_3

This FB limits an angle signal to a value range whose upper and lower value range can be set via parameters.

Inputs

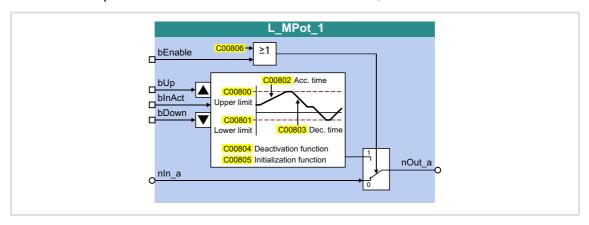
Identifier	Information/possible settings
Data type	
dnIn_p	Input signal

Outputs

Identifier	Value/meaning
Data type	
dnOut_p	Output signal

Parameter

Parameter	Possible settings			Info
C00631/5	-2147483647	Incr.	2147483647	Lower limit • Lenze setting: -2147483647 incr.
C00631/6	-2147483647	Incr.	2147483647	Upper limit • Lenze setting: 2147483647 incr.


Always set the lower limit lower than the upper limit, otherwise value "0" is provided at the dnOut_p output.

18.1.102 L MPot 1

This FB replaces a hardware motor potentiometer and can be used as an alternative setpoint source which is controlled via two inputs.

- ▶ The signal is output via a ramp function generator with linear ramps.
- ▶ The acceleration and deceleration times are set via parameters.
- ► Constant ramping even with speed limit values changed online.
- ▶ The motor potentiometer function can be switched on/off online.

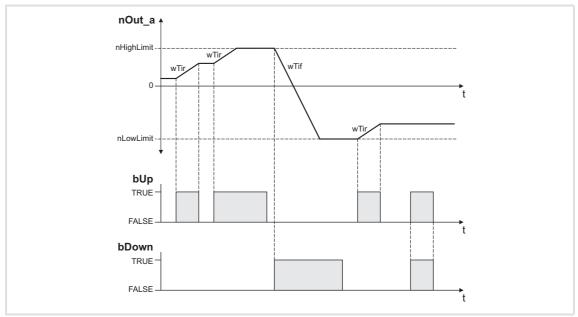
Inputs

Identifier	Data type	Information/possible settings		
bEnable	BOOL	Switch over motor potentiometer function bEnable input and C00806 code are ORed.		
			 Motor potentiometer function is active, setpoint can be changed via bUp and bDown. With switching to TRUE, the value applied to nIn_a is automatically transferred to the motor potentiometer. 	
		FALSE	The value applied to <i>nIn_a</i> is output at <i>nOut_a</i> .	
nln_a	INT	When bEnable = FALSE, the analog input signal nln_ is switched to the nOut_a output.		
bUp		Approaching of the upper speed limit value set in <u>C00800</u> .		
BOOL	TRUE	 The nOut_a output signal runs to its upper limit value (nHighLimit). If the bDown input is simultaneously set to TRUE, the nOut_a output signal is not changed. 		
bDown		Approaching of	the lower speed limit value set in <u>C00801</u> .	
	BOOL	TRUE	 The nOut_a output signal runs to its lower limit value (nLowLimit). If the bUp input is simultaneously set to TRUE, the nOut_a output signal is not changed. 	
bInAct	BOOL	This input hasWhen the m	for potentiometer function as the highest priority. Notor potentiometer is deactivated, the nOut_a output signal follows a set with code C00804 .	
		TRUE	Motor potentiometer function is deactivated.	

Outputs

Identifier Data type	Value/meaning
nOut_a เกา	Output signal

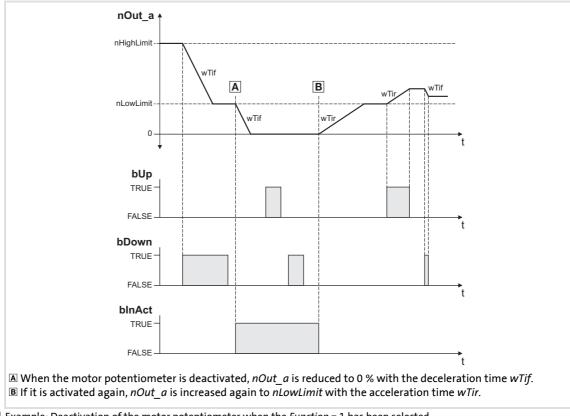
Parameter


Parameter	Possible settings			Info	
<u>C00800</u>	-199.99		%	199.99	Upper limit • Lenze setting: 100.00 %
<u>C00801</u>	-199.99		%	199.99	Lower limit • Lenze setting: -100.00 %
<u>C00802</u>	0.1		S	6000.0	Acceleration time • Lenze setting: 10.0 s
<u>C00803</u>	0.1		S	6000.0	Deceleration time • Lenze setting: 10.0 s
<u>C00804</u>					 Inactive function Selection of response when deactivating the motor potentiometer via the input bInAct. Lenze setting: 0
	0	No furt value.	ther action; <i>nC</i>	Out_a retains its	
	1			neter returns to eration time T _{if}	
	2	the lov	otor potention ver limit value the decelerati	(C00801)	
	3		otor potention liately change		Important for the emergency stop function
	4	immed	otor potention liately change alue (<u>C00801</u>)		
	5	the up	otor potention per limit value the accelerati	(C00800)	
<u>C00805</u>					Init function
	0	during non-vo memo	tput value bei mains power- platilely in the ry of the contr ed during main	off is saved internal oller. It will be	 Selection of response when switching on the device. Lenze setting: 0
	1	The lov loaded			
	2		put value = 0 9 mains power-		
<u>C00806</u>					Use of the motor potentiometer
	0	No			 When switching to 1: YES, the value applied to nIn_a is
	1	Yes			automatically transferred to the motor potentiometer. • Lenze setting: 0

18.1.102.1 Activate & control motor potentiometer

When blnAct is set to FALSE, the motor potentiometer is activated.

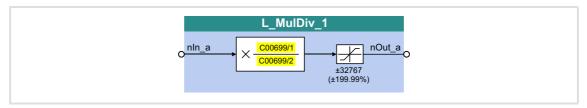
- ▶ The currently active function depends on the current output signal nOut_a, the limit values set and the control signals at bUp and bDown.
- ▶ When the nOut_a output signal is outside the limits set, the output signal runs to the next limit with the Ti times set. This process is independent of the control signals at bUp and bDown.
- ▶ When the nOut_a output signal is inside the limits set, the output signal changes according to the control signals at bUp and bDown.


[18-41] Example: Control of the motor potentiometer

bUp	bDown	blnact	Function
FALSE	FALSE	FALSE	The nOut_a output signal remains unchanged.
TRUE	FALSE		The nOut_a output signal runs to its upper limit value (nHighLimit).
FALSE	TRUE		The nOut_a output signal runs to its lower limit value (nLowLimit).
TRUE	TRUE		The nOut_a output signal remains unchanged.
-	-	TRUE	The motor potentiometer function is deactivated. The nOut_a output signal responds according to the function selected via Function.

18.1.102.2 Deactivate motor potentiometer

When the motor potentiometer is deactivated by setting <code>blnAct</code> to TRUE, the <code>nOut_a</code> output signal responds according to the function selected via <code>Function</code>.



[18-42] Example: Deactivation of the motor potentiometer when the Function = 1 has been selected

18.1.103 L_MulDiv_1

This FB multiplies the analog input signal with a parameterisable factor.

- ► The value of the factor is determined by a quotient consisting of numerator and denominator .
- ► The value output at *nOut_a* is limited to ±199.99 %.
- Division is <u>not</u> remainder considered.

Inputs

Identifier	Information/possible settings
Data type	
nIn1	Input signal
INT	

Outputs

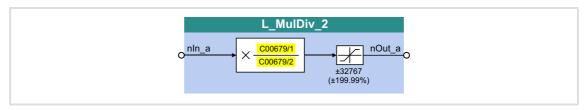
Identifier Data	Value/meaning
nOut_a	Product value (result of the multiplication) • Internal limitation to ± 32767

Parameter

Parameter	Possible settings		Info
C00699/1	-32767	32767	Numerator
C00699/2	-32767	32767	Denominator

Function

$$nOut_a = nIn_a \times \frac{C00699/1}{C00699/2}$$



Function library
Function blocks | L_MulDiv_2

18.1.104 L_MulDiv_2

This FB multiplies the analog input signal with a parameterisable factor.

- ► The value of the factor is determined by a quotient consisting of numerator and denominator .
- ► The value output at *nOut_a* is limited to ±199.99 %.
- Division is <u>not</u> remainder considered.

Inputs

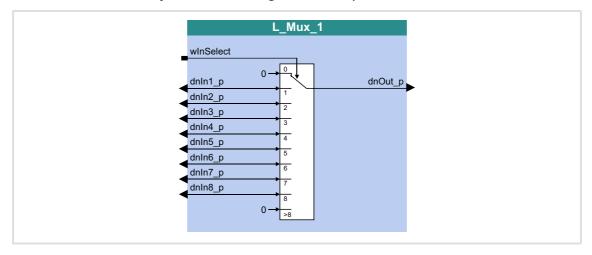
Identifier	Information/possible settings
Data type	
nIn1	Input signal
INT	

Outputs

Identifier Data	Value/meaning
nOut_a	Product value (result of the multiplication) • Internal limitation to ± 32767

Parameter

Parameter	Possible settings		Info
C00679/1	-32767	32767	Numerator
C00679/2	-32767	32767	Denominator


Function

$$nOut_a = nIn_a \times \frac{C00679/1}{C00679/2}$$

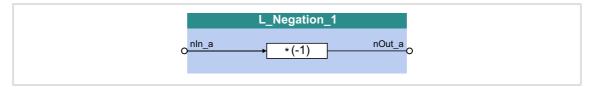
18.1.105 L_Mux_1

This FB provides one of the eight input signals $dnIn1_p$... $dnIn8_p$ at the output $dnOut_p$. The selection is made by means of the signal at the input wInSelect.

Inputs

Identifier	Data type	Information/possible settings	
winSelect		Input signal	
	WORD	 The values "1" "8" select the input signal to be applied to the output. Values from "1" "8" set the dnOut_p output to "0". 	
dnIn1_p 	DINT	Input signal	
dnIn8_p	DINT		

Identifier	Data type	Value/meaning
dnOut_p	DINT	Output signal



Function library
Function blocks | L_Negation_1

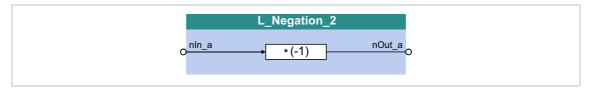
18.1.106 L_Negation_1

This FB converts the sign of the input signal, i.e. the input signal is multiplied by the value -1 and is then output.

▶ With the value - 32768 at the *nln_a* input, the value + 32767 is provided at the *nOut_a* output.

Inputs

Identifier Data type	Value/meaning
nln_a	Input signal


Identifier Data type	Value/meaning
nOut_a	Output signal

18.1.107 L_Negation_2

This FB converts the sign of the input signal, i.e. the input signal is multiplied by the value -1 and is then output.

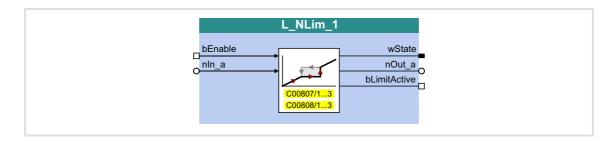
▶ With the value - 32768 at the *nln_a* input, the value + 32767 is provided at the *nOut_a* output.

Inputs

Identifier Data type	Value/meaning
nln_a	Input signal

Identifier Data type	Value/meaning
nOut_a	Output signal

Function library
Function blocks | L_NLim_1


18.1.108 L_NLim_1

This FB can mask out up to three parameterisable blocking zones within a continuous signal characteristic.

Note!

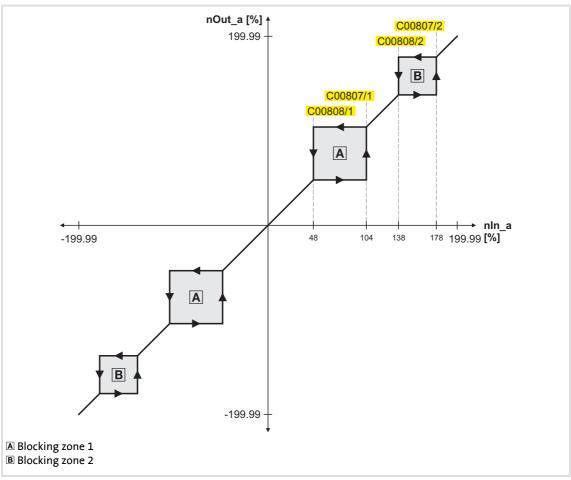
A value of "0" cannot be masked out if the *nln_a* input signal changes signs.

Inputs

Identifier	Data type	Information/possible settings	
bEnable		Activate zone masking	
	BOOL	FALSE	The FB has been deactivated. • The input signal is output one-to-one at the nOut_a output.
		TRUE	 The FB has been activated. Zone masking of the input signal is carried out according to the parameterised blocking zones.
nln_a	INT	Input signal	

Identifier/data type		Value/meaning		
wState	WORD	Bit-coded status word • Bits that are not listed are reserved for future extensions.		
		Bit 0	No blocking zone active	
		Bit 1	Blocking zone 1 active	
		Bit 2	Blocking zone 2 active	
		Bit 3	Blocking zone 3 active	
nOut_a	INT	Output signal If the FB has been activated, the output signal is outside the blocking zones.		
bLimitActive	LimitActive "Limitation active" status signal		ive" status signal	
	BOOL		The input signal is inside a blocking zones and is limited to the respective boundary value of the blocking zone.	

Parameter


Parameter	Possible setting	gs		Info
C00807/13	0.00	%	199.99	Maximum blocking frequency 1 3 • Lenze setting: 0.00 %
C00808/13	0.00	%	199.99	Minimum blocking frequency 1 3 • Lenze setting: 0.00 %

Definition of the blocking zones

Up to three zones can be parameterised which are to be skipped by the *nOut_a* output signal.

The example below shows the parameter setting of two blocking zones for the **L_NLim_1** FB:

Parameter	Blocking zone 1	Blocking zone 2	Blocking zone 3	
Minimum limit value	C00808/1: 48 %	C00808/2: 138 %	C00808/3: 0 %	
Maximum limit value	C00807/1: 104 %	C00807/2: 178 %	C00807/3: 0 %	

[18-43] Zone masking by means of parameterisable blocking zones (in our example: L_NLim_1)

8400 TopLine C | Software Manual

Function library
Function blocks | L_NLim_1

- ▶ The parameterised blocking zones have the same effect on negative input signals.
- ► A blocking zone is deactivated by entering identical limit values (in our example: Blocking zone 3).

Overlapping of blocking zones

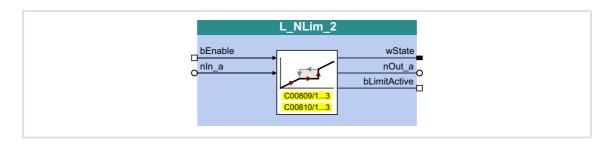
If blocking zones overlap, the lowest and highest value of the overlapping zones form a new zone.

In this case, the status display (*wState* output) will also just display one zone (the lower one of the two original zones).

Abutting blocking zones

If two blocking zones abut (e.g. 20 ... 30 % and 30 ... 40 %), the limit value between the two zones (in this example 30 %) is also passed through.

The same applies to a limit range of 0 ... xx %. At the zero crossing of the nln_a input signal, a value of "0" is also output at the $nOut_a$ output. Value "0" cannot be excluded. If the nln_a input signal drops back to "0", the $nOut_a$ output will retain the upper limit value.


18.1.109 L_NLim_2

This FB can mask out up to three parameterisable blocking zones within a continuous signal characteristic.

Note!

A value of "0" cannot be masked out if the *nln_a* input signal changes signs.

Inputs

Identifier	Data type	Information/possible settings
bEnable		Activate zone masking
	BOOL	FALSE The FB has been deactivated. • The input signal is output one-to-one at the nOut_a output.
		 TRUE The FB has been activated. Zone masking of the input signal is carried out according to the parameterised blocking zones.
nln_a	INT	Input signal

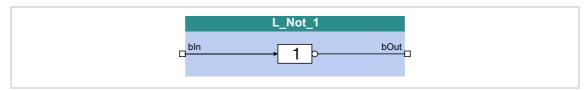
Identifier/data type		Value/meaning		
wState WORD		Bit-coded status word • Bits that are not listed are reserved for future extensions.		
		Bit 0	No blocking zone active	
		Bit 1	Blocking zone 1 active	
		Bit 2	Blocking zone 2 active	
		Bit 3	Blocking zone 3 active	
nOut_a	INT	Output signal • If the FB has	been activated, the output signal is outside the blocking zones.	
bLimitActive		"Limitation acti	ive" status signal	
	BOOL	TRUE	The input signal is inside a blocking zones and is limited to the respective boundary value of the blocking zone.	

8400 TopLine C | Software Manual

Function library
Function blocks | L_NLim_2

Parameter

Parameter	Possible settings			Info
C00809/13	0.00	%	199.99	Maximum blocking frequency 1 3 • Lenze setting: 0.00 %
C00810/13	0.00	%	199.99	Minimum blocking frequency 1 3 • Lenze setting: 0.00 %

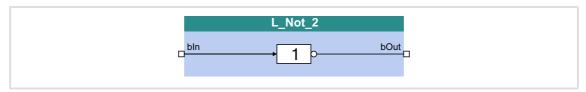


For a detailed functional description see <u>L NLim 1</u>.

18.1.110 L_Not_1

This FB negates a signal of BOOL data type.

Inputs


Identifier Valu	llue/meaning
21	put signal

Outputs

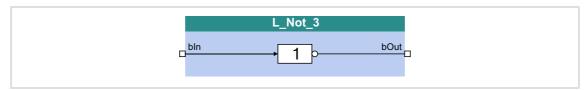
Identifier	Data type	Value/meaning
bOut	BOOL	Result of the NOT operation (negated input signal)

18.1.111 L_Not_2

This FB negates a signal of BOOL data type.

Inputs

Identifier	Data type	Value/meaning
bIn		Input signal
	BOOL	

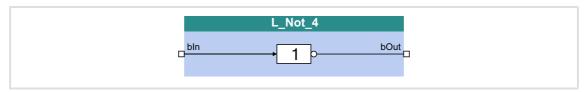

Identifier	Data type	Value/meaning
bOut	BOOL	Result of the NOT operation (negated input signal)

Function library
Function blocks | L_Not_3

18.1.112 L_Not_3

This FB negates a signal of BOOL data type.

Inputs


Identifier	Value/meaning
Data type	
bln	Input signal
BOOL	

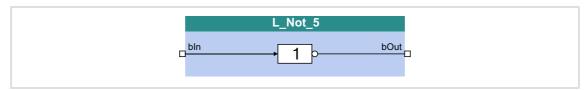
Outputs

Identifier	Data type	Value/meaning
bOut	BOOL	Result of the NOT operation (negated input signal)

18.1.113 L_Not_4

This FB negates a signal of BOOL data type.

Inputs

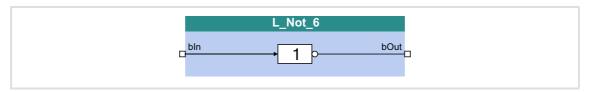

Identifier	Data type	Value/meaning
bIn		Input signal
	BOOL	

Identifier Data type	Value/meaning
bOut	Result of the NOT operation (negated input signal)

18.1.114 L_Not_5

This FB negates a signal of BOOL data type.

Inputs


Identifier Valu	llue/meaning
21	put signal

Outputs

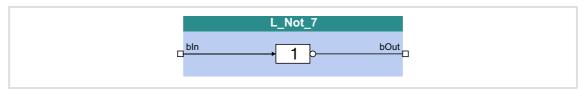
Identifier	Value/meaning
Data t	pe
bOut	Result of the NOT operation (negated input signal)

18.1.115 L_Not_6

This FB negates a signal of BOOL data type.

Inputs

Identifier	Data type	Value/meaning
bIn		Input signal
	BOOL	


Identifier	Data type	Value/meaning
bOut	BOOL	Result of the NOT operation (negated input signal)

Function library
Function blocks | L_Not_7

18.1.116 L_Not_7

This FB negates a signal of BOOL data type.

Inputs

Identifier	Value/meaning
Data type	
bln	Input signal
BOOL	

Identifier	Value/meaning
Data type	
bOut	Result of the NOT operation (negated input signal)
BOOL	

18.1.117 L NSet 1

This FB is used for general signal processing of process values and is provided with the following functions:

- ► Ramp function generator
 - With linear ramps for main and additional setpoint path
 - With S-shaped ramp (PT1 rounding)
 - Setting and holding
- ► Internal limitation of the input signal
- ▶ 3 adjustable blocking zones
- ► Arithmetic function
- ▶ 15 fixed setpoints (JOG setpoints)
- ▶ 15 acceleration and deceleration times

Inputs

Identifier	Data type	Information/possible settings				
nCInhVal_a	INT	Main setpoint signal which is to be accepted by the main setpoint integrator when the controller is inhibited.				
bRfgStop		Holding (freezing) of the current value of the main setpoint integrator				
	BOOL	TRUE The current value of the main setpoint integrator is held.				
bRfg0		Leading the main setpoint integrator to 0 within the current Ti times				
	BOOL	TRUE The current value of the main setpoint integrator is led to "0" within the Ti time set.				
bNSetInv		Signal inversion for the main setpoint				
	BOOL	TRUE Main setpoint signal is inverted.				
nNset_a	INT	Main setpoint signal Other signals are also permitted				
bJog1 bJog8	BOOL	Selection inputs for fixed changeover setpoints (JOG setpoints) for the main setpoint • Selection inputs are binary coded.				
bTI1 bTI8	BOOL	Selection inputs for alternative acceleration/deceleration times for the main setpoint • Selection inputs are binary coded.				
nSet_a	INT	Starting value which is loaded into the main setpoint integrator by setting <i>bLoad</i> to TRUE.				
bLoad		Control of both ramp function generators in special situations, e.g. QSP				
	BOOL	TRUE The nSet_a input signal is loaded into the main setpoint integrator and the additional setpoint integrator is set to "0".				
bAddInv		Signal inversion for the additional setpoint				
	BOOL	TRUE Additional setpoint signal is inverted.				
nNAdd_a	INT	Additional setpoint signal Other signals are also permitted				
bExternalCINH	BOOL	Additional load input for the main setpoint integrator and the additional setpoint integrator				
		TRUE The main setpoint integrator is set to the value applied at nCInhVal_a. The additional setpoint integrator is set to "0". Application example for the additional load function (1297)				

Identifier	Data type	Value/meaning
nNOut_a	INT	Speed setpoint output signal • Scaling: 16384 ≡ 100 %
bRfglEqO	BOOL	Status signal "setpoint = 0"

Identifier	Data type	Value/meaning					
wState	WORD	Bit-coded status word • Bits that are not listed are reserved for future extensions.					
		Bit 0	No blocking zone active				
		Bit 1	Blocking zone 1 active				
		Bit 2	Blocking zone 2 active				
		Bit 3	Blocking zone 3 active				
		Bit 4	Jog in blocking zone				
		Bit 5	MaxLimit active				
		Bit 6	MinLimit active				
nSetValue_a	INT	Speed-setpoint input signal of the ramp function generator • Scaling: 16384 ≡ 100 %					

Parameter

Parameter	Possible	e setting	gs	Info	
<u>C00012</u>	0.000		S	999.900	Acceleration time T _{ir} for the main setpoint • Lenze setting: 0.000 s
<u>C00013</u>	0.000		S	999.900	Deceleration time T _{if} for the main setpoint • Lenze setting: 0.000 s
<u>C00039/115</u>	-199.99)	%	199.99	Fixed setpoints (JOG setpoints) • Lenze setting: 0.00 %
C00101/115	0.000		S	999.900	Alternative acceleration times (T _{ir}) for the main setpoint • Lenze setting: 0.000 s
C00103/115	0.000		S	999.900	Alternative deceleration times (T _{if}) for the main setpoint • Lenze setting: 0.000 s
C00134					Activates ramp rounding with PT1
	0	Off			behaviour for the main setpointThe corresponding S-ramp time
	1	PT1 be	haviour		must be set in <u>C00182</u> . • Lenze setting: 0 (deactivated)
<u>C00182</u>	0.01		S	50.00	S-ramp time PT1 • Lenze setting: 20.00 s
<u>C00190</u>				Selection of the arithmetic function for combining main and additional setpoint	
	0	NOut =	= NSet		The additional setpoint is not processed.
	1	NOut =	= NSet + NAdd		
	2	NOut =	= NSet - NAdd		
		NOut = (NSet * NAdd) / 100%			
	5	5 NOut = (NSet * 100%) / (100% - NAdd)			
<u>C00220</u>	0.000		S	999.900	Acceleration time T _{ir} for the additional setpoint • Lenze setting: 0.000 s

Parameter	Possible	setting	gs	Info	
<u>C00221</u>	0.000		S	999.900	Deceleration time T _{if} for the additional setpoint • Lenze setting: 0.000 s
<u>C00241</u>	0.00		%	100.00	Hysteresis window for zero detection of speed output setpoint (output bRfgIEqO) • Lenze setting: 0.50 %
C00632/13	0.00		%	199.99	Maximum limit values for the speed blocking zones Selection of the maximum limit values for the blocking zones in which the speed must not be constant. Lenze setting: 0.00 %
<u>C00633/13</u>	0.00		%	199.99	Minimum limit values for the speed blocking zones • Selection of the minimum limit values for the blocking zones in which the speed must not be constant. • Lenze setting: 0.00 %
<u>C00634</u>					Status (bit-coded) • Bits that are not listed are reserved for future extensions.
	Bit 0	No blo	cking zone act	ive	
			ng zone 1 activ		
	Bit 2	Blockir	ng zone 2 activ	re	
	Bit 3		ng zone 3 activ	re	
	Bit 4	_	blocking zone		
	Bit 5		mit active		
	Bit 6		nit active		
C00635	-199.99		%	199.99	nMaxLimit • Maximum speed setpoint for speed setpoint limitation • Lenze setting: 199.99 %
<u>C00636</u>	-199.99		%	199.99	nMinLimit • Minimum speed setpoint for speed setpoint limitation • Lenze setting: -199.99 %

18.1.117.1 Main setpoint path

- ▶ The signals in the main setpoint path are limited to a value range of ±32767.
- ▶ The signal at *nNSet_a* is first led via the JOG selection function.
- ► A selected JOG value switches the *nNSet_a* input inactive. Then, the subsequent signal conditioning operates with the JOG value.

18.1.117.2 JOG setpoints

In addition to the direct main setpoint selection via the $nNSet_a$ input, so-called JOG setpoints can be preset in $\underline{C00039/1...15}$.

► The JOG setpoints are binary-coded and can be called using the *bJog1* ... *bJog8* selection inputs so that 15 options are available:

	Main setpoint			
bJog8	bJog4	bJog2	bJog1	Main setpoint
FALSE	FALSE	FALSE	FALSE	nNset_a
FALSE	FALSE	FALSE	TRUE	<u>C00039/1</u>
FALSE	FALSE	TRUE	FALSE	<u>C00039/2</u>
FALSE	FALSE	TRUE	TRUE	<u>C00039/3</u>
FALSE	TRUE	FALSE	FALSE	<u>C00039/4</u>
FALSE	TRUE	FALSE	TRUE	<u>C00039/5</u>
FALSE	TRUE	TRUE	FALSE	<u>C00039/6</u>
FALSE	TRUE	TRUE	TRUE	<u>C00039/7</u>
TRUE	FALSE	FALSE	FALSE	<u>C00039/8</u>
TRUE	FALSE	FALSE	TRUE	<u>C00039/9</u>
TRUE	FALSE	TRUE	FALSE	C00039/10
TRUE	FALSE	TRUE	TRUE	C00039/11
TRUE	TRUE	FALSE	FALSE	C00039/12
TRUE	TRUE	FALSE	TRUE	C00039/13
TRUE	TRUE	TRUE	FALSE	<u>C00039/14</u>
TRUE	TRUE	TRUE	TRUE	C00039/15

► The number of selection inputs to be assigned depends on the number of JOG setpoints required:

Number of JOG setpoints required	Number of selection inputs to be assigned (bJog1 bJog8)
1	At least 1
2 3	at least 2
4 7	at least 3
8 15	4

18.1.117.3 Setpoint inversion

The output signal of the JOG function is led via an inverter.

The sign of the setpoint changes if bNSetInv is set to TRUE.

18.1.117.4 Value range of the input signal

The value range of the input signal can be limited by using the following parameters:

► C00635: MaxLimit (default setting: +199.99 %)

► C00636: MinLimit (default setting: -199.99 %)

8400 TopLine C | Software Manual

Function library
Function blocks | L_NSet_1

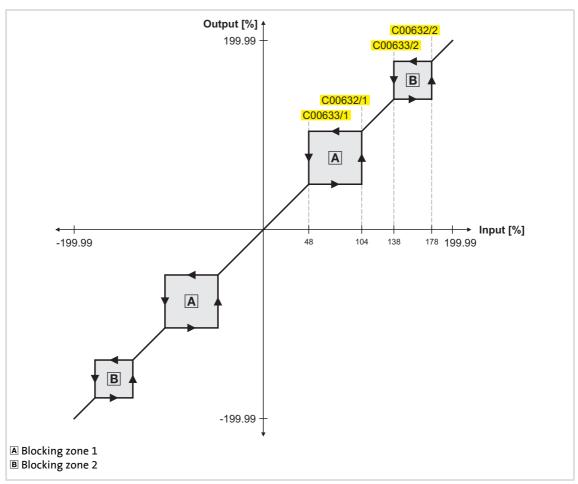
18.1.117.5 Skip frequency function

If the speed setpoints in speed-variable drives are linearly increasing, for instance, the frequency/speed range is divided into a number of equal time segments. Therefore, there may be speeds during acceleration time which must be bridged very fast (e.g. natural resonant frequencies).

The skip frequency function offers the opportunity to select a range in which the initial speed is maintained. If the speed setpoint leaves that range, the drive will be accelerated to reach the desired speed.

Note!

- Skip frequencies only affect main setpoints.
- It is not possible to exclude "0" speed if there is a sign reversal of the speed setpoint.



Definition of the blocking zones

The subcodes of codes $\underline{\text{C00632}}$ and $\underline{\text{C00633}}$ can be used to define three zones which are to be skipped by the output setpoint and which are to be passed as fast as possible by the ramp function generator.

The example below shows the parameter setting of two blocking zones:

Parameter	Blocking zone 1	Blocking zone 2	Blocking zone 3
Minimum limit value	C00633/1: 48 %	C00633/2: 138 %	C00633/3: 0 %
Maximum limit value	C00632/1: 104 %	C00632/2: 178 %	C00632/3: 0 %

[18-44] Zone masking by means of parameterisable blocking zones

- ▶ The parameterised blocking zones have the same effect on negative input signals.
- ► A blocking zone is deactivated by entering identical limit values (in our example: Blocking zone 3).

Function library Function blocks | L NSet 1

Overlapping of blocking zones

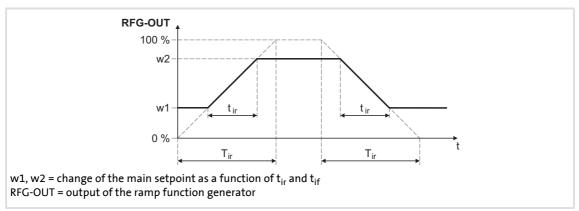
If blocking zones overlap, the lowest and highest value of the overlapping zones form a new zone.

In this case, the status display (output wState or display parameter C00634) only indicates one zone (the lower of the two original zones).

Abutting blocking zones

If two blocking zones abut (e.g. 20 ... 30 % and 30 ... 40 %), the limit value between the two zones (in this example 30 %) is also passed through.

The same applies to a limit range of 0 ... xx %. During zero crossing of the speed setpoint, "0" speed is output as setpoint. It is possible to exclude "0" speed. However, in this case, the output speed will remain on the upper limit value when the input setpoint becomes "0".



As described above, the acceleration phase starts after the blocking zones have been passed through. The ramp function generator integrated in the L Nset function block limits the progression of the speed. For this reason, the time values set for the integrated ramp function generator should be as low as possible whereas the setpoint for the L NSet function block should be generated by a ramp function generator with higher time values (e.g. L MPot function block).

18.1.117.6 Ramp function generator for the main setpoint

The setpoint is now led via a ramp function generator with linear characteristic. The ramp function generator converts setpoint step-changes at the input into a ramp.

[18-45] Acceleration and deceleration times

- ightharpoonup t_{ir} and t_{if} are the desired times for changing between w1 and w2.
- ► S-ramps are possible by selecting S-ramp times.
- ► The t_{ir}/t_{if} values are converted into the required Ti times according to the following formula:

$$T_{ir} = t_{ir} \cdot \frac{100 \%}{w2 - w1}$$
 $T_{if} = t_{if} \cdot \frac{100 \%}{w2 - w1}$

Setting and selection of Ti times

Via parameters, you can select 16 different Tir and Tif times each for the ramp function generator.

