Absolute multi-turn shaft encoders BMA/BMB SSI

features

- multi-turn encoders up to - 13 bit single-turn
 - 12 bit multi-turn
- SSI interface
- Gray and binary code
- self-testing
- counting direction setting input
- zero setting input
- optional: with incremental signals

BMB

BMA

general data		
voltage supply	10 - 30 VDC with reverse polarity protection	
max. supply current no load	50 mA (at 24 VDC)	
max. resolution single-turn multi-turn	13 bit (1 step = 2' 38") 12 bit (4'096 rev.)	
max. error limit	±1/2 step	
input signal	clock input SSI, F/R-input, zero set input	
max. switching frequency 800 kHz		
SSI clock frequency	min. 62,5 kHz up to max. 1,5 MHz (depending on cable length)	

mechanical data		
max. revolutions	mech. 10'000 rpm electr. 6'000 rpm	
moment of interia	2 x 10 ⁻⁶ kgm ²	
torque	≤ 0,010 Nm (without sealing ring) ≤ 0,015 Nm (with sealing ring)	
max. shaft load	axial: 20 N	radial: 40 N
max. protection class	IP 65	
material	housing: steel flange: aluminum	
weight	approx. 400 g	

ambient conditions	
temperature range	-25+85 °C
relative humidity	max. 95% non condensing
vibration	DIN EN 60068-2-6 (≤ 100 m/s² / 16 - 2'000 Hz)
shock	DIN EN 60068-2-27 (≤ 2′000 m/s² / 6 ms)
noise immunity	DIN EN 61000-6-2
emitted interference	DIN EN 61000-6-4

dimensions and connection dimensions

BMA

BMB

-5

-**B**

-A

www.baumerelectric.com

Absolute multi-turn shaft encoders BMA/BMB SSI

assignment

Designation		
cable	connector	signal (SSI)
color	12-pin	
brown	1	+Vs
black	2	GND
blue	3	clock+
beige	4	data+
green	5	ZERO
yellow	6	data-
violet	7	clock-
brown/yellow	8	DV
pink	9	F/R
black/yellow	10	DV/MT
-	11	-
-	12	-

Screen: In the case of encoders with cable output, the screen is connected to the housing.

pin assignment M23 male

seen from outside

connector 12-pin M23

signals for serial input interface

- 1 +Vs Voltage supply connection of the encoder.
- 2 GND Ground connection of the encoder. The voltage relating to GND is +Vs.
- 3 clock+ Clock, together with clock-, forms a current loop. A current of 7 mA in input clockdirection produces a logical 0 in positive logic.
- 4 data+ Positive, serial data output of the differential ine driver. A HIGH level at the output corresponds to logic 1 in positive logic.
- 5 ZERO Zero setting input for setting a zero at any point within the overall resolution. The zero setting process is triggered by a HIGH pulse and should take place after direction of rotation selection (F/R). Min. signal duration > 100 ms.
- 6 data- Negative, serial data output of differential line driver. A HIGH level at the output corre-sponds to logical 0 in positive logic.
- 7 clock- Clock-, together with clock, forms a current loop. A current of 7 mA in input clock-direction produces a logical 0 in positive logic.
- 8 / 10 Diagnosis outputs DV and DV/MT
- DV; DV/MT Jumbs in data word, e.g. due to defectiv LED or photoreceiver, are displayed via the DV output. In addition, the power supply of the multiturn sensor unit is monitored and the DV MT output is set when a specified voltage level is dropped below Both outputs are Low-active, i.e. are switched through to GND in the case of an error.
- 9 F/R F/R counting direct input. If connected, this input is in HIGH state. F/R-High means increasing output data with cw shaft rotation. F/R-Low means increasing output values with ccw shaft rotation, in each case looking at the shaft.

inputs F/\overline{R} and ZERO

Control signal F/ \overline{R} and ZERO

input voltage	(Vs = 10 - 30 VDC)
HIGH level	> 0,7 - +Vs
LOW level	< 0,3 +Vs

Connection: F/ \bar{R} inputs with 10 k Ω to +Vs for F/ \bar{R} , zero setting input with 10 k Ω to GND.

signal characteristic, SSI serial output

Please use the programmable version of type BMC/BMD for single pieces.

outputs $\overline{\text{DV}}$ and $\overline{\text{DV}/\text{MT}}$

Outputs push-pull short-circuit protected

HIGH level	> Vs -3,5 V (up to I = -20 mA)
LOW level	\leq 0,5 V (up to I = 20 mA)

accessories	
connector 12-Pol M23	part nr. 118319
type BMA servo flange	
mounting	part nr. 125051
scews and servo clamps	part nr. 117668
type BMB clamping flange	
mounting bracket	part nr. 117698

parity bit	reference 24E
For simple error detection d tional parity bit can be trans required for transmission (b	uring data transmission, an addi- mitted. Two additional clocks are v MT various).
Parity bit = $,1^{"}$ for odd nu	mber of HIGH levels in the data

word (without parity bit).

Parity bit = $_{,,0}$ ^{''} for even number of HIGH levels in the data word (without parity bit).

data valid bit (DV)

reference 24F

The $\overline{\text{DV}}$ bit can be transmitted instead of the LSB (D1). The maximum single-turn resolution is then reduced to 12 bits.

The transmitted $\overline{\text{DV}}$ bit is HIGH active, that is to say if a HIGH level is transmitted, data information is invalid. The data are valid where $\overline{\text{DV}}$ bit = LOW.