▶ The selection is made via the binary coded selection inputs *bTl1* ... *bTl8*:

Selection inputs				Used	Used
ЬТ18	bTI4	bTI2	ЬТІ1	Acceleration time	Deceleration time
FALSE	FALSE	FALSE	FALSE	<u>C00012</u>	<u>C00013</u>
FALSE	FALSE	FALSE	TRUE	C00101/1	<u>C00103/1</u>
FALSE	FALSE	TRUE	FALSE	C00101/2	C00103/2
FALSE	FALSE	TRUE	TRUE	<u>C00101/3</u>	<u>C00103/3</u>
FALSE	TRUE	FALSE	FALSE	C00101/4	C00103/4
FALSE	TRUE	FALSE	TRUE	C00101/5	C00103/5
FALSE	TRUE	TRUE	FALSE	C00101/6	C00103/6
FALSE	TRUE	TRUE	TRUE	C00101/7	C00103/7
TRUE	FALSE	FALSE	FALSE	C00101/8	C00103/8
TRUE	FALSE	FALSE	TRUE	C00101/9	C00103/9
TRUE	FALSE	TRUE	FALSE	C00101/10	C00103/10
TRUE	FALSE	TRUE	TRUE	C00101/11	C00103/11
TRUE	TRUE	FALSE	FALSE	C00101/12	C00103/12
TRUE	TRUE	FALSE	TRUE	C00101/13	C00103/13

Selection inputs				Used	Used
ьті8	bTI4	bTI2	bTI1	Acceleration time	Deceleration time
TRUE	TRUE	TRUE	FALSE	C00101/14	<u>C00103/14</u>
TRUE	TRUE	TRUE	TRUE	C00101/15	C00103/15

Function

- ▶ When the controller is inhibited (CINH), the ramp function generator accepts the value applied at *nClnhVal_a* and transfers it to the downstream function. This function has priority over all other functions.
- \blacktriangleright bRfqStop = TRUE
 - The ramp function generator is stopped. Changes at the input of the ramp function generator have no effect on the output signal.
- ► *bRfq0* = TRUE
 - The ramp function generator runs to 0 along its deceleration ramp.
- ► Furthermore it is possible to load the ramp function generator online with a defined value. For this purpose, *bLoad* must be set to TRUE. As long as this input is set, the value at *nSet a* is transferred to the ramp function generator and provided at the output.

Priorities:

CINH	bLoad	bRfg0	bRfgStop	Function
FALSE	FALSE	FALSE	FALSE	The ramp function generator follows the input value via the set ramps.
FALSE	FALSE	FALSE	TRUE	Stop the ramp function generator: The value at the output of the ramp function generator is held.
FALSE	FALSE	TRUE	FALSE	Ramp down the ramp function generator:
FALSE	FALSE	TRUE	TRUE	The ramp function generator runs to 0 within the set deceleration time.
FALSE	TRUE	FALSE	FALSE	Load ramp function generator online:
FALSE	TRUE	FALSE	TRUE	The ramp function generator accepts the value at nSet a and provides it at its output.
FALSE	TRUE	TRUE	FALSE	nsec_a ana provides reachs output.
FALSE	TRUE	TRUE	TRUE	
TRUE	FALSE	FALSE	FALSE	Controller inhibit:
TRUE	FALSE	FALSE	TRUE	The ramp function generator accepts the value at nCInhVal a and provides it at its output.
TRUE	FALSE	TRUE	FALSE	nemmvar_a ana provides le actis output.
TRUE	FALSE	TRUE	TRUE	
TRUE	TRUE	FALSE	FALSE	
TRUE	TRUE	FALSE	TRUE	
TRUE	TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE	

18.1.117.7 S-shaped ramp

A PT1 element is connected downstream of the linear ramp function generator. This arrangement implements an S-shaped ramp for a nearly jerk-free acceleration and deceleration.

- ▶ The PT1 element can be switched on/off via the bSShapeActive input.
- ▶ The corresponding S-ramp time can be set under C00182.

18.1.117.8 Additional setpoint

Use the $nNAdd_a$ input to define an additional value (e.g. a correcting signal) and combine it arithmetically with the main setpoint $nNSet_a$.

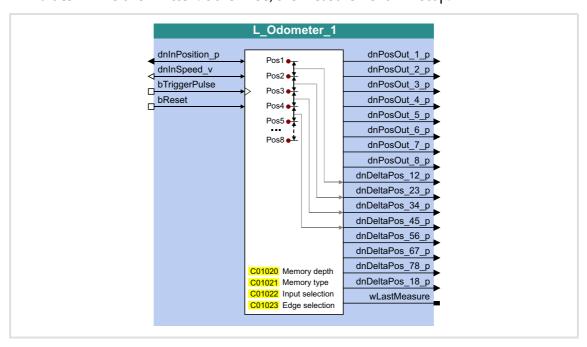
- ► First, the additional setpoint is led via a ramp function generator with linear characteristic. Its Ti times can be set in C00220 (acceleration time) and C00221 (deceleration time).
- ▶ When the input *bNAddInv* is set to TRUE, the additional setpoint can be inverted before having an effect on the ramp function generator.
- ▶ When the input *bLoad* is set to TRUE, the ramp function generator is set to zero for the additional setpoint and held there without considering the Ti times. The same applies when the controller is inhibited.
- ► The following arithmetic combination of main setpoint and additional setpoint can be selected in C00190:

Value in C00190	Function	Info
0	nNOut_a = nNSet_a	The additional setpoint <i>nNAdd_a</i> is not processed.
1	nNOut_a = nNSet_a + nNAdd_a	
2	nNOut_a = nNSet_a - nNAdd_a	
3	nNOut_a = (nNSet_a * nNAdd_a) / 100 %	Internal scaling:
4	nNOut_a = (nNSet_a * 1 %) / nNAdd_a	 100 % ≡ 16384 1 % ≡ 164
5	nNOut_a = (nNSet_a * 100 %) / (100 % - nNAdd_a)	1 70 = 104

18.1.117.9 Application example for the additional load function

The motor control of the drive is provided with a function for automatically carrying along ramp function generators for "jerk-free" setpoint connection. For speed-controlled drive tasks, the <u>LS MotorInterface</u> SB outputs the current actual speed value via the *nHlgSetValue_a* output (e.g. in case of a pulse inhibit, flying restart, controller inhibit).

- ▶ In case of a pulse inhibit, the main setpoint generator must be carried along with the current actual speed value to ensure jerk-free setpoint transfer.
- ► The actual speed value is carried along automatically if the following wiring is provided:
 - LS MotorInterface.nHlqSetValue $a \rightarrow L$ NSet 1.nClnhValue a
 - LS MotorInterface.bHlqLoad → L NSet 1.bExternalCINH



Function library
Function blocks | L_Odometer_1

18.1.118 L Odometer 1

This FB is used to detect positions and calculate distances.

- ▶ Depending on the input selection set in <u>C01022</u>, a position signal can be detected at the *dnInPosition p* input or a speed can be detected at the *nInSpeed v* input.
- ► The position is detected/accepted via the edge selected in C01023 at the bTriggerPulse input.
- ▶ If "Ring buffer" is selected in <u>C01021</u>, the measurement will start all over again after the number of measurements selected in <u>C01020</u> has been performed and the old values will be overwritten. Otherwise, the measurement will stop.

Inputs

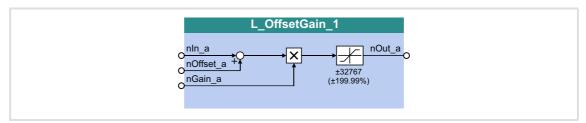
Identifier	Data type	Information/possible settings
dnInPosition_p	DINT	Position measurement input Input is only evaluated if <u>C01022</u> = "0: Pos input" has been set.
nInSpeed_v	INT	 Speed measurement input The speed is internally integrated into a position. Input is only evaluated if <u>C01022</u> = "1: V input" has been set.
bTriggerPulse	BOOL	Detect position/speed • The tripping edge can be parameterised in C01023 .
bReset		Reset measurement results and internal integrator
BOOL	TRUE Reset measurement results and internal integrator.	

Outputs

Identifier	Data type	Value/meaning
dnPosOut_1_p dnPosOut_8_p	DINT	Detected positions
dnDeltaPos_12_p dnDeltaPos_23_p dnDeltaPos_34_p dnDeltaPos_18_p	DINT	Calculated distances between the detected positions • dnDeltaPos_12_p = Distance between dnPosOut_1_p and dnPosOut_1_p • dnDeltaPos_23_p = Distance between dnPosOut_2_p and dnPosOut_3_p • dnDeltaPos_34_p = Distance between dnPosOut_3_p and dnPosOut_4_p • dnDeltaPos_18_p = Distance between dnPosOut_1_p and dnPosOut_8_p
wLastMeasure	WORD	Memory location number (1 8) of the last measurement

Parameter

Parameter	Possible	settings	Info
<u>C01020</u>			Memory size
	1	1 measurement	Lenze setting: 7 measurements
	2	2 measurements	
	7	7 measurements	
<u>C01021</u>			Memory type
	0	No ring buffer	Lenze setting: No ring buffer
	1	Ring buffer	
<u>C01022</u>			Input selection
	0	Pos input	Lenze setting: Pos input
	1	V input	
<u>C01023</u>			Edge selection
	0	High edge	Lenze setting: HIGH edge
	1	Low edge	
	2	High and low edge	



Function library
Function blocks | L_OffsetGain_1

18.1.119 L_OffsetGain_1

This FB can add an offset to an analog input signal and then amplify it. Preferably to be interconnected directly after the analog input terminals.

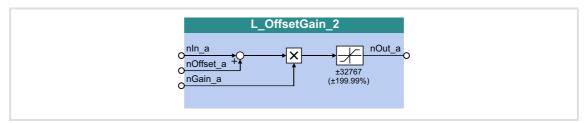
- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ▶ Offset and gain are selected via FB inputs.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

Identifier Data	a type	Information/possible settings
nIn_a	INT	Input signal • Scaling: 16384 ≡ 100 %
nOffset_a	INT	Offset • Scaling: 16384 ≡ 100 %
nGain_a	INT	Gain factor • Scaling: 16384 ≡ 100 % • 199.99 % ≈2

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal Internal limitation to ±199.99 %


$$nOut_a = (nIn_a + Offset) \cdot Gain factor$$

18.1.120 L OffsetGain 2

This FB can add an offset to an analog input signal and then amplify it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ▶ Offset and gain are selected via FB inputs.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

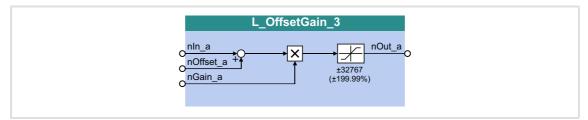
Inputs

Identifier Date	a type	Information/possible settings
nIn_a	INT	Input signal • Scaling: 16384 ≡ 100 %
nOffset_a	INT	Offset • Scaling: 16384 ≡ 100 %
nGain_a	INT	Gain factor • Scaling: 16384 ≡ 100 % • 199.99 % ≈2

Outputs

Identifier	Data type	Value/meaning
nOut_a		Output signal • Internal limitation to ±199.99 %

$$nOut_a = (nIn_a + Offset) \cdot Gain factor$$



Function library
Function blocks | L_OffsetGain_3

18.1.121 L_OffsetGain_3

This FB can add an offset to an analog input signal and then amplify it. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ▶ Offset and gain are selected via FB inputs.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

Identifier Data	a type	Information/possible settings
nIn_a	INT	Input signal • Scaling: 16384 ≡ 100 %
nOffset_a	INT	Offset • Scaling: 16384 ≡ 100 %
nGain_a	INT	Gain factor • Scaling: 16384 ≡ 100 % • 199.99 % ≈2

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal Internal limitation to ±199.99 %


$$nOut_a = (nIn_a + Offset) \cdot Gain factor$$

18.1.122 L OffsetGainP 1

This FB can add an offset to an analog input signal and amplify it afterwards. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ▶ Offset and gain are selected via parameters.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

Identifier Data type	Information/possible settings
nIn_a	Input signal

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±199.99 %

Parameter

Parameter	Possible settings			Info
<u>C00670</u>	-100.0000		100.0000	 Gain factor High gain factor for further processing of smallest input signals. Please observe the difference with regard to the gain factors of other blocks in percent (±199.99 % ≈ 2). Lenze setting: 1.0000
<u>C00696</u>	-199.99	%	199.99	Offset • Lenze setting: 0.00 %

$$nOut_a = (nIn_a + Offset) \cdot Gain factor$$

Function library
Function blocks | L OffsetGainP 2

18.1.123 L_OffsetGainP_2

This FB can add an offset to an analog input signal and amplify it afterwards. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ▶ Offset and gain are selected via parameters.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

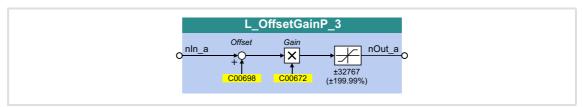
Identifier Data type	Information/possible settings
nln_a	Input signal

Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±199.99 %

Parameter

Parameter	Possible settings			Info
<u>C00671</u>	-100.0000		100.0000	 Gain factor High gain factor for further processing of smallest input signals. Please observe the difference with regard to the gain factors of other blocks in percent (±199.99 % ≈ 2). Lenze setting: 1.0000
<u>C00697</u>	-199.99	%	199.99	Offset • Lenze setting: 0.00 %


$$nOut_a = (nIn_a + Offset) \cdot Gain factor$$

18.1.124 L OffsetGainP 3

This FB can add an offset to an analog input signal and amplify it afterwards. Preferably to be interconnected directly after the analog input terminals.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ▶ Offset and gain are selected via parameters.
- ▶ The value provided at the *nOut_a* output is internally limited to ±199.99 %.

Inputs

Identifier Data type	Information/possible settings
nln_a	Input signal

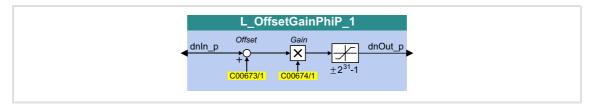
Outputs

Identifier Data type	Value/meaning
nOut_a	Output signal • Internal limitation to ±199.99 %

Parameter

Parameter	Possible settings			Info
<u>C00672</u>	-100.0000		100.0000	 Gain factor High gain factor for further processing of smallest input signals. Please observe the difference with regard to the gain factors of other blocks in percent (±199.99 % ≈ 2). Lenze setting: 1.0000
<u>C00698</u>	-199.99	%	199.99	Offset • Lenze setting: 0.00 %

$$nOut_a = (nIn_a + Offset) \cdot Gain factor$$



Function library
Function blocks | L OffsetGainPhiP 1

18.1.125 L OffsetGainPhiP 1

This FB can add an offset to an angle signal and amplify it afterwards.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ► Offset and gain are selected via parameters.
- ▶ The value provided at the $dnOut_p$ output is internally limited to $\pm 2^{31}$ -1.

Inputs

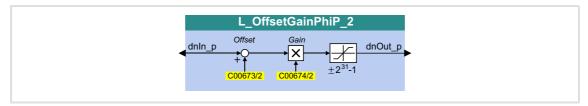
Identifier	Information/possible settings
Data type	
dnIn_p	Input signal

Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)

Parameter

Parameter	Possible settings			Info
<u>C00673/1</u>	-2147483647	Incr.	2147483647	Offset • Lenze setting: 0 incr.
<u>C00674/1</u>	-2147483647		2147483647	Gain factor Lenze setting: 65536


$$dnOut_p = (dnIn_p + Offset) \cdot Gain factor$$

18.1.126 L_OffsetGainPhiP_2

This FB can add an offset to an angle signal and amplify it afterwards.

- ► The internal calculations (addition and subtraction) are carried out with 32 bits without overflow/underflow. Division is not remainder considered.
- ▶ Offset and gain are selected via parameters.
- ▶ The value provided at the $dnOut_p$ output is internally limited to $\pm 2^{31}$ -1.

Inputs

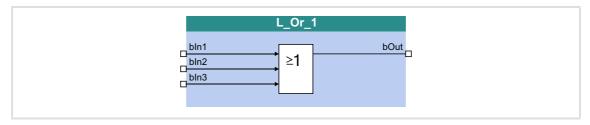
Identifier	Information/possible settings
Data type	
dnIn_p	Input signal

Outputs

Identifier Data type	Value/meaning
dnOut_p	Output signal • Internal limitation to ±2 ³¹ -1 (±2147483647)

Parameter

Parameter	Possible settings			Info
<u>C00673/2</u>	-2147483647	Incr.	2147483647	Offset • Lenze setting: 0 incr.
C00674/2	-2147483647		2147483647	Gain factor Lenze setting: 65536


$$dnOut_p = (dnIn_p + Offset) \cdot Gain factor$$

Function library
Function blocks | L_Or_1

18.1.127 L_Or_1

This FB implements the ORing of the inputs signals.

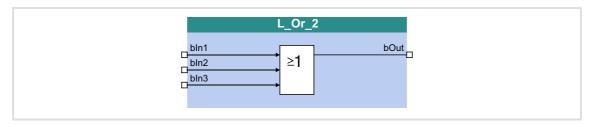
Inputs

Identifier	Data type	Information/possible settings
bin1 bin2 bin3		Input signal
	BOOL	

Outputs

Identifier Data type	Value/meaning
bOut BOOL	Output signal

Function


	Inputs		Output
bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	TRUE
FALSE	TRUE	FALSE	
FALSE	TRUE	TRUE	1
TRUE	FALSE	FALSE	
TRUE	FALSE	TRUE	
TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	

[18-46] Truth table of the FB L_Or_1

18.1.128 L_Or_2

This FB implements the ORing of the inputs signals.

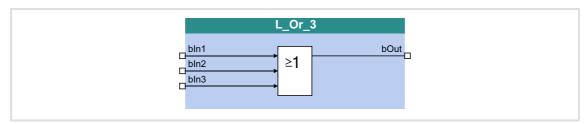
Inputs

Identifier	Data type	Information/possible settings
bln1 bln2 bln3		Input signal
	BOOL	

Outputs

Identifier Data ty	Value/meaning Delivery Control of the Control of th
bOut	Output signal OL

	Inputs		Output
bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	TRUE
FALSE	TRUE	FALSE	
FALSE	TRUE	TRUE	
TRUE	FALSE	FALSE	
TRUE	FALSE	TRUE	1
TRUE	TRUE	FALSE	1
TRUE	TRUE	TRUE	


[18-47] Truth table of the FB L_Or_2

Function library
Function blocks | L_Or_3

18.1.129 L_Or_3

This FB implements the ORing of the inputs signals.

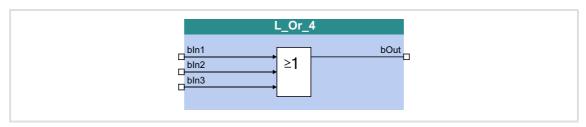
Inputs

Identifier	Data type	Information/possible settings
bin1 bin2 bin3		Input signal
	BOOL	

Outputs

Identifier Data type	Value/meaning
bOut	Output signal

Function


	Inputs		Output
bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	TRUE
FALSE	TRUE	FALSE	
FALSE	TRUE	TRUE	
TRUE	FALSE	FALSE	
TRUE	FALSE	TRUE	1
TRUE	TRUE	FALSE]
TRUE	TRUE	TRUE	1

[18-48] Truth table of the L_Or_3 FB

18.1.130 L_Or_4

This FB implements the ORing of the inputs signals.

Inputs

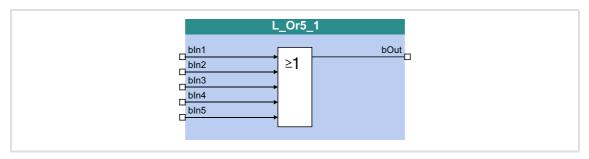
Identifier	Data type	Information/possible settings
bln1 bln2 bln3		Input signal
	BOOL	

Outputs

Identifier Data ty	Value/meaning Delivery Control of the Control of th
bOut	Output signal OL

Function

	Inputs		Output
bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	TRUE
FALSE	TRUE	FALSE	
FALSE	TRUE	TRUE	
TRUE	FALSE	FALSE	
TRUE	FALSE	TRUE	1
TRUE	TRUE	FALSE	1
TRUE	TRUE	TRUE	


[18-49] Truth table of the L_Or_4 FB

Function library
Function blocks | L_Or5_1

18.1.131 L_Or5_1

This FB implements the ORing of the inputs signals.

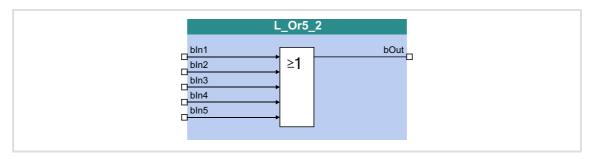
Inputs

Identifier		Information/possible settings
	Data type	
bln1		Input signal
 bIn5		
	BOOL	

Outputs

Identifier		Value/meaning
Da	ta type	
bOut		Output signal
	BOOL	

Function


Inputs					Output
bln5	bln4	bIn3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE	FALSE	TRUE	TRUE
FALSE	FALSE	FALSE	TRUE	FALSE	
FALSE	FALSE	FALSE	TRUE	TRUE	
FALSE	FALSE	TRUE	FALSE	FALSE	
TRUE	TRUE	TRUE	FALSE	TRUE	
TRUE	TRUE	TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE	TRUE	

[18-50] Truth table of the FB L_Or5_1

18.1.132 L_Or5_2

This FB implements the ORing of the inputs signals.

Inputs

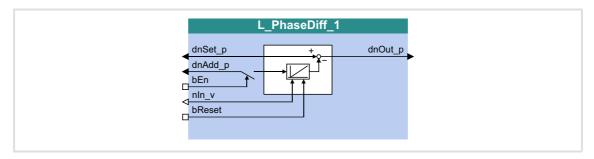
Identifier		Information/possible settings
	Data type	
bln1		Input signal
 bIn5		
	BOOL	

Outputs

Identifier Data type	Value/meaning
bOut	Output signal

Inputs					Output
bln5	bin4	bln3	bln2	bln1	bOut
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE	FALSE	TRUE	TRUE
FALSE	FALSE	FALSE	TRUE	FALSE	
FALSE	FALSE	FALSE	TRUE	TRUE	
FALSE	FALSE	TRUE	FALSE	FALSE	
TRUE	TRUE	TRUE	FALSE	TRUE	
TRUE	TRUE	TRUE	TRUE	FALSE	
TRUE	TRUE	TRUE	TRUE	TRUE	

[18-51] Truth table of the FB L_Or5_2



Function library
Function blocks | L_PhaseDiff_1

18.1.133 L_PhaseDiff_1

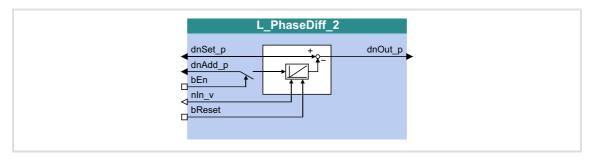
This FB generates a position difference for the defined position setpoint from a position value and a speed signal.

- ► In an integrator, the *nln_v* speed signal is integrated into a position value and subtracted from the *dnSet p* position setpoint.
- ▶ In addition, the adaptive dnAdd_p position value can be added to the integrator content by setting bEn to TRUE.

Inputs

Identifier Data ty		Information/possible settings		
dnSet_p		Selection of a position setpoint		
dnAdd_p		Adaptive position value for the actual position		
bEn		ion of the adaptive position value		
во	FALSE	 1. The speed signal at nln_v is integrated by the angle integrator. 2. The result of the angle integrator is subtracted from the angle signal at dnSet_p and output at dnOut_p afterwards. 		
	TRUE	 The adaptive position value selected via dnAdd_p is added: 1. The speed signal at nln_v is integrated by the angle integrator. 2. The angle signal at dnAdd_p is added to the integrated speed signal in every task cycle. 3. The result of the angle integrator is subtracted from the angle signal at dnSet_p and output at dnOut_p afterwards. 		
nln_v	Selection of th	Selection of the actual speed to be converted into the position value		
bReset		Reset actual angle integrator		
ВО	TRUE	Actual angle integrator is set to "0".		

Outputs


Identifier Data ty	Value/meaning
dnOut_p	Output angle signal (position difference) • Without limitation

18.1.134 L PhaseDiff 2

This FB generates a position difference for the defined position setpoint from a position value and a speed signal.

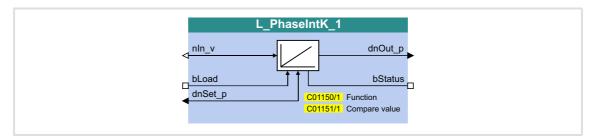
- ► In an integrator, the *nln_v* speed signal is integrated into a position value and subtracted from the *dnSet p* position setpoint.
- ▶ In addition, the adaptive *dnAdd_p* position value can be added to the integrator content by setting *bEn* to TRUE.

Inputs

Identifier	Data type	Information/possible settings		
dnSet_p	DINT	Selection of a position setpoint		
dnAdd_p	DINT	Adaptive posit	ion value for the actual position	
bEn		Activate additi	on of the adaptive position value	
	BOOL	FALSE	 The speed signal at nln_v is integrated by the angle integrator. The result of the angle integrator is subtracted from the angle signal at dnSet_p and output at dnOut_p afterwards. 	
		TRUE	 The adaptive position value selected via dnAdd_p is added: 1. The speed signal at nIn_v is integrated by the angle integrator. 2. The angle signal at dnAdd_p is added to the integrated speed signal in every task cycle. 3. The result of the angle integrator is subtracted from the angle signal at dnSet_p and output at dnOut_p afterwards. 	
nln_v	INT	Selection of the actual speed to be converted into the position value		
bReset		Reset actual angle integrator		
	BOOL	TRUE	Actual angle integrator is set to "0".	

Outputs

Identifier	Value/meaning
Data type	
dnOut_p	Output angle signal (position difference) • Without limitation



Function library
Function blocks | L_PhaseIntK_1

18.1.135 L_PhaseIntK_1

The FB can integrate a speed or velocity to an angle (path). In addition, the FB can recognise a relatively covered distance.

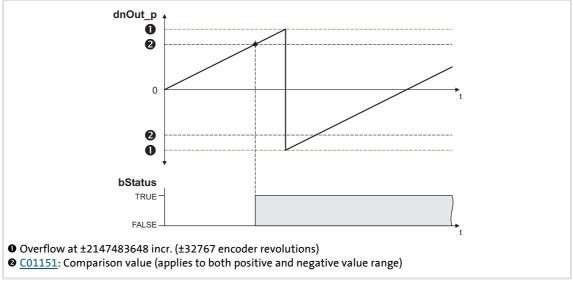
▶ The integrator can take max. ±32000 encoder revolutions.

Inputs

Identifier	Data type	Information/possible settings		
nln_v	INT	Selection of the actual speed • 16384 ≡ 15000 rpm		
bLoad		Load angle integrator with starting value and reset status signal		
	BOOL	TRUE Angle integrator is loaded with the value at <i>dnSet_p</i> and <i>bStatus</i> is reset to FALSE.		
dnSet_p	DINT	Starting value for angle integrator		

Outputs

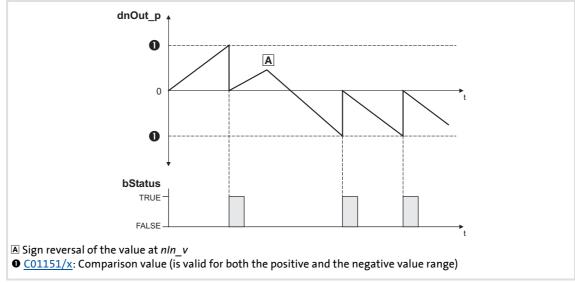
Identifier	Data type	Value/meaning
dnOut_p	DINT	 Angle output signal 65536 [incr.] = 1 encoder revolution Overflow is possible (display via bStatus)
bStatus	BOOL	Status signal "Overflow occurred/distance processed" • Status signal can be reset via <i>bLoad</i> .
		TRUE Overflow has occurred or distance is processed.


Parameter

Parameter	Possible settings				Info
C01150/1					Function
	0	Loadin	g with level		Load integrator with TRUE level at the input bLoad(Lenze setting)
	1	Loading with edge			Load integrator with FALSE/TRUE edge at the input <i>bLoad</i> .
	2	Loading with level + reset			Load integrator when reaching the comparison value or with TRUE level at the input <i>bLoad</i> .
<u>C01151/1</u>	0		20000	00000	Comparison value Is valid for both the positive and the negative value range. Lenze setting: 0

18.1.135.1 Function at constant input value

Selection: C01150 = "0: Loading with level" or "1: Loading with edge"


[18-52] Switching performance if the overflow is in the positive direction

- ▶ If "0: Loading with level" is selected in <u>CO1150</u>, the *bLoad* input is status-controlled: In case of a TRUE signal, the integrator is loaded with the value at *dnSet_p* and the *bStatus* output is set to FALSE.
- ▶ If "1: Loading with edge" is selected in <u>CO1150</u>, the *bLoad* input is edge-controlled: In case of a FALSE/TRUE edge, the integrator is loaded with the value at *dnSet_p* and then immediately continues to integrate, the *bStatus* output is set to FALSE.
- ▶ A positive signal at *nln_v* is incremented (the counter content is increased with every function call).
- ► A negative signal at *nln_v* is decremented (the counter content is reduced with every function call).
- ▶ *dnOut p* outputs the counter content of the bipolar integrator.
 - If the counter content exceeds a value of +32767 encoder revolutions (corresponds to +2147483647 incr.), an overflow occurs and the counting process continues at a value of -32768 encoder revolutions.
 - If the counter content falls below a value of -32768 encoder revolutions (corresponds to -2147483648 incr.), an overflow occurs and the counting process starts at a value of +32767 encoder revolutions.
- ▶ bStatus will be set to TRUE if the comparison value set in $\frac{\text{C01151/x}}{\text{constant}}$ is reached.

18.1.135.2 Function at input value with sign reversal

Selection: C01150 = "2: Loading with level + reset"

[18-53] Switching performance if the input signal changes signs

- ▶ If "2: Loading with level + reset" is selected in <u>CO1150</u>, the *bLoad* input is statuscontrolled: In case of a TRUE signal, the integrator is loaded with the value at *dnSet_p* and the *bStatus* output is set to FALSE.
- ► A positive signal at *nln_v* is incremented (the counter content is increased with every function call).
- ► A negative signal at *nln_v* is decremented (the counter content is reduced with every function call).
- ▶ *dnOut p* outputs the counter content of the bipolar integrator.
 - If the positive counter content is higher than the comparison value set in <u>CO1151/x</u>, the comparison value will be subtracted from the counter content, and *bStatus* will be set to TRUE for one task cycle.
 - If the negative counter content is lower than the comparison value set in <u>C01151/x</u>, the comparison value will be added to the counter content, and *bStatus* will be set to TRUE for one task cycle.

18.1.135.3 Calculation of the output signal

The output value at *dnOut_p* can be detected according to the following formula:

$$dnOut_p \ [incr.] = \ nIn_v \ [rpm] \cdot t \ [s] \cdot 65535 \ [incr./rev.]$$

$$t = integration \ time$$

$$16384 = 15000 \ rpm$$

$$1 = 1 \ incr.$$

Example

You want to determine the counter content of the integrator at a certain speed at the input and a certain integration time **t**.

Given values:

- ► $nln v = 1000 \text{ rpm} \approx \text{integer value } 1092$
- ► Integration time t = 10 s
- ► Starting value of the integrator = 0

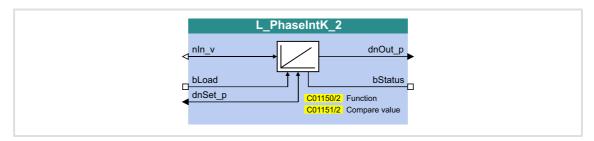
Solution:

► Conversion of the input signal at *nIn v*:

1000 rpm
$$= \frac{1000 \text{ rev.}}{60 \text{ s}}$$

► Calculation of the output value:

$$dnOut_p \ = \ \frac{1000 \ rev.}{60 \ s} \cdot 10 \ s \cdot \frac{65535 \ incr.}{Rev.} \ = \ 10922666 \ incr.$$



Function library
Function blocks | L_PhaseIntK_2

18.1.136 L_PhaseIntK_2

The FB can integrate a speed or velocity to an angle (path). In addition, the FB can recognise a relatively covered distance.

▶ The integrator can take max. ±32000 encoder revolutions.

Inputs

Identifier	Data type	Information/possible settings		
nln_v	INT	Selection of the actual speed • 16384 ≡ 15000 rpm		
bLoad		Load angle inte	egrator with starting value and reset status signal	
	BOOL	TRUE	Angle integrator is loaded with the value at <code>dnSet_p</code> and <code>bStatus</code> is reset to FALSE.	
dnSet_p	DINT	Starting value for angle integrator		

Outputs

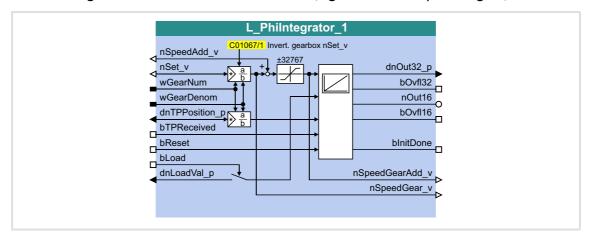
Identifier	Data type	Value/meaning		
dnOut_p	DINT	 Angle output signal 65536 [incr.] ≡ 1 encoder revolution Overflow is possible (display via bStatus) 		
bStatus	BOOL	Status signal "Overflow occurred/distance processed" • Status signal can be reset via <i>bLoad</i> .		
		TRUE Overflow has occurred or distance is processed.		

Parameter

Parameter	Possible settings				Info
C01150/2					Function
	0	Loadin	g with level		Load integrator with TRUE level at the input bLoad(Lenze setting)
	1	Loadin	g with edge		Load integrator with FALSE/TRUE edge at the input <i>bLoad</i> .
2 Lo		Loadin	Loading with level + reset		Load integrator when reaching the comparison value or with TRUE level at the input <i>bLoad</i> .
C01151/2	0		2	2000000000	Comparison value Is valid for both the positive and the negative value range. Lenze setting: 0

8400 TopLine C | Software Manual

Function library Function blocks | L_PhaseIntK_2


For a detailed functional description see <u>L_PhaseIntK_1</u>.

18.1.137 L_PhiIntegrator_1

This FB evaluates a speed with a gearbox factor and adds them in an integrator.

- ▶ The integrator value is output as 16-bit value and 32-bit value.
- ► An overflow of the prevailing output is signalled.
- ▶ The integrator can be loaded and initialised (e.g. with a touch probe signal).

Inputs

Identifier	Data type	Information/p	ossible settings		
nSpeedAdd_v	INT	Additive speed			
nSet_v	INT	Speed input (angular difference)			
wGearNum	WORD	Gearbox factor	(numerator)		
wGearDenom	WORD		Gearbox factor (denominator) • When wGearDenom = 0, it is internally calculated with 1.		
dnTPPosition_p	DINT	Initialisation value			
bTPReceived		Initialise integrator			
	BOOL	FALSE 7TRUE	Initialise integrator		
bReset		Reset integrate	or		
	BOOL	TRUE	Reset integrator • The integrator is not integrated.		
bLoad		Load integrato	r		
	BOOL	TRUE	 Load integrator with dnLoadVal_p The integrator is not integrated. The blnitDone output is reset to FALSE with a delay of one call cycle after bLoad is reset to FALSE and a subsequent FALSE/TRUE edge to bTPReceived. 		
dnLoadVal_p	DINT	Value the integ	grator is to be loaded with.		

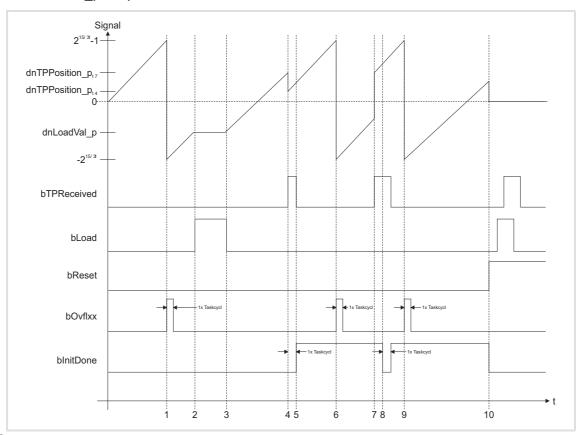
Outputs

Identifier	Data type	Value/meaning		
dnOut32_p	DINT	Integrator value (32 bits)		
bOvfl32		Status signal "overflow (32 bits)"		
	BOOL	TRUE Overflow		
nOut16	INT	Integrator value (16 bits)		
bOvfl16		Status signal "overflow (16 bits)"		
	BOOL	TRUE Überlauf		
bInitDone		Status signal "Initialisation completed"		
	BOOL	TRUE Integrator is initialised		
nSpeedGearAdd_v	INT	Resulting speed with additive speed (nSet_v* gearbox factor + nSpeedAdd_v)		
nSpeedGear_v	INT	Resulting speed without additive speed (nSet_v* gearbox factor)		

Parameter

Parameter	Possible	e settings	Info
<u>C01067/1</u>			Invert. gearbox nSet_v
	0	not inverted	
	1 inverted		
	2	Automatically from MCK	

Function library
Function blocks | L PhiIntegrator 1


18.1.137.1 Function

The *nSet_v* input value is evaluated, integrated and output as 16-bit value (*nOut16*) and 32-bit value *dnOut32_p*) with the gearbox factors *wGearNum* and *wGearDenom*.

$$nOut16 = nOut16 + nSet_v \cdot \frac{wGearNum}{wGearDenom}$$

$$InOut32_p = dnOut32_p + nSet_v \cdot \frac{wGearNum}{wGearDenom}$$

- ▶ Evaluation of the gearbox factor is remainder considered.
- ▶ A positive or negative overflow of the integrator is signalised by a TRUE signal (for a task cycle) at the bOvfl16 output for the nOut16 output or at the bOvfl32 output for the dnOut32 p output.

[18-54] Signal characteristic

18.1.137.2 Example

The current speed at *nSet_v* and the gearbox factors serve to create a specific machine measuring system from the motor measuring system.

- ▶ 216 increments in the motor measuring system are to correspond to 1 motor revolution.
- ▶ 216 increments in the machine measuring system (nOut16) are to correspond to 1 machine shaft revolution.

Initialise integrator

A FALSE/TRUE edge at bTPReceived initialises the integrator, i.e. a calculation with dnTPPosition p and dnLoadVal p is made:

```
nOut16 = (INT)(dnLoadVal\_p + dnTPPosition\_p \cdot Gearbox \ factor)
dnOut32\_p = dnLoadVal\_p + dnTPPosition\_p \cdot Gearbox \ factor
```

- ▶ After initialisation is completed, the *blnitDone* output is set to TRUE in the next call cycle.
- ► In case of a renewed initialisation without a previous reset (*bReset* = TRUE), the *bInitDone* output is set to FALSE for a task cycle.

Reset integrator

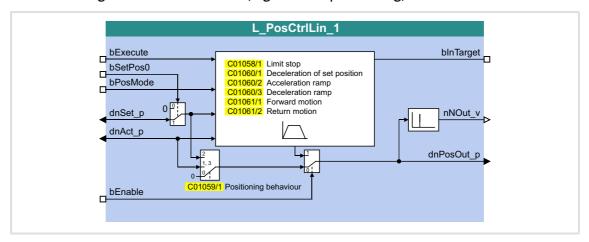
When *bReset* is set to TRUE, the integrator is set to 0. No calculations are made.

- ▶ The Boolean outputs are set to FALSE.
- ► The *bReset* input has the highest priority.

Load integrator

When *bLoad* is set to TRUE, the integrator is loaded with the value at *dnLoadVal_p* and the outputs are set.

- ▶ When *bLoad* is set to TRUE, the input is not integrated and no check for overflow is executed.
- ▶ When *bLoad* is reset to FALSE, the integrator continues from the loaded value. The *blnitDone* output is reset to FALSE after a FALSE/TRUE edge at *bTPReceived* with a delay of one call cycle.



Function library
Function blocks | L_PosCtrlLin_1

18.1.138 L PosCtrlLin 1

This FB serves to implement the following positioning functions:

- ▶ Bring drive to curve position (e.g. after mains connection, manual jog, homing)
- ▶ Release drive from curve and bring it to safe position (position override function)
- ▶ Positioning the X axis via X offset (higher-level positioning)
- ▶ Positioning the Y axis via Y offset (higher-level positioning)

Inputs

Identifier	Data type	Information/possible settings		
bExecute	BOOL	Execute positioOnly possible	ning profile e if the <i>bEnable</i> input is set to TRUE.	
		FALSE	 No positioning/positioning is aborted. The speed at the nNOut_v output is braked to standstill via the deceleration ramp set in C01060/1 (nNOut_v = 0). At the same time, the dnPosOut_p output is stopped. 	
		FALSE ⊅ TRUE	 Positioning is executed/continued. In case of an activated limit stop (<u>C01058/1</u> = TRUE), a renewed positive edge for a following positioning procedure is required. 	
bSetPos0	BOOL	Travel to zero position Only possible if the <i>bEnable</i> input is set to TRUE.		
		FALSE	The value at the <code>dnSet_p</code> input is used as setpoint position.	
			The value at the <code>dnSet_p</code> input is ignored. The setpoint position is internally set to "0" and the <code>dnPosOut_p</code> output can be travelled to zero position.	

Identifier	Data type	Information/possible settings	
bPosMode		Positioning mode	
	BOOL	FALSE Absolute positioning • The setpoint at dnSet_p is the absolute setpoint position (with regard to zero position): dnSet_p dnAct_p 10 20 30 40 50 60	
		 Relative positioning With a FALSE/TRUE edge at the bExecute input, the outputs of the current position (dnAct_p) are traversed by the dnSet_p value: dnAct_p dnSet_p dn	
dnSet_p	DINT	Setpoint for positioning in [increments] • Scaling: a revolution is displayed with 65536 increments or steps.	
dnAct_p	DINT	 Actual position in [increments] Connect this input with e.g. dnPosOut_p of this FB or with another FB which outputs the actual position of the drive. 	
bEnable		Activate/deactivate positioning function This input has the highest priority.	
		FALSE Positioning function deactivated. • For behaviour see C01059/1.	
		TRUE Positioning function activated.	

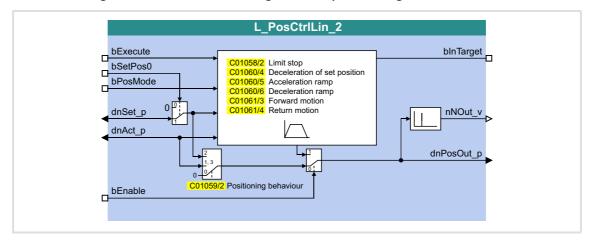
Outputs

Identifier	Data type	Value/meaning	
bInTarget		Status signal "Target position reached"	
	BOOL	TRUE Target position reached.	
nNOut_v	INT	Speed output of the profile generator • Scaling: 16384 ≡ 15000 rpm	
dnPosOut_p	DINT	Output position of the profile generator in [increments] • Scaling: a revolution is displayed with 65536 increments or steps.	

Parameter

Parameter	Possible settings	Info
<u>C01058/1</u>		Limit stop
	0 deactivated (Lenze setting)	The outputs continuously follow the setpoint at <i>dnSet_p</i> .
	1 activated	 The outputs follow the setpoint at dnSet_p once. If the setpoint position changes, a new FALSE/TRUE edge is required at the bExecute input for another positioning process.

8400 TopLine C | Software ManualFunction library
Function blocks | L_PosCtrlLin_1


Parameter	Descible settings				Info
<u>C01059/1</u>	Possible settings				Positioning behaviour • Behaviour with deactivated positioning function (bEnable = FALSE).
	0	<pre>dnOut_p = 0 (Lenze setting)</pre>			The dnPosOut_p output jumps to "0". • The speed signal at the nNOut_v output maps this position step change as angle signal. Note: If the nNOut_v output has an impact on the setpoint generation for the drive, undefined motions (shocks, following errors) may occur.
	1	dnOut_p/nNOut_v follow dnAct_p			The outputs dnPosOut_p and nNOut_v follow the value at the dnAct_p input (actual position).
	2	dnOut_p/nNOut_v follow dnSet_p			The outputs dnPosOut_p and nNOut_v follow the value at the dnSet_p input (setpoint).
	3	<pre>dnOut_p/nNOut_v follow dnAct_p (without limitation)</pre>		ollow dnAct_p	The outputs dnPosOut_p and nNOut_v follow the value at the dnAct_p input (actual position), but without limitation.
<u>C01060/1</u>	0.010		5	130.000	 Deceleration of set position Deceleration ramp for stop before reaching the setpoint position (bExecute = FALSE). Lenze setting: 1.000 s
<u>C01060/2</u>	0.010		S	130.000	Acceleration ramp • Lenze setting: 1.000 s
<u>C01060/3</u>	0.010		S	130.000	Deceleration ramp • Lenze setting: 1.000 s
<u>C01061/1</u>	-15000		rpm	15000	Forward motion Positive speed Lenze setting: 200 rpm
<u>C01061/2</u>	-15000		rpm	15000	Return motionNegative speedLenze setting: 200 rpm

18.1.139 L PosCtrlLin 2

This FB serves to implement the following positioning functions:

- ▶ Bring drive to curve position (e.g. after mains connection, manual jog, homing)
- ▶ Release drive from curve and bring it to safe position (position override function)
- ▶ Positioning the X axis via X offset (higher-level positioning)
- ▶ Positioning the Y axis via Y offset (higher-level positioning)

Inputs

Identifier	Data type	Information/possible settings			
bExecute	BOOL	Execute positioning profileOnly possible if the <i>bEnable</i> input is set to TRUE.			
		FALSE	 No positioning/positioning is aborted. The speed at the nNOut_v output is braked to standstill via the deceleration ramp set in C01060/4 (nNOut_v = 0). At the same time, the dnPosOut_p output is stopped. 		
		FALSE ⊅ TRUE	Positioning is executed/continued. • In case of an activated limit stop (C01058/2 = TRUE), a renewed positive edge for a following positioning procedure is required.		
bSetPos0		Travel to zero position • Only possible if the <i>bEnable</i> input is set to TRUE.			
		FALSE	The value at the <code>dnSet_p</code> input is used as setpoint position.		
			The value at the <code>dnSet_p</code> input is ignored. The setpoint position is internally set to "0" and the <code>dnPosOut_p</code> output can be travelled to zero position.		

Identifier	Data type	Information/possible settings			
bPosMode BOOL		Positioning mode			
		FALSE Absolute positioning • The setpoint at dnSet_p is the absolute setpoint position (with regard to zero position): dnSet_p dnAct_p 10 20 30 40 50 60			
		 Relative positioning With a FALSE/TRUE edge at the bExecute input, the outputs of the current position (dnAct_p) are traversed by the dnSet_p value: dnAct_p dnSet_p dnSet_p dnSet_p dnSet_p dnSet_D dn			
dnSet_p	DINT	Setpoint for positioning in [increments] • Scaling: a revolution is displayed with 65536 increments or steps.			
dnAct_p	DINT	 Actual position in [increments] Connect this input with e.g. dnPosOut_p of this FB or with another FB which outputs the actual position of the drive. 			
bEnable	BOOL	Activate/deactivate positioning function This input has the highest priority.			
		FALSE Positioning function deactivated. • For behaviour see C01059/2.			
		TRUE Positioning function activated.			

Outputs

Identifier	Data type	Value/meaning		
bInTarget		Status signal "Target position reached"		
BOOL		TRUE Target position reached.		
nNOut_v	INT	Speed output of the profile generator • Scaling: 16384 ≡ 15000 rpm		
dnPosOut_p	DINT	Output position of the profile generator in [increments] • Scaling: a revolution is displayed with 65536 increments or steps.		

Parameter

Parameter	Possible settings	Info
C01058/2		Limit stop
	0 deactivated (Lenze setting)	The outputs continuously follow the setpoint at <i>dnSet_p</i> .
	1 activated	 The outputs follow the setpoint at dnSet_p once. If the setpoint position changes, a new FALSE/TRUE edge is required at the bExecute input for another positioning process.

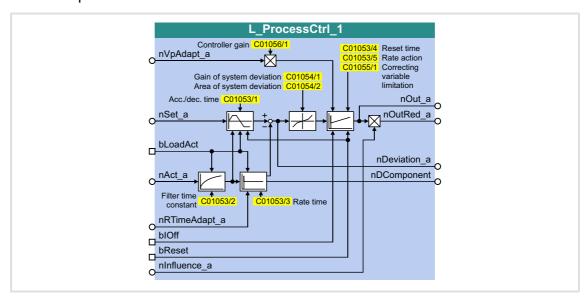
Parameter	Possibl	e setting	gs	Info	
<u>C01059/2</u>					Positioning behaviour • Behaviour with deactivated positioning function (bEnable = FALSE).
	0	<pre>dnOut_p = 0 (Lenze setting)</pre>			The dnPosOut_p output jumps to "0". The speed signal at the nNOut_v output maps this position step change as angle signal. Note: If the nNOut_v output has an impact on the setpoint generation for the drive, undefined motions (shocks, following errors) may occur.
	1	dnOut_p/nNOut_v follow dnAct_p			The outputs dnPosOut_p and nNOut_v follow the value at the dnAct_p input (actual position).
	2	dnOut_p/nNOut_v follow dnSet_p			The outputs dnPosOut_p and nNOut_v follow the value at the dnSet_p input (setpoint).
	3	dnOut_p/nNOut_v follow dnAct_p (without limitation)		ollow dnAct_p	The outputs dnPosOut_p and nNOut_v follow the value at the dnAct_p input (actual position), but without limitation.
<u>C01060/4</u>	0.010		S	130.000	 Deceleration of set position Deceleration ramp for stop before reaching the setpoint position (bExecute = FALSE). Lenze setting: 1.000 s
<u>C01060/5</u>	0.010		S	130.000	Acceleration ramp • Lenze setting: 1.000 s
<u>C01060/6</u>	0.010		S	130.000	Deceleration ramp • Lenze setting: 1.000 s
<u>C01061/3</u>	-15000		rpm	15000	Forward motion Positive speed Lenze setting: 200 rpm
<u>C01061/4</u>	-15000		rpm	15000	Return motion Negative speed Lenze setting: 200 rpm

8400 TopLine C | Software Manual

Function library
Function blocks | L_PosiShaftCtrlInterface_1

18.1.140 L_PosiShaftCtrlInterface_1

FB in preparation!



18.1.141 L ProcessCtrl 1

This FB serves to implement a dancer position or tension control.

The FB is provides with the following functions:

- ▶ Adjustable control algorithm (P, PI, PID) with adaptable gain
- ▶ Reduced controller dynamics at low system deviation
- ▶ Setpoint ramp generator for preventing setpoint step-changes at the input
- ▶ Setpoint ramp generator can be loaded with actual value
- ▶ Low-pass filter and rate action in the actual value feedback
- ▶ Integral action component can be switched off
- ► Interruptible control

Inputs

Identifier	Data type	Information/possible settings				
nVpAdapt_a	INT	Proportional evaluation of the controller gain (Vp) • Scaling: 16384 ≡ 100 % • Internal limitation to 0 16384 (0 100 %)				
nSet_a	INT	Controller setpoint				
bLoadAct		Accept actual controller value				
ı	BOOL	TRUE The actual controller value <i>nAct_a</i> is taken over into the ramp generator, the low pass and the rate action.				
nAct_a	INT	Actual controller value				
nRTimeAdapt_a	INT	Proportional evaluation of the rate time in the actual value path • Scaling: 16384 ≡ 100 % rate time (C01053) • Internal limitation to 0 16384 (0 100 %)				
bIOff		Reset controller I component				
	BOOL	TRUE The controller I component is reset.				

Identifier	Data type	Information/possible settings		
bReset	2001	Reset entire control		
	BOOL	TRUE All outputs are reset to 0.		
nInfluence_a	INT	Proportional evaluation of the controller correcting variable nOutRed_a • Scaling: 16384 ≡ 100 % controller correcting variable (nOut_a)		

Outputs

Identifier	Data type	Value/meaning
nOut_a	INT	Controller correcting variable • Internal limitation to ±16384 (±100 %)
nOutRed_a	INT	Controller correcting variable (evaluated by <i>nInfluence_a</i>)
nDeviation_a	INT	System deviation Internal limitation to ±32767 (±199.99 %)
nDComponent	INT	D component of the rate action Internal limitation to ±16384 (±100 %)

Parameter

Parameter	Possible	e setting	gs	Info	
<u>C01053/1</u>	0.000		S	30.000	Acceleration/deceleration time of the setpoint ramp generator • Lenze setting: 0.000 s
<u>C01053/2</u>	0.000		S	30.000	Filter time constant for actual controller value • Lenze setting: 0.000 s
<u>C01053/3</u>	0.000		S	30.000	Rate time for actual controller value • Lenze setting: 0.000 s
<u>C01053/4</u>	0.000		S	30.000	Controller reset time • Lenze setting: 1.000 s
<u>C01053/5</u>	0.000		S	30.000	Controller rate action • Lenze setting: 0.000 s
<u>C01054/1</u>	0.00		%	199.99	Gain of the system deviation in the range of reduced sensitivity • Lenze setting: 100.00 %
<u>C01054/2</u>	0.00		%	199.99	Area of system deviation with reduced gain/sensitivity • Lenze setting: 0.00 %
C01055/1				Limitation of the controller correcting variable to the positive area	
	False		ation not active. e setting)		
	True	Limitat	tion active.		
<u>C01056/1</u>	0.00			100.00	Controller gain • Lenze setting: 0.10

18.1.141.1 Control characteristic

The dancer position or tension controller can be optionally operated as P, PI or PID controller. In the Lenze setting, the PI algorithm is active.

Gain (P component)

The input value is controlled by a linear characteristic. The slope of the characteristic is determined by the controller gain Vp.

The controller gain Vp is set in C01056/1.

- ► The controller gain can be adapted via the *nVpAdapt_a* input (also possible in online mode).
- ▶ The *nVpAdapt a* input value has a direct effect on the controller gain:

$$P = nVpAdapt_a \cdot C01056/1$$

<u>Example:</u> With the parameterised controller gain Vp = 2.0 and $nVpAdapt_a = 75 \%$, the resulting gain factor is as follows:

$$P = \frac{75 [\%]}{100 [\%]} \cdot 2.0 = 1.5$$

Reset time Tn (I component)

The adjustment time Tn is set under C01053/4.

- ▶ The I component of the controller can be deactivated by setting the input bIOff to TRUE.
- ▶ The I component can be switched on and off online.

Differential component Kd (D component)

The differential component Kd is set under C01053/5.

► The setting "0.0 s" deactivates the D component (Lenze setting). In this way, the PID controller becomes a PI controller or P controller, if the I component has been deactivated as well.

Evaluation of the output signal (controller influence)

If the motor speed or motor torque is precontrolled, a low influence is sufficient for the controller to comply with the setpoint.

Use the $nInfluence_a$ input to select the influencing factor the controller correcting variable $(nOut_a)$ is to be evaluated with. The evaluated controller correcting variable is output at $nOutRed\ a$.

Note!

The controller influence evaluates the output signal multiplicatively. A change of the *nInfluence_a* influencing factor also changes the dynamics of the controller!

Function library
Function blocks | L_ProcessCtrl_1

Switching on/off the controller

By setting the *bReset* input to TRUE, the process controller can be switched off.

Loading the setpoint ramp generator with the actual value

If the actual value is loaded into the setpoint ramp generator in switched-off state, it has the advantage that in the moment of the renewed controller enable, the system deviation is zero first. Thus, compensation processes can be mostly prevented.

When the *bLoadAct* input is set to TRUE, the setpoint ramp generator can be loaded with the actual value. This keeps the system deviation equal to zero and I component of the controller.

Low pass and rate action in the actual value path

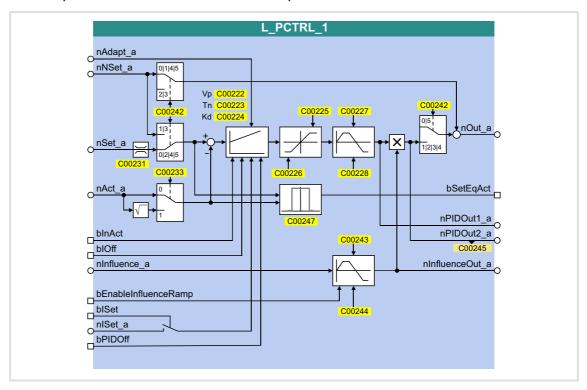
In order to filter signal interferences more effectively, you can activate a low pass in the actual value path.

- ▶ The filter time constant for the low pass is set in C01053/2.
- ► The rate time constant in the feedback path can be set in C01053/3. This serves to compensate interfering decelerations.

Reduced controller dynamics at low system deviation

Due to a reduced controller dynamics with low system deviations, the dampening behaviour of the control loop is mostly influenced favourably.

- ► <u>C01054/2</u> serves to determine the tolerance zone in which the system deviation is transmitted to the controller with a slight gain.
- ► <u>C01054/1</u> serves to determine the amount of percent the gain in the defined tolerance zone is to be reduced to.



18.1.142 L PCTRL 1

This FB is a PID controller and can be used for various control tasks (e.g. as dancer position controller, tension controller, or pressure controller).

The FB is provides with the following functions:

- ► Adjustable control algorithm (P, PI, PID)
- ▶ Ramp function generator for preventing setpoint step-changes at the input
- ► Limitation of the controller output
- ► Factorisation of the output signal
- ▶ Vp adaptation
- ▶ Integral action component can be switched off
- ► Comparison function "Actual value = setpoint"

Inputs

Identifier	Data type	Information/possible settings
nAdapt_a	INT	 Adaptation of gain Vp set in C00222 in percent Internal limitation to ± 199.99 % Changes can be done online. Display parameter: C00830/62
nNset_a	INT	Speed setpoint • Scaling: 16384 ≡ 100 % • Internal limitation to ± 199.99 % • Display parameter: C00830/89

Identifier Da	ta type	Information/possible settings					
nSet_a	INT	 Sensor and process setpoint for operating modes 2, 4 and 5 Scaling: 16384 = 100 % Internal limitation to ± 199.99 % Display parameter: C00830/63 					
nAct_a	INT	 Speed or actual sensor value (actual process value) Scaling: 16384 ≡ 100 % Internal limitation to ± 199.99 % Display parameter: C00830/61 					
bInAct	BOOL	Deactivate process controller temporarily (stop) Changes can be done online. Display parameter: C00833/76 Note: This input is not interconnected in the LA_NCtrl application block.					
		 TRUE The current output value is frozen. The internal control algorithm is stopped. However, a setpoint selected via input nNSet_a is still provided in operating modes 0/1/4/5. 					
bIOff	BOOL	 Switch off I-component of process controller Changes can be done online. Display parameter: C00833/77 					
		TRUE The I component of the process controller is set to zero.					
nInfluence_a	INT	 Limitation of the influencing factor in percent nInfluence_a serves to limit the influencing factor of the PID controller contained in the FB to a required value (- 199.99 % + 199.99 %). Scaling: 16384 ≡ 100 % Internal limitation to ± 199.99 % Display parameter: C00830/64 					
bEnableInfluenceRamp	BOOL	Activate ramp for influencing factor • Display parameter: C00833/106					
		TRUE Influencing factor of the PID controller is ramped up to the nInfluence_a value.					
		FALSE Influencing factor of the PID controller is ramped down to "0".					
blSet		Accept I component nISet_a in PID controller					
	BOOL	TRUE The value at the input <i>nlSet_a</i> is accepted in the PID controller.					
nlSet_a	INT	Selection of I component of PID controller • With a TRUE signal at <i>bISet</i> , the assigned value is accepted in the PID controller • Scaling: 16384 ≡ 100 % • Internal limitation to ± 199.99 %					
bPIDOff		Reset the entire PID controller					
	BOOL	 TRUE The I component of the controller is set to zero. The controller output is set to zero. The internal control algorithm is stopped. 					

Identifier	Data type	Value/meaning			
nOut_a	INT	 Output signal Internal limitation to ±32767 (±199.99 %) Scaling: 16384 ≡ 100 % 			
bSetEqAct		Status output "Setpoint and actual value are identical"			
	INT	TRUE Setpoint and actual value are identical, i.e. no system deviation available.			

Identifier	Data type	Value/meaning
nPIDOut1_a	INT	 PID controller output without influencing factor nInfluence_a Inputs bEnableInfluenceRamp and nInfluence_a do not have any effect here, the limited PID output value influenced by the internal ramp times is output. There is no connection with the additive input nNSet_a. Scaling: 16384 ≡ 100 %
nPIDOut2_a	INT	PID controller output <u>with</u> influencing factor nInfluence_a. • There is no connection with the additive input nNSet_a. • Scaling: 16384 ≡ 100 % • Display parameter: C00245
nInfluenceOut_a	INT	Current influencing factor ("ramp status") on the PID output value • Scaling: $16384 \equiv 100 \%$

Parameter

Parameter	Possibl	e setting	gs		Info		
<u>C00222</u>	0.1		0.1	500.0	Gain Vp • Lenze setting: 1.0		
<u>C00223</u>	20		ms	6000	Reset time Tn • Lenze setting: 400 ms		
<u>C00224</u>	0.0		0.1	5.0	Differential component Kd • Lenze setting: 0.0		
<u>C00225</u>	-199.99		%	+199.99	MaxLimit Maximum value of the PID operating range Lenze setting: 199.99 %		
<u>C00226</u>	-199.99		%	+199.99	MinLimit • Minimum value of the PID operating range • Lenze setting: -199.99 %		
<u>C00227</u>	0.000		S	999.999	Acceleration time for the ramp at the PID output (should be set as steep as possible) • Lenze setting: 0.010 s		
<u>C00228</u>	0.000		S	999.999	Deceleration time for the ramp at the PID output • Lenze setting: 0.010 s		
C00231/1 (Pos. Maximum) C00231/2 (Pos. Minimum) C00231/3 (Neg. Minimum) C00231/4 (Neg. Maximum)	0.00		%	199.99	Operating range Determination of the operating range for the PID process controller by limiting the input signal nSet_a. Lenze setting: No limitation (-199.99 % +199.99 %)		
<u>C00233</u>					Root function • Lenze setting: "0: Off"		
	0 Off				The actual value at <i>nAct_a</i> is not changed for further processing.		
	1 On		1 On				The square root of the actual value at <i>nAct_a</i> is taken for further processing.

8400 TopLine C | Software ManualFunction library
Function blocks | L_PCTRL_1

Parameter	Possible	e setting	gs		Info
<u>C00242</u>					Operating mode • Lenze setting: "0: Off"
	0	Off			The input setpoint nNSet_a is output without any changes at the output nOut_a.
	1	nNSet + nNSet_PID			nNSet_a and nAct_a are used as PID input values. The arriving nNSet_a is additively linked to the value output by the PID element.
	2	nSet_F	PID		nSet_a and nAct_a are used as PID input values. The input nNSet_a is not considered.
	3	nNSet_	_PID		nNSet_a and nAct_a are used as PID input values. The input nSet_a is not considered.
	4	nNSet + nSet_PID			nSet_a and nAct_a are used as PID input values. The arriving nNSet_a setpoint is additively linked to the value output by the PID element.
	5	nNSet	nSet_PID		nSet_a and nAct_a are used as PID input values. The setpoint nNSet_a is output at the output nOut_a. The PID output value is output at the output nPIDOut_a.
<u>C00243</u>	0.000		S	999.999	 Influence acceleration time Acceleration time T_{ir} for the influencing factor. Lenze setting: 5.000 s
<u>C00244</u>	0.000		S	999.999	 Influence deceleration time Deceleration time T_{if} for the influencing factor. Lenze setting: 5.000 s
<u>C00245</u>	-199.99		%	+199.99	Display of PID output value nPIDOut_a
<u>C00247</u>	0		%	100	Window for comparison function "Actual value = setpoint" • Lenze setting: 2 % • Hysteresis: 1 % (fixed)

18.1.142.1 Control characteristic

The PI algorithm is active in the Lenze setting.

Gain (P component)

The input value is controlled by a linear characteristic. The slope of the characteristic is determined by the controller gain Vp.

The controller gain Vp is set under C00222.

- ► The controller gain can be adapted via the input *nAdapt_a* (also possible in online mode).
- ▶ The input value *nAdapt_a* has a direct effect on the controller gain:

$$P = nAdapt_a \cdot C00222$$

<u>Example:</u> With the parameterised controller gain Vp = 2.0 and $nAdapt_a = 75 \%$, the resulting gain factor is as follows:

$$P = \frac{75 \, [\%]}{100 \, [\%]} \cdot 2.0 = 1.5$$

Integral action component (I component)

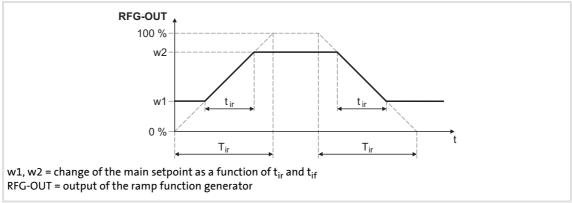
The I component can be selected via the input *nISet_a*. With a TRUE signal at *bISet*, the assigned value is accepted in the PID controller.

- ➤ Setting the adjustment time Tn to the maximum value of "6000 ms" deactivates the I component.
- ► The I component of the controller can also be deactivated by setting the input *bIOff* to TRUE.
- ▶ The I component can be switched on and off online.

Adjustment time

The adjustment time Tn is set under <u>C00223</u>.

Differential component Kd (D component)


The differential component Kd is set under C00224.

► The setting "0.0 s" deactivates the D component (Lenze setting). In this way, the PID controller becomes a PI controller or P controller, if the I component has been deactivated as well.

18.1.142.2 Ramp function generator

The PID output is led via a ramp function generator with linear characteristic. This serves to transfer setpoint step-changes at the PID output into a ramp which should be as steep as possible.

[18-55] Acceleration and deceleration times

- \blacktriangleright t_{ir} and t_{if} are the desired times for changing between w1 and w2.
- ▶ The ramps for acceleration and deceleration can be set individually.
 - C00227: Acceleration time t_{ir}
 - C00228: Deceleration time t_{if}
- ► The t_{ir}/t_{if} values are converted into the required Ti times according to the following formula:

$$\Gamma_{ir} = t_{ir} \cdot \frac{100 \,\%}{w2 - w1}$$

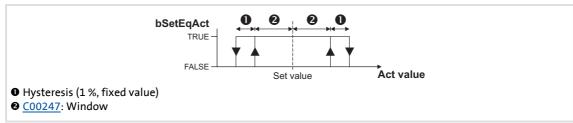
$$\Gamma_{if} = t_{if} \cdot \frac{100 \,\%}{w2 - w1}$$

▶ The ramp function generator is immediately set to "0" by setting blnAct to TRUE.

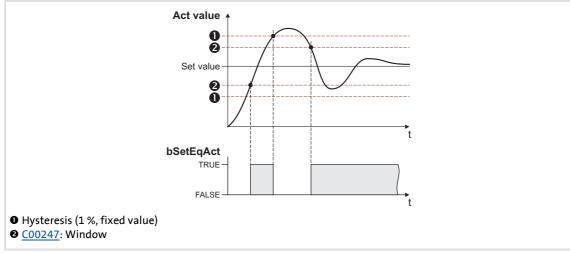
18.1.142.3 Operating range of the PID process controller

The value range of the input signal *nSet_a* and thus the operating range of the PID process controller can be limited with the following parameters:

- ► C00231/1: Pos. maximum (default setting: 199.99 %)
- ► C00231/2: Pos. minimum (default setting: 0.00 %)
- ► C00231/3: Neg. minimum (default setting: 0.00 %)
- ► <u>C00231/4</u>: Neg. maximum (default setting: 199.99 %)


18.1.142.4 Evaluation of the output signal

After the limitation, the output signal is evaluated with the influencing factor nInfluence_a. The evaluation is activated/suppressed along a ramp when the bEnableInfluenceRamp input is set to TRUE. The ramp times are set with the parameters "Influence acceleration time" (C00243) and "Influence deceleration time" (C00244).


18.1.142.5 Comparison function "Actual value = setpoint"

If setpoint and actual value are identical and there is no system deviation, the *bSetEqAct* status output is set to TRUE.

- ▶ The hysteresis of the comparison function has a fixed value of 1 %.
- ► From V10.00.00 the symmetrical window around the setpoint for the comparison function can be set in C00247 (Lenze setting: 2 %).

[18-56] Comparison function: Switching performance

[18-57] Comparison function: Example

Function library
Function blocks | L_PCTRL_1

18.1.142.6 Control functions

The process controller has various digital inputs for controlling the FB:

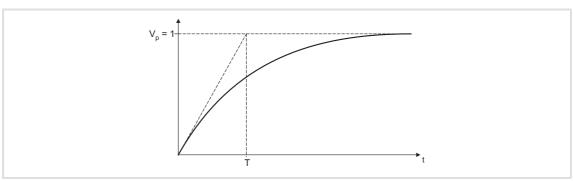
Identifier	Data type	Information/possible settings				
binAct BOOL		Deactivate process controller temporarily (stop) Changes can be done online. Display parameter: C00833/76 Note: This input is not interconnected in the LA_NCtrl application block.				
		 TRUE The current output value is frozen. The internal control algorithm is stopped. However, a setpoint selected via input nNSet_a is still provided in operating modes 0/1/4/5. 				
bIOff	BOOL	 Switch off I-component of process controller Changes can be done online. Display parameter: C00833/77 				
		TRUE The I component of the process controller is set to zero.				
bPIDOff		Reset the entire PID controller				
	BOOL	 TRUE The I component of the controller is set to zero. The controller output is set to zero. The internal control algorithm is stopped. 				

18.1.143 L_PT1_1

This FB filters and delays analog signals.

- ▶ The filter time constant T can be set under <u>C00249</u>.
- ► The gain is defined with $V_p = 1$.

Inputs

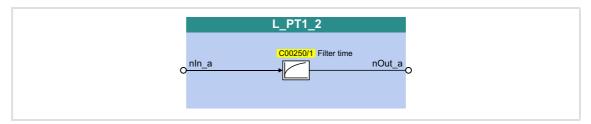

Identifier Data type	Information/possible settings
nln_a	Input signal

Outputs

Identifier Data type	Value/meaning
nOut INT	Output signal

Parameter

Parameter	Possible settings			Info
<u>C00249</u>	0	ms	5000	 Filter time constant The filter is not active with a setting of "0 ms". The input signal is passed through one-to-one to the output. Lenze setting: 2000 ms

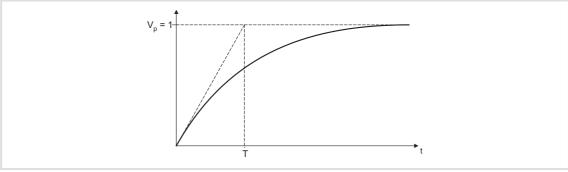

[18-58] Filter time constant T of the first-order delay element

18.1.144 L_PT1_2

This FB filters and delays analog signals.

- ► Filter time constant T can be set in <u>C00250/1</u>.
- ► The gain is defined with $V_p = 1$.

Inputs

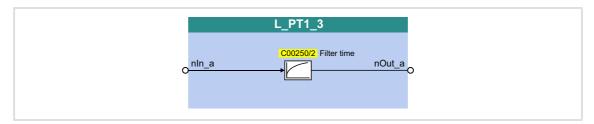

Identifier Data type	Information/possible settings
nln_a	Input signal

Outputs

Identifier Data type	Value/meaning
nOut INT	Output signal

Parameter

Parameter	Possible settings			Info
<u>C00250/1</u>	0	ms	5000	 Filter time constant The filter is not active with a setting of "0 ms". The input signal is passed through one-to-one to the output. Lenze setting: 2000 ms

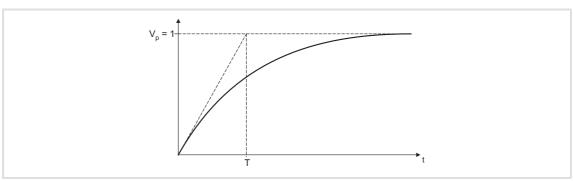

[18-59] Filter time constant T of the first-order delay element

18.1.145 L_PT1_3

This FB filters and delays analog signals.

- ► Filter time constant T can be set in C00250/2.
- ► The gain is defined with $V_p = 1$.

Inputs

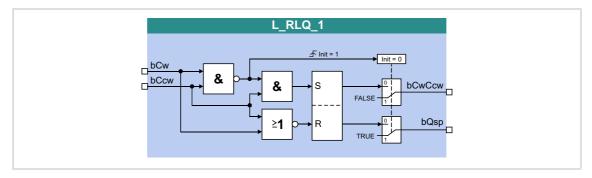

Identifier Data type	Information/possible settings
nln_a	Input signal

Outputs

Identifier Data type	Value/meaning
nOut INT	Output signal

Parameter

Parameter	Possible settings			Info
<u>C00250/2</u>	0	ms	5000	 Filter time constant The filter is not active with a setting of "0 ms". The input signal is passed through one-to-one to the output. Lenze setting: 2000 ms


[18-60] Filter time constant T of the first-order delay element

Function library
Function blocks | L_RLQ_1

18.1.146 L_RLQ_1

This FB links a selected direction of rotation to the quick stop function with wire-break protection.

Inputs

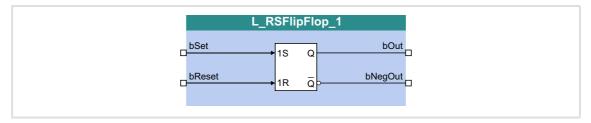
Identifier Date	ita type	Information/possible settings
bCw	BOOL	Input • TRUE = CW rotation
bCCw	BOOL	Input • TRUE = CCW rotation

Outputs

Identifier Data typ	Value/meaning
bQSP BOO	Output signal for quick stop (QSP)
bCwCcw BOC	Output signal for CW/CCW rotation • TRUE = CCW rotation

Function

Inp	uts	Outputs		Notes	
bCw	bCCw	bCwCcw	bQSP		
TRUE	TRUE	FALSE	TRUE	The inputs have this status only if a TRUE signal is being applied to both inputs at the moment of switch-on! See also FB illustration above, "Init" = 1.	
If one of the inputs has the TRUE status, the following truth table applies:					
FALSE	FALSE	FALSE	TRUE	See also FB illustration above, "Init" = 0.	
TRUE	FALSE	FALSE	FALSE		
FALSE	TRUE	TRUE	FALSE		
TRUE	TRUE	X (save)			


[18-61] Truth table of the FB L_RLQ, 0 = FALSE, 1 = TRUE

18.1.147 L_RSFlipFlop_1

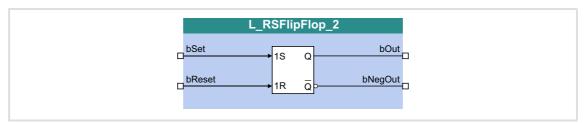
The functionality of this FB corresponds to that of an RS flipflop:

- ▶ An input signal at *bSet* serves to set the *bOut* output permanently.
- ► An input signal at *bReset* serves to reset the output.
- ► Additional, inverted output *bNegOut*

Inputs

Identifier	Data type	Information/possible settings		
bSet		Setting input		
	BOOL	 TRUE • The bOut output is set to TRUE. • The bNegOut output is set to FALSE. 		
bReset		Reset input		
	BOOL	TRUE • The bOut output is set to FALSE.• The bNegOut output is set to TRUE.		

Identifier		Value/meaning	
	Data type		
bOut	BOOL	Output signal	
bNegOut	BOOL	Output signal, inverted	



Function library
Function blocks | L_RSFlipFlop_2

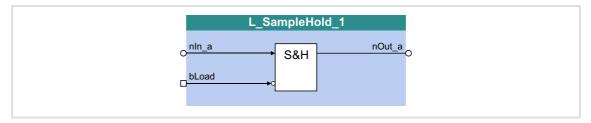
18.1.148 L_RSFlipFlop_2

The functionality of this FB corresponds to that of an RS flipflop:

- ▶ An input signal at *bSet* serves to set the *bOut* output permanently.
- ► An input signal at *bReset* serves to reset the output.
- ► Additional, inverted output *bNegOut*

Inputs

Identifier	Data type	Information/possible settings		
bSet		Setting input		
	BOOL	 TRUE • The bOut output is set to TRUE. • The bNegOut output is set to FALSE. 		
bReset		Reset input		
	BOOL	 TRUE • The bOut output is set to FALSE. • The bNegOut output is set to TRUE. 		


Identifier		Value/meaning
Da	ata type	
bOut	BOOL	Output signal
bNegOut	BOOL	Output signal, inverted

18.1.149 L SampleHold 1

This FB can store a signal.

▶ The saved value is also available after mains switching.

Inputs

Identifier	Data type	Information/possible settings		
nln_a	INT	Input signal		
bLoad		Save input signal		
	BOOL	FALSE The last-valid value at <i>nIn</i> is saved and output to <i>nOut</i> . A signal change at <i>nIn</i> does not cause a change at <i>nOut</i> .		
		TRUE The <i>nOut</i> output provides <i>dnIn</i> .		

Outputs

Identifier Data type	Value/meaning	
nOut	Output signal	

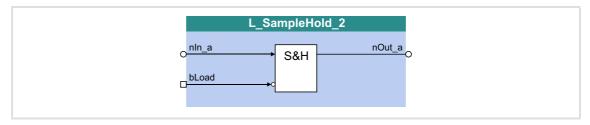
Function

- ▶ When bLoad = TRUE, the $nIn \ a$ signal is switched to $nOut \ a$.
- ▶ When bLoad = FALSE, the last-valid value is saved and output at nOut_a. A signal change at nIn a does not cause a change at nOut a.

Behaviour after mains switching

The last-loaded value is permanently stored after switching of the supply voltage and reloaded after restart.

▶ In order that the saved value is not immediately overwritten with the current input signal at *nIn* after restart, *bLoad* must be set to FALSE at restart.



Function library
Function blocks | L SampleHold 2

18.1.150 L SampleHold 2

This FB can store a signal.

▶ The saved value is also available after mains switching.

Inputs

Identifier	Data type	Information/possible settings		
nIn_a	INT	Input signal		
bLoad BOOL		Save input signal		
	BOOL	FALSE The last-valid value at <i>nIn</i> is saved and output to <i>nOut</i> . A signal change at <i>nIn</i> does not cause a change at <i>nOut</i> .		
		TRUE The nOut output provides dnIn.		

Outputs

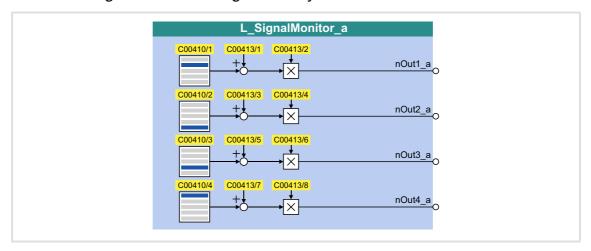
Identifier Data type	Value/meaning	
nOut INT	Output signal	

Function

- ▶ When bLoad = TRUE, the $nIn \ a$ signal is switched to $nOut \ a$.
- ▶ When bLoad = FALSE, the last-valid value is saved and output at nOut_a. A signal change at nIn a does not cause a change at nOut a.

Behaviour after mains switching

The last-loaded value is permanently stored after switching of the supply voltage and reloaded after restart.


▶ In order that the saved value is not immediately overwritten with the current input signal at *nIn* after restart, *bLoad* must be set to FALSE at restart.

18.1.151 L_SignalMonitor_a

This FB outputs four analog signals which can be selected from a list of analog output signals of all function blocks provided in the device.

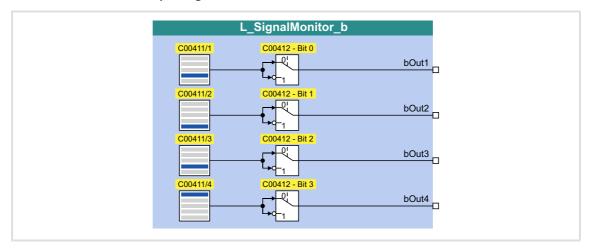
▶ Offset and gain of the source signals are adjustable.

Outputs

Identifier	Data type	Value/meaning	
nOut1_a	INT	Output signal Internal limitation to ±32767	
nOut2_a	INT	Output signal Internal limitation to ±32767	
nOut3_a	INT	Output signal Internal limitation to ±32767	
nOut4_a	INT	Output signal Internal limitation to ±32767	

Parameter

Parameter	Possible settings				Info
C00410/1					Selection of the signal sources for nOut1_a nOut4_a
 C00410/4	0	Not connected			
<u>C00410/4</u>	1000	LA_nC	trl_wDriveCon	trolStatus	
	1001	LA_nC	trl_wFailNuml	per	
	1002	LA_nC	trl_nMotorCur	rent_a	
	42017	LA_nC	trl_In_nPIDSer	·Value_a	
C00413/1 C00413/3 C00413/5 C00413/7	-199.99		%	+199.99	Offset
C00413/2 C00413/4 C00413/6 C00413/8	-199.99		%	+199.99	Gain



Function library
Function blocks | L_SignalMonitor_b

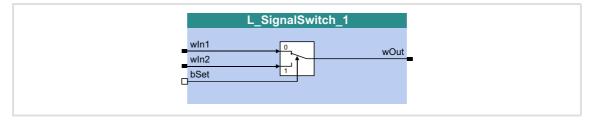
18.1.152 L_SignalMonitor_b

This FB outputs four binary signals which can be selected from a list of binary output signals of all function blocks provided in the device.

▶ Inversion of the output signals can be set.

Outputs

Identifier	Data type	Value/meaning
bOut1 bOut4		Output signal FALSE / TRUE
Dout	BOOL	


Parameter

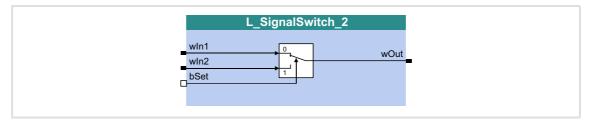
Parameter	Possible	e settings	Info
C00411/1			Selection of the signal sources for
 C00411/4	0	Not connected	bOut1 bOut4
<u>C00411/4</u>	1000	LA_nCtrl_bDriveReady	
	1001	LA_nCtrl_bDriveFail	
	1002	LA_nCtrl_bCInhActive	
	42033	LA_NCtrl_bPIDIOff	
<u>C00412</u>			Inversion
	Bit 0	bOut1 inverted	Bit set = inversion active
	Bit 1	bOut2 inverted	
	Bit 2	bOut3 inverted	
	Bit 3	bOut4 inverted	
	Bit 4	Reserved	
	Bit 5	Reserved	
	Bit 6	Reserved	
	Bit 7	Reserved	

18.1.153 L_SignalSwitch_1

This FB switches between two input signals of the "WORD" data type. The switch-over is controlled by means of a boolean input signal.

Inputs

Identifier		Information/possible settings					
	Data type						
wln1	WORD	Input signal 1					
wln2	WORD	Input signal 2					
bSet	oSet		Selection of the input signal for the output at wOut				
ВО	BOOL	FALSE	wln1				
		TRUE	wIn2				

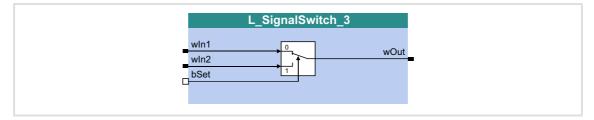

Identifier Data type	Value/meaning
wOut WORD	Output signal

Function library
Function blocks | L_SignalSwitch_2

18.1.154 L_SignalSwitch_2

This FB switches between two input signals of the "WORD" data type. The switch-over is controlled by means of a boolean input signal.

Inputs


Identifier	Data type	Information/possible settings		
wln1	WORD	Input signal 1		
wln2	WORD	Input signal 2		
bSet		Selection of the	e input signal for the output at wOut	
BO	BOOL	FALSE	wln1	
		TRUE	wln2	

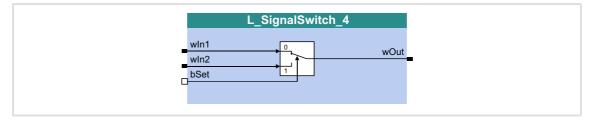
Identifier Data type	Value/meaning
wOut WORD	Output signal

18.1.155 L_SignalSwitch_3

This FB switches between two input signals of the "WORD" data type. The switch-over is controlled by means of a boolean input signal.

Inputs

Identifier		Information/possible settings		
	Data type			
wln1	WORD	Input signal 1		
	WORD			
wln2		Input signal 2		
	WORD	/RD		
bSet		Selection of the input signal for the output at wOut		
BOOL	FALSE	wln1		
		TRUE	wIn2	

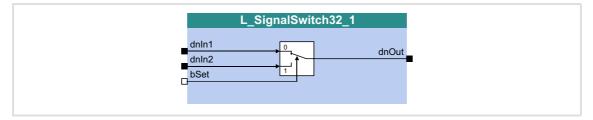

Identifier Data type	Value/meaning
wOut WORD	Output signal

Function library
Function blocks | L_SignalSwitch_4

18.1.156 L_SignalSwitch_4

This FB switches between two input signals of the "WORD" data type. The switch-over is controlled by means of a boolean input signal.

Inputs


Identifier		Information/possible settings		
	Data type			
wln1		Input signal 1		
	WORD			
wln2		Input signal 2		
	WORD	, ,		
bSet		Selection of the input signal for the output at wOut		
BOO	BOOL	FALSE	wln1	
		TRUE	wln2	

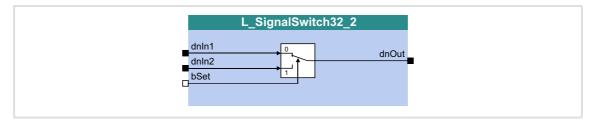
Identifier Data type	Value/meaning
wOut WORD	Output signal

18.1.157 L_SignalSwitch32_1

This FB switches between two input signals of the "DINT" data type. The switch-over is controlled by means of a boolean input signal.

Inputs

Identifier	Data type	Information/possible settings		
dnIn1	DINT	Input signal 1		
dnIn2	DINT	Input signal 2		
bSet		Selection of the	e input signal for the output at dnOut	
E	BOOL	FALSE	dnln1	
		TRUE	dnIn2	

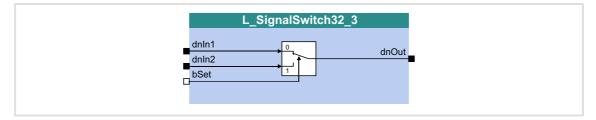

Identifier Data type	Value/meaning
dnOut	Output signal

Function library
Function blocks | L_SignalSwitch32_2

18.1.158 L_SignalSwitch32_2

This FB switches between two input signals of the "DINT" data type. The switch-over is controlled by means of a boolean input signal.

Inputs


Identifier	Data type	Information/possible settings		
dnIn1	DINT	Input signal 1		
dnIn2	DINT	Input signal 2		
bSet		Selection of th	e input signal for the output at <i>dnOut</i>	
В	BOOL	FALSE	dnIn1	
		TRUE	dnIn2	

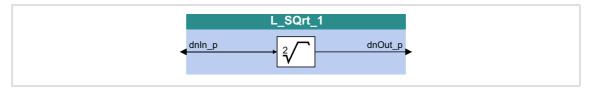
Identifier Data type	Value/meaning
dnOut	Output signal

18.1.159 L_SignalSwitch32_3

This FB switches between two input signals of the "DINT" data type. The switch-over is controlled by means of a boolean input signal.

Inputs

Identifier		Information/possible settings		
	Data type			
dnIn1		Input signal 1		
	DINT	1 9 -		
dnIn2		Input signal 2		
	DINT			
bSet		Selection of the input signal for the output at dnOut		
ВОО	BOOL	FALSE di	nIn1	
		TRUE di	nIn2	


Identifier Data type	Value/meaning
dnOut	Output signal

Function library
Function blocks | L_SQrt_1

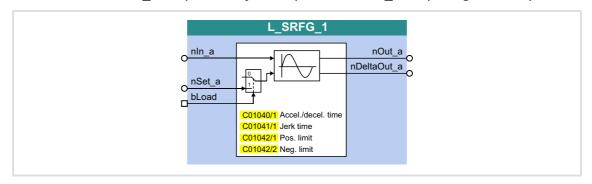
18.1.160 L_SQrt_1

This FB outputs the square root for the DINT input value.

Inputs

Identifier	Information/possible settings
Data type	
dnln_p	Input signal

Outputs


Identifier Data type	Value/meaning
dnOut_p	Output signal

$$dnOut_p = \sqrt{dnIn_p}$$

18.1.161 L SRFG 1

This FB is a ramp function generator with S-shaped ramps for limiting the temporal rise of analog signals. The ramps are S-shaped due to trapezoidal acceleration.

- ► The ramp function generator is provided with a setting function so that a value can directly be loaded into the internal ramp generator.
- ▶ The balanced acceleration/deceleration time is set in C01040.
- ▶ An S-ramp time can be set in <u>C01041</u> for jerk-free acceleration until maximum acceleration is reached.
- ▶ At the *nDeltaOut_a* output, the dy/dt slope of the *nOut_a* output signal is output.

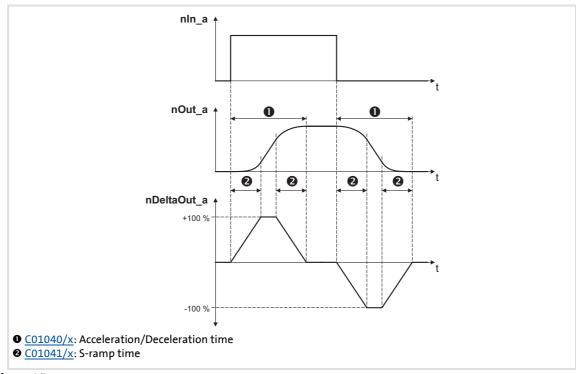
Inputs

Identifier	Data type	Information/possible settings			
nln_a	INT	Input signal			
nSet_a	INT	Starting value for the ramp function generator • Will be accepted if <i>bLoad</i> = TRUE			
bLoad		Initialise ramp function generator			
BOC		FALSE With the set acceleration/deceleration time, the ramp function generator switches over from the value loaded via nSet_a to the value at nln_a.			
		TRUE At the nOut_a output, nSet_a is output. • nDeltaOut_a remains at 0 %.			

Identifier	Data type	Value/meaning
nOut_a	INT	Output signal • Internal limitation to $\pm 199\%$ (100 % = 16384)
nDeltaOut_a	INT	Acceleration of the ramp function generator • Internal limitation to $\pm 100 \%$ (100 % \equiv 16384)

Parameter

Parameter	Possible setting	gs	Info	
C01040/1	0.001	S	999.999	Acceleration/Deceleration time • Initialisation: 100.000 s
C01041/1	0.001	S	50.000	S-ramp time • Initialisation: 0.200 s
C01042/1	-199.99	S	199.99	Pos. limit • Initialisation: 100.00 %
<u>C01042/2</u>	-199.99	S	199.99	Neg. limit Initialisation: -100.00 %

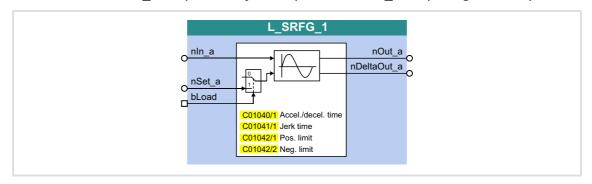

Loading the ramp function generator

When bLoad is set to TRUE, the ramp function generator is loaded with the signal at $nSet_a$. This value is accepted immediately and output at $nOut_a$. There is no acceleration or deceleration via an S shape. As long as bLoad = TRUE, the ramp function generator remains inhibited.

Acceleration/Deceleration time and S-ramp time

The acceleration/deceleration time and the S-ramp time for jerk-free acceleration can be set separately.

- ► Acceleration/Deceleration time = Time until the nOut_a output value has reached the nIn_a input value.
- ► S-ramp time = Time until the ramp function generator operates at maximum acceleration.



[18-62] Signal flow

18.1.162 L SRFG 2

This FB is a ramp function generator with S-shaped ramps for limiting the temporal rise of analog signals. The ramps are S-shaped due to trapezoidal acceleration.

- ► The ramp function generator is provided with a setting function so that a value can directly be loaded into the internal ramp generator.
- ▶ The balanced acceleration/deceleration time is set in C01040.
- ► An S-ramp time can be set in <u>C01041</u> for jerk-free acceleration until maximum acceleration is reached.
- ▶ At the *nDeltaOut_a* output, the dy/dt slope of the *nOut_a* output signal is output.

Inputs

Identifier	Data type	Information/possible settings			
nln_a	INT	Input signal			
nSet_a	INT	Starting value for the ramp function generator • Will be accepted if bLoad = TRUE			
bLoad		Initialise ramp function generator			
вос		FALSE With the set acceleration/deceleration time, the ramp function generator switches over from the value loaded via nSet_a to the value at nIn_a.			
		TRUE At the nOut_a output, nSet_a is output. • nDeltaOut_a remains at 0 %.			

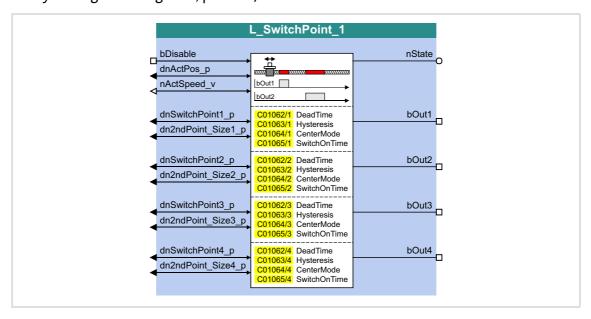
Identifier	ata type	Value/meaning
nOut_a	INT	Output signal • Internal limitation to ±199 % (100 % ≡ 16384)
nDeltaOut_a	INT	Acceleration of the ramp function generator Internal limitation to $\pm 100 \%$ (100 % $\equiv 16384$)

8400 TopLine C | Software Manual

Function library
Function blocks | L_SRFG_2

Parameter

Parameter	Possible setting	;s	Info	
<u>C01040/2</u>	0.001	S	999.999	Acceleration/Deceleration time • Initialisation: 100.000 s
C01041/2	0.001	S	50.000	S-ramp time • Initialisation: 0.200 s
C01042/3	-199.99	S	199.99	Pos. limit • Initialisation: 100.00 %
C01042/4	-199.99	S	199.99	Neg. limit • Initialisation: -100.00 %


For a detailed functional description see <u>L_SRFG_1</u>.

18.1.163 L SwitchPoint 1

This FB provides four position switch points, i.e. digital switches the binary statuses (FALSE/TRUE) of which depend on the actual position.

- ▶ A position switch point serves to start peripherals as paint nozzles or knifes depending on the tool position.
- ▶ Moreover the FB supports the compensation of delay times of external switching elements (dead time compensation).
- ▶ By setting a running time, position/time-based cams can be realised as well.

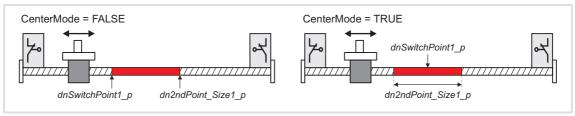
Inputs

Identifier	Data type	Information/possible settings			
bDisable BOOK		Deactivate position switch points This input has the highest priority.			
		TRUE Position switch points are deactivated. • Outputs bOut1 bOut4 = FALSE			
dnActPos_p	DINT	Actual position in [increments]			
nActSpeed_v	INT	Actual speed in [increments/ms] • Scaling: 16384 ≡ 15000 rpm			
dnSwitchPoint x _p	DINT	Position switch point x : Position of the first switching point in [increments]			
dn2ndPoint_Size x _p		Position switch point x : Position of the second switching point or size of the switching window depending on the CenterMode set in $\underline{\text{C01064/x}}$:			
		When CenterMode = FALSE: Position of the second switching point in [increments] • dn2ndPoint_Size_p must be higher than dnSwitchPoint_p.			
		 When CenterMode = TRUE: Size of the switching window in [increments] Due to the symmetrical arrangement of the window around the first switching point, uneven values are rounded to even values. Only positive values are permissible. 			

8400 TopLine C | Software ManualFunction library
Function blocks | L_SwitchPoint_1

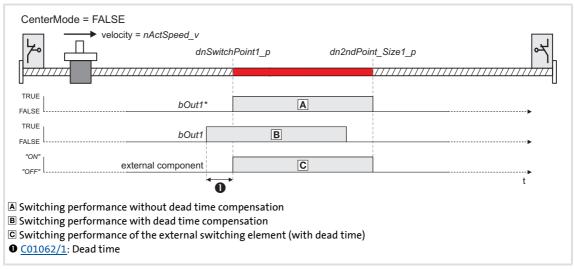
Outputs

Identifier	Data type	Value/meaning				
bOut1 bOut4		Switching outp	witching output 1 4			
	BOOL	TRUE	TRUE The actual position is inside the defined switching window.			
nState		Status				
	INT	1	FB is not active			
		2	OK			
		3	The data form resulting from the switching points are not plausible (dnSwitchPoint_p, dn2ndPoint_Size_p, parameterised hysteresis).			


Parameter

Parameter	Possible settings				Info
<u>C01062/14</u>	0.00		ms	655.00	Dead time for dead time compensation The resulting switching position is not subject to a plausibility check. Lenze setting: 0.00 ms
C01063/14	0		Incr.	65535	Switching hysteresis • Lenze setting: 0 incr.
<u>C01064/14</u>					CenterMode • Definition how the dn2ndPoint_Size_p selection is interpreted.
	False	second	Point_Size_p d switching poi setting)		
	True dn2ndPoint_Size_p defines the size of the switching window.				
C01065/14	0 ms 60000			60000	Running time for position/time-
	0 ms = position-based cam				based camsLenze setting: 0 ms

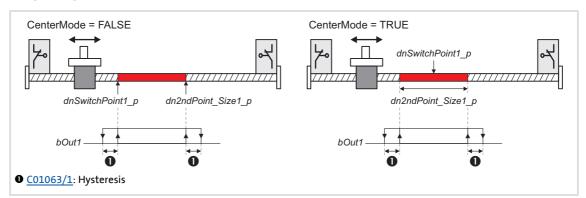
18.1.163.1 Definition of the switching range


Depending on the setting of the CenterMode (C01064/x), the switching range can be defined via a start and end position or via the data of the center point/size of switching range:

[18-63] Definition of the switching range

18.1.163.2 Dead time compensation

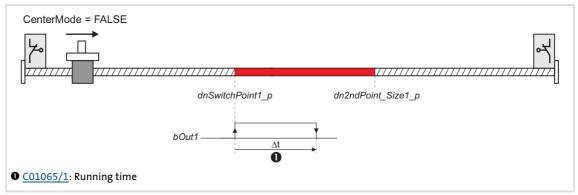
The delay time of external switching elements can be compensated by setting the corresponding delay time in $\frac{\text{Co1062/x}}{\text{colculates}}$. From this input and the current speed ,the FB calculates a preliminary stop, i.e. the *bOut* switching output is set correspondingly earlier.


[18-64] Dead time compensation

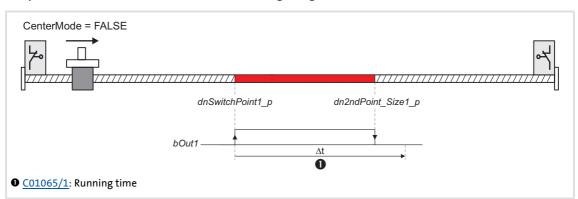
Function library
Function blocks | L SwitchPoint 1

18.1.163.3 Switching hysteresis

Setting a hysteresis in $\underline{\text{C01063/x}}$ serves to prevent a permanent state change of the *bOut* switching output that may be caused by actual position value changes due to a mechanical irregularity at the axis.


[18-65] Switching hysteresis

Please note that a delay time set in $\frac{\text{C01062/x}}{\text{shifts}}$ shifts the switching points including the hysteresis.

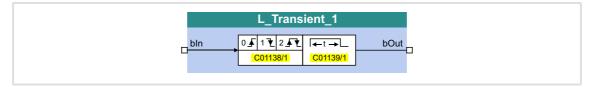

18.1.163.4 Position/time-based cams

The setting of a running time in CO1065/x higher 0 ms serves to realise "position/time-based cams": If the drive reaches the switching range, the *bOut* switching output is set to TRUE and reset to FALSE after the set switching time has elapsed.

[18-66] Position/time-based cams (here without switching hysteresis and dead time compensation)

If the switching range is left before the running time has expired, the *bOut* switching output is reset to FALSE when the switching range is left:

[18-67] Position/time-based cams: Behaviour when the switching range is left before the running time has expired


Please note that for a resetting of the switching output the switching range must be left first.

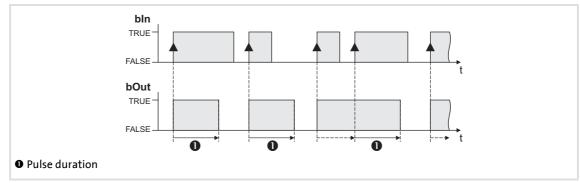
Function library
Function blocks | L_Transient_1

18.1.164 L_Transient_1

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

Inputs

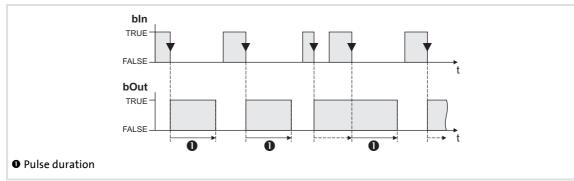
Identifier Data type	Information/possible settings
bln	Input for edge evaluation • The function depends on the selection of edge evaluation in C01138/1 .


Outputs

Identifier	Value/meaning
Data type	
bOut	Output (retriggerable)
BOO	L

Parameter	Possible	e setting	gs	Info	
<u>C01138/1</u>					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1	Low edge			
	2	High a	nd low edge		
<u>C01139/1</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s

18.1.164.1 Function 0: Evaluate rising signal edges

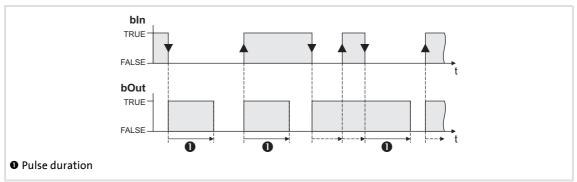


[18-68] Switching performance for function selection "0: High edge"

Functional sequence

- 1. A FALSE-TRUE edge at the *bIn* input sets the *bOut* output to TRUE.
- 2. After the parameterised pulse duration has elapsed, the *bOut* output is reset to FALSE unless another FALSE/TRUE edge has been set at the *bIn* input.
 - If an additional FALSE-TRUE edge occurs at the bIn input, the pulse duration starts again from the beginning, i.e. the bOut output can be retriggered.

18.1.164.2 Function 1: Evaluate falling signal edges

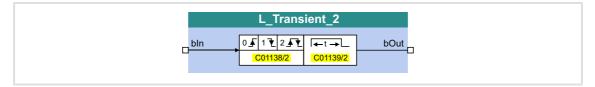

[18-69] Switching performance for function selection "1: Low edge"

Functional sequence

- 1. A TRUE-FALSE edge at the bln inputs sets the bOut output to TRUE.
- 2. After the parameterised pulse duration has elapsed, the *bOut* output is reset to FALSE unless another TRUE/FALSE edge has been set at the *bIn* input.
 - If an additional TRUE-FALSE edge occurs at the bIn input, the pulse duration starts again from the beginning, i.e. the bOut output can be retriggered.

18.1.164.3 Function 2: Evaluate rising and falling signal edges

[18-70] Switching performance for function selection "2: High and low edge"


Functional sequence

- 1. A signal change (FALSE/TRUE edge or TRUE/FALSE edge) at the *bIn* input sets the *bOut* output to TRUE.
- 2. After the parameterised pulse duration has elapsed, the *bOut* output is reset to FALSE unless another signal change has taken place at the *bIn* input.
 - In case of another signal change at the input bln, the pulse time restarts to elapse,
 i.e. the output bOut can be retriggered.

18.1.165 L_Transient_2

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

Inputs

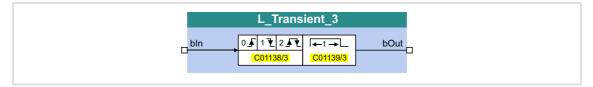
Identifier	Information/possible settings
Data type	
bIn BOOL	Input for edge evaluation • The function depends on the selection of edge evaluation in C01138/2 .

Outputs

Identifier	Value/meaning
Data type	
bOut	Output (retriggerable)
BOO	L

Parameter

Parameter	Possible	esetting	gs	Info	
<u>C01138/2</u>					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1	Low ed	lge		
	2	High a	nd low edge		
<u>C01139/2</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s



Function library
Function blocks | L_Transient_3

18.1.166 L_Transient_3

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

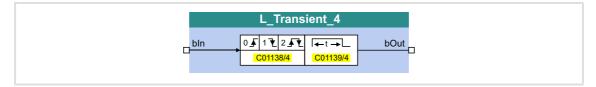
Inputs

Identifier Data type	Information/possible settings
bln BOOL	Input for edge evaluation • The function depends on the selection of edge evaluation in C01138/3.

Outputs

Identifier	Value/meaning
Data type	
bOut	Output (retriggerable)
BOO	L

Parameter


Parameter	Possible	esetting	gs		Info
<u>C01138/3</u>					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1	Low ed	lge		
	2	High a	nd low edge		
<u>C01139/3</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s

18.1.167 L_Transient_4

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

Inputs

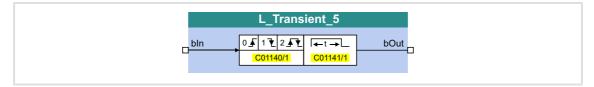
Identifier Data type	Information/possible settings
bln	Input for edge evaluation • The function depends on the selection of edge evaluation in C01138/4.

Outputs

Identifier	Value/meaning
Data type	
bOut	Output (retriggerable)
BOO	L

Parameter

Parameter	Possible	esetting	gs		Info
<u>C01138/4</u>					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1 Low edge				
	2	High a	nd low edge		
<u>C01139/4</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s



Function library
Function blocks | L_Transient_5

18.1.168 L_Transient_5

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

Inputs

Identifier	Information/possible settings
Data type	
bln BOOL	Input for edge evaluation • The function depends on the selection of edge evaluation in C01140/1.

Outputs

Identifier Data type	Value/meaning
bOut BOOL	Output (retriggerable)

Parameter


Parameter	Possible	e setting	gs		Info
<u>C01140/1</u>					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1	Low ed	lge		
	2	High a	nd low edge		
<u>C01141/1</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s

18.1.169 L_Transient_6

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

Inputs

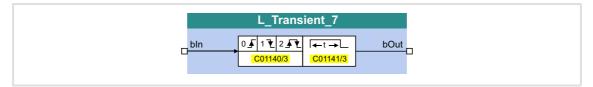
Identifier Data type	Information/possible settings
bln	Input for edge evaluation • The function depends on the selection of edge evaluation in C01140/2.

Outputs

Identifier	Value/meaning
Data type	
bOut	Output (retriggerable)
BOO	L

Parameter

Parameter	Possible	esetting	gs	Info	
<u>C01140/2</u>					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1	Low ed	lge		
	2	High a	nd low edge		
<u>C01141/2</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s



Function library
Function blocks | L_Transient_7

18.1.170 L_Transient_7

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

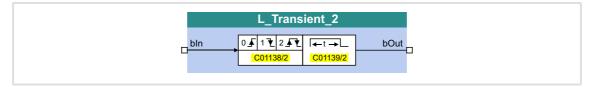
Inputs

Identifier Data ty	Information/possible settings
bln	Input for edge evaluation The function depends on the selection of edge evaluation in C01140/3.

Outputs

Identifier Data type	Value/meaning
bOut BOOL	Output (retriggerable)

Parameter


Parameter	Possible	esetting	gs		Info
<u>C01140/3</u>					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1	Low ed	lge		
	2	High a	nd low edge		
<u>C01141/3</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s

18.1.171 L_Transient_8

This FB serves to evaluate digital signal edges and convert them into timed, retriggerable pulses. Rising signal edges, falling signal edges or both signal edges can be evaluated.

Inputs

Identifier Data	Information/possible settings
bln	Input for edge evaluation • The function depends on the selection of edge evaluation in C01140/4.

Outputs

Identifier	Value/meaning
Data type	
bOut	Output (retriggerable)
BOO	L

Parameter

Parameter	Possible	e setting	gs		Info
C01140/4					Function • Selection of edge evaluation
	0	High e	dge		Lenze setting
	1	Low ed	lge		
	2	High a	nd low edge		
<u>C01141/4</u>	0.001		S	60.000	Pulse duration • Lenze setting: 0.001 s

18.2 System blocks

This chapter describes the system blocks which are available for the controller in the FB Editor.

The function blocks are described in the chapter "Function blocks". (💷 1110)

Overview of system blocks available

System block	Function		serted into
		I/O	Appl.
<u>LS_AnalogInput</u>	Interface to the analog input terminals ▶ Analog terminals (□ 352)	•	
<u>LS_AnalogOutput</u>	Interface to the analog output terminals ▶ Analog terminals (□ 352)	•	
LS_AxisBusAux	Interface to the axis bus	•	•
LS_AxisBusIn	▶ <u>Axis bus</u> (□ 717)	•	•
LS_AxisBusIO		•	•
LS_AxisBusOut		•	•
LS CANManagement	Control of internal functions of the CAN driver and display of the "Operational" status as well as the node address System bus "CAN on board" (638)	•	•
LS_DataAccess	Lenze internal only		•
LS_DeviceMonitor	Motor control status signals ▶ Motor control (MCTRL) (□ 120)		•
LS_DigitalInput	Interface to the digital input terminals Digital input terminals (329)	•	
LS_DigitalOutput	Interface to the digital output terminals Digital output terminals (349)	•	
LS_DisFree	Display of 8 arbitrary 16-bit signals of the application on display codes	•	•
LS_DisFree_a	Display of 8 arbitrary analog signals of the application on display codes	•	•
LS_DisFree_b	Display of 16 arbitrary digital signals of the application on a bit coded display code	•	•
LS_DisFree_p	Display of 8 arbitrary position signals of the application on display codes	•	•
<u>LS_DriveInterface</u>	Interface to drive control (DCTRL) ▶ Device control (DCTRL) (□ 89)		•
LS_Keypad	Control via keypad	•	
LS MotionControlKernel	Interface to the basic drive function implemented in the Motion Control Kernel (MCK) Basic drive functions (MCK) (473)		•
LS_MotorInterface	Interface to motor control (MCTRL) ▶ Motor control (MCTRL) (□ 120)		•
LS_MultiEncoder	Interface to the Multi-Encoder ▶ Multi-Encoder at X8 (□ 302)	•	•
LS ParFix LS ParFix 2	Output of frequently used constants (TRUE, FALSE, 100 %, etc.) to be used in the interconnection • LS_ParFix_2 is available from version 02.00.00.	•	•

System block	Function		serted into vel:
		I/O	Appl.
LS ParFree 2	Output of 32 parameterisable 16-bit signals • LS_ParFree_2 is available from version 02.00.00.	•	•
LS ParFree a LS ParFree a 2	Output of 16 parameterisable analog signals LS_ParFree_a_2 is available from version 02.00.00. 	•	•
LS ParFree b	Output of 32 parameterisable digital signals	•	•
LS_ParFree_p	Output of 8 parameterisable position signals	•	•
LS ParFree v LS ParFree v 2	Output of 8 parameterisable speed signals • LS_ParFree_v_2 is available from version 02.00.00.	•	•
LS_ParFree32	Output of 8 parameterisable 32-bit signals • This SB is available from version 02.00.00.	•	•
LS ParFreeUnit LS ParFreeUnit 2	Output of 16 parameterisable position signals with internal conversion of [unit] in [increments] • These SBs are available from version 02.00.00.	•	•
LS_ParReadWrite_1	Reading/Writing of local parameters	•	•
LS_ParReadWrite_6			
LS_PulseGenerator	Output of 9 fixed frequencies and 1 parameterisable frequency	•	•
LS Resolver	Interface to the resolver ▶ Resolver at X7 (□ 298)	•	•
LS_RetainData	Selection and saving of retain dataThis SB is available from version 02.00.00.	•	•
LS_SetError_1	Parameterisable responses to user-defined events are tripped	•	•
LS_SetError_2	▶ <u>Diagnostics & error management</u> (△ 581)	•	•
LS_SyncManagement	Output of status information for synchronising the internal time base > Synchronisation of the internal time base (\$\square\$ 731)	•	•
LS_TouchProbe	Interface for touch probe detection ▶ Touch probe detection (□ 362)	•	•
LS_WriteParamList	Interface to the basic "Parameter change-over" function ▶ Parameter change-over (□ 734)	•	

Related topics:

- ▶ Overview of function blocks available (☐ 1110)
- ▶ Working with the FB Editor (☐ 1058)

Function library
System blocks | LS_AnalogInput

18.2.1 LS AnalogInput

Interface to the analog input terminals.

For a detailed description see the main chapter "I/O terminals":

▶ Internal interfaces | System block "LS AnalogInput" (☐ 360)

18.2.2 LS_AnalogOutput

Interface to the analog output terminals.

For a detailed description see the main chapter "I/O terminals":

▶ Internal interfaces | System block "LS AnalogInput" (☐ 360)

18.2.3 LS AxisBusAux

Interface to the axis bus.

For a detailed description see main chapter "Axis bus":

▶ Internal interfaces | System block "LS AxisBusAux" (□ 724)

18.2.4 LS_AxisBusIn

Interface to the axis bus.

For a detailed description see main chapter "Axis bus":

▶ Internal interfaces | System block "LS AxisBusIn" (△ 723)

18.2.5 LS_AxisBuslO

Interface to the axis bus.

For a detailed description see main chapter "Axis bus":

▶ Internal interfaces | System block "LS AxisBusIO" (☐ 730)

18.2.6 LS AxisBusOut

Interface to the axis bus.

For a detailed description see main chapter "Axis bus":

▶ Internal interfaces | System block "LS AxisBusOut" (☐ 722)

18.2.7 LS_CANManagement

Control of internal functions of the CAN driver and display of the "Operational" status as well as the node address.

For a detailed description see the main chapter "System bus CAN on board":

▶ Internal interfaces | System block "LS CANManagement" (☐ 710)

18.2.8 LS DataAccess

Only for Lenze-internal use.

18.2.9 LS DeviceMonitor

Motor control status signals.

For a detailed description see the main chapter "Motor control (MCTRL)":

▶ Internal status signals | system block "LS DeviceMonitor" (□ 291)

18.2.10 LS DigitalInput

Interface to the digital input terminals.

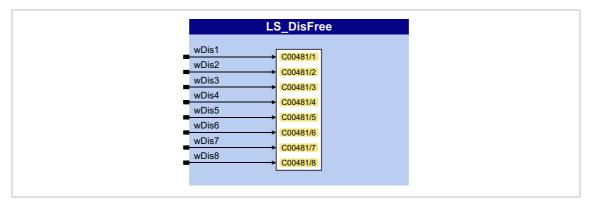
For a detailed description see the main chapter "I/O terminals":

▶ Internal interfaces | System block "LS DigitalInput" (□ 342)

18.2.11 LS DigitalOutput

Interface to the digital output terminals.

For a detailed description see the main chapter "I/O terminals":

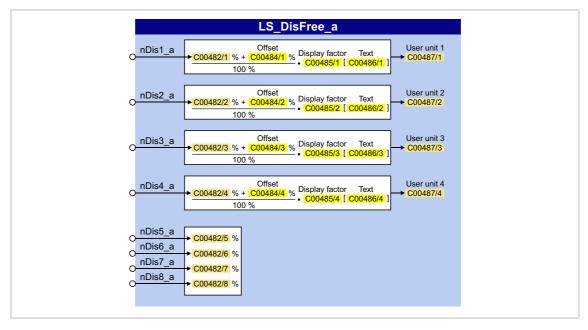

▶ <u>Internal interfaces | System block "LS DigitalOutput"</u> (🕮 351)

Function library
System blocks | LS_DisFree

18.2.12 LS_DisFree

This system block displays 8 arbitrary 16-bit signals of the application on display codes.

Inputs


Identifier		Information/possible settings
	Data type	
wDis1 wDis8		Inputs for any 16-bit signal of the application
	WORD	

Parameter	Possible settings		Info
C00481/18	0x0000	0xFFFF	Display of the 16-bit signals which are applied at the wDis1 wDis8 inputs

18.2.13 LS_DisFree_a

This system block displays 8 arbitrary analog signals of the application on display codes.

Inputs

Identifier Data type	Information/possible settings
nDis1_a nDis8_a	Inputs for any analog signal of the application
From version 02.00.00: nC482_1_a nC482_8_a	Note: From version 02.00.00 the inputs are named according to the display parameter for an easier allocation.

Parameter	Possible settings			Info
C00482/18	-199.99	%	199.99	Display of the analog signals which are applied at the nDis1_a nDis8_a inputs
C00484/14 C00487/14	▶ Display of internal process variables in application units			

18.2.13.1 Display of internal process variables in application units

In addition to the display in percent in $\underline{\text{C00482/1...8}}$, for the first four analog signals $nDis1_a$... $nDis4_a$ the configurable display parameters $\underline{\text{C00487/1...4}}$ are provided. Via these display parameters, internal process variables can be displayed, e.g. on the keypad, with an individual scaling and an individual unit.

Configuration of the display parameters (C00487/1...4):

Parameter	Possible setting	s	Info	
<u>C00484/14</u>	-199.99	%	199.99	Offset 1 4 • See formula [18-71]. • Lenze setting: 0.00 %
<u>C00485/14</u>	-65536.0000		65536.0000	 Display factor 1 4 Scaling of the input variable for the display. See formula [18-71]. Lenze setting: 1.0000
<u>C00486/14</u>	String of digits			Text 1 4 • For each display value, an individual unit (e.g. "bottles") can be set.

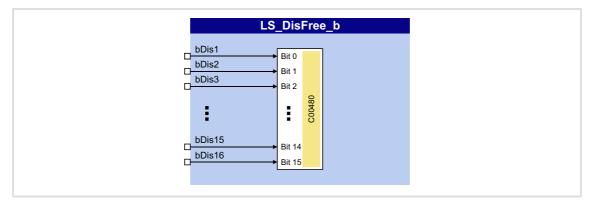
Application unit
$$1 = \frac{\text{nDis1} \text{ a } [\%] + \text{Offset } 1 [\%]}{100 [\%]}$$
. Display factor 1 [text 1]

[18-71] Formula for scaling the display

Example 1:

- ▶ Input variable *nDis1* a = 100 %
- ► Offset 1 (C00484/1) = 0 %
- ightharpoonup Display factor 1 (C00485/1) = 123.45
- ► Text 1 (C00486/1) = "bottles"

Application unit 1 =
$$\frac{100 \, [\%] + 0 \, [\%]}{100 \, [\%]} \cdot 123.45 \, [bottles] = 123.45 \, bottles$$


Example 2:

- ▶ Input variable *nDis2* a = 40 %
- ► Offset 2 (C00484/2) = 35 %
- ► Display factor 2 (<u>C00485/2</u>) = 20
- ► Text 2 (C00486/2) = "kg"

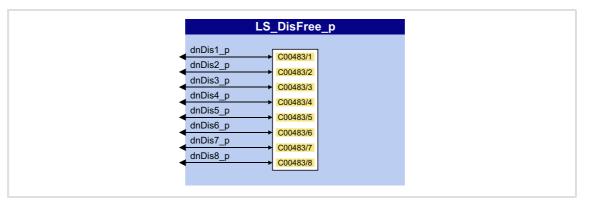
Application unit 2 =
$$\frac{40 [\%] + 35 [\%]}{100 [\%]} \cdot 20 [kg] = 15.00 kg$$

18.2.14 LS_DisFree_b

This system block displays 16 arbitrary digital signals of the application on a bit coded display code.

Inputs

Identifier	Data type	Information/possible settings
bDis1 bDis16	BOOL	Inputs for any digital signal of the application


Parameter	Possible	Possible settings			Info
<u>C00480</u>	0x0000			0xFFFF	Display of the digital signals as
	Bit 0	Signal level at the bDis1 input		Dis1 input	hexadecimal values which are applied at the bDis1 bDis16 inputs
	Bit 1	Signal	Signal level at the bDis2 input		
	Bit 2	Signal	Signal level at the bDis3 input		
	Bit 15	Signal	level at the <i>bE</i>	is16 input	

Function library
System blocks | LS DisFree p

18.2.15 LS_DisFree_p

This system block displays 8 arbitrary position signals of the application on display codes.

Inputs

Identifier Data type	Information/possible settings
dnDis1_p dnDis8_p	Inputs for arbitrary position signals of the application

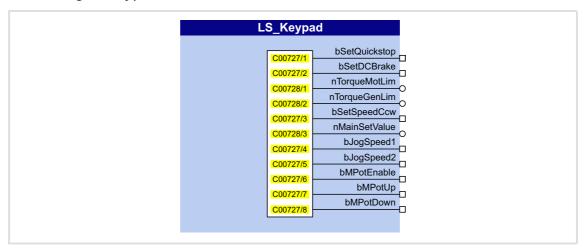
Parameter

Parameter	Possible settings			Info
C00483/18	-2147483647	Incr.	2147483647	Display of the position signals which are applied at the dnDis1_p dnDis8_p inputs

18.2.16 LS_DriveInterface

Interface to internal device control.

For a detailed description see main chapter "Device control (DCTRL)":


▶ Internal interfaces | "LS DriveInterface" system block (□ 115)

18.2.17 LS_Keypad

This system block is used on I/O interconnection level if the "Keypad" control mode has been selected in C00007.

In the "Keypad" control mode, the **LS_Keypad** system block passes on various setpoints and control commands to the technology application which can be selected/activated via codes using the keypad.

Outputs

Identifier	Data type	Value/meaning
bSetQuickstop	BOOL	$\underline{\text{C00727/1}} = "1" \equiv \text{Request quick stop}$
bSetDCBrake	BOOL	C00727/2 = "1" ≡ Request DC-injection braking
nTorqueMotLim	INT	Torque limit in motor mode set in C00728/1 • Lenze setting: 100.00 %
nTorqueGenLim	INT	Torque limit in generator mode set in C00728/2 • Lenze setting: 100.00 %
bSetSpeedCcw	BOOL	$\underline{\text{C00727/3}}$ = "1" \equiv Request reversal
nMainSetValue	INT	Setpoint speed set in C00728/3 • Lenze setting: 0.00 %
bJogSpeed1	BOOL	$\underline{\text{C00727/4}}$ = "1" \equiv Request fixed speed setpoint 1
bJogSpeed2	BOOL	$\underline{\text{C00727/5}}$ = "1" = Request fixed speed setpoint 2
bMPotEnable	BOOL	$\underline{\text{C00727/6}}$ = "1" \equiv Motor potentiometer: Request activation
bMPotUp	BOOL	$\underline{\text{C00727/7}}$ = "1" \equiv Motor potentiometer: Request positive acceleration
bMPotDown	BOOL	<u>C00727/8</u> = "1" ≡ Motor potentiometer: Request negative acceleration

Function library
System blocks | LS_MotionControlKernel

Parameter

Parameter	Possible settings			Info
<u>C00727/18</u>	0		1	 Keypad digital values Execution of control commands for keypad operation See the "Outputs" table for the meaning of the individual subcodes
C00728/13	-199.99	%	199.99	 Analog values - keypad Specification of various setpoints for keypad operation See the "Outputs" table for the meaning of the individual subcodes

18.2.18 LS_MotionControlKernel

Interface to the basic drive functions implemented in Motion Control Kernel (MCK).

For a detailed description see the main chapter "Basic drive functions":

▶ Internal interfaces | System block "LS MotionControlKernel" (□ 475)

18.2.19 LS_MotorInterface

Interface to internal motor control.

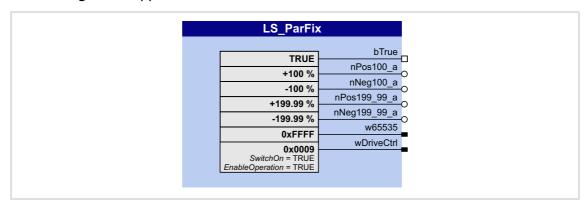
For a detailed description see the main chapterl "Motor control (MCTRL)":

▶ <u>Internal interfaces | system block "LS MotorInterface"</u> (285)

18.2.20 LS_MultiEncoder

Interface to the Multi-Encoder.

For detailed information please see the main chapter "Encoder/Feedback system":

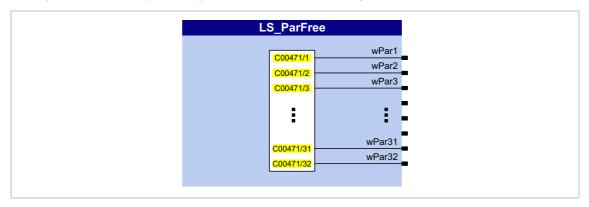

▶ <u>Internal interfaces | "LS MultiEncoder" system block</u> (🕮 312)

18.2.21 LS_ParFix

This system block outputs various fixed values (constants) to be used in the interconnection.

► From version 02.00.00, another LS_ParFix_2 system block is available which can be used e.g. in the application level.

Outputs

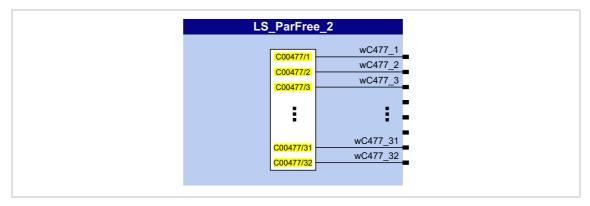

Identifier	Data type	Value/meaning
bTrue	BOOL	1 ≡ TRUE
nPos100_a	INT	16384 ≡ + 100 %
nNeg100_a	INT	-16384 ≡ - 100 %
nPos199_99_a	INT	32767 ≡ + 199.99 %
nNeg199_99_a	INT	-32767 ≡ - 199.99 %
w65535	WORD	$65535 \equiv 0 \times FFFF$
wDriveCtrl	WORD	9 = 0x0009 • Bit 0, SwitchOn = TRUE • Bit 3, EnableOperation = TRUE • All others: FALSE See also: • wCANControl/wMCIControl control words (□ 118)

Function library
System blocks | LS_ParFree

18.2.22 LS_ParFree

This system block outputs 32 parameterisable 16-bit signals.

Outputs


Identifier	Value/meaning
Data type	
wPar1 wPar32	Output of the 16-bit signals parameterised in C00471/132
From version 02.00.00: wC471_1 wC471_32	Note: From version 02.00.00 the outputs are named according to the respective setting parameter for an easier allocation.

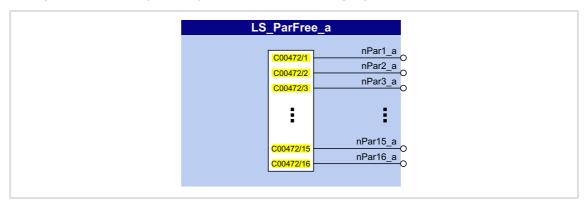
Parameter	Possible settings		Info
C00471/132	0x0000	0xFFFF	Setting of the 16-bit signals to be output

18.2.23 LS_ParFree_2

This system block outputs 32 parameterisable 16-bit signals.

Outputs

Identifier	Value/meaning
Data type	
wC477_1 wC477_32 word	Output of the 16-bit signals parameterised in C00477/132

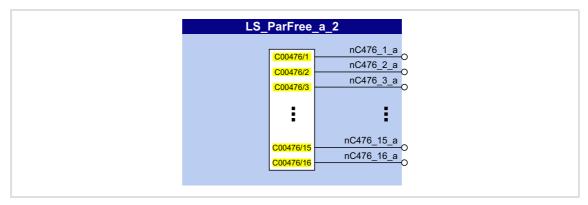

Parameter	Possible settings		Info
C00477/132	0x0000	0xFFFF	Setting of the 16-bit signals to be output

Function library
System blocks | LS_ParFree_a

18.2.24 LS_ParFree_a

This system block outputs 16 parameterisable analog signals.

Outputs


Identifier	Value/meaning
Data type	
nPar1_a nPar16_a	Output of the analog signals parameterised in C00472/116
From version 02.00.00: nC472_1_a nC472_16_a	Note: From version 02.00.00 the outputs are named according to the respective setting parameter for an easier allocation.

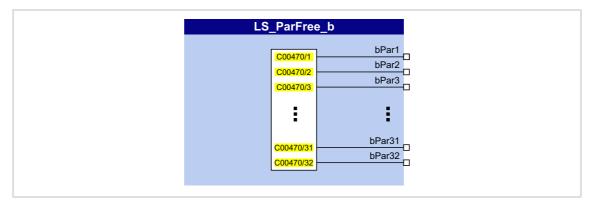
Parameter	Possible settings			Info
C00472/116	-199.99	%	+199.99	Selection of analog signals to be output

18.2.25 LS_ParFree_a_2

This system block outputs 16 parameterisable analog signals.

Outputs

Identifier	Value/meaning
Data type	
nC476_1_a nC476_16_a INT	Output of the analog signals parameterised in C00476/116

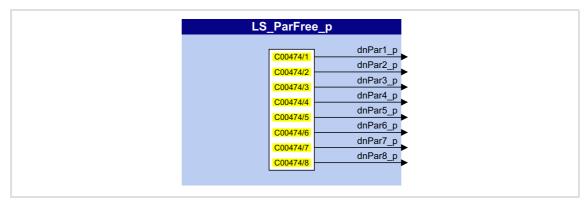

Parameter	Possible setting	;s		Info
C00476/116	-199.99	%	+199.99	Selection of analog signals to be output

Function library
System blocks | LS_ParFree_b

18.2.26 LS_ParFree_b

This system block outputs 32 parameterisable digital signals.

Outputs


Identifier	Value/meaning
Data type	
bPar1 bPar32	Output of the signal levels (FALSE/TRUE) parameterised in C00470/132
From version 02.00.00: bC470_1 bC470_32	Note: From version 02.00.00 the outputs are named according to the respective setting parameter for an easier allocation.

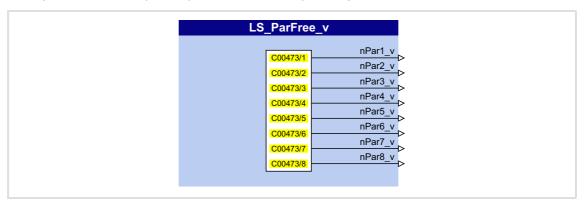
Parameter	Possible settings	Info
C00470/132		Selection of signal levels to be output
	0 "FALSE" signal is output	• Bit 0 31 = bPar1 bPar32
	1 "TRUE" signal is output	

18.2.27 LS_ParFree_p

This system block outputs 8 parameterisable position signals.

Outputs

Identifier	Value/meaning
Data type	
dnPar1_p dnPar8_p	Output of the position signals parameterised in C00474/18
From version 02.00.00: dnC474_1_p dnC474_8_p	Note: From version 02.00.00 the outputs are named according to the respective setting parameter for an easier allocation.

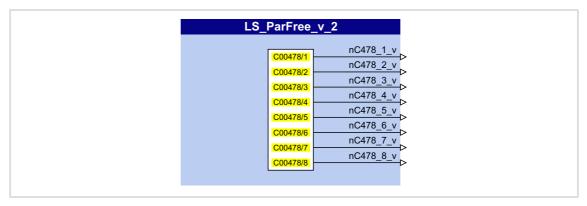

Parameter	Possible settings			Info
C00474/18	-2147483647	Incr.	2147483647	Setting of the position signals to be output

Function library
System blocks | LS_ParFree_v

18.2.28 LS_ParFree_v

This system block outputs 8 parameterisable speed signals.

Outputs


Identifier	Information/possible settings
Data ty _l	e
nPar1_v nPar8_v	Output of the speed signals parameterised in C00473/18
From version 02.00.00: nC473_1_v nC473_8_v	Note: From version 02.00.00 the outputs are named according to the respective setting parameter for an easier allocation.

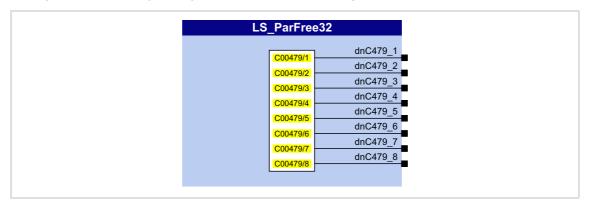
Parameter	Possible settings			Info
C00473/18				Selection of speed signals to be output

18.2.29 LS_ParFree_v_2

This system block outputs 8 parameterisable speed signals.

Outputs

Identifier	Information/possible settings
Data type	
nC478_1_v nC478_8_v	Output of the speed signals parameterised in C00478/18

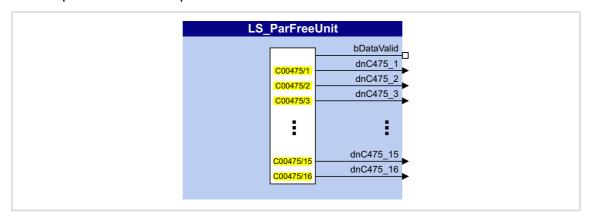

Parameter	Possible settings			Info
C00478/18	-32767	Incr/ms	+32767	Selection of speed signals to be output

Function library
System blocks | LS_ParFree32

18.2.30 LS_ParFree32

This system block outputs 8 parameterisable 32-bit signals.

Outputs


Identifier	Value/meaning
Data type	
dnC479_1 dnC479_8	Output of the 32-bit signals parameterised in C00479/18

Parameter	Possible settings		Info
C00479/18	-2147483647	2147483647	Setting of the 32-bit signals to be output

18.2.31 LS ParFreeUnit

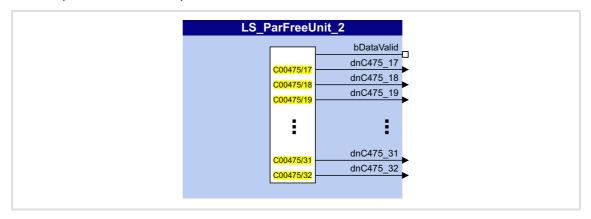
This system block outputs 16 parameterisable position signals.

- ► In contrast to the SB <u>LS ParFree</u> p, the positions are set in the application unit [unit] instead of in [increments].
- ► The *bDataValid* status signal indicates that the internal position conversion is completed and the output data are consistent.

Outputs

Identifier	Data type	Value/meaning		
bDataValid		Status signal "Position conversion completed, data consistent"		
	BOOL	TRUE	The conversion of the positions from [unit] to [increments] is completed.	
dnC475_1 dnC475	5_16 DINT	Output of the position signals parameterised in C00475/116 in [increments Observe bDataValid status signal!		

Parameter	Possible settings			Info
C00475/116	-214748.3647	unit	214748.3647	Setting of the position signals to be output



Function library
System blocks | LS_ParFreeUnit_2

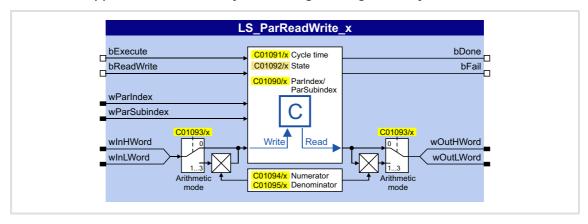
18.2.32 LS_ParFreeUnit_2

This system block outputs 16 parameterisable position signals.

- ► In contrast to the SB <u>LS ParFree</u> p, the positions are set in the application unit [unit] instead of in [increments].
- ► The *bDataValid* status signal indicates that the internal position conversion is completed and the output data are consistent.

Outputs

Identifier	Data type	Value/meaning		
bDataValid		Status signal "Position conversion completed, data consistent"		
BOOL		TRUE	The conversion of the positions from [unit] to [increments] is completed.	
dnC475_17 dnC47	5_32 DINT	Output of the position signals parameterised in C00475/1732 in [increments] Observe bDataValid status signal!		


Parameter	Possible settings			Info
C00475/1732	-214748.3647 unit 214748.3647			Setting of the position signals to be output

18.2.33 LS_ParReadWrite_1-6

The **LS_ParReadWrite_1** ... **LS_ParReadWrite_6** system blocks are used for reading and writing local parameters.

- ▶ If several system blocks are activated at the same time, the blocks will be processed one at a time every time the main program is executed.
- ▶ The SB supports one-time and cyclic reading/writing in an adjustable time interval.

Inputs

Identifier	Data type	Information/possible settings			
bExecute		Trip read/write request			
	BOOL	FALSE ØTRUE	If cycle time (C01091) = "0 ms": <u>One-time</u> reading/writing of the parameter value which has been addressed via thewParIndex and wParSubindex inputs.		
			If cycle time (C01091) > "0 ms": <u>Cyclic</u> reading/writing of the parameter value which has been addressed via the <i>wParIndex</i> and <i>wParSubindex</i> inputs.		
		TRUE⊿FALSE	Deactivate cyclic reading/writing again.		
bReadWrite		Selection: Read or write request			
	BOOL	FALSE	Read request		
		TRUE	Write request		
wParIndex	WORD	Code to be read or written. • As an alternative, this selection can be carried out via C01090.			
wParSubindex	WORD	Subcode to be read or written. • As an alternative, this selection can be carried out via C01090.			
wInHWord wInLWord		Value to be written (DataHigh/DataLow portion)			
	WORD				

Function library
System blocks | LS_ParReadWrite_1-6

Outputs

Identifier	Data type	Value/meaning			
bDone	BOOL	 "Read/Write request successfully completed" status signal The output is automatically reset to FALSE if a new request is activa bExecute or the cycle time (C01091) expires. 			
		TRUE Read/W	rite request successfully completed.		
		1.There	SE status can have the following meanings: e is no active read/write request. ead/write request has not been completed yet. eror has occurred (if <i>bFail</i> = TRUE).		
bFail		"Error" status			
	BOOL		has occurred (group signal). lisplay parameter (C01092) for details.		
wOutHWord wOutLWord	WORD	Value which was read (DataHigh/DataLow portion) after read request		

Parameter

Parameter	Possible settings			Info
C01090/16	0,000		16000,000	Parameter to be read or written.
	Format <code n<="" td=""><td>: umber>,<subcode nu<="" td=""><td>ımber></td><td> For a setting of "0,000", inputs wParIndex and wParSubindex are effective for addressing purposes instead. Lenze setting: 0,000 </td></subcode></td></code>	: umber>, <subcode nu<="" td=""><td>ımber></td><td> For a setting of "0,000", inputs wParIndex and wParSubindex are effective for addressing purposes instead. Lenze setting: 0,000 </td></subcode>	ımber>	 For a setting of "0,000", inputs wParIndex and wParSubindex are effective for addressing purposes instead. Lenze setting: 0,000
C01091/16				Cycle time
	0	One-time reading/w bExecute in case of a edge		 Subcode 1 = LS_ParReadWrite_1 Subcode 2 = LS_ParReadWrite_2 Subcode 6 = LS_ParReadWrite_6
	Cyclic re	eading/writing:	• Lenze setting: 0	
	20	20 ms		
	50	50 ms		
	100	100 ms		
	200	200 ms		
	500	500 ms		
	1000	1 s		
	2000	2 s		
	5000	5 s		
	10000	10 s		

Parameter	Possible	e settinį	gs	Info	
C01092/16					Error status
	0	No err	or		 If bFail = TRUE: Error status is displayed.
	33803	Invalid data type (e.g. STRING)			Subcode 1 = LS_ParReadWrite_1
	33804	4 Limit violation			Subcode 2 = LS_ParReadWrite_2
	33806	Invalid	l code		Subcode 6 = LS_ParReadWrite_6
	33813	No ele	ment in the se	lection list	
	33815	Writin permit	g of the paran tted	neter not	
	33816	Writing of the parameter only permitted if controller is inhibited			
	33829	9 Invalid subcode			
	33865	No pai	rameter with s	ubcodes	
C01093/16					Arithmetic mode
	0	0 No arithmetic			 Lenze setting: "0: No arithmetic" Arithmetic function
	1	In16Bit: LW=+/-32767			
	2	! In16Bit: HW=+/-; LW=065535 In32Bit: HW_LW=+/-2147483647			
	3				
<u>C01094/16</u>	-32767			32767	Numerator For internal conversion into arithmetic modes 1 3. Lenze setting: 1
<u>C01095/16</u>	1			32767	For internal conversion into arithmetic modes 1 3. Lenze setting: 1

18.2.33.1 Arithmetic function

The integrated arithmetic function allows for easy arithmetic conversion of the process value to be written or which was read into the format of the target parameter via parameterisable factors and without the need for an additional arithmetic FB.

▶ In <u>CO1093</u>, the interpretation of the *wInHWord* and *wInLWord* inputs can be set to be able to write to parameters:

Arithmetic mode		wInHWord	winLWord	Internal conversion
0	No arithmetic (Lenze setting)	INTEG (4 bytes v	ER_32 vith sign)	No (behaviour as before)
		DataHigh component	DataLow component	
1	In16Bit: LW=+/-32767	-	INTEGER_16 (2 bytes with sign)	Yes (see section below)
2	In16Bit: HW=+/-; LW=065535	Sign (0 ≡ positive value)	UNSIGNED_16 (2 bytes without sign)	
3	In32Bit: HW_LW= +/-2147483647	INTEG (4 bytes v	-	
		DataHigh component	DataLow component	

Function library
System blocks | LS_ParReadWrite_1-6

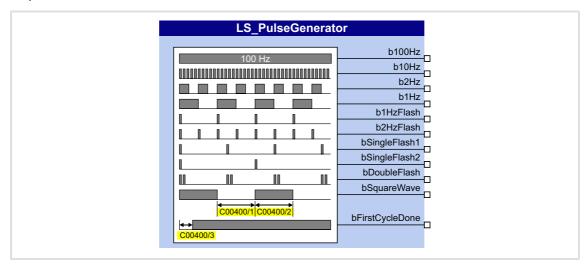
Internal conversion

If arithmetic modes 1 \dots 3 are selected in <u>C01093</u>, the input value / read parameter value is internally converted via parameterisable factors.

▶ Division is <u>not</u> remainder considered.

```
Parameter\ value\ to\ be\ written\ =\ Input\ value_{[32]}\cdot \frac{Numerator_{[16]}}{Denominator_{[16]}} \frac{C01094:\ Numerator}{C01095:\ Denominator}
```

[18-72] Internal conversion for write access


```
Output \ value_{[32]} = \ Read \ parameter \ value \cdot \frac{Numerator_{[16]}}{Denominator_{[16]}} \frac{C01094}{C01095} : Denominator
```

[18-73] Internal conversion for read access

18.2.34 LS PulseGenerator

This system block outputs 9 different fixed frequencies and 1 frequency with parameterisable pulse/dead time.

The SB provides a TRUE signal at the *bFirstCycleDone* output when the first 1-ms processing cycle is completed and the time set in $1\underline{C00400/3}$ has expired. This status signal can e.g. be used for the delayed enable of peripheral devices or motor control setpoints so that all required initial values are calculated first after the controller switch-on.

Outputs

Identifier	Data type	Value/meaning				
b100Hz	BOOL	Rectangular signal 100 Hz				
b10Hz	BOOL	Rectangular signal 10 Hz				
b2Hz	BOOL	Rectangular signal 2 Hz				
b1Hz	BOOL	Rectangular signal 1 Hz				
b1HzFlash	BOOL	80 ms-pulse, repetition rate every second				
b2HzFlash	BOOL	80 ms-pulse, repetition rate every 0.5 seconds				
bSingleFlash1	BOOL	80 ms pulse, repetition rate every 1.25 seconds				
bSingleFlash2	BOOL	80 ms pulse, repetition rate every 2 seconds				
bDoubleFlash	BOOL	80 ms-double pulse, repetition rate every 1.25 seconds				
bSquareWave	BOOL	Output frequency with pulse/dead time set in C00400/12				
bFirstCycleDone		Status signal "First processing cycle completed"				
	BOOL	TRUE The first 1-ms processing cycle has been completed and the time set in C00400/3 has expired (i.e. all FBs have been called at least once).				

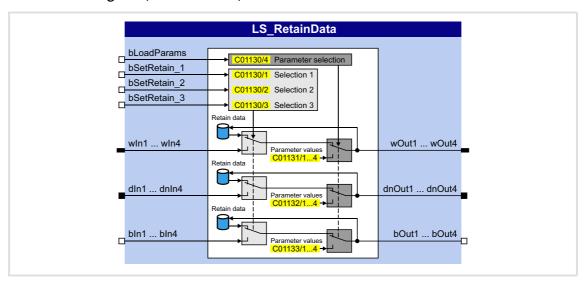
Function library
System blocks | LS_Resolver

Parameter

Parameter	Possible settings			Info
<u>C00400/1</u>	0	ms	60000	Length of LOW level (break)For output bSquareWaveLenze setting: 1000 ms
<u>C00400/2</u>	0	ms	60000	Length of HIGH level For output bSquareWave Lenze setting: 1000 ms
<u>C00400/3</u>	0	ms	60000	Delay of the <i>bFirstCycleDone</i> status • Lenze setting: 100 ms

18.2.35 LS_Resolver

Interface to the resolver.


For detailed information please see the main chapter "Encoder/Feedback system":

▶ Internal interfaces | "LS Resolver" system block (□ 301)

18.2.36 LS RetainData

This system block serves to select and save retain data similar to the FBs <u>L_SampleHold_1</u> and <u>L_SampleHold_2</u>.

- ▶ Retain data are values that are saved automatically at mains disconnection or disconnection of the 24-V supply in the controller and are restored when the 24-V supply is switched on again.
- ▶ A total of 12 retain data can be stored in the retain memory:
 - 4 WORD signals (16 bits, 0 ... 65535)
 - 4 DINT signals (32 bits, -2147483647 ... 2147483647)
 - 4 BOOL signals (FALSE or TRUE)

Inputs

Identifier	Data type	Information/possible settings			
bLoadParams	BOOL	This input ha	tputs & retain values to parameter values. as priority over the <i>bSetRetain</i> inputs. ication: Initialisation of the outputs & retain values.		
			The input or retain values are output, depending on the bSetRetain input.		
			The outputs selected in C01130/4 and the respective retain values are set to the parameter values and held as long as bLoadParams is TRUE. If the parameter values change during this time, the respective outputs and retain values change as well.		
bSetRetain_13		Transfer selecte	ed input values to the retain memory ("latch")		
	BOOL	FALSE	No transfer. Retain values or parameter values (when bLoadParams = TRUE) are provided at the outputs.		
			The input values selected in <u>C01130/13</u> are stored in the retain memory and provided at the outputs.		

Identifier	Data type	Information/possible settings
wln1 wln4	WORD	Input values
dnIn1 dnIn4	DINT	
bln1 bln4	BOOL	

Outputs

Identifier		Value/meaning
	Data type	
wOut1 wOut4	WORD	Output of the input or retain values, depending on the bSetRetain input
dnOut1 dnOut4		
	DINT	
bOut1 bOut4		
	BOOL	

Parameter

Parameter	Possible	esettings		Info		
C01130/14	Setting	is bit code	d:	Subcodes 1 3: Selection 1 3		
		Subcodes 1 3:		Subcode 4:	Select which input values are to be stored in the retain memory	
	Bit 0	wln1		C01131/1	when setting the respective	
	Bit 1	wln2		C01131/2	bSetRetain-input to TRUE.Lenze setting: 0x0000	
	Bit 2	wln3		<u>C01131/3</u>	Lenze Setting, Oxoboo	
	Bit 3	wln4		<u>C01131/4</u>	Subcode 4: Parameter selection	
	Bit 4	dnIn1		<u>C01132/1</u>	 Select which parameter values are to be stored in the retain memory 	
	Bit 5	dnIn2		<u>C01132/2</u>	when setting bLoadParams to TRUE.	
	Bit 6	dnIn3		<u>C01132/3</u>	• Lenze setting: 0x0000	
	Bit 7	dnIn4		<u>C01132/4</u>		
	Bit 8	bln1		C01133/1		
	Bit 9	bln2 <u>C01133/2</u> bln3 <u>C01133/3</u> bln4 <u>C01133/4</u>		C01133/2		
	Bit 10			C01133/3		
	Bit 11			C01133/4		
	Bit 12	Reserved				
	Bit 13					
	Bit 14					
	Bit 15					
<u>C01131/14</u>	0			65536	Parameter value for retain memory (outputs <i>wOut1 wOut4</i>) • Lenze setting: 0	
<u>C01132/14</u>	-21474	83647		2147483647	Parameter values for retain memory (outputs dnOut1 dnOut4) • Lenze setting: 0	
C01133/14					Parameter values for retain memory	
	0	FALSE			(outputs bOut1 bOut4) • Lenze setting: 0: FALSE	
	1 TRUE				- Lenze setting. U. I ALSE	

18.2.37 LS SetError 1

Parameterisable responses to user-defined events are tripped.

For a detailed description see the main chapter "Diagnostics & error management":

▶ System block "LS SetError 1" (☐ 634)

18.2.38 LS SetError 2

Parameterisable responses to user-defined events are tripped.

For a detailed description see the main chapter "Diagnostics & error management":

▶ System block "LS SetError 2" (☐ 636)

18.2.39 LS SyncManagement

Output of status information for synchronising the internal time base.

For a detailed description see main chapter "Synchronisation of the internal time base of the controller":

▶ <u>Internal interfaces | System block "LS SyncManagement"</u> (733)

18.2.40 LS TouchProbe

Interface for touch probe detection.

For a detailed description see the main chapter "I/O terminals":

▶ Touch probe detection (☐ 362)

18.2.41 LS_WriteParamList

Writing to a configurable list which contains up to 32 local parameters.

For a detailed description see the main chapter "Parameter change-over". (734)

19 Index

Symbole	AOutx
"LA_NCtrl" application block <u>386</u>	Decoupling value (C00442) 831
"LA_SwitchPos" application block 443	Appl.
 "LA_TabPos" application block 414	Reference frequency C11 (C00059) 765
	Reference speed (C00011) 757
0-9	Application (C00005) 752
120 % operation <u>243</u>	Application notes 29
16-bit inputs (C00831) 906	Application units
16-bit inputs (Set2) (C00836) <u>918</u>	(C00486) <u>844</u>
16-bit inputs [%] (C00830) 904	Configuration of the display parameters 1388
16-bit inputs [%] (Set2) (C00835) 915	Offset (C00484) <u>844</u>
16-bit inputs [rpm] (C00832) 909	Application units - display factor (C00485) <u>844</u>
16-bit inputs [rpm] (Set2) (C00837) 921	Application units (C00487) 845
16-bit inputs I/O level (C00841) 933	Assigning digital inputs 881
16-bit inputs I/O level [%] (C00840) <u>932</u>	Assigning signal sources 881
24 V supply voltage (C00065) <u>766</u>	Assignment of the process data objects 654
32-bit inputs [incr] (C00834) 914	Auto DCB <u>251</u>
32-bit inputs [incr] (Set2) (C00839) <u>930</u>	Hold time (C00106) 774 Threshold (C0010) 750
32-bit inputs I/O level [incr] (C00844) <u>940</u>	Threshold (C00019) 759
87-Hz operation <u>155</u>	AutoFailReset configuration (C00188) 796
	AutoFailReset function 598
A	AutoFailReset repetition time (C00184) 796
Accel. time - main setpoint (C00012) 758	AutoFailReset residual runtime (C00185) 796
Acceleration override 561	Automatic DC-injection braking (auto DCB) 251
Access protection 37	Automatic motor data identification 126
Acknowledgement error <u>680</u>	Auto-start option 112
Activate resolver error comp. (C00417) 825	Auto-start option (C00142) 781
Activating the bus terminating resistor 642, 720	Axis bus <u>717</u>
Active COBID (C00355) <u>816</u>	Axis bus address and no. of nodes (C02430) 1007
Actual values (C00055) 764	Axis bus error status (C02436) 1008
Add. accel. time x (C00101) 773	Axis bus MessageError (C02437) 1008
Add. decel. time x (C00103) 773	Axis bus status (C02435) 1008
Additive speed specification 264	Axis bus time settings (C02431) 1007
AIN1	AxisBusIO slave/master (C02440) 1009
Characteristic (C00010) 757	В
AIN2	-
Characteristic (C00020) 760	Basic drive functions 473
AINx	Basic functions 473
Configuration (C00034) 762	Behaviour after mains connection 112
Gain (C00027) 761	Binary inputs (C00833) <u>911</u>
Input current (C00029) 762	Binary inputs (Set2) (C00838) <u>925</u>
Input voltage (C00028) 761	Binary inputs I/O level (C00843) 935
Offset (C00026) 761	Binding ID 40
Output value (C00033) <u>762</u>	Bit error 680
An01	Blocks <u>1110</u>
AIN1_I < 4 mA (error message) 622	Brake chopper 265
An02	Brake control <u>563</u>
AIN2_I < 4 mA (error message) 622	Brake energy management (C00175) 794
Analog inputs 352	Brake resistance value (C00129) 777
Angle controller 264	Brake resistor 265
Angle controller overflow 1230	Brake resistor monitoring (I2xt) 279
Angular drift monitoring (encoder) 326	Brake resistor overload threshold (C00572) 852

Brake resistor utilisation (C00133) 778	C107 <u>775</u>
Braking operation/brake energy management <u>265</u>	C1070 <u>967</u> , <u>1222</u>
Braking procedures 268	C1071 <u>967</u> , <u>1222</u>
	C1072 <u>968</u> , <u>1222</u>
С	C1073 <u>968</u>
C10 <u>757</u>	C1074 <u>968</u> , <u>1222</u>
C100 <u>773</u>	C1075 <u>968</u> , <u>1223</u>
C1000 <u>956</u>	C1076 <u>969</u> , <u>1212</u>
C101 <u>773</u> , <u>1289</u>	C1077 <u>969</u> , <u>1212</u>
C1010 <u>956</u> , <u>1137</u> , <u>1138</u> , <u>1139</u>	C1078 <u>969</u> , <u>1212</u>
C1020 <u>957</u> , <u>1299</u>	C1079 <u>969</u> , <u>1212</u>
C1021 <u>957</u> , <u>1299</u>	C1080 <u>969</u> , <u>1212</u>
C1022 <u>957</u> , <u>1299</u>	C1081 <u>970</u> , <u>1213</u>
C1023 <u>957</u> , <u>1299</u>	C1082 <u>734</u> , <u>970</u>
C1025 <u>958</u> , <u>1205</u>	C1083 <u>970</u>
C1026 <u>958</u> , <u>1205</u> , <u>1206</u>	C1084 <u>970</u>
C1028 <u>958</u> , <u>1206</u>	C1085 <u>971</u>
C1029 <u>958</u> , <u>1206</u>	C1086 <u>971</u>
C103 <u>773</u> , <u>1289</u>	C1087 <u>971</u>
C1030 <u>959</u> , <u>1207</u>	C1088 <u>971</u>
C1031 <u>959</u> , <u>1207</u> , <u>1208</u>	C1089 <u>972</u>
C1033 <u>959</u> , <u>1208</u>	C1090 <u>972</u> , <u>1406</u>
C1034 <u>959</u> , <u>1208</u>	C1091 <u>973</u> , <u>1406</u>
C104 <u>774</u>	C1092 <u>973</u> , <u>1407</u>
C1040 <u>960</u> , <u>1364</u>	C1093 <u>974</u> , <u>1407</u>
C1041 <u>960</u> , <u>1364</u>	C1094 <u>974</u> , <u>1407</u>
C1042 <u>960</u> , <u>1364</u> C1045 <u>960</u> , <u>1163</u> , <u>1164</u> , <u>1165</u>	C1095 <u>974</u> , <u>1407</u>
C1046 <u>961</u> , <u>1172</u> , <u>1173</u> , <u>1174</u>	C11 <u>757</u>
C1047 <u>961</u> , <u>1172</u> , <u>1177</u> , <u>1174</u>	C1100 <u>975</u> , <u>1196</u> , <u>1198</u> , <u>1200</u> C1101 <u>975</u> , <u>1196</u> , <u>1198</u> , <u>1200</u>
C1048 <u>961</u> , <u>1257</u>	C1101 <u>975</u> , <u>1150</u> , <u>1156</u> , <u>1200</u> C1110 <u>975</u>
C1049 <u>961</u> , <u>1141</u>	C1110 <u>975</u> C1111 <u>975</u>
C105 774	C1112 <u>976</u>
C1050 <u>962</u> , <u>1142</u> , <u>1143</u>	C1112 <u>976</u> C1119 <u>976</u>
C1051 <u>962</u> , <u>1141</u> , <u>1142</u> , <u>1143</u>	C1120 <u>976</u>
C1052 <u>962</u> , <u>1142</u> , <u>1143</u>	C1121 <u>976</u>
C1053 <u>962</u> , <u>1334</u>	C1122 977
C1054 <u>963</u> , <u>1334</u>	C1123 <u>977</u>
C1055 <u>963</u> , <u>1334</u>	C1124 <u>977</u>
C1056 <u>963</u> , <u>1334</u>	C1130 <u>978</u> , <u>1411</u> , <u>1412</u>
C1057 <u>963</u> , <u>1142</u>	C1131 <u>978</u> , <u>1412</u>
C1058 <u>964</u> , <u>1327</u> , <u>1330</u>	C1132 <u>979</u> , <u>1412</u>
C1059 <u>964</u> , <u>1328</u> , <u>1331</u>	C1133 <u>979</u> , <u>1412</u>
C106 <u>774</u>	C1138 <u>979</u> , <u>1372</u> , <u>1375</u> , <u>1376</u> , <u>1377</u>
C1060 <u>964</u> , <u>1328</u> , <u>1331</u>	C1139 <u>980</u> , <u>1372</u> , <u>1375</u> , <u>1376</u> , <u>1377</u>
C1061 <u>965</u> , <u>1328</u> , <u>1331</u>	C114 <u>775</u>
C1062 <u>965</u> , <u>1368</u>	C1140 <u>980</u> , <u>1378</u> , <u>1379</u> , <u>1380</u> , <u>1381</u>
C1063 <u>965</u> , <u>1368</u>	C1141 <u>980</u> , <u>1378</u> , <u>1379</u> , <u>1380</u> , <u>1381</u>
C1064 <u>966</u> , <u>1368</u>	C115 <u>776</u>
C1065 <u>966</u> , <u>1368</u>	C1150 <u>981</u> , <u>1316</u> , <u>1320</u>
C1066 <u>966</u>	C1151 <u>981</u> , <u>1316</u> , <u>1320</u>
C1067 <u>967</u> , <u>1142</u> , <u>1222</u> , <u>1323</u>	C117 <u>776</u>
C1069 <u>967</u> , <u>1222</u>	C118 <u>776</u>


```
C1190 <u>981</u>
                                                                 C1297 999
C1191 <u>982</u>
                                                                 C1298 552, 1000
C1192 982
                                                                 C1299 1000
C1193 982
                                                                 C13 <u>758</u>, <u>1289</u>
C12 <u>758</u>, <u>1289</u>
                                                                 C130 777
C120 777
                                                                 C1300 1001
C1201 982
                                                                 C1301 1002
C1202 983
                                                                 C1302 1002
C1203 983
                                                                 C1303 1002
C1204 983
                                                                 C1304 1002
C1205 983
                                                                 C1305 1003
C1206 984
                                                                 C1306 1003
C121 777
                                                                 C1307 1003
C1210 <u>984</u>
                                                                 C1308 1004
C1211 984
                                                                 C1309 1004
C1213 985
                                                                 C131 778
C1215 985
                                                                 C133 778
C1216 985
                                                                 C134 <u>778</u>, <u>1289</u>
C1218 <u>986</u>
                                                                 C136 779
C1219 986
                                                                 C137 780
C1221 <u>987</u>
                                                                 C138 781
C1222 987
                                                                 C142 781
C1223 987
                                                                 C144 <u>782</u>
C1224 988
                                                                 C148 782
C1225 988
                                                                 C15 758
C1226 988
                                                                 C150 783
C1227 989
                                                                 C1501 1004
C1228 <u>989</u>
                                                                 C155 784
C1229 989
                                                                 C158 785
C123 777
                                                                 C159 786
C1230 990
                                                                 C16 758
C1231 990
                                                                 C160 786
C1232 990
                                                                 C161 787
C1233 991
                                                                 C163 787
C1234 991
                                                                 C164 <u>790</u>
C1235 991
                                                                 C165 791
C1236 <u>991</u>
                                                                 C166 792
C1237 992
                                                                 C167 792
C1238 992
                                                                 C1670 <u>1005</u>, <u>1154</u>, <u>1159</u>, <u>1160</u>, <u>1161</u>, <u>1162</u>
C1239 992
                                                                 C1671 1005, 1154, 1159, 1160, 1161, 1162
C1240 992
                                                                 C1672 <u>1005</u>, <u>1154</u>, <u>1159</u>, <u>1160</u>, <u>1161</u>, <u>1162</u>
C1241 994
                                                                 C168 792
C1242 995
                                                                 C169 793
C1243 996
                                                                 C170 793
C1244 996
                                                                 C171 793
C1245 997
                                                                 C173 793
C1246 997
                                                                 C174 794
                                                                 C175 <u>794</u>
C1251 997
C1252 998
                                                                 C1751 1006
C129 777
                                                                 C1752 1006
C1295 998
                                                                 C1755 1006
\mathsf{C1296}\ \underline{413},\ \underline{419},\ \underline{422},\ \underline{434},\ \underline{435},\ \underline{492},\ \underline{493},\ \underline{497},
                                                                 C176 <u>794</u>
<u>998</u>
                                                                 C1763 1006
```

C1764 <u>1006</u>	C2431 <u>1007</u>
C1765 <u>1006</u>	C2435 <u>1008</u>
C177 <u>794</u>	C2436 <u>1008</u>
C1770 <u>1006</u>	C2437 <u>1008</u>
C178 <u>795</u>	C244 <u>802</u> , <u>1340</u>
C179 <u>795</u>	C2440 <u>1009</u>
C18 <u>759</u>	C245 <u>802</u> , <u>1340</u>
C180 <u>795</u>	C246 <u>802</u>
C181 <u>795</u>	C247 <u>803</u> , <u>1340</u>
C182 <u>795</u> , <u>1289</u>	C249 <u>803</u> , <u>1345</u>
C184 <u>796</u>	C250 <u>803</u> , <u>1346</u> , <u>1347</u>
C185 <u>796</u>	C251 <u>803</u> , <u>1245</u>
C186 <u>796</u>	C252 <u>803</u> , <u>1245</u>
C187 <u>796</u>	C253 <u>804</u> , <u>1245</u>
C188 <u>796</u>	C254 <u>804</u>
C189 797	C2580 <u>1009</u>
C19 <u>759</u>	C2581 <u>1010</u>
C190 797, 1289	C2582 1010
C1902 <u>1006</u>	C2589 1012
C1903 1007	C2593 1012
C1905 <u>1007</u>	C26 <u>761</u>
C199 797	C2607 <u>1013</u>
C2 749	C2610 <u>1013</u>
C20 <u>760</u>	C2611 1014
C200 797	C265 <u>804</u>
C201 <u>798</u>	C2652 <u>1014</u>
C203 <u>798</u>	C27 761
C204 798	C270 <u>804</u>
C205 799	C270 <u>804</u>
C206 <u>799</u>	C271 <u>804</u> C272 <u>805</u>
	C272 <u>805</u> C273 <u>805</u>
C21 <u>760</u> C210 <u>799</u>	C273 <u>805</u> C274 <u>805</u>
C22 <u>760</u>	C275 <u>805</u>
C220 <u>799</u> , <u>1289</u>	C276 <u>805</u>
C221 <u>799</u> , <u>1290</u> C222 <u>799</u> , <u>1339</u>	C28 <u>761</u>
	C280 <u>805</u>
C223 <u>799</u> , <u>1339</u>	C2810 <u>1015</u>
C224 <u>799</u> , <u>1339</u>	C2811 <u>1015</u>
C225 <u>800</u> , <u>1339</u>	C2812 <u>1016</u>
C226 <u>800</u> , <u>1339</u>	C2813 <u>1016</u>
C227 <u>800</u> , <u>1339</u>	C2814 <u>1016</u>
C228 <u>800</u> , <u>1339</u>	C2815 <u>1017</u>
C23 <u>760</u>	C2816 <u>1017</u>
C231 <u>800</u> , <u>1339</u>	C2817 <u>1018</u>
C233 <u>801</u> , <u>1339</u>	C2830 <u>1019</u>
C234 <u>801</u>	C2840 <u>1020</u>
C235 <u>801</u>	C2841 <u>1020</u>
C236 <u>801</u>	C2842 <u>1020</u>
C24 <u>761</u>	C2843 <u>1020</u>
C241 <u>801</u> , <u>1290</u>	C2844 <u>346</u> , <u>1021</u>
C242 <u>802</u> , <u>1340</u>	C2845 <u>346</u> , <u>1021</u>
C243 <u>802</u> , <u>1340</u>	C2853 <u>1021</u>
C2430 <u>1007</u>	C2855 <u>1022</u>

Index

C2859 <u>1022</u>	C345 <u>813</u>
C2862 <u>1022</u>	C347 <u>813</u>
C2863 <u>1022</u>	C349 <u>814</u>
C2866 <u>1022</u>	C350 <u>814</u>
C2867 <u>1023</u>	C351 <u>815</u>
C2870 <u>1023</u>	C352 <u>815</u>
C2871 <u>1023</u>	C353 <u>815</u>
C2872 <u>1024</u>	C354 <u>816</u>
C2873 <u>1024</u>	C355 <u>816</u>
C2874 <u>1024</u>	C356 <u>817</u>
C2875 <u>1025</u>	C357 <u>817</u>
C2876 <u>1025</u>	C358 <u>817</u>
C2877 <u>1025</u>	C359 <u>818</u>
C2878 <u>1026</u>	C36 <u>762</u>
C2879 <u>1027</u>	C360 <u>818</u>
C29 <u>762</u>	C364 <u>819</u>
C290 <u>806</u>	C366 <u>819</u>
C291 <u>806</u>	C367 <u>820</u>
C296 <u>806</u>	C368 <u>821</u>
C297 <u>806</u>	C369 <u>821</u>
C2994 <u>1027</u>	C370 <u>821</u>
C2995 <u>1027</u>	C372 <u>822</u>
C2996 <u>1027</u>	C381 <u>822</u>
C3 <u>751</u>	C385 <u>822</u>
C301 <u>806</u>	C386 <u>822</u>
C302 <u>806</u>	C39 <u>763</u> , <u>1289</u>
C304 <u>806</u>	C400 <u>823</u> , <u>1410</u>
C305 <u>806</u>	C401 <u>823</u>
C306 <u>806</u>	C408 <u>823</u>
C307 <u>806</u>	C409 <u>824</u>
C308 <u>806</u>	C410 <u>824</u> , <u>1353</u>
C309 <u>806</u>	C411 <u>824</u> , <u>1354</u>
C310 <u>807</u>	C412 <u>825</u> , <u>1354</u>
C311 <u>807</u>	C413 <u>825</u> , <u>1353</u>
C312 <u>807</u>	C417 <u>825</u>
C313 <u>807</u>	C420 <u>826</u>
C314 <u>807</u>	C421 <u>826</u>
C315 <u>807</u>	C422 <u>826</u>
C316 <u>807</u>	C423 <u>827</u>
C317 <u>807</u>	C424 <u>827</u>
C320 <u>807</u>	C425 <u>827</u>
C321 <u>808</u>	C426 <u>828</u>
C322 <u>808</u>	C427 <u>828</u>
C323 <u>808</u>	C428 <u>828</u>
C324 <u>809</u>	C434 <u>829</u>
C33 <u>762</u>	C435 <u>829</u>
C338 <u>809</u> , <u>1128</u>	C436 829
C339 <u>809</u> , <u>1130</u>	C437 <mark>829</mark>
C34 <u>762</u>	C439 830
C341 <u>810</u>	C440 <u>830</u>
C342 <u>811</u>	C441 831
C343 <u>812</u>	C442 831
C344 <u>812</u>	C443 <u>832</u>
	

C444 <u>833</u>	C52 <u>764</u>
C445 <u>833</u>	C53 <u>764</u>
C446 <u>834</u>	C54 <u>764</u>
C447 <u>834</u>	C55 <u>764</u>
C448 <u>835</u>	C56 <u>765</u>
C449 <u>835</u>	C560 <u>851</u>
C455 <u>835</u>	C561 <u>851</u>
C456 <u>835</u>	C565 <u>851</u>
C458 <u>835</u>	C566 <u>851</u>
C459 <u>836</u>	C567 <u>852</u>
C461 <u>836</u>	C569 <u>852</u>
C462 <u>836</u>	C57 <u>765</u>
C463 <u>837</u>	C570 <u>852</u>
C464 <u>838</u>	C572 <u>852</u>
C465 <u>838</u>	C574 <u>853</u>
C466 <u>838</u>	C576 <u>853</u>
C467 <u>838</u>	C577 <u>853</u>
C468 <u>838</u>	C578 <u>853</u>
C469 <u>838</u>	C579 <u>853</u>
C470 <u>839</u> , <u>1398</u>	C58 <u>765</u>
C471 <u>839</u> , <u>1394</u>	C580 <u>854</u>
C472 <u>840</u> , <u>1396</u>	C581 <u>854</u>
C473 <u>840</u> , <u>1400</u>	C582 <u>854</u>
C474 <u>840</u> , <u>1399</u>	C583 <u>855</u>
C475 <u>841</u> , <u>1403</u> , <u>1404</u>	C585 <u>855</u>
C476 <u>841</u> , <u>1397</u>	C586 <u>855</u>
C477 <u>842</u> , <u>1395</u>	C588 <u>856</u>
C478 <u>842</u> , <u>1401</u>	C59 <u>765</u>
C479 <u>842</u> , <u>1402</u>	C590 <u>856</u>
C480 <u>843</u> , <u>1389</u>	C592 <u>856</u>
C481 <u>843</u> , <u>1386</u>	C593 <u>857</u>
C482 <u>843</u> , <u>1387</u>	C594 <u>857</u>
C483 <u>843</u> , <u>1390</u>	C595 <u>858</u>
C484 <u>844</u> , <u>1388</u>	C597 <u>858</u>
C485 <u>844</u> , <u>1388</u>	C598 <u>859</u>
C486 <u>844</u> , <u>1388</u>	C599 <u>859</u>
C487 <u>845</u> , <u>1388</u>	C6 <u>752</u>
C488 <u>845</u>	C60 <u>765</u>
C490 <u>846</u>	C600 <u>859</u>
C492 <u>846</u>	C601 <u>859</u>
C493 <u>846</u>	C602 <u>860</u>
C494 <u>846</u>	C603 <u>860</u>
C495 <u>847</u>	C604 <u>860</u>
C496 <u>847</u>	C606 <u>860</u>
C497 <u>847</u>	C607 <u>861</u>
C498 <u>848</u>	C608 <u>861</u>
C5 <u>752</u>	C609 <u>861</u>
C50 <u>763</u>	C61 <u>765</u>
C505 <u>848</u>	C610 <u>861</u>
C507 <u>849</u>	C611 <u>861</u>
C51 <u>763</u>	C612 <u>861</u>
C516 <u>849</u>	C613 <u>861</u>
C517 <u>850</u>	C615 <u>861</u>

C617 <u>862</u>	C7 <u>754</u>
C62 <u>766</u>	C70 <u>767</u>
C620 <u>862</u>	C700 <u>880</u>
C621 <u>864</u>	C701 <u>881</u>
C622 <u>869</u>	C705 <u>883</u>
C63 <u>766</u>	C706 <u>883</u>
C630 <u>869</u> , <u>1264</u> , <u>1265</u>	C71 <u>767</u>
C631 <u>870</u> , <u>1266</u> , <u>1267</u> , <u>1268</u>	C710 <u>883</u>
C632 <u>870</u> , <u>1290</u>	C711 <u>885</u>
C633 <u>870</u> , <u>1290</u>	C712 <u>888</u>
C634 <u>871</u> , <u>1290</u>	C715 <u>888</u>
C635 <u>871</u> , <u>1290</u>	C716 <u>888</u>
C636 <u>871</u> , <u>1290</u>	C717 888
C637 871	C72 <u>767</u>
C638 <u>872</u>	C720 <u>888</u> , <u>1231</u>
C639 872	C721 <u>889</u> , <u>1233</u> , <u>1234</u>
C64 766	C725 <u>889</u>
C640 872	C726 889
C643 872	C727 <u>890</u> , <u>1392</u>
C644 872	C728 <u>890</u> , <u>1392</u>
C645 873	C729 890
C646 873	C73 <u>768</u>
C647 <u>873</u>	C730 <u>890</u>
C65 <u>766</u>	C731 <mark>890</mark>
C650 <u>873</u> , <u>1132</u> , <u>1134</u> , <u>1136</u>	C732 <u>890</u>
C66 <u>767</u>	C734 <mark>891</mark>
C660 <u>874</u> , <u>1246</u>	C735 891
C661 874, 1247	C736 891
C662 874, 1248	C74 <u>768</u>
C670 874, 1303	C740 891
C671 874, 1304	C741 <u>891</u>
C672 875, 1305	C742 891
C673 <u>875</u> , <u>1306</u> , <u>1307</u>	C743 891
C674 <u>875</u> , <u>1306</u> , <u>1307</u>	C744 <mark>891</mark>
C677 <u>875</u> , <u>1252</u> , <u>1253</u> , <u>1254</u>	C746 891
C678 <u>876</u> , <u>1255</u> , <u>1256</u>	C747 891
C679 <u>876</u> , <u>1274</u>	C748 891
C680 876, 1145	C749 891
C681 876, 1145	C75 768
C682 877, 1145	C750 <u>892</u>
C685 877, 1150	C751 <mark>892</mark>
C686 877, 1150	C753 892
C687 877, 1150	C76 <u>768</u>
C690 877, 1151	C760 892
C691 878, 1151	C761 893
C692 <u>878</u> , <u>1151</u>	C762 <u>895</u>
C693 <u>878</u> , <u>1152</u> , <u>1153</u>	C765 <u>895</u>
C694 <u>878</u> , <u>1152</u> , <u>1153</u>	C766 <u>895</u>
C695 <u>879</u> , <u>1152</u> , <u>1153</u>	C767 <u>895</u>
C696 879, 1303	C77 769
C697 <u>879</u> , <u>1304</u>	C78 <u>769</u>
C698 <u>879</u> , <u>1305</u>	C79 <u>769</u>
C699 <u>879</u> , <u>1273</u>	C8 <u>755</u>


```
C80 <u>769</u>
                                                                              C909 <u>944</u>
C800 896, 1270
                                                                              C91 771
C801 896, 1270
                                                                              C910 944
C802 <u>896</u>, <u>1270</u>
                                                                              C915 <u>944</u>
C803 896, 1270
                                                                              C916 944
C804 <u>896</u>, <u>1270</u>
                                                                              C917 945
C805 <u>897</u>
                                                                              C918 <u>945</u>
C806 897, 1270
                                                                              C92 772
C807 897, 1279
                                                                              C922 945
C808 897, 1279
                                                                              C925 <u>945</u>
C809 898, 1282
                                                                              C926 945
                                                                              C927 <u>945</u>
C81 <u>770</u>
C810 <u>898</u>, <u>1282</u>
                                                                              C93 <u>772</u>
C811 <u>898</u>
                                                                              C937 <u>946</u>
C812 899
                                                                              C938 <u>946</u>
C82 770
                                                                              C939 <u>946</u>
C820 <u>899</u>, <u>1236</u>
                                                                              C940 <u>946</u>, <u>1181</u>, <u>1183</u>, <u>1184</u>, <u>1185</u>
C821 <u>900</u>, <u>1236</u>
                                                                              C941 946, 1181, 1183, 1184, 1185
C822 900, 1238
                                                                              C942 947, 1181, 1183, 1184, 1185
C823 <u>900</u>, <u>1238</u>
                                                                              C95 772
C824 <u>901</u>, <u>1241</u>
                                                                              C950 <u>947</u>, <u>1260</u>
C825 901, 1241
                                                                              C951 947, 1260
C826 <u>902</u>, <u>1243</u>
                                                                              C952 <u>947</u>, <u>1260</u>
C827 902, 1243
                                                                              C953 <u>947</u>, <u>1260</u>
C828 903, 1240
                                                                              C959 <u>948</u>, <u>1201</u>, <u>1205</u>, <u>1207</u>
C829 <u>903</u>, <u>1240</u>
                                                                              C960 <u>948</u>, <u>1201</u>
C83 <u>770</u>
                                                                              C961 <u>948</u>, <u>1201</u>, <u>1202</u>
C830 <u>904</u>
                                                                              C963 <u>948</u>, <u>1202</u>
                                                                              C964 <u>949</u>, <u>1202</u>
C831 <u>906</u>
C832 <u>909</u>
                                                                              C965 949
C833 911
                                                                              C966 949
C834 <u>914</u>
                                                                              C967 <u>950</u>
C835 915
                                                                              C968 <u>950</u>
C836 <u>918</u>
                                                                              C97 772
C837 <u>921</u>
                                                                              C971 <u>951</u>
C838 <u>925</u>
                                                                              C972 951
C839 <u>930</u>
                                                                              C973 <u>951</u>
C84 770
                                                                              C975 951
C840 <u>932</u>
                                                                              C976 951
                                                                              C977 <u>952</u>
C841 <u>933</u>
C843 <u>935</u>
                                                                              C978 <u>952</u>
C844 <u>940</u>
                                                                              C979 <u>952</u>
C85 <u>770</u>
                                                                              C98 772
C866 940
                                                                              C980 952
C868 <u>941</u>
                                                                              C981 <u>952</u>
C87 771
                                                                              C982 <u>953</u>
C876 942
                                                                              C985 <u>953</u>
C877 <u>943</u>
                                                                              C986 <u>953</u>
C88 <u>771</u>
                                                                              C987 <u>953</u>
C89 771
                                                                              C988 953
C890 943
                                                                              C99 772
C90 <u>771</u>
                                                                              C990 <u>953</u>
C905 944
                                                                              C991 954
```

C992 <u>954</u>	CE04
C993 954	MCI communication error (error message) 622
C994 <u>954</u>	CE0F
C995 <u>955</u>	MCI control word (error message) 622
C996 <u>955</u>	CE1
C997 955	CAN RPDO1 (error message) 624
C998 <u>955</u>	CE2
C999 <u>955</u>	CAN RPDO2 (error message) <u>624</u>
CA06	CE3
CAN CRC error (error message) 623	CAN RPDO3 (error message) <u>624</u>
CA07	CE4
CAN bus warning (error message) 623	CAN bus off (error message) 622
CA08	Change of the operating mode 485
CAN bus stopped (error message) 623	Ck01
CA0b	Pos. HW limit switch (error message) 628
CAN HeartBeatEvent (error message) 623	Ck02
CA0F	Neg. HW limit switch (error message) 629
CAN control word (error message) 623	Ck03
Calculating mass inertia (SC) 229	Pos. SW limit position (error message) 629
Calculating mass inertia (SLVC) 194	Ck04
CAN baud rate (C00351) <u>815</u>	Neg. SW limit position (error message) <u>629</u>
CAN data telegram <u>646</u>	Ck05 Following error 1 (error message) 630
CAN decoupling PDOInOut (C00342) 811	Ck06
CAN error status (C00345) 813	Following error 1 (error message) 630
CAN HeartBeat ConsumerTime (C00386) 822	Ck07
CAN Heartbeat producer time (C00381) 822	Travel range limit exceeded (error message) 630
CAN IN/OUT COBID source (C00353) 815	Ck08
CAN input words (C00866) <u>940</u>	Home position unknown (error message) 630
CAN management - error configuration (C00341) 810	Ck09
CAN MessageError (C00364) 819	Positioning mode invalid (error message) 630
CAN monitoring times (C00357) 817	Ck10
CAN node addr. HeartBeat producer (C00385) 822	Implausible profile data (error message) 631
CAN node address (C00350) 814	Ck11
CAN on board 638	Invalid operating mode (error message) 631
CAN output words (C00868) <u>941</u>	Ck12
CAN reset node <u>645</u>	Invalid profile number (error message) 631
CAN setting - DIP switch (C00349) 814	Ck13
CAN slave/master (C00352) <u>815</u>	Error - MCKCtrlInterface function block (error
CAN start remote node <u>652</u>	message) <u>631</u>
CAN status (C00359) <u>818</u>	Ck14
CAN status HeartBeat producer (C00347) 813	Target position outside SW limit position (error
CAN sync transmission cycle time (C00369) 821	message) <u>629</u>
CAN Sync-Rx-Identifier (C00367) 820	Ck15
CAN Sync-Tx-Identifier (C00368) 821	Error status sign. brake (error message) <u>629</u> Ck16
CAN telegram counter (C00360) 818	Time overflow manual operation (error message)
CAN time settings (C00356) 817	630
CAN transmission blocking time (C00324) 809	Cl01
CAN_Tx_Rx_Error (C00372) 822	Module missing/incompatible (error message) 624
CANx_OUT data length (C00358) 817	COB-ID <u>646</u>
CANxInOut	COBID (C00354) <u>816</u>
Inversion (C00401) <u>823</u>	COB-ID EMCY (I-1014) <u>693</u>
Cause of controller inhibit (C00158) 785	COB-ID SYNC message (I-1005) 692
Cause of quick stop QSP (C00159) 786	Communication control words (C00136) 779
	Communication cycle period (I-1006) 693

Communication time 641	Device overload monitoring (Ixt) 275
Comparing applications 1105	Device personalisation 40
Comparing FB interconnections 1105	Device search function 100
Comparing interconnections 1105	Device status (C00137) 780
Comparison L_Counter 1-3 (C01101) 975	Device statuses (LED status display) 583
Configuring exception handling of the CAN PDOs 666	Device type (I-1000) <u>690</u>
Configuring exception handling of the output	Device utilisat. threshold (Ixt) (C00123) 777
terminals <u>369</u>	Device utilisation (Ixt) (C00064) 766
Consumer heartbeat time (I-1016) 694	dF10
Control mode (C00007) <u>754</u>	AutoTrip reset (error message) 628
Control type 131	dF14
Control word (MCK) 481	SW-HW invalid (error message) <u>626</u>
Conventions used <u>26</u>	dF15
Conventions used for variable identifiers 1063	DCCOM CU2 error (error message) 627
Copying a complete interconnection 1108	dF18
Copying an FB interconnection <u>1108</u>	BU RCOM error (error message) 627
Copying an interconnection 1108	dF21
Copying elements <u>1099</u>	BU watchdog (error message) 627
Copying interconnection elements 1099	dF22
Copying objects 1099	CU watchdog (error message) 627
Correction of the leakage inductance 245	dF25 CU RCOM error (error message) <u>627</u>
Cosine phi (C00979) <u>952</u>	dF26
Countinx	Appl. watchdog (error message) <u>627</u>
Counter content (C02841) 1020	dF50
Parameter (C02840) <u>1020</u>	Retain error (error message) <u>628</u>
CP04	dF51
CAN RPDO4 (error message) <u>624</u>	CuCcr error (error message) 628
CRC error <u>680</u>	dF52
Current AutoFailReset processes (C00187) 796	BuCcr error (error message) 628
Current error (C00170) <u>793</u>	dH09
Current password protection (C00507) 849	EEPROM power section (error message) 631
Current setpoint filter (band-stop filter) 231	dH10
Current switching frequency (C00725) 889	Fan failure (error message) 631
D	dH68
	Adjustment data error CU (error message) 632
Data type 744	dH69
Data type entry <u>1063</u> DC braking	Adjustment data error BU (error message) <u>632</u>
Current (C00036) 762	DI 1/2 & 6/7
Hold time (C00107) 775	Function (C00115) <u>776</u>
DCB (DC-injection braking) 251	Diagnostics X6
DC-bus voltage (C00053) 764	Change baud rate (C01903) 1007
DC-injection braking 250	Current baud rate (C01905) <u>1007</u> Max. baud rate (C01902) <u>1006</u>
Decel. time - main setpoint (C00013) 758	· · · · · · · · · · · · · · · · · · ·
Decel. time - quick stop (C00105) 774	DigInX Inversion (C00114) 775
Decoupling AnalogOut (C00441) 831	Digital inputs 329
Defining a user-defined V/f characteristic 162	Digital outputs 349
Defining the current limits 136	DigOut decoupling (C00447) 834
Defining the speed limits 136	DigOut decoupling (C00447) 834 DigOut decoupling value (C00448) 835
Del.resp. to fault	DigOutX
DC-bus overvoltage (C00601) 859	Inversion (C00118) 776
Description data (C00199) 797	DIP switch settings 642
Device access protection 37	Display of internal process factors in application units
Device commands (C00002) 749	1388
	

Display process factors on the keypad 1388	xx.0123.00031	<u>616</u>
DIx	xx.0123.00032	
Debounce time (C02830) <u>1019</u>	xx.0123.00033	
Level (C00443) <u>832</u>	xx.0123.00056	
DOx	xx.0123.00057	
Delay times (C00423) <u>827</u>	xx.0123.00058	
Level (C00444) <u>833</u>	xx.0123.00059	
DRIVE ERROR (LED) <u>583</u>	xx.0123.00062	
DRIVE ERROR-LED <u>583</u>	xx.0123.00065	
Drive interface 89	xx.0123.00071	
DRIVE READY (LED) <u>583</u>	xx.0123.00074 xx.0123.00075	
DRIVE READY-LED <u>583</u>	xx.0123.00073 xx.0123.00090	
	xx.0123.00090	
E	xx.0123.00093	
Elapsed-hour meter (C00178) 795	xx.0123.00095	
E-mail to Lenze 1438	xx.0123.00096	
Emergency 686	xx.0123.00097	
Encoder <u>317</u> , <u>319</u>	xx.0123.00098	
Encoder - angular drift monitoring 326	xx.0123.00099	
Encoder evaluation method 316	xx.0123.00105	
Encoder evaluation method DigIn12 (C00496) 847	xx.0123.00145	621
Encoder scanning time (C00425) 827	xx.0123.00200	621
• • • • • •	xx.0123.00201	<u>621</u>
Encoder/feedback system 293	xx.0123.00205	<u>621</u>
Energy display (C00981) 952	xx.0125.00001	<u>622</u>
Error detection 680	xx.0125.00002	<u>622</u>
Error ID <u>603</u> , <u>606</u>	xx.0127.00002	
Error information (C00165) 791	xx.0127.00015	<u>622</u>
Error information text (C00166) 792	xx.0131.00000	<u>622</u>
Error messages 602	xx.0131.00006	<u>623</u>
Error messages (short overview) <u>608</u>	xx.0131.00007	
Error messages (system bus) 673	xx.0131.00008	
Error number <u>602</u> , <u>605</u>	xx.0131.00011	
xx.0111.00002 <u>611</u>	xx.0131.00015	
xx.0111.00003 <u>611</u>	xx.0135.00001	
xx.0111.00004 <u>611</u>	xx.0135.00002	
xx.0111.00006 <u>612</u>	xx.0135.00003	
xx.0119.00000 <u>612</u>	xx.0135.00004	
xx.0119.00001 <u>612</u>	xx.0140.00013	
xx.0119.00002 <u>612</u>	xx.0144.00001	
xx.0119.00003 <u>612</u>	xx.0144.00002 xx.0144.00003	
xx.0119.00012 <u>613</u>	xx.0144.00003	
xx.0119.00015 <u>613</u>	xx.0144.00007	
xx.0119.00020 <u>613</u>	xx.0144.00007	
xx.0119.00021 <u>613</u>	xx.0144.00009	
xx.0119.00022 <u>613</u>	xx.0144.00010	
xx.0119.00050 <u>614</u>	xx.0145.00014	
xx.0123.00001 <u>614</u> xx.0123.00007 <u>614</u>	xx.0145.00015	
xx.0123.00007 614 xx.0123.00014 614	xx.0145.00024	
xx.0123.00014 014 xx.0123.00015 615	xx.0145.00025	
xx.0123.00013 615 xx.0123.00016 615	xx.0145.00026	627
xx.0123.00010 015 xx.0123.00017 615	xx.0145.00033	
xx.0123.00024 616	xx.0145.00034	627
xx.0123.00024 616	xx.0145.00035	628
xx.0123.00027 616	xx.0145.00050	628
xx.0123.00030 616	xx.0145.00051	<u>628</u>

xx.0145.00052 <u>628</u>	Firmware (C00201) <u>798</u>
xx.0184.00001 <u>628</u>	Firmware product type (C00200) 797
xx.0184.00002 <u>629</u>	Firmware update 102
xx.0184.00005 <u>629</u>	Firmware version (C00099) 772
xx.0184.00007 <u>629</u>	Firmware version (C00100) 773
xx.0184.00008 <u>629</u>	Fixed setpoint x (L_NSet_1 n-Fix) (C00039) 763
xx.0184.00015 629	Flying restart fct. 247
xx.0184.00064 <u>630</u>	Activation (C00990) <u>953</u>
xx.0184.00153 <u>630</u> xx.0184.00154 <u>630</u>	Current (C00994) <u>954</u>
xx.0184.00154 630	Integration time (C00993) 954
xx.0184.00156 630	Process (C00991) <u>954</u>
xx.0184.08005 630	Start frequency (C00992) 954
xx.0184.08007 631	Following error <u>513</u>
xx.0184.08009 631	Following error monitoring system 513
xx.0184.08014 631	Format error <u>680</u>
xx.0184.08015 631	FreqIn12
xx.0400.00009 631	Function (C02844) 1021
xx.0400.00016 <u>631</u>	Posln comparison value (C02845) 1021
xx.0400.00104 <u>632</u>	FreqInxx
xx.0400.00105 <u>632</u>	Gain (C02843) <u>1020</u>
xx.0980.00001 <u>632</u>	Offset (C02842) <u>1020</u>
xx.0981.00002 <u>632</u>	FreqInxx_dnOut_p (C00449) <u>835</u>
xx.0982.00003 <u>632</u>	FreqInxx_nOut_a (C00446) 834
xx.0983.00004 <u>632</u>	FreqInxx_nOut_v (C00445) <u>833</u>
xx.0984.00001 <u>633</u>	Frequency limitation (C00910) 944
xx.0985.00002 <u>633</u>	Function assignment 881
xx.0986.00003 <u>633</u> xx.0987.00004 <u>633</u>	Function block editor 1058
	Function blocks 1110
Error register (I-1001) 690	Function L_Counter 1-3 (C01100) <u>975</u>
Error subject area 603, 605	Function library 1110
Error type 602	
Export error texts 607	G
Exporting logbook entries 593	Gearbox ratio <u>500</u>
Extended status word (C00155) 784	General data (CAN on board) 640
F	General purpose functions 467
	GP functions (GeneralPurpose) 467
Failure indication (C00561) 851	• •
FB Editor <u>1058</u>	Н
FC01	Hardware limit switch 508
Switching frequency reduction (error message) 619	Heartbeat protocol <u>682</u>
FC02	Heatsink temperature (C00061) 765
Maximum speed for Fchop (error message) <u>620</u>	Hiperface
FC03	Detected TypCode (C00492) 846
Field controller limitation (error message) 620	Resolutions (C00494) <u>846</u>
Feed constant 501	TypCode (C00493) <u>846</u>
Feedback system motor temperature (C01193) 982	Holding brake
Feedback to Lenze 1438	Activation time (C02593) 1012
FI brake 268	Operating mode (C02580) 1009
Field weakening for synchronous motors 260	Setting (C02582) 1010
Field weakening oscillation damping (C00236) 801	Speed thresholds (C02581) 1010
Fieldbus interface 711	Status (C02607) <u>1013</u>
Field-oriented motor currents (C00937) 946	Time system (C02589) 1012
Filter setpoint feedforward control (C00275) <u>805</u>	Holding brake control <u>563</u>
Filter time - earth-fault detect. is running (C01770)	Homing <u>517</u>
<u>1006</u>	Homing on the fly <u>532</u>

Index

1	Internal control signals (C00138) 781
1	Inversion of gearbox stages (C01067) 967
I-1000 <u>690</u>	Inverter motor brake 268
I-1001 <u>690</u>	nAdd (C00987) <u>953</u>
I-1003 <u>691</u>	PT1 filter time (C00988) <u>953</u>
I-1005 <u>692</u>	· · · —
I-1006 <u>693</u>	J
I-1014 <u>693</u>	Jerk limitation 550
I-1016 <u>694</u>	Jogging mode 533
I-1017 <u>695</u>	
I-1018 <u>695</u>	K
I-1200 <u>696</u>	Keypad
I-1201 <u>697</u>	Default parameter (C00466) 838
I-1400 <u>699</u>	Default welcome screen (C00467) 838
I-1401 <u>700</u>	Display of internal process factors 1388
I-1402 <u>701</u>	STOP key function (C00469) 838
I-1600 <u>702</u>	Timeout welcome screen (C00465) 838
I-1601 <u>702</u>	Keypad analog values (C00728) 890
I-1602 <u>703</u>	Keypad LCD display <u>587</u>
I-1800 <u>704</u>	Kp position controller (C00254) <u>804</u>
I-1801 <u>706</u>	KTY motor temperature compensation (C02878) <u>1026</u>
I-1802 <u>707</u>	
I-1A00 <u>708</u>	L
I-1A01 <u>708</u>	L_Absolut 1115
I-1A02 <u>709</u>	L_Absolute_1 1115
ld1	L_Absolute_2 1115
Motor data identification error (error message) 617	L_AddSub <u>1116</u>
Id2	L_AddSub_1 <u>1116</u>
Motor data identification error (error message) 617	L_AnalogSwitch 1117
Id3 CINH meter data identification (error message) 617	L_AnalogSwitch_1 <u>1117</u>
CINH motor data identification (error message) 617 Id4	L_AnalogSwitch_2 1118
Resistor identification error (error message) 618	L_AnalogSwitch_3 <u>1119</u>
ld5	L_AnalogSwitch_4 1120
Pole position identification error (error message)	L_AnalogSwitch_5 <u>1121</u>
<u>618</u>	L_And <u>1122</u>
ld6	L_And_1 1122
Resolver ident. error (error message) 619	L_And_2 <u>1123</u>
Identification procedure (C02867) 1023	L_And_3 <u>1124</u>
Identifier (CAN) 646	L_And5 <u>1125</u>
Identifiers of the parameter data objects 669	L_And5_1 <u>1125</u>
Identifiers of the process data objects 661	L_And5_2 <u>1126</u>
Identity object (I-1018) <u>695</u>	L_Arithmetik 1127
Imax controller 152	L_Arithmetik 3-5
Imax in generator mode (C00023) 760	Function (C00650) <u>873</u>
Imax in motor mode (C00022) <u>760</u>	L_Arithmetik_1 <u>1127</u>
Imax/M controller gain (C00073) 768	Function (C00338) <u>809</u> L Arithmetik 2 <u>1129</u>
Insert options for copied elements 1101	Function (C00339) <u>809</u>
Inserting complete interconnection from reference	L_Arithmetik_3 <u>1131</u>
project <u>1109</u>	L_Arithmetik_4 1133
Inserting copied elements 1101	L_Arithmetik_5 1135
Inserting FB interconnection from reference project	L ArithmetikPhi 1137
1109 Integrated error detection 680	L ArithmetikPhi 1-3
Integrated safety system 486	Function (C01010) <u>956</u>

1 A.:thtil.Dh: 1 1137	L CamarDA 1 2
L_ArithmetikPhi_1 1137	L_ConvPA 1-3
L_ArithmetikPhi_2 1138	byDivision (C01046) <u>961</u>
L_ArithmetikPhi_3 <u>1139</u>	L_ConvPA_1 <u>1172</u>
L_CalcDiameter 1140	L_ConvPA_2 <u>1173</u>
Current diameter (C01057) 963	L_ConvPA_3 <u>1174</u>
Filter time constant (C01051) <u>962</u>	L_ConvPP <u>1175</u>
Status (C01049) <u>961</u>	L_ConvPP_1 <u>1175</u>
Web break monitoring (C01052) 962	L_ConvPP_2 <u>1176</u>
L_CalcDiameter_1 1140	L_ConvPP_3 <u>1177</u>
Diameter recalculation (C01050) 962	L_ConvUnitsToIncr 1178
L_Compare <u>1145</u>	L_ConvUnitsToIncr_1 1178
L_Compare 4-5	L_ConvUnitsToIncr_2 1179
Fct. (C00693) <u>878</u>	L_ConvUnitsToIncr_3 1180
Hysteresis (C00694) <u>878</u>	L ConvW <u>1181</u>
Window (C00695) <u>879</u>	L ConvW conversion method (C00942) 947
L_Compare_1 <u>1145</u>	L ConvW denominator (C00941) 946
Fct. (C00680) <u>876</u>	L ConvW numerator (C00940) 946
Hysteresis (C00681) <u>876</u>	-
Window (C00682) <u>877</u>	L_ConvW_1 <u>1181</u>
L_Compare_2 <u>1150</u>	L_ConvW_2 <u>1183</u>
Fct. (C00685) <u>877</u>	L_ConvW_3 <u>1184</u>
Hysteresis (C00686) <u>877</u>	L_ConvW_4 <u>1185</u>
Window (C00687) <u>877</u>	L_ConvWordsToDInt <u>1186</u>
L_Compare_3 <u>1151</u>	L_ConvWordsToDInt_1 <u>1186</u>
Fct. (C00690) <u>877</u>	L_ConvWordsToDInt_2 <u>1187</u>
Hysteresis (C00691) <u>878</u>	L_ConvWordsToDInt_3 1188
Window (C00692) <u>878</u>	L_ConvWordToBits 1189
L_Compare_4 <u>1152</u>	L_ConvWordToBits_1 1189
L_Compare_5 <u>1153</u>	L ConvWordToBits 2 1190
L_ComparePhi 1154	L ConvWordToBits 3 1191
L_ComparePhi 1-5	L_ConvX <u>1192</u>
Function (C01670) <u>1005</u>	L_ConvX_1 <u>1192</u>
Hysteresis (C01671) <u>1005</u>	L_ConvX_2 <u>1193</u>
Window (C01672) <u>1005</u>	L_ConvX_3 1194
L_ComparePhi_1 1154	L_Counter 1195
L_ComparePhi_2 1159	_
L_ComparePhi_3 <u>1160</u>	L_Counter_1 <u>1195</u>
L_ComparePhi_4_1161	L_Counter_2 <u>1197</u>
L_ComparePhi_5 <u>1162</u>	L_Counter_3 <u>1199</u>
L_ConvAP <u>1163</u>	L_Curve <u>1201</u>
L ConvAP 1-3	Current output value (C00959) 948
Numerator/denominator (C01045) 960	L_Curve_1 <u>1201</u>
L ConvAP 1 1163	Input limitation (C00961) 948
L_ConvAP_2 1164	Selected curve type (C00960) 948
L_ConvAP_3 1165	Table X-values (C00963) <u>948</u>
L ConvBitsToWord 1166	Table Y-values (C00964) <u>949</u>
-	L_Curve_2 <u>1205</u>
L_ConvBitsToWord_1 1166	Input limitation (C01026) 958
L_ConvBitsToWord_2 1167	Selected curve type (C01025) 958
L_ConvBitsToWord_3 1168	Table X-values (C01028) 958
L_ConvDIntToWords <u>1169</u>	Table Y-values (C01029) <u>958</u>
L_ConvDIntToWords_1 <u>1169</u>	L_Curve_3 <u>1207</u>
L_ConvDIntToWords_2 <u>1170</u>	Input limitation (C01031) 959
L_ConvDIntToWords_3 1171	Selected curve type (C01030) 959
L_ConvPA <u>1172</u>	Table X-values (C01033) <u>959</u> Table Y-values (C01034) <u>959</u>
	TADJE T-VALUES II U 1 U 341 959

L_DFlipFlop 1209	L_FixSet_w_2
L_DFlipFlop_1 1209	Fixed values (C00662) 874
L_DFlipFlop_2 1210	L_GainOffset 1249
L DFRFG 1211	L_GainOffset_1 1249
Following error (C01078) 969	L_GainOffset_2 1250
Max. speed-up (C01077) <u>969</u>	L_GainOffset_3 <u>1251</u>
Offset (C01080) 969	L GainOffsetP 1252
Sync. direction / TP function (C01081) 970	L_GainOffsetP 1-3
Synchronisation window (C01079) 969	Parameter (C00677) <u>875</u>
Times (C01076) 969	L_GainOffsetP_1 1252
L_DFRFG_1 <u>1211</u>	L_GainOffsetP_2 1253
L_DFSET <u>1220</u>	L GainOffsetP 3 1254
Angular trimming (C01070) 967	L GainOffsetPhiP 1255
Evaluation - setpoint angle integrator (C01073) 968	L_GainOffsetPhiP 1-2
Following error limit (C01071) 967	Parameter (C00678) <u>876</u>
Multiplier - angular trimming (C01072) 968	L_GainOffsetPhiP_1 1255
Synchronisation mode (C01075) 968	L GainOffsetPhiP 2 1256
Zero pulse divider (C01074) 968	-
L_DFSet	L_GearComp <u>1257</u> Num_Denom (C01048) <u>961</u>
Ramp settings (C01069) <u>967</u>	Offset (C01047) <u>961</u>
L_DFSET_1 <u>1220</u>	
L_DigitalDelay <u>1231</u>	L_GearComp_1 <u>1257</u>
L_DigitalDelay 2,3	L_Interpolator 1259
Delay (C00721) <u>889</u>	L_Interpolator_1 1259
L_DigitalDelay_1 1231	Activation FB functions (C00950) 947
Delay (C00720) <u>888</u>	Limit value - error cycles (C00952) <u>947</u>
L_DigitalDelay_2 1233	No. of interpolation steps (C00951) <u>947</u>
L_DigitalDelay_3 <u>1234</u>	Speed-up (C00953) <u>947</u>
L DigitalLogic 1235	L_JogCtrlEdgeDetect_1 (C00488) 845
L DigitalLogic 1 1235	L_JogCtrlExtension 1262
Function (C00820) <u>899</u>	L_JogCtrlExtension_1 1262
Truth table (C00821) <u>900</u>	L_Limit <u>1264</u>
L DigitalLogic 2 1237	L_Limit 1-2
Function (C00822) <u>900</u>	Min/Max (C00630) <u>869</u>
Truth table (C00823) <u>900</u>	L_Limit_1 <u>1264</u>
L DigitalLogic 3 1239	L_Limit_2 <u>1265</u>
Function (C00828) <u>903</u>	L_LimitPhi <u>1266</u>
Truth table (C00829) <u>903</u>	L_LimitPhi 1-3
L_DigitalLogic5 1241	Min/Max (C00631) 870
L DigitalLogic5 1 1241	L_LimitPhi_1 <u>1266</u>
Function (C00824) <u>901</u>	L_LimitPhi_2 <u>1267</u>
Truth table (C00825) <u>901</u>	L_LimitPhi_3 <u>1268</u>
L_DigitalLogic5_2 1243	L_MckCtrlInterface 489
Function (C00826) 902	L MckCtrlInterface 1 489
Truth table (C00827) <u>902</u>	L MckStateInterface 496
L_DT1 <u>1245</u>	L MckStateInterface 1 496
L_DT1_1 <u>1245</u>	Alternative function (C01297) 999
Gain (C00252) <u>803</u>	Pos. selection (C01295) 998
Sensitivity (C00253) <u>804</u>	L MPot <u>1269</u>
Time constant (C00251) <u>803</u>	L MPot 1 <u>1269</u>
L FixSet a <u>1246</u>	Acceleration time (C00802) 896
L FixSet a 1 <u>1246</u>	Deceleration time (C00803) 896
Analog values (C00660) <u>874</u>	Inactive fct. (C00804) 896
L FixSet w <u>1247</u>	Init fct. (C00805) 897
L FixSet w 1 1247	Lower limit (C00801) 896
Fixed values (C00661) <u>874</u>	Upper limit (C00800) 896
· · · · · · · · · · · · · · · · · · ·	

Use (C00806) 897	L_OffsetGainP 1303
L MulDiv <u>1273</u>	L OffsetGainP 1 1303
L MulDiv 1 <u>1273</u>	Gain (C00670) 874
Parameter (C00699) <u>879</u>	Offset (C00696) 879
L MulDiv 2 1274	L_OffsetGainP_2 1304
Parameter (C00679) <u>876</u>	Gain (C00671) <u>874</u>
L Mux <u>1275</u>	Offset (C00697) 879
 L_Mux_1 <u>1275</u>	L_OffsetGainP_3 1305
L_Negation <u>1276</u>	Gain (C00672) <u>875</u>
L_Negation_1 <u>1276</u>	Offset (C00698) <u>879</u>
L_Negation_2 1277	L_OffsetGainPhiP <u>1306</u>
L NLim <u>1278</u>	L_OffsetGainPhiP 1-2
Current status (C00812) <u>899</u>	Gain (C00674) <u>875</u>
L_NLim_1 <u>1278</u>	Offset (C00673) <u>875</u>
Current output value (C00811) 898	L_OffsetGainPhiP_1 <u>1306</u>
Max.SkipFrq. (C00807) <u>897</u>	L_OffsetGainPhiP_2 <u>1307</u>
Min.SkipFrq. (C00808) <u>897</u>	L_Or <u>1308</u>
L_NLim_2 1281	L_Or_1 <u>1308</u>
Max.SkipFrq. (C00809) <u>898</u>	L_Or_2 <u>1309</u>
Min.SkipFrq. (C00810) 898	L Or 3 <u>1310</u>
L Not <u>1283</u>	L_Or_4 <u>1311</u>
L_Not_1 <u>1283</u>	L_Or5 <u>1312</u>
L_Not_2 <u>1283</u>	_ L_Or5_1 <u>1312</u>
L Not 3 1284	L_Or5_2 <u>1313</u>
L_Not_4 1284	L_PCTRL 1337
L_Not_5 <u>1285</u>	L_PCTRL_1 <u>1337</u>
L_Not_6 <u>1285</u>	Acceleration time (C00227) 800
L_Not_7 1286	Acceleration time influence (C00243) 802
L_NSet 1287	Deceleration time (C00228) 800
L NSet 1 1287	Deceleration time influence (C00244) 802
Accel. time - add. setpoint (C00220) 799	Internal actual value nAct_a (C00246) 802
Additional value output (C00639) 872	Kd (C00224) <u>799</u>
Decel. time - add. setpoint (C00221) 799	MaxLimit (C00225) <u>800</u>
Hyst. NSet reached (C00241) <u>801</u>	MinLimit (C00226) <u>800</u>
Max.SkipFrq. (C00632) <u>870</u>	Operating mode (C00242) <u>802</u>
Min.SkipFrq. (C00633) 870	Operating range (C00231) 800
nMaxLimit (C00635) <u>871</u>	PID output value (C00245) <u>802</u>
nMinLimit (C00636) <u>871</u>	Root function (C00233) <u>801</u>
nNOut_a (C00640) <u>872</u>	Tn (C00223) <u>799</u>
Output blocking zones (C00637) 871	Vp (C00222) <u>799</u> Window setpoint reached (C00247) <u>803</u>
Output ramp rounding (C00638) 872	L PhaseDiff 1314
Ramp smoothing (C00134) 778	
Setpoint arithmetic (C00190) 797	L_PhaseDiff_1 1314
S-ramp time PT1 (C00182) <u>795</u>	L_PhaseDiff_2 1315
wState (C00634) <u>871</u>	L_PhaseIntK <u>1316</u>
L_Odometer 1298	Compare (C01151) <u>981</u> Function (C01150) <u>981</u>
L_Odometer_1 <u>1298</u>	
Edge selection (C01023) 957	L_PhaseIntK_1 1316
Input selection (C01022) 957 Memory length (C01020) 957	L_PhaseIntK_2 1320
Memory type (C01021) 957 Memory type (C01021) 957	L_Philntegrator 1322
L OffsetGain 1300	L_Philntegrator_1 1322
L_OffsetGain_1 1300	L_PosCtrlLin 1326
L_OffsetGain_2 1301	L_PosCtrlLin 1-2
L OffsetGain 3 1302	Limit stop (C01058) <u>964</u> Positioning behaviour (C01059) <u>964</u>
E_Onserdam_5 1502	Ramps (C01060) <u>964</u>

Traversing speeds (C01061) 965	Status (C01066) 966
L_PosCtrlLin_1 1326	L SwitchPoint 1 1367
L_PosCtrlLin_2 1329	L_Transient <u>1372</u>
L PosiShaftCtrlInterface 1332	L Transient 1-4
L PosiShaftCtrlInterface 1 1332	Function (C01138) <u>979</u>
L_ProcessCtrl 1333	Pulse duration (C01139) 980
Controller gain (C01056) 963	L_Transient 5-8
Controller times (C01053) 962	Function (C01140) <u>980</u>
Correcting variable limitation (C01055) 963	L Transient 5-8 pulse duration (C01141) 980
System deviation (C01054) 963	L_Transient_1 1372
L_ProcessCtrl_1 1333	L Transient 2 1375
L_PT1 <u>1345</u>	 L_Transient_3 <u>1376</u>
L PT1 2-3	L_Transient_4 1377
Time constant (C00250) <u>803</u>	L_Transient_5 1378
L PT1 1 1345	L_Transient_6 1379
Time constant (C00249) <u>803</u>	L_Transient_7 1380
L PT1 2 <u>1346</u>	L Transient 8 1381
L_PT1_3 <u>1347</u>	LA NCtrl 386
L_RLQ_ <u>1348</u>	Analog connection list (C00700) 880
L RLQ 1 1348	Application block 386
L_RSFlipFlop 1349	Digital connection list (C00701) 881
L RSFlipFlop 1 1349	LA_NCtrl_in 386
L_RSFlipFlop_2 1350	LA NCtrl Out 386
L SampleHold 1351	LA SwitchPos 443
L_SampleHold_1 1351	Analog connection list (C00760) 892
L_SampleHold_2 1352	Application block 443
L_SignalMonitor_a 1353	Digital connection list (C00761) 893
Offs./gain (C00413) 825	LA_SwitchPos_In 443
Signal sources (C00410) <u>824</u>	LA_SwitchPos_Out <u>443</u>
L_SignalMonitor_b <u>1354</u>	LA TabPos 414
Inversion (C00412) <u>825</u>	Analog connection list (C00710) 883
Signal sources (C00411) 824	Application block 414
L_SignalSwitch 1355	Digital connection list (C00711) 885
L_SignalSwitch_1 1355	phi connection list (C00712) 888
L_SignalSwitch_2 <u>1356</u>	LA_TabPos_In <u>414</u>
L SignalSwitch 3 <u>1357</u>	LA_TabPos_Out 414
L_SignalSwitch_4 1358	Layout of the safety instructions 29
L_SignalSwitch32 1359	LCD display (keypad) <u>587</u>
L_SignalSwitch32_1 <u>1359</u>	LED status displays <u>582</u>
L_SignalSwitch32_2 1360	Library 1110
L_SignalSwitch32_3 1361	Limit position monitoring 506
L_SQrt 1362	Limit switch 508
L_SQrt_1 1362	Lock bFail at TroubleQSP 117
L_SRFG 1363	Logbook - analog elements (C00164) 790
L SRFG 1 1363	Logbook - binary elements (C00163) 787
L_SRFG_12 limitations of output values (C01042)	Logbook setting (C00169) 793
960	LP_CanIn decoupling value (C00343) 812
L SRFG 12 linear ramp time (C01040) 960	LP_CanIn mapping (C00409) <u>824</u>
L SRFG 12 S-ramp time (C01041) <u>960</u>	LP_CanIn mapping selection (C00408) 823
L SRFG 2 <u>1365</u>	LP_CanIn1 <u>655</u>
L SwitchPoint <u>1367</u>	LP Canin2 <u>656</u>
CenterMode (C01064) <u>966</u>	LP Canin3 <u>657</u>
Dead time (C01062) <u>965</u>	LP_CanOut decoupling value (C00344) 812
Hysteresis (C01063) <u>965</u>	LP CanOut1 658
Running time (C01065) 966	E _Canoact 550

LP_CanOut2 659	LS_ParFree_p (C00474) <u>840</u>
LP_CanOut3 660	LS_ParFree_v <u>1400</u>
LP Mciln 715	LS_ParFree_v (C00473) <u>840</u>
LP_MciOut 716	LS_ParFree_v_2 <u>1401</u>
LP1	LS_ParFree_v_2 (C00478) <u>842</u>
Motor phase failure (error message) 621	LS_ParFree32 1402
LS Analogin1	 LS_ParFree32 (C00479) <u>842</u>
PT1 time constant (C00440) <u>830</u>	LS_ParFreeUnit 1403
LS_AnalogInput 360	LS ParFreeUnit 1 2 (C00475) 841
LS_AnalogOutput 361	LS ParFreeUnit 2 1404
LS_AxisBusAux 724	LS ParReadWrite <u>1405</u>
LS_AxisBusIn 723	LS ParReadWrite 1-6
LS_AxisBusIO 730	Arithmetic mode (C01093) 974
LS_AxisBusOut 722	Cycle time (C01091) 973
LS Brake <u>564</u>	Denominator (C01095) 974
LS_CANManagement 710	FailState (C01092) <u>973</u>
LS_DeviceMonitor 291	Index (C01090) <u>972</u>
LS_DigitalInput <u>342</u>	Numerator (C01094) <u>974</u>
LS DigitalOutput 351	LS_ParReadWrite_1 <u>1405</u>
LS DisFree 1386	LS_ParReadWrite_2 <u>1405</u>
LS DisFree (C00481) <u>843</u>	LS_ParReadWrite_3 <u>1405</u>
LS_DisFree_a <u>1387</u>	LS_ParReadWrite_4 <u>1405</u>
LS_DisFree_a (C00482) <u>843</u>	LS_ParReadWrite_5 <u>1405</u>
LS_DisFree_b <u>1389</u>	LS_ParReadWrite_6 1405
LS_DisFree_b (C00480) 843	LS_PulseGenerator 1409
LS_DisFree_p 1390	LS_PulseGenerator (C00400) 823
LS DisFree p (C00483) <u>843</u>	LS_Resolver <u>301</u>
LS DriveInterface 115	Number of pole pairs (C00925) 945
bNActCompare (C00024) 761	LS_RetainData <u>1411</u>
Error message config. (C00148) 782	16Bit data (C01131) <u>978</u>
LS_Keypad <u>1391</u>	32Bit data (C01132) <u>979</u>
LS_Keypad digital values(C00727) 890	Bool data (C01133) <u>979</u>
LS MotionControlKernel 475	Selection (C01130) <u>978</u>
LS MotorInterface 285	LS_SetError_1 <u>634</u>
LS Multi-Encoder	LS_SetError_2 <u>636</u>
Encoder type (C00422) <u>826</u>	LS_SetError_x
Supply voltage (C00421) <u>826</u>	Error number (C00161) 787
LS_MultiEncoder 312	LS_SyncManagement 733
Current position (C01119) 976	LS_TouchProbe <u>367</u>
PosValues (C01112) <u>976</u>	LS_WriteParamList 734
Solid measure (C01110) <u>975</u>	Error line (C01084) <u>970</u> Error status (C01083) <u>970</u>
LS_ParFix <u>1393</u>	Execute Mode (C01082) <u>970</u>
LS_ParFix_2 <u>1393</u>	Index (C01085) 971
LS_ParFree <u>1394</u>	WriteValue_1 (C01086) 971
LS_ParFree (C00471) <u>839</u>	WriteValue 2 (C01087) 971
LS_ParFree_2 <u>1395</u>	WriteValue_3 (C01088) 971
LS_ParFree_2 (C00477) <u>842</u>	WriteValue_4 (C01089) <u>972</u>
LS_ParFree_a <u>1396</u>	LU
LS_ParFree_a (C00472) <u>840</u>	DC bus undervoltage (error message) 615
LS_ParFree_a_2 <u>1397</u>	
LS_ParFree_a_2 (C00476) 841	M
LS_ParFree_b <u>1398</u>	Machine parameters 498
LS_ParFree_b (C00470) <u>839</u>	Main program runtime (C00321) 808
LS ParFree p 1399	Mains connection (behaviour) 112

Mains phase failure monitoring 283	Speed (C01211) <u>984</u>
Mains voltage (C00173) 793	Speed follower setting (C01219) 986
Manual DC-injection braking (DCB) 251	Status word (C01241) <u>994</u>
Manual jog 533	Stop accelerations (C01251) 997
Setting (C01230) 990	Stop S-ramp times (C01252) 998
Manual jog to software limit position 539	Target detection - positions (C01245) 997
Master functionality (CAN) 652	Target detection - times (C01244) 996
MasterPin 42	MCK control word 481
Max. motor speed (C00965) <u>949</u>	MCK interface 487
The state of the s	MCK state machine 485
Max. number of AutoFailReset processes (C00186)	MCK status word 483
796	MCKI
Maximum current monitoring 283	Status MCKInterface (C01299) 1000
Maximum torque (C00057) 765	MCTRL
Maximum torque monitoring 284	Actual speed value (C00051) 763
Maximum travel distance 512	Special settings (C02866) 1022
MCI input words (C00876) <u>942</u>	Speed setpoint (C00050) 763
MCI output words (C00877) 943	Status (C01000) <u>956</u>
MCI_InOut	
	Memorise positions at power-off (C02652) <u>1014</u>
MCK 473	Memory module
Accel./decel. times (C02610) 1013	Binding ID 40
Control word (C01240) 992	Min/max speed 505
Current operating mode (C01243) 996	Mode
Current pos profile number (C01242) 995	Position calculation (C01296) 998
Current positions (C01210) 984	Modulo measuring system 502
Cycle (C01201) <u>982</u>	Moment of inertia (C00273) 805
Feed constant (C01204) 983	Monitoring <u>274</u> , <u>595</u>
Follower accelerations (C01237) 992	Monitoring of the maximum travel distance 512
Follower speeds (C01236) 991	Motion Control Kernel (MCK) 473
Follower S-ramp times (C01238) 992	Motor cable cross-section (C00916) 944
Following error (C01215) 985	· · · · · · · · · · · · · · · · · · ·
iG motor/position encoder (C01203) 983	Motor cable length (C00915) 944
iM motor/process (C01202) 983	Motor cable resistance (C00917) 945
Limitations (C02611) 1014	Motor catalogue 124
Manual jog accelerations (C01232) 990	Motor control 120
Manual jog breakpoints (C01234) 991	87-Hz operation <u>155</u>
Manual jog breakpoints (C01234) 991 Manual jog speeds (C01231) 990	DC-injection braking 250
Manual jog S-ramp time (C01233) 991	Flying restart fct. 247
Manual jog waiting times (C01235) 991	Oscillation damping 256
Max. travel distance 512	Selection help 135
Max. traver distance 312 Max. traversing distance (C01213) 985	Selection of switching frequency 240
Mounting direction (C01206) 984	Selection of the control type 131
Operating mode change at profile no. (C01298)	Sensorless vector control (SLVC) 182
1000	Servo control (SC) 214
Position limiting values (C01229) 989	Slip compensation 255
Position resolution (C01205) 983	V/f characteristic control - energy-saving
Positioning setting (C01216) 985	(VFCplusEco) <u>166</u>
Ref speeds (C01224) 988	V/f characteristic control (VFCplus) 147
Ref. accelerations (C01225) 988	V/f control (VFCplus + encoder) 176
Ref. M limit mode 14/15 (C01222) 987	Motor control (C00006) 752
Ref. mode (C01221) 987	Motor cosine phi (C00091) 771
Ref. positions (C01227) <u>987</u> Ref. positions (C01227) <u>989</u>	Motor current (C00054) 764
Ref. sequence profile (C01228) 989	Motor data 121
Ref. S-ramp time (C01228) 988	Motor holding brake 563
Ref. waiting time mode 14/15 (C01223) 987	Motor load monitoring (I2xt) 276
	<u> </u>
Resp. to MCK error (C00595) <u>858</u>	Motor magnetising current (C00095) 772
Select signal source (C01246) 997	Motor magnetising inductance (C00092) 772

Motor parameter identification 126	oC6
Motor parameter identification is active 104	I2xt overload - motor (error message) 621
Motor phase direction of rotation (C00905) 944	oC7
Motor phase error monitoring before operation 281	Motor overcurrent (error message) 614
Motor phase failure monitoring 281	oH1
Motor phase failure threshold (C00599) 859	Heatsink overtemperature (error message) 612
Motor rotor position (C00060) 765	oH12
Motor rotor position (C00927) 945	Motor overtemperature MultiEncoder (error
Motor rotor resistance (C00082) 770	message) <u>613</u>
Motor rotor time constant (C00083) 770	oH3
Motor selection 121	Motor temperature (X106) triggered (error
Motor speed monitoring 284	message) <u>613</u>
Motor stator leakage inductance (C00085) 770	oH4 Heatsink temp. > shutdown temp5°C (error
Motor stator resistance (C00084) 770	message) 612
Motor temperature (C00063) 766	оН6
Motor temperature monitoring (PTC) 278	Motor temperature MultiEncoder > C121 (error
Motor thermal sensor (C01190) 981	message) 613
Motor voltage (C00052) <u>764</u>	oH7
N	Motor temperature resolver > C121 (error message) 612
Nact filter time constant (C00497) 847	оН9
Network management telegram (NMT) 651	Motor overtemperature resolver (error message)
NMT (network management) 651	<u>612</u>
Node address 647	Open-circuit monitoring
	HTL encoder 322
Node ID 647	Open-circuit monitoring (C00498) 848
Number of CAN SDO channels (C00366) 819	Operating conditions (CAN on board) 640
Number of encoder increments (C00420) <u>826</u>	Operating mode
0	Homing <u>517</u>
	Manual jog <u>533</u>
oC1 Power section - short circuit (error message) 615	Position follower <u>557</u>
oC10	Positioning 541
Maximum current reached (error message) 616	Speed follower 515
oC11	Stop <u>556</u>
Clamp operation active (error message) 618	Operating mode change with profile number 495
oC12	Operation with increased rated power 243
12xt overload - brake resistor (error message) 618	Operation with safety module 486
oC13	Optical location 100
Maximum current for Fch exceeded (error message)	Optimising the response to setpoint changes (SC) 229
619	Optimising the response to setpoint changes (SLVC)
oC14	194 Ontion "Lock beatlet Trouble OSP" 117
Direct-axis current controller limitation (error	Option "Lock bFail at TroubleQSP" 117
message) <u>620</u>	Original application control source (C00008) 755 oS1
oC15	Maximum speed limit reached (error message) 617
Cross current controller limitation (error message)	
<u>620</u>	oS2
oC16	Max. motor speed (error message) 617
Torque controller limitation (error message) 620	Oscillation damping 256
oC17	Oscillation damping filter time (C00235) 801
Clamp sets pulse inhibit (error message) 616	Oscillation damping influence (C00234) 801
oC2	ot1
Power section - earth fault (error message) 615	Maximum torque reached (error message) 614
oC5	ot2 Speed controller output limited (error message) 619
Ixt overload (error message) <u>614</u>	speed controller outhor littlifed (ettor message) 619

OU	Position teaching <u>555</u>
DC bus overvoltage (error message) 614	Positioning <u>541</u>
Output frequency (C00058) 765	Positioning modes <u>548</u>
Output power (C00980) <u>952</u>	Power section ID (C00093) 772
Overchange <u>547</u>	Power-on time meter (C00179) 795
Override <u>559</u>	Pre-defined error field (I-1003) 691
Override point of field weakening (C00080) 769	Printing the interconnection 1104
Oxl	Process data objects, identifiers 661
Current (C00437) <u>829</u>	Processing time 641
OxU	Producer heartbeat time (I-1017) 695
Voltage (C00436) <u>829</u>	Product type code (C00203) 798
OxU/I	Profile data
Gain (C00434) <u>829</u>	Acceleration (C01303) 1002
Input value (C00439) <u>830</u>	Deceleration (C01304) 1002
Offset (C00435) <u>829</u>	Final speed (C01305) <u>1003</u>
n	Position (C01301) <u>1002</u>
P	Positioning mode (C01300) 1001
Parameter change-over <u>734</u>	Sequence profile (C01307) 1003
Parameterisable function blocks <u>1061</u>	Speed (C01302) <u>1002</u>
Password data (C00505) <u>848</u>	S-ramp time (C01306) <u>1003</u>
Password protection <u>38</u>	TP profile (C01308) <u>1004</u>
PC manual control <u>80</u>	TP signal source (C01309) <u>1004</u>
PDO mapping <u>655</u> , <u>656</u> , <u>657</u>	Profile entry 545
PDO synchronisation <u>665</u>	Profile generator (L_DFRFG) 1211
Peak current limitation <u>136</u>	Profile linkage with velocity changeover (overchange)
Phase sequence reversal <u>259</u>	547 PS01
Plant parameters 125	No memory module (error message) 625
PLI current amplitude (C00646) 873	PS02
PLI max. permissible deflection (C00645) 873	Par. set invalid (error message) 625
PLI ramp time (C00647) <u>873</u>	PS03
PLI traversing direction (C00644) 872	Par. set device invalid (error message) <u>625</u>
PLI without motion	PS04
Adaptation of ident angle (C02875) 1025	Par. set Mci invalid (error message) <u>625</u>
Adaptation of time duration (C02872) 1024	PS07
Ident. el. rotor displ. angle (C02873) 1024	Par. memory module invalid (error message) 626
Optimisation factor (C02870) 1023	PS08
Running time (C02871) 1023	Par. device invalid (error message) 626
PLI without motion (C02874) <u>1024</u>	PS09
Pole position (C00926) 945	Par. format invalid (error message) 626
Pole position identification 144	PS10
Port block "LP_Canin1" 655	Memory module binding invalid (error message)
Port block "LP_CanIn2" 656	<u>626</u>
Port block "LP_Canin3" 657	PSM
Port block "LP_CanOut1" 658	Activate Ppp saturation char. (C02859) 1022
Port block "LP_CanOut2" <u>659</u>	Imax Lss saturation characteristic (C02855) 1022
Port block "LP_CanOut3" 660	Lss saturation characteristic (C02853) 1021
PosExecute (control bit) 494	Max. motor temperature (C02876) 1025
PosExecute control bit 494	Maximum motor current field weakening (C00938) 946
PosFollower	PSM temperature coefficient (C02877) 1025
Setting (C01218) <u>986</u>	PTC 278
Position control 264	PTC characteristic
Position control with quick stop (C00104) 774	Resistance 1/2 (C01192) 982
Position encoder selection (C00490) <u>846</u>	Temperature 1/2 (C01191) 982
Position follower <u>557</u>	Pulse form TTL-Encoder (C00424) 827

R	Resp. to operating system error (C00580) <u>854</u>
Ramp function generator (L_DFRFG) 1211	Resp. to peak current (C00569) 852
Rated device current (C00098) 772	Resp. to PLI monitoring (C00643) 872
Rated motor current (C00088) 771	Resp. to speed controller limited (C00567) <u>852</u>
Rated motor frequency (C00089) 771	Resp. to switching frequency reduction (C00590) <u>856</u>
Rated motor power (C00081) 770	Resp. to too frequent AutoFailReset (C00189) 797
Rated motor speed (C00087) 771	Retracting from limit switches <u>540</u>
Rated motor torque (C00097) 772	Reversing the phase sequence <u>259</u>
Rated motor voltage (C00090) 771	Rotary table application <u>502</u>
Rated power - brake resistor (C00130) 777	Rotor displacement angle detection after controller
Reduc. brake chopper threshold (C00174) 794	enable <u>144</u>
Reference project 1109	RPDO1 communication parameter (I-1400) 699
Reference setting 517	RPDO1 mapping parameter (I-1600) 702
Referencing mode <u>519</u>	RPDO2 communication parameter (I-1401) 700
Remote	RPDO2 mapping parameter (I-1601) 702
Acceleration/deceleration time (C00461) 836	RPDO3 communication parameter (I-1402) 701
Control (C00462) <u>836</u>	RPDO3 mapping parameter (I-1602) 703
MCK control (C00463) 837	Running time (C00180) <u>795</u>
Monitoring timeout (C00464) 838	_
Setpoint selection (C00729) 890	S
Reserved (C01239) 992	Safe stop 1 <u>486</u>
Reset error messages <u>606</u>	Safety functions 486
Reset node (CAN) 645	Safety instructions 29
Reset time Imax/M controller (C00074) 768	Safety module <u>486</u>
Resolver	Saturation characteristic 245
Phase error (C02863) <u>1022</u>	SC
Resolver gain (C02862) <u>1022</u>	Depth of current setpoint filter (C00272) <u>805</u>
Resp. to brake resist. overtemp. (C00574) <u>853</u>	Field feedforward control (C00576) 853
Resp. to CAN bus connection (C00592) <u>856</u>	Filter time const. DC detection (C00280) 805
Resp. to CANx_IN monitoring (C00593) 857	Freq. current setpoint filter (C00270) <u>804</u> Max. change in acceleration (C00274) <u>805</u>
Resp. to communication error with MCI (C01501) 1004	max. output voltage (C00276) 805
Resp. to control word error (C00594) 857	Settings (C00079) 769
Resp. to controller limitations (C00570) 852	Start motor magnetising current (C00918) 945
Resp. to DC-bus voltage (C00600) 859	Tdn speed controller (C00072) 767
Resp. to device overload (Ixt) (C00604) 860	Tn field controller (C00078) 769
Resp. to earth fault (C00602) 860	Tn field weakening controller (C00578) 853
Resp. to encoder open circuit HTL (C00586) <u>855</u>	Vp field controller (C00077) 769
Resp. to fan failure (C00566) <u>851</u>	Vp field weakening controller (C00577) <u>853</u>
Resp. to feedback (C00603) <u>860</u>	Width of current setpoint filter (C00271) 804
Resp. to heatsink temp. > shutdown temp5°C (C00582) <u>854</u>	Scaling of physical units <u>1064</u> Sd10
Resp. to LS_SetError_x (C00581) 854	Speed limit - feedback system 12 (error message)
Resp. to mains phase failure (C00565) 851	<u>621</u>
Resp. to max. freq. feedb. DIG12/67 (C00607) <u>861</u>	Sd11
Resp. to max. speed at switching freq. (C00588) 856	Speed limit for feedback system 67 (error message)
Resp. to max. speed/output freq. reached (C00579)	621 Sd12
<u>853</u>	Error thermal detector MultiEncoder (error
Resp. to maximum current (C00609) 861	message) 613
Resp. to maximum torque (C00608) 861	Sd2
Resp. to motor overload (I²xt) (C00606) 860	Open circuit resolver (error message) 616
Resp. to motor overtemp. PTC (C00585) 855	Sd3
Resp. to motor phase failure (C00597) 858	Open circuit - feedback system (error message) 621
Resp. to motor temperature KTY (C00583) <u>855</u>	Sd4
Resp. to open circuit AINx (C00598) 859	Open circuit MultiEncoder (error message) 616

Sd6	Speed setpoint generation 505
Error thermal detector resolver (error message) 613	S-ramp smoothing override <u>562</u>
Sd7	S-ramp time for jerk limitation <u>550</u>
Encoder communication (error message) 616	SS1 486
Sd8	SSI
Encoder angular drift monit. (error message) 618	Encoder constant (C01111) 975
SDO1 server parameter (I-1200) <u>696</u>	SSI encoder
SDO2 server parameter (I-1201) <u>697</u>	Bit rate (C00427) <u>828</u>
Selection help for motor control 135	Coding (C00428) 828
Selection of switching frequency 240	Data bits (C00426) <u>828</u>
Selection of the control type 131	State machine (MCK) 485
Sensorless control for synchronous machines (SLPSM)	Status "Drive in target" <u>510</u>
<u>133</u>	Status determining error (16-bit) (C00160) 786
Sensorless vector control (SLVC) 133, 182	Status determining error (C00168) 792
Serial number (C00204) <u>798</u>	Status displays <u>582</u>
Servo control (SC) <u>133</u> , <u>214</u>	Status of brake output BD (C00117) 776
Setpoint synchronisation ramp 505	Status of last device command (C00003) 751
Setting of motor overload (I ² xt) (C00120) 777	Status word (C00150) 783
Setting the baud rate 643	Status word (MCK) 483
Setting the error response 597	Stop <u>556</u>
Setting the node address <u>643</u>	Stop of the ramp function generator 268
Short overview of error messages 608	Stop the ramp function generator 268
Show details about the current error <u>586</u>	Stuff-bit error 680
Show error details <u>586</u>	Su02
Signal flow	One mains phase is missing (error message) 611
Sensorless vector control (SLVC) <u>184</u>	Su03
Servo control (SC) for ASM 218	Too frequent mains switching (error message) 611
Servo control (SC) for PSM 216	Su04
V/f characteristic control - energy-saving	CU insufficiently supplied (error message) 611
(VFCplusEco) <u>167</u> , <u>200</u>	Su06
V/f characteristic control (VFCplus) 148, 149	Mains input overload (error message) 612
V/f control (VFCplus + encoder) <u>176</u> , <u>177</u> , <u>183</u>	Switching cycles (C00177) 794
Signal type entry <u>1064</u>	Switching freq. reduct. (Temp.) (C00144) 782
Slip calculation from equivalent circuit diagram	Switching frequency 240
(C02879) <u>1027</u>	Switching frequency (C00018) 759
Slip comp. (C00021) <u>760</u>	Switching status of the fans (C00560) 851
Slip compensation 255	Switch-on inhibit 112
Slip regulator <u>179</u>	Sync correction width (C01124) 977
SLPSM	Sync cycle time setpoint (C01121) 976
Controlled current setpoint (C00995) 955	Sync phase position (C01122) 977
Filter cutoff frequency (C00997) <u>955</u> Filter time rotor position (C00998) <u>955</u>	Sync signal source (C01120) 976
PLL gain (C00999) <u>955</u>	Sync telegram 665
Switching speed (C00996) <u>955</u>	Sync window (C01123) <u>977</u>
SLVC	Synchronisation mode 1227
Cross current controller gain (C00986) 953	Synchronous motor
Field current controller gain (C00985) 953	Field weakening 260
Software limit positions 506	SyncTxRxTimes (C00370) 821
Speed control with torque limitation (SC) 220	System blocks 1382
Speed control with torque limitation (SLVC) 185	System bus 638
Speed feedback 134	System connection list
Speed follower 515	16-bit (C00620) <u>862</u>
Speed limitation (C00909) 944	Angle (C00622) <u>869</u>
Speed override 560	Bool (C00621) <u>864</u>
Speed sensor selection (C00495) 847	
· · · · · · · · · · · · · · · · · · ·	

System error messages 602	US06
System runtimes (C00312) 807	User error 6 (error message) 633
system runtines (coosiz) sor	US07
T	User error 7 (error message) 633
Target position monitoring 510	US08
Task selection 1068	User error 8 (error message) 633
Teaching of the position <u>555</u>	User data <u>669</u>
Temperature inside the controller (C00062) 766	User menu (C00517) <u>850</u>
Thermal capacity - brake resistor (C00131) 778	User-definable V/f characteristic 162
Thermal motor load (I²xt) (C00066) 767	V
Ti current controller (C00076) 768	V
Ti speed controller (C00071) 767	V/f base frequency 154
Time settings (C00181) <u>795</u>	V/f characteristic control - energy-saving (VFCplusEco) 166
Torque (C00056) <u>765</u>	V/f characteristic control (VFCplus) 132, 147
Torque control with speed limitation (SC) 221	V/f control (VFCplus + encoder) 176
Torque control with speed limitation (SLVC) <u>186</u>	VFC
Torque feedforward control (SC) 229	Frequency interpol. point n (C00967) 950
Torque feedforward control (SLVC) 194	Limitation V/f + sensor (C00971) 951
Torque limitation <u>160</u>	Ti V/f +sensor (C00973) <u>951</u>
Touch probe detection <u>362</u>	Time const. slip comp. (C00966) 949
TP	V/f base frequency (C00015) 758
Edge selection (C02810) <u>1015</u> Pos. window end (C02814) <u>1016</u>	Vmin boost (C00016) 758
Pos. window start (C02813) 1016	Voltage interpol. point n (C00968) 950
Position offset (C02812) 1016	Vp V/f +sensor (C00972) <u>951</u> VFC-ECO
Position source (C02815) <u>1017</u>	Minimum voltage V/f (C00977) 952
Sensor delay (C02811) 1015	Ti CosPhi controller (C00976) 951
Signal counter (C02816) 1017	Voltage reduction (C00978) 952
TouchProbe position (C02817) 1018	Voltage reduction ramp (C00982) <u>953</u>
TP (touch probe) <u>362</u>	Vp CosPhi controller (C00975) 951
TPDO1 communication parameter (I-1800) 704	Vmin boost <u>156</u>
TPDO1 mapping parameter (I-1A00) 708	Vp current controller (C00075) 768
TPDO2 communication parameter (I-1801) 706	Vp speed controller (C00070) 767
TPDO2 mapping parameter (I-1A01) 708	
TPDO3 communication parameter (I-1802) 707	W
TPDO3 mapping parameter (I-1A02) 709	Warning threshold motor temperature (C00121) 777
Transmission mode CAN Rx PDOs (C00323) 808	
Transmission mode CAN TxPDOs (C00322) 808	
Transmission type 662	
Travel range monitoring <u>508</u>	
U	
Ultimate motor current (C00939) 946	
US01	
User error 1 (error message) 632	
US02	
User error 2 (error message) 632	
US03	
User error 3 (error message) <u>632</u>	
US04	
User error 4 (error message) 632	
US05	
User error 5 (error message) 633	

FEEDBACK

Your opinion is important to us

These instructions were created to the best of our knowledge and belief to give you the best possible support for handling our product.

If you have suggestions for improvement, please e-mail us to:

feedback-docu@Lenze.de

Thank you for your support.

Your Lenze documentation team

((

© 08/2011

Lenze Drives GmbH
Breslauer Straße 3
D-32699 Extertal
Germany

****** +49 (0) 51 54 / 82-0

<u>Lenze@Lenze.de</u>

www.Lenze.com

Service Lenze Service GmbH Breslauer Straße 3 D-32699 Extertal Germany

24 4 68 77 (24 h helpline)

+49 (0) 51 54 / 82-11 12

<u>Service@Lenze.de</u>

EDS84AVTCxx = 13387462 = EN 2.0 = TD05

10 9 8 7 6 5 4 3 2 